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Abstract

Convolutional Neural Networks are particularly suited for image analysis tasks,
such as Image Classification, Object Recognition or Image Segmentation. Like
all Artificial Neural Networks, however, they are “black box” models, and suffer
from poor explainability. This work is concerned with the specific downstream
task of Emotion Recognition from images, and proposes a framework that com-
bines CAM-based techniques with Object Detection on a corpus level to better
understand on which image cues a particular model relies to assign a specific
emotion to an image. We demonstrate our framework using the EmoNet model
and show that it mostly focuses on human characteristics, but also explore the
pronounced effect of specific image modifications.

1 Introduction

Thanks to recent progress, image analysis problems such as Object Detection using Artifical Neural
Networks (ANN) can be more or less considered to be solved [20, 8]. However, higher-order tasks,
such as identifying the emotion content of an entire image, remain more challenging. Convolutional
Neural Network (CNN) models such as EmoNet [10] present a promising approach in this area, but
its results are not yet completely convincing. This raises the question to which extent this network
is actually picking up meaningful cues in the images, and to what extent it is learning spurious
correlations that may be present in the private dataset on which it was trained.

ANNs are still considered “black box” models, and the domain that attempts to untangle how they
make the predictions they make, i.e., to improve their explainability, is a very active one [17, 19, 1].
One of the techniques for this is Class Activation Mapping [21], or CAM, which allows to highlight
those parts of the image that contributed most to a model’s (say, a CNN image classifier) output. This
technique allows to visually inspect individual images or videos, but does not immediately allow for
an automated global analysis on a corpus level. To answer the earlier question of what image cues a
CNN-based Emotion Recognition network, in casu EmoNet, most relies on, we propose EmoCAM.
Our framework combines two information streams, namely CAM and Object Detection, to build a
pipeline that allows to determine those object classes that most contributed to the model’s decision
making on a corpus level. Besides better understanding what object classes the model relies most
upon, we also want to explore the potential of applying minor changes to the input images that steer
the model towards a specific emotion by leveraging the obtained information from our EmoCAM
analysis. Our source code can be found at https://gitlab.com/EAVISE/lme/emocam.
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Figure 1: Schematic illustrating pipeline combining CAM with Object Detection.

The remainder of this paper is organized as follows: in Section 2 we describe our proposed frame-
work in detail, followed by Section 3 where we look at a concrete case using the EmoNet network
and FindingEmo [12] image dataset. Limitations and roads for future work are explored in Section 4
and we present concluding remarks in Section 5. Photo credits have been gathered in Appendix A.4.

2 Methodology

We start our analysis by applying, for a given CNN model M and corpus D, the following steps to
each image I ∈ D, schematically illustrated in Fig. 1.

First, we process I with the object detection network of our choice, in casu, YOLOv3 [15] trained
on the Open Images dataset.1 We opted for this particular pretrained network as other popular
Object Detection dataset choices such as PASCAL VOC (20 classes) and MS-COCO (80 classes)
are too restricted in the classes they propose. By contrast, Open Images, which contains 601 classes,
presents a nice balance between human-related classes (e.g., “human face”, “mouth”, etc.), and
more general classes representing contextual elements (e.g., “car”, “tree”, etc.). The result of this
operation is a list of detected objects and their corresponding bounding boxes B. We filter the
YOLOv3 output by keeping only bounding boxes with an IoU score > 0.005.

Second, we process I with M , and apply a CAM-based technique C to the last convolutional layer
of M .2 This gives us an activation map that we overlay on top of I to obtain a new image A.

Finally, we lay the bounding boxes B on top of A, and look for those boxes b ∈ B for which
the average CAM activation, or importance, CAct > 0.3, with CAct defined as the sum of the
CAM activations within the box divided by the area of the box.3 The threshold was heuristically
determined by visually inspecting a limited set of images. We refer to these boxes as the set B∗, and
interpret these as those objects that most contributed to the model’s decision.

Once we have found B∗ for every image in our corpus, we then analyse these data to find associ-
ations between object classes and output labels by constructing an association matrix MA, where
aij ∈ MA represents the number of images labeled with the jth EmoNet emotion label in which
the ith object class has been detected at least once. By dividing each column j through by the total
number of images labeled with the jth emotion such as to obtain percentages (after doing ×100),
we obtain M ′

A which allows to ignore imbalances in the prediction rates of the different emotions.

1We use the PyTorch LightNet [13] implementation, and OpenImages weights available from https://
pjreddie.com/darknet/yolo/.

2We tried (combinations of) other layers, but the best results were obtained using only the last layer.
3We take the activations from the original grayscale CAM output, not from the colorized version.
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3 Results

We tested our proposed approach using the EmoNet model and the FindingEmo dataset. EmoNet is
a model obtained through replacing the last layer of an AlexNet model pretrained on the ImageNet
[3] corpus. This last layer was then trained on a private dataset of 137,482 images annotated for the
emotion they evoke in the observer with one of 20 custom emotion labels. We use the Python port
by L. Mertens [11] of the original Matlab release. FindingEmo is an image dataset consisting of
25,869 images annotated for, a.o., the dominant emotion in the picture, using one of the 24 emotion
labels in Plutchik’s Wheel of Emotions [14]. All images represent multiple people in various natural
settings and with varying degrees of interaction among them. We present detailed results for Grad-
CAM [18] in Section 3.1. An exploration of the effect of using other CAM-based methods can be
found in Appendix A.2.4 Finally, we briefly explore the effect on the predicted label of artificially
adding certain objects to images, attempting to answer the question whether the presence of certain
objects can cause a specific label to be predicted.

3.1 Results for Grad-CAM

A heatmap depicting M ′
A as obtained using Grad-CAM together with EmoNet applied on the Find-

ingEmo corpus can be found in Fig. 2. We limit ourselves to the 25 most prominent Open Images
classes (as determined by the average of the corresponding row in M ′

A). A clear conclusion to be
drawn from this graph is that human features do indeed contribute the most to the decision making,
most particularly the human face which, except for “Clothing”, represents the most important class
for each EmoNet label.

Figure 2: Association between Open Images classes and predicted EmoNet label. Heatmap entries
represent the percentage of images labeled with a certain EmoNet label for which at least one object
of the corresponding Open Images class was detected with high enough importance. “Aest. Appr.”
= Aesthetic Appreciation.

Additionally, some more specific associations do manifest themselves. Clear examples are the asso-
ciation between “Sports equipment” and “Excitement”, and “Food” and “Craving”, both of which
seem logical. Less clear is, e.g., the association between “Furniture” and “Interest”, or “Plant” and
“Surprise”, which hint of spurious associations resulting from biases in either or both the EmoNet
training dataset and FindingEmo.

4For the CAM analysis, We use the Python packages grad-cam [6] and captum [9].
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Figure 3: Fig. A: Adversarial example. Original image labeled by EmoNet as 92.9% “Joy”. Mod-
ified part in upper right box; modified image labeled as 66.1% “Excitement”. Fig. B: Schematic
illustration of “paste object in image” experiment. The grid illustrates the relative positions within
the image the objects are pasted and centered at, with the considered objects shown at the bottom.

3.2 Prediction Stability

To illustrate how the obtained knowledge can be applied to create an adversarial attack, consider
the image shown in Fig. 3.A. We know from Section 3.1 that there is a high association between
the object category “Sports equipment” and EmoNet label “Excitement”. This inspired us to take
an image labeled with high probabilty as “Joy” (92.9%; Excitement: 1.8%). After altering this
image by pasting a rugby ball on top of the head of one of the two main subjects, the prediction
changes to 66.1% “Excitement” (“Joy”: 30.2%), demonstrating the dramatic effect the presence of a
particular object can have on the model’s output. Note that the position of the pasted object greatly
influences the effect it has. Moving the rugby ball to the immediate right of the subject’s face alters
the predictions to 43.9% “Joy” and 42.1% “Excitement”, while moving it to the immediate left only
alters the predictions by 4% in the same directions (“Joy”: 34.2%; “Excitement”: 62.1%). Covering
the other subject’s head instead, we obtain 52.0% “Joy” and 30.7% Excitement.

We further investigate this effect by performing the following experiment. For each I in D, we
paste a given object O ∈ {Rugby ball, Soccer ball, Lotus flower}, resized such that its height equals
0.2 × height(I), in I centered at each one of a set of predefined relative positions P within the
image, resulting in size(P ) alterations to I . The positions and objects considered are illustred in
Fig. 3.B. We then send the altered images through EmoNet, and observe how the prediction was
affected. Finally, we determine for what percentage of images the predicted label changed, and
determine the label most often switched to.

The results are shown in Appendix A.3, and summarized here. The experiment confirms that the
model shows high sensitivity to certain objects. Although differences of up to more than 10% can
be observed between positions, specifically for the rugby ball, no real tendencies reveal themselves.
In combination with the example in Fig. 3.A, we hypothesize the differences are not so much due to
the absolute position of the object, but to what it occludes. For the rugby ball, 4 out of 17 positions
resulted most often in a label switch to “Excitement”. For the soccer ball, the number increases to 7.
The Lotus flower clearly results in much less label shifts overall, with not a single position favoring
“Excitement”, confirming the importance of the object class in effecting a label switch.

4 Limitations and Future Work

Although the currently described approach already provides valuable insights, some limitations are
to be noted.

First, the approach is, by definition, heavily dependent on the choice of Object Detection network
and its corresponding classes and performance. The upside is that, as a plug-and-play component,
different Object Detection networks can be chosen for different tasks, allowing to pick object classes
tailored to the task at hand.
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Figure 4: An instance were the current EmoCAM approach fails to detect the most important class.

Second, our current implementation does not take into account the size of the bounding boxes, which
can result in suboptimal results. Consider, e.g., the example shown in Fig. 4. Although the subject’s
ear is clearly not the most important contributing element in the picture, because of the small size of
the “Human ear” bounding box the average CAM activation is nonetheless the highest, spuriously
pushing this object class to the top. Two main paths could be explored to counter this issue. The
most straightforward would be to develop a scoring function that does take into account the bounding
box size, or the activation distribution within it. Alternatively, segmentation models could be used
instead of bounding box detection models, so as to obtain clearly delineated zones representing the
different objects. Then of course, our first limitation still applies, i.e., the segmentation classes need
to be relevant to the task at hand.

Third, with regard to our experiment described in Section 3.2, a more interesting approach might be
to, instead of, or along with, considering only a fixed set of positions, paste the object at the center
of bounding boxes relating to specific features such as human heads, thus investigating the effect of
masking specific objects. We also intend to apply EmoCAM to the modified images to explore if
the shift in label is reflected in a shift in focus in the modified image.

5 Conclusion

We propose the novel EmoCAM approach to explaining CNN decisions, specifically with the down-
stream task of Emotion Recognition from images in mind. Our objective is threefold: 1) better
understanding what parts of the input image the model uses to make its decision, 2) allowing to
check whether or not the information used by the model aligns with expectations from a human
perspective, and 3) uncovering potential model biases. We have demonstrated our approach using
the EmoNet model, FindingEmo dataset and multiple CAM techniques. Using our approach, we
found that EmoNet indeed shows a strong focus on human elements, most notably (parts of) the
human face, which is encouraging as it aligns with our understanding of human emotion recognition
from Psychology. Nevertheless, we also found the model output to be quite unstable, in that adding
specific objects (e.g., a rugby ball) to an image can dramatically alter its output and steer it towards
a specific target emotion (e.g., “Excitement”).
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A Appendix

A.1 Preliminaries

In this section we provide brief introductions to the Image Classification and Object Detection tasks,
and the CAM visualization technique, which form the basis for the current manuscript.

Figure 5: Illustration of Image Classification (A), Object Detection (B) and Class Activation Map-
ping (C). In (A), a (hypothetical) model has assigned the label “Flower” to the image. In B, a
(hypothetical) Object Detection model has detected one instance of “Flower” and “Bee”. In C, a
(hypothetical) CAM output is superimposed on A, showing what parts of the image contributed to
the model assigning the label “Flower”. The redder the pixel, the more it contributed.

A.1.1 Image Classification

The task of Image Classification consists of training a network to assign a class—or label—c out of
a set C of possible classes to an input image I . Consider, e.g., Fig. 5.A, showing an image for which
a (hypothetical) image classifier determined the label “Flower” to be the most likely. In our case,
the interest lies with emotion labels instead of object labels, but the principle remains the same.

A.1.2 Object Detection

The task of Object Detection is related to Image Classification, but instead of assigning a label to
the entire image, the goal is to detect all instances of a fixed set of classes C that are represented
in the image. A way of doing so is to determine the bounding box of each object, and assign the
correct label to it. Fig. 5.B shows the same image as Fig. 5.A, but this time a (hypothetical) Object
Detection network trained to recognize, a.o., objects of class “Flower” and “Bee” has detected one
instance of each class.

A.1.3 Class Activation Mapping

A general problem with ANNs is that they are not explainable, i.e., it is not clear how they came
to make a particular prediction. CAM, originally introduced by Zhou et al. [21], is one technique
that attempts to answer this particular question for the task of Image Classification. The original
technique works only for CNNs that contain a Global Average Pooling (GAP) layer at the tail of the
sequence of convoluational layers. The GAP layer converts each filter in the preceding convolutional
layer to the average activation of its features, essentially converting a collection of N filters to an
N -dimensional vector V , which is then typically fed to a linear output layer O of size |C| to obtain
the output probabilities for each class. The idea behind CAM is to use the weights connecting V to
O to compute a weighted sum of the filters corresponding to the entries in V to obtain a weighted
average filter, called the “Class Activation Map”, that encodes the importance of each filter to the
model’s output. This (1-channel) Class Activation Map is then upscaled to the size of I , and typically
converted to an RGB image that is superimposed on I . An illustration is shown in Fig. 5.C. This
technique was further generalized in Grad-CAM [18] to allow usage with models that initially do not
use a GAP layer, and with any task, by using the gradients flowing back into the last convolutional
layer as basis for the weights assigned to the filters. Subsequent techniques mentioned later in this
paper essentially only differ in how they define these weights.
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A.2 Comparison of CAM Methods

To answer the question to what extent different CAM methods yield different results, we performed
a Representational Similarity Analysis [5] as follows. For each CAM method C ∈ {Grad-CAM,
Ablation-CAM[4], LIME[16], LRP[2], LIFT-CAM[7]}, we determine the association matrix MA

with all Open Images classes as described in Section 2, keeping the same emotion and class ordering
for each C5. We then flatten each matrix by concatenating all rows, turning it in to a 1D vector VMC

.
Finally, we construct a matrix R where each entry RCC′ represents the Spearman Correlation rank
between VMC

and VMC′ . The resulting matrix is shown in Fig. 6. All related p-values were << 0.05,
indicating statistical significance.

Figure 6: RSA analysis of different CAM methods.

The consistently high correlation values between all pairs indicate that variations in results obtained
through different CAM methods can be expected to be minimal. We did observe both LIFT-CAM
and LRP resulting in a notable association between “Pillow” and “Sexual Desire”. Other than this,
the differences between the methods appear to lie within the relative strengths of the associations
observed, rather than the assocations themselves.

A.3 Results of ObjectPaste experiment

The barplot showing the results of the experiment described in Section 3.2 can be found in Fig. 7.

Figure 7: Percentage of images in the corpus whose predicted label changed when a specific object
was pasted at a specific position. Refer to Fig. 3.B for the positions and objects. The letters ‘A’ for
‘Admiration’, ‘E’ for ‘Excitement’ and ‘J’ for ‘Joy’ atop each bar indicate the EmoNet label most
often switched to.

5Which ordering is used does not matter, as long as it is consistently used.
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A.4 Photo Credits

Following is the list of credits for the images used in the figures.

• Fig. 1: Photo by Sander Sammy on Unsplash, https://tinyurl.com/2tc69hfy, Un-
splash license.

• Fig. 3: A: original photo by istolethetv, https://tinyurl.com/3r86e3w2, CC 2.0 li-
cense; Rugby ball by Peter Griffin, https://tinyurl.com/dmb77rks, CC0 license. B:
Soccer ball by Jean Schecter, https://tinyurl.com/3xxkkysb, CC 4.0 BY-NC; Lotus
flower at https://pngimg.com/image/69752, CC 4.0 BY-NC.

• Fig. 5: Photo by one of the authors.
• Fig. 4: Original photo by Darius Bashar on Unsplash, https://tinyurl.com/
4eephaxb, Unsplash license.
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