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Abstract

Precise atomic-level interpretation of macromolecular structures is vital for under-1

standing biological mechanisms yet remains challenging due to the complex nature2

of cryo-electron microscopy (cryo-EM) data. Existing approaches have utilized3

either multiple convolutional neural networks or complex combinations of autoen-4

coder and latent diffusion models to predict atom locations via image segmentation.5

We introduce DeepTracer Diffusion, a novel framework that leverages a single6

Denoising Diffusion Probabilistic Model (DDPM) to perform image segmentation,7

providing higher accuracy in terms of F1 score and predicted residues for predicted8

backbone atoms.9

1 Introduction10

Accurate determination of atomic positions and labels in macromolecular structures is crucial to11

understanding biological functions and processes. Cryo-electron microscopy (cryo-EM) has become12

an essential tool in structural biology, offering the ability to visualize macromolecules at near-13

atomic resolution. However, interpreting cryo-EM maps to extract precise atomic models remains a14

challenging task because of the complexity and variability of the data.15

DeepTracer is a deep learning model for protein structure predictions using 4 U-Net models for16

atoms, backbone, secondary structures, and amino acids to predict atom locations and types Pfab17

et al. (2020). Each U-Net learns its respective data type and results in accurate protein structure18

predictions given a cryo-EM map. DeepTracer performs well only on high-resolution cryo-EM maps.19

With medium to low-resolution cryo-EM maps, DeepTracer’s predictions worsen. The performance20

loss is due to the U-Nets struggling to discern low resolution data (often containing a lot of noise),21

and a failure to accurately determine the segmentation for each output.22

Diffusion models are a class of generative models that can output new samples of data by iteratively23

denoising pure Gaussian noise Ho et al. (2020). These models learn a data distribution by learning to24

denoise data distorted by random noise. There have been numerous approaches to image segmentation25

using diffusion, especially in the biomedical sciences. Existing methods use latent diffusion models26

paired with an autoencoder. The encoder generates latent representations of input data, which are27

then fed into a latent diffusion model and decoded into the predicted segmentation Lin et al. (2024).28

A drawback with an autoencoder and diffusion model setup is the need to run input through multiple29

models and the potential requirement of training both an autoencoder and a diffusion model.30

We present DeepTracer Diffusion. Rather than performing encoding and decoding steps with the31

diffusion process, we use a single DDPM model. We specifically rework the sampling algorithm32

to generate new samples of segmented voxel data. The modification results in an iterative process33

of generating new segmentation predictions from pure noise over a series of steps. Our approach34
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achieves higher F1 scores and predicted residues, while not bounded by cryo-EM map resolution and35

without the need to use encoding/decoding steps.36

2 Related Works37

2.1 Diffusion for Image Segmentation38

Several approaches have been proposed regarding diffusion probabilistic models for image segmenta-39

tion task. SegDiff Amit et al. (2022) utilizes diffusion models to iteratively refine segmentation maps40

by merging information from input images and current estimations. MedSegDiff Wu et al. (2022)41

extends the use of diffusion models to medical imaging, introducing dynamic conditional encoding42

and a Feature Frequency Parser to enhance segmentation performance across various medical tasks.43

Furthermore, MedSegDiff was improved in MedSegDiff-V2 Wu et al. (2023) through the integration44

of transformer mechanisms.45

The versatility of diffusion models is evident in their success in generating a distribution of seg-46

mentation masks, demonstrating promising results in medical imaging Mo et al. (2023b). Similarly,47

another research effort models panoptic masks using diffusion models, demonstrating competitive48

performance in both image and video segmentation tasks Chen et al. (2023).49

Latent diffusion models have also demonstrated promising results in image segmentation. A notable50

project, SDSeg, utilizes a well-trained latent diffusion model for biomedical image segmentation51

with a single-step reverse process Lin et al. (2024). In this approach, the predicted noise is used52

to estimate a latent representation of a segmentation map, which is then passed into a pixel-space53

decoder. This enables an efficient single-step reverse process. SDSeg boasts competitive inference54

speeds compared to other segmentation models.55

2.2 Protein Structure Modeling From Cryo-EM Maps56

Protein structure modeling from cryo-EM maps has seen significant strides. Cryo2Struct Giri and57

Cheng (2024) employs a combination of 3D transformers and Hidden Markov Models (HMM) for58

de novo modeling of atomic protein structures. This model features a transformer-encoder and a59

skip-connected decoder for sequence-to-sequence prediction and voxel classification, followed by an60

HMM to connect predicted atoms and construct protein backbones.61

Diffusion techniques have also been used in the modeling of protein structures as demonstrated by62

several studies. For instance, DiffModeler Wang et al. (2024) employs a U-net architecture and63

the Denoising Diffusion Implicit Model (DDIM) framework Song et al. (2021). In this approach,64

Gaussian noise is added to the cryo-EM map during the forward diffusion process. In the reverse65

diffusion process, the model predicts the positions and labels of backbone atoms using Dice Loss.66

RFdiffusion Watson et al. (2023) applies DDPM to generate protein structures from randomly67

sampled noisy point clouds of atoms. Through iterative denoising steps guided by learned features,68

RFdiffusion refines the structures, optimizing for specific functional and structural criteria.69

3 Method70

We propose a one-hot style diffusion algorithm (OneHotDiff) for image segmentation tasks. One-71

HotDiff incorporates the iterative sampling capability in the diffusion algorithm with the traditional72

segmentation model, achieving a direct reverse diffusion process in one-hot style output.73

3.1 Forward Diffusion74

Our forward diffusion process, depicted in fig. 1, follows the traditional forward sampling for DDPM75

Ho et al. (2020).76

In the forward process, Gaussian noise is gradually added over T steps, described by:77

q(y1:T | y0) =
T∏

t=1

N
(
yt;

√
αt yt−1, 1− αtI

)
(1)
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Figure 1: (a) The diffusion process of DeepTracer Diffusion: The process starts with creating masks
of classification labels from the PDB files as ground truth. These masks are then segmented into
64x64x64 cubes, each containing a channel for each classification label (Carbon-alpha, Nitrogen,
Carbon, and No Atom). The 64x64x64x4 sections are used as the target during the DDIM process. (b)
The 3D DiT joint transformer model is trained by randomly sampling a timestep with the pairing of
the noised 64x64x64x4 ground truth section with its corresponding 64x64x64 section of the Cryo-EM
map.

The noisy sample yt at timestamp t can be derived from y0 using the reparameterized equation:78

yt =
√
ᾱt y0 +

√
1− ᾱt ϵ (2)

where ϵ ∼ N (0, I), ᾱt =
∏t

i=1 αi, αi ∈ (0, 1) is the diffusion schedule, y0 is a one-hot mask79

corresponding to atom classes for each voxel in a 3D grid, and yt is a weighted combination of the80

clean one-hot mask and Gaussian noise.81

3.2 Reverse Diffusion82

The traditional diffusion algorithm reverses the forward process by predicting the noise ϵ in the noisy83

target yt. However, image segmentation requires extracting a one-hot prediction ŷ0 from yt, which84

cannot be obtained by noise prediction alone.85

To adapt DDPM for segmentation, we predict the clean one-hot mask ŷ0 based on the noisy target86

yt and input sample x. Specifically, a segmentation network fθ estimates the clean mask, and a87

cold-softmax (temperature β → 0+) enforces a one-hot output:88

ŷ0 = softmaxβ→0+
(
fθ(x, yt, t)

)
(3)

With ŷ0 in hand, we compute the predicted noise:89

ϵ̂ =
yt −

√
ᾱt ŷ0√

1− ᾱt
(4)

For reverse sampling, we replace the stochastic DDPM step with the deterministic DDIM update90

Song et al. (2021):91

yt−1 =
√
ᾱt−1 ŷ0 +

√
1− ᾱt−1 ϵ̂ (5)

This loop continues until t = 0, and the final one-hot mask prediction is ŷ0.92

3



4 Evaluation93

To evaluate our diffusion-based structure prediction approach, we performed a head-to-head compari-94

son with DeepTracer on a benchmark set of 35 cryo-EM maps spanning high to medium resolutions95

(1.68–5.8 Å, average 4.45 Å). DeepTracer’s pipeline is comprised of four specialized 3D convolu-96

tional neural networks (CNNs), each implemented as a U-Net architecture and trained for voxel-wise97

segmentation and coordinate inference (Pfab et al., 2020). The Atoms U-Net classifies each voxel98

as alpha carbon (C-α), carbon (C), nitrogen (N), or background; the Backbone U-Net labels voxels99

as backbone, side chain, or non-protein; the Secondary Structure U-Net assigns helix, sheet, or coil100

conformations; and the Amino Acid Type U-Net predicts one of the twenty standard amino acid101

identities.102

To isolate the impact of our diffusion models, we replaced DeepTracer’s Atoms and Backbone103

U-Net outputs with predictions from two separate diffusion networks: one for atom-type voxel104

classification (C, C-α, N, background) and one for backbone segmentation. These diffusion outputs105

were paired with DeepTracer’s unchanged Secondary Structure and Amino Acid type U-Nets. All106

four model outputs were then fed into DeepTracer’s standard post-processing and residue-labeling107

pipeline, ensuring that any observed performance differences derive exclusively from the initial voxel108

classification and coordinate inference stages. The diffusion predictions were generated using a109

DDIM scheduler with 25 sampling steps to balance inference speed and segmentation fidelity.110

Table 1 presents six representative cases from the full test set, illustrating performance at both111

resolution extremes. Each entry lists EMDB/PDB identifiers, reported resolution, number of deposited112

residues, predicted residue count, and the resulting F1-score.113

Table 1: Six representative cryo-EM maps spanning high to low resolutions, listing EMDB/PDB
identifiers, resolution, deposited vs. predicted residue counts, and F1-scores for Diffusion and
DeepTracer. The bottom row reports the average resolution, residue counts, and F1-scores over the
full 35-map benchmark.

Diffusion DeepTracer

EMDB PDB Resolution Deposited Residues Predicted Residues F1-Score Predicted Residues F1-Score

emd_20459 6psn 4.60 Å 960 4101 0.73 1573 0.50
emd_8278 5kp9 5.70 Å 12120 13571 0.63 4814 0.39
emd_3669 5np0 5.70 Å 5056 6810 0.68 978 0.27
emd_46055 9cz0 1.86 Å 2040 2044 0.99 1891 0.96
emd_48671 9mvu 2.20 Å 2105 2121 0.97 1892 0.93
emd_48164 9md1 3.03 Å 764 1058 0.71 867 0.64

Total Average 4.45 3587.60 3817.46 0.75 1798.66 0.59

Across 35 cryo-EM maps, our diffusion-based approach achieved an average F1-score of 0.75 ±114

0.0268 (standard error of the mean: SEM) compared to DeepTracer’s 0.59 ± 0.0452 (SEM). The115

resulting 0.16 gap in F1-score far exceeds both SEM value demonstrating a substantial improvement116

in residues prediction.117

We performed a paired t-test on the per-map F1-score differences:118

t(34) = 6.86, p ≈ 6.7× 10−8 (< 0.001) (6)

which confirms the improvement is highly significant. Moreover, our diffusion networks recover119

more residues across all resolution ranges, with the largest gains observed in mid-range maps (3–5120

Å).121

5 Dataset Preparation and Training122

5.1 Data Preparation123

The dataset is sourced from EMDataResource Lawson et al. (2016) and consists of 417 cryo-EM124

maps paired with their corresponding Protein Data Bank Berman et al. (2000) structures. Among125
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these, 129 maps are high resolution (0–3Å), 212 are medium resolution (3–5Å), and 76 are low126

resolution (>5Å), spanning an overall resolution range from 2.5Åto 8.9Å.127

We preprocess the cryo-EM maps by first standardizing the voxel size to 0.5 Å through volume128

data resampling through UCSF Chimera. This step ensures consistent voxel sizes across all maps,129

facilitating accurate predictions. Next, we normalize the density values of the maps to a range130

between 0 and 1.131

To create our ground truth, we process the PDB structures using UCSF Chimera to create a mask.132

We generate a set of masks for each output prediction type. For example: for the atom predictions133

we make 4 masks, each with a voxel size of 0.5, labeling the voxels as NaN, C-α, C, or N atoms134

respectively. These masks are then combined via one-hot encoding, assigning each voxel a class label135

value of 0, 1, 2, or 3.136

The one-hot encoded masks are paired with their corresponding cryo-EM map, and both data grids137

are divided into multiple 643 subgrids. We use the inner 503 core for predictions, while the outer138

7-voxel border is included to enhance border predictions and is ultimately discarded.139

To account for class imbalance we compute cross-entropy weights for each label and adjust the cross140

entropy loss during training. Let P be a vector of class probabilities, where Pn is the number of141

occurrences of class n, N the total number of classes, and V the total voxels in the dataset. The class142

weights W are calculated as:143

W =
V
P

1
N

∑
V
P

, (7)

which ensures proper normalization across classes based on voxel distributions.144

5.2 Training DDPM for Classification145

The training process involves using a classification procedure to calculate the loss used for training.146

During each training step, we apply the Softmax function to the model’s output to obtain probability147

distributions. Next, we employ the argmax function on the one-hot encoded target to derive the target148

label. Finally, the cross-entropy loss is computed between the output predictions, the argmax of the149

target label, and the precalculated cross-entropy weights. The loss used for training is the sum of the150

cross-entropy loss for every label.151

Along with cross-entropy loss, we employ dice loss. Using dice loss prevents the model from over-152

predicting voxels. Using only cross-entropy loss resulted in excessive voxel predictions in the target153

areas, causing excessively cubic predicted structures. We found that training with both cross-entropy154

loss and dice loss from scratch leads to unstable gradients, so we warm up our model with a lower155

learning rate and only optimize on cross-entropy loss. After the warmup, when our cross entropy loss156

is around 0.1, we enable dice loss along with cross entropy.157

6 Conclusion158

We introduce DeepTracer Diffusion, a novel framework that leverages Denoising Diffusion Implicit159

Models (DDIM) for direct voxel-wise classification and coordinate inference of backbone atoms from160

cryo-EM maps. By substituting DeepTracer’s Atoms and Backbone U-Nets with two specialized161

diffusion networks, our approach delivers accurate all-atom structure predictions of protein complexes162

based solely on their cryo-EM densities. In a head-to-head evaluation on 35 cryo-EM maps, the163

diffusion model increased the mean F1-score from 0.59 to 0.75 and recovered more residues across164

the entire resolution range.165

In future work, we will scale up our diffusion models and expand the training dataset, reduce the voxel166

patch size from 43 to 23 to capture finer structural features, as well as replace DeepTracer’s Secondary167

Structure and Amino Acid Type U-Nets with diffusion-based counterparts. These improvements will168

push us toward a fully diffusion-driven, end-to-end pipeline for high-fidelity, all-atom model building169

from cryo-EM maps.170
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A Full Test Set Results213

Table 2 provides the complete head-to-head performance metrics on all 35 cryo-EM maps in our214

benchmark. These detailed results extend the representative subset shown in Table 1.215
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Table 2: Performance comparison between the Diffusion model and DeepTracer on a benchmark test
set of 35 cryo-EM maps. Each entry includes the EMDB and PDB identifiers, resolution, and the
number of deposited residues. For both methods, we report the number of residues predicted and
the resulting F1-score, reflecting residue prediction accuracy. The final row summarizes the average
resolution and F1-scores computed across the entire test set.

Diffusion DeepTracer

EMDB PDB Resolution Deposited Residues Predicted Residues F1-Score Predicted Residues F1-Score

emd_20455 6pqx 4.60 960 1186 0.77 811 0.74
emd_20459 6psn 4.60 4154 4101 0.73 1573 0.50
emd_8278 5kp9 5.70 12120 13571 0.63 4814 0.39
emd_8786 5w9k 4.60 4205 5634 0.69 2720 0.63
emd_8513 5u6r 5.70 14952 7443 0.44 1997 0.20
emd_21136 6vac 5.70 1202 1065 0.55 175 0.21
emd_7439 6ca0 5.75 3698 4362 0.67 781 0.29
emd_3672 5np1 5.70 2460 3087 0.74 1058 0.50
emd_6823 5ydz 5.80 1696 1620 0.71 475 0.38
emd_9577 6kv5 4.60 1679 1944 0.71 865 0.61
emd_9378 6nij 5.70 1972 3211 0.63 520 0.31
emd_8539 5ucy 4.60 2610 2493 0.56 1017 0.37
emd_9541 5gw5 4.60 8446 9319 0.73 5958 0.66
emd_6826 5ye5 5.80 1856 2516 0.69 1291 0.67
emd_3669 5np0 5.70 5056 6810 0.68 978 0.27
emd_8674 5vhf 5.70 6463 6538 0.48 1123 0.22
emd_8735 5vvr 5.80 4565 6390 0.64 582 0.20
emd_6489 3jbw 4.60 1946 2330 0.77 1475 0.70
emd_6906 5zam 5.70 1389 1847 0.61 649 0.47
emd_4400 6i2t 5.70 2252 3044 0.69 555 0.34
emd_5645 3j3x 4.60 8160 9342 0.70 5486 0.65
emd_3790 5oej 5.70 2825 4096 0.59 915 0.39
emd_3963 6evy 4.00 5166 5086 0.96 4370 0.89
emd_3949 6esh 5.10 738 878 0.70 235 0.42
emd_7020 6ayg 4.65 1756 1825 0.81 956 0.66
emd_46055 9cz0 1.86 2040 2044 0.99 1891 0.96
emd_46537 9d3l 2.80 752 743 0.97 708 0.97
emd_70156 9o61 1.68 2040 2117 0.98 2131 0.97
emd_65082 9vib 2.26 566 564 1.00 547 0.98
emd_60984 9iy4 2.00 2646 2597 0.98 2442 0.96
emd_39365 8ykd 2.90 1225 1188 0.98 1116 0.95
emd_48671 9mvu 2.20 2105 2121 0.97 1892 0.93
emd_48164 9md1 3.03 764 1058 0.71 867 0.64
emd_46506 9d30 3.74 2324 2750 0.81 1644 0.76
emd_19930 9es0 2.58 8778 8691 0.99 8336 0.97

Total Average 4.45 3587.60 3817.46 0.75 1798.66 0.59

B Architecture216

Our model extends the 3D Diffusion Transformer (DiT) framework of Mo et al. (2023a) by integrating217

the joint-conditioning transformer design of Stable Diffusion (Esser et al., 2024). As shown in fig. 2,218

each sub-model (M ) has its own multi-head output layer. The current model uses 2 sub-models219

(Atoms and Backbone) for replacing the Atoms and Backbone U-nets of DeepTracer.220

To keep our implementation cleanly compatible with the existing DeepTracer pipeline, we process221

cubic input volumes of size 643 voxels. In early tests, a finer patch embedding size (p = 2) yielded222

sharper features but increased the token count eightfold—exceeding the 48 GB memory of our223

NVIDIA RTX A6000 GPUs. Consequently, we settled on:224

• Transformer layers (d): 24225

• Patch embedding: 4226

• hidden dimensional: 768227

• Attention heads: 16228
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Figure 2: Our model architecture. Showing the full overview, an individual transformer block, and
an individual final layer.
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NeurIPS Paper Checklist229

1. Claims230

Question: Do the main claims made in the abstract and introduction accurately reflect the231

paper’s contributions and scope?232

Answer: [Yes]233

Justification: The abstract and introduction clearly state that DeepTracer Diffusion replaces234

U-Net-based segmentation with a diffusion-based generative model, improving performance235

across cryo-EM resolutions. These claims are supported by benchmark results and detailed236

methodology in the Evaluation and Dataset Preparation sections.237

Guidelines:238

• The answer NA means that the abstract and introduction do not include the claims239

made in the paper.240

• The abstract and/or introduction should clearly state the claims made, including the241

contributions made in the paper and important assumptions and limitations. A No or242

NA answer to this question will not be perceived well by the reviewers.243

• The claims made should match theoretical and experimental results, and reflect how244

much the results can be expected to generalize to other settings.245

• It is fine to include aspirational goals as motivation as long as it is clear that these goals246

are not attained by the paper.247

2. Limitations248

Question: Does the paper discuss the limitations of the work performed by the authors?249

Answer: [Yes]250

Justification: We discuss the 48 GB GPU memory constraints that led us to select a larger251

patch embedding size and highlight how this trade-off influences model capacity. We also252

acknowledge that our evaluation is limited to 35 cryo-EM maps and describe how residue253

recovery varies across resolution ranges.254

Guidelines:255

• The answer NA means that the paper has no limitation while the answer No means that256

the paper has limitations, but those are not discussed in the paper.257

• The authors are encouraged to create a separate "Limitations" section in their paper.258

• The paper should point out any strong assumptions and how robust the results are to259

violations of these assumptions (e.g., independence assumptions, noiseless settings,260

model well-specification, asymptotic approximations only holding locally). The authors261

should reflect on how these assumptions might be violated in practice and what the262

implications would be.263

• The authors should reflect on the scope of the claims made, e.g., if the approach was264

only tested on a few datasets or with a few runs. In general, empirical results often265

depend on implicit assumptions, which should be articulated.266

• The authors should reflect on the factors that influence the performance of the approach.267

For example, a facial recognition algorithm may perform poorly when image resolution268

is low or images are taken in low lighting. Or a speech-to-text system might not be269

used reliably to provide closed captions for online lectures because it fails to handle270

technical jargon.271

• The authors should discuss the computational efficiency of the proposed algorithms272

and how they scale with dataset size.273

• If applicable, the authors should discuss possible limitations of their approach to274

address problems of privacy and fairness.275

• While the authors might fear that complete honesty about limitations might be used by276

reviewers as grounds for rejection, a worse outcome might be that reviewers discover277

limitations that aren’t acknowledged in the paper. The authors should use their best278

judgment and recognize that individual actions in favor of transparency play an impor-279

tant role in developing norms that preserve the integrity of the community. Reviewers280

will be specifically instructed to not penalize honesty concerning limitations.281
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3. Theory assumptions and proofs282

Question: For each theoretical result, does the paper provide the full set of assumptions and283

a complete (and correct) proof?284

Answer: [NA]285

Justification: The paper does not present formal theoretical results, theorems, or proofs. The286

focus of the paper is empirical, centered on architectural design, training methodology, and287

performance evaluation of a diffusion-based segmentation model for cryo-EM data.288

Guidelines:289

• The answer NA means that the paper does not include theoretical results.290

• All the theorems, formulas, and proofs in the paper should be numbered and cross-291

referenced.292

• All assumptions should be clearly stated or referenced in the statement of any theorems.293

• The proofs can either appear in the main paper or the supplemental material, but if294

they appear in the supplemental material, the authors are encouraged to provide a short295

proof sketch to provide intuition.296

• Inversely, any informal proof provided in the core of the paper should be complemented297

by formal proofs provided in appendix or supplemental material.298

• Theorems and Lemmas that the proof relies upon should be properly referenced.299

4. Experimental result reproducibility300

Question: Does the paper fully disclose all the information needed to reproduce the main ex-301

perimental results of the paper to the extent that it affects the main claims and/or conclusions302

of the paper (regardless of whether the code and data are provided or not)?303

Answer: [Yes]304

Justification: The paper clearly describes the OneHotDiff algorithm, diffusion model training305

procedure, and evaluation procedure, including diffusion mechanics, segmentation strategy,306

and dataset pre-processing. These details provide a reproducible framework for validating307

the main experimental results without requiring access to code or data308

Guidelines:309

• The answer NA means that the paper does not include experiments.310

• If the paper includes experiments, a No answer to this question will not be perceived311

well by the reviewers: Making the paper reproducible is important, regardless of312

whether the code and data are provided or not.313

• If the contribution is a dataset and/or model, the authors should describe the steps taken314

to make their results reproducible or verifiable.315

• Depending on the contribution, reproducibility can be accomplished in various ways.316

For example, if the contribution is a novel architecture, describing the architecture fully317

might suffice, or if the contribution is a specific model and empirical evaluation, it may318

be necessary to either make it possible for others to replicate the model with the same319

dataset, or provide access to the model. In general. releasing code and data is often320

one good way to accomplish this, but reproducibility can also be provided via detailed321

instructions for how to replicate the results, access to a hosted model (e.g., in the case322

of a large language model), releasing of a model checkpoint, or other means that are323

appropriate to the research performed.324

• While NeurIPS does not require releasing code, the conference does require all submis-325

sions to provide some reasonable avenue for reproducibility, which may depend on the326

nature of the contribution. For example327

(a) If the contribution is primarily a new algorithm, the paper should make it clear how328

to reproduce that algorithm.329

(b) If the contribution is primarily a new model architecture, the paper should describe330

the architecture clearly and fully.331

(c) If the contribution is a new model (e.g., a large language model), then there should332

either be a way to access this model for reproducing the results or a way to reproduce333

the model (e.g., with an open-source dataset or instructions for how to construct334

the dataset).335
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(d) We recognize that reproducibility may be tricky in some cases, in which case336

authors are welcome to describe the particular way they provide for reproducibility.337

In the case of closed-source models, it may be that access to the model is limited in338

some way (e.g., to registered users), but it should be possible for other researchers339

to have some path to reproducing or verifying the results.340

5. Open access to data and code341

Question: Does the paper provide open access to the data and code, with sufficient instruc-342

tions to faithfully reproduce the main experimental results, as described in supplemental343

material?344

Answer: [No]345

Justification: The source code and trained model weights have not been released. Access to346

raw data and pre-processing is described.347

Guidelines:348

• The answer NA means that paper does not include experiments requiring code.349

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/350

public/guides/CodeSubmissionPolicy) for more details.351

• While we encourage the release of code and data, we understand that this might not be352

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not353

including code, unless this is central to the contribution (e.g., for a new open-source354

benchmark).355

• The instructions should contain the exact command and environment needed to run to356

reproduce the results. See the NeurIPS code and data submission guidelines (https:357

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.358

• The authors should provide instructions on data access and preparation, including how359

to access the raw data, preprocessed data, intermediate data, and generated data, etc.360

• The authors should provide scripts to reproduce all experimental results for the new361

proposed method and baselines. If only a subset of experiments are reproducible, they362

should state which ones are omitted from the script and why.363

• At submission time, to preserve anonymity, the authors should release anonymized364

versions (if applicable).365

• Providing as much information as possible in supplemental material (appended to the366

paper) is recommended, but including URLs to data and code is permitted.367

6. Experimental setting/details368

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-369

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the370

results?371

Answer: [Yes]372

Justification: We specify the resolution-based data split (high, medium, low), voxel resam-373

pling procedure, normalization, one-hot mask encoding, and model architecture. These374

descriptions provide the context for the F1-score differences and residue recovery improve-375

ments.376

Guidelines:377

• The answer NA means that the paper does not include experiments.378

• The experimental setting should be presented in the core of the paper to a level of detail379

that is necessary to appreciate the results and make sense of them.380

• The full details can be provided either with the code, in appendix, or as supplemental381

material.382

7. Experiment statistical significance383

Question: Does the paper report error bars suitably and correctly defined or other appropriate384

information about the statistical significance of the experiments?385

Answer: [Yes]386
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Justification: Mean F1-scores, standard error of the mean, and a paired t-test are all used in387

the evaluation section to show statistical significance.388

Guidelines:389

• The answer NA means that the paper does not include experiments.390

• The authors should answer "Yes" if the results are accompanied by error bars, confi-391

dence intervals, or statistical significance tests, at least for the experiments that support392

the main claims of the paper.393

• The factors of variability that the error bars are capturing should be clearly stated (for394

example, train/test split, initialization, random drawing of some parameter, or overall395

run with given experimental conditions).396

• The method for calculating the error bars should be explained (closed form formula,397

call to a library function, bootstrap, etc.)398

• The assumptions made should be given (e.g., Normally distributed errors).399

• It should be clear whether the error bar is the standard deviation or the standard error400

of the mean.401

• It is OK to report 1-sigma error bars, but one should state it. The authors should402

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis403

of Normality of errors is not verified.404

• For asymmetric distributions, the authors should be careful not to show in tables or405

figures symmetric error bars that would yield results that are out of range (e.g. negative406

error rates).407

• If error bars are reported in tables or plots, The authors should explain in the text how408

they were calculated and reference the corresponding figures or tables in the text.409

8. Experiments compute resources410

Question: For each experiment, does the paper provide sufficient information on the com-411

puter resources (type of compute workers, memory, time of execution) needed to reproduce412

the experiments?413

Answer: [No]414

Justification: Justification: We report the GPU memory limit (48 GB on NVIDIA RTX415

A6000), but omitted run times and total compute.416

Guidelines:417

• The answer NA means that the paper does not include experiments.418

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,419

or cloud provider, including relevant memory and storage.420

• The paper should provide the amount of compute required for each of the individual421

experimental runs as well as estimate the total compute.422

• The paper should disclose whether the full research project required more compute423

than the experiments reported in the paper (e.g., preliminary or failed experiments that424

didn’t make it into the paper).425

9. Code of ethics426

Question: Does the research conducted in the paper conform, in every respect, with the427

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?428

Answer: [Yes]429

Justification: We followed the NeurIPS Code of Ethics. All dataset used are openly licensed,430

community-curated repositories with clear provenance and no personally identifiable infor-431

mation.432

Guidelines:433

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.434

• If the authors answer No, they should explain the special circumstances that require a435

deviation from the Code of Ethics.436

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-437

eration due to laws or regulations in their jurisdiction).438
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10. Broader impacts439

Question: Does the paper discuss both potential positive societal impacts and negative440

societal impacts of the work performed?441

Answer: [Yes]442

Justification: While the paper focuses mainly technical performance / evaluation and we do443

briefly go over positive societal impact of de-novo cryo-EM atomic structure modeling.444

Guidelines:445

• The answer NA means that there is no societal impact of the work performed.446

• If the authors answer NA or No, they should explain why their work has no societal447

impact or why the paper does not address societal impact.448

• Examples of negative societal impacts include potential malicious or unintended uses449

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations450

(e.g., deployment of technologies that could make decisions that unfairly impact specific451

groups), privacy considerations, and security considerations.452

• The conference expects that many papers will be foundational research and not tied453

to particular applications, let alone deployments. However, if there is a direct path to454

any negative applications, the authors should point it out. For example, it is legitimate455

to point out that an improvement in the quality of generative models could be used to456

generate deepfakes for disinformation. On the other hand, it is not needed to point out457

that a generic algorithm for optimizing neural networks could enable people to train458

models that generate Deepfakes faster.459

• The authors should consider possible harms that could arise when the technology is460

being used as intended and functioning correctly, harms that could arise when the461

technology is being used as intended but gives incorrect results, and harms following462

from (intentional or unintentional) misuse of the technology.463

• If there are negative societal impacts, the authors could also discuss possible mitigation464

strategies (e.g., gated release of models, providing defenses in addition to attacks,465

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from466

feedback over time, improving the efficiency and accessibility of ML).467

11. Safeguards468

Question: Does the paper describe safeguards that have been put in place for responsible469

release of data or models that have a high risk for misuse (e.g., pretrained language models,470

image generators, or scraped datasets)?471

Answer: [NA]472

Justification: Our work uses only publicly available, non-sensitive cryo-EM maps and PDB473

structures.474

Guidelines:475

• The answer NA means that the paper poses no such risks.476

• Released models that have a high risk for misuse or dual-use should be released with477

necessary safeguards to allow for controlled use of the model, for example by requiring478

that users adhere to usage guidelines or restrictions to access the model or implementing479

safety filters.480

• Datasets that have been scraped from the Internet could pose safety risks. The authors481

should describe how they avoided releasing unsafe images.482

• We recognize that providing effective safeguards is challenging, and many papers do483

not require this, but we encourage authors to take this into account and make a best484

faith effort.485

12. Licenses for existing assets486

Question: Are the creators or original owners of assets (e.g., code, data, models), used in487

the paper, properly credited and are the license and terms of use explicitly mentioned and488

properly respected?489

Answer: [Yes]490
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Justification: We cite EMDataResource and the PDB as data sources. Both are part of the491

public domain.492

Guidelines:493

• The answer NA means that the paper does not use existing assets.494

• The authors should cite the original paper that produced the code package or dataset.495

• The authors should state which version of the asset is used and, if possible, include a496

URL.497

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.498

• For scraped data from a particular source (e.g., website), the copyright and terms of499

service of that source should be provided.500

• If assets are released, the license, copyright information, and terms of use in the501

package should be provided. For popular datasets, paperswithcode.com/datasets502

has curated licenses for some datasets. Their licensing guide can help determine the503

license of a dataset.504

• For existing datasets that are re-packaged, both the original license and the license of505

the derived asset (if it has changed) should be provided.506

• If this information is not available online, the authors are encouraged to reach out to507

the asset’s creators.508

13. New assets509

Question: Are new assets introduced in the paper well documented and is the documentation510

provided alongside the assets?511

Answer: [NA]512

Justification: The paper does not release new assets.513

Guidelines:514

• The answer NA means that the paper does not release new assets.515

• Researchers should communicate the details of the dataset/code/model as part of their516

submissions via structured templates. This includes details about training, license,517

limitations, etc.518

• The paper should discuss whether and how consent was obtained from people whose519

asset is used.520

• At submission time, remember to anonymize your assets (if applicable). You can either521

create an anonymized URL or include an anonymized zip file.522

14. Crowdsourcing and research with human subjects523

Question: For crowdsourcing experiments and research with human subjects, does the paper524

include the full text of instructions given to participants and screenshots, if applicable, as525

well as details about compensation (if any)?526

Answer: [NA]527

Justification: The research does not involve crowdsourcing nor research with human subjects.528

Guidelines:529

• The research does not involve crowdsourcing nor research with human subjects.530

• Including this information in the supplemental material is fine, but if the main contribu-531

tion of the paper involves human subjects, then as much detail as possible should be532

included in the main paper.533

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,534

or other labor should be paid at least the minimum wage in the country of the data535

collector.536

15. Institutional review board (IRB) approvals or equivalent for research with human537

subjects538

Question: Does the paper describe potential risks incurred by study participants, whether539

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)540

approvals (or an equivalent approval/review based on the requirements of your country or541

institution) were obtained?542
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Answer: [NA]543

Justification: The research does not involve human subjects.544

Guidelines:545

• The answer NA means that the paper does not involve crowdsourcing nor research with546

human subjects.547

• Depending on the country in which research is conducted, IRB approval (or equivalent)548

may be required for any human subjects research. If you obtained IRB approval, you549

should clearly state this in the paper.550

• We recognize that the procedures for this may vary significantly between institutions551

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the552

guidelines for their institution.553

• For initial submissions, do not include any information that would break anonymity (if554

applicable), such as the institution conducting the review.555

16. Declaration of LLM usage556

Question: Does the paper describe the usage of LLMs if it is an important, original, or557

non-standard component of the core methods in this research? Note that if the LLM is used558

only for writing, editing, or formatting purposes and does not impact the core methodology,559

scientific rigorousness, or originality of the research, declaration is not required.560

Answer: [NA]561

Justification: The research does not involve LLMs.562

Guidelines:563

• The answer NA means that the core method development in this research does not564

involve LLMs as any important, original, or non-standard components.565

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)566

for what should or should not be described.567
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