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Abstract

Precise atomic-level interpretation of macromolecular structures is vital for under-
standing biological mechanisms yet remains challenging due to the complex nature
of cryo-electron microscopy (cryo-EM) data. Existing approaches have utilized
either multiple convolutional neural networks or complex combinations of autoen-
coder and latent diffusion models to predict atom locations via image segmentation.
We introduce DeepTracer Diffusion, a novel framework that leverages a single
Denoising Diffusion Probabilistic Model (DDPM) to perform image segmentation,
providing higher accuracy in terms of F1 score and predicted residues for predicted
backbone atoms.

1 Introduction

Accurate determination of atomic positions and labels in macromolecular structures is crucial to
understanding biological functions and processes. Cryo-electron microscopy (cryo-EM) has become
an essential tool in structural biology, offering the ability to visualize macromolecules at near-
atomic resolution. However, interpreting cryo-EM maps to extract precise atomic models remains a
challenging task because of the complexity and variability of the data.

DeepTracer is a deep learning model for protein structure predictions using 4 U-Net models for atoms,
backbone, secondary structures, and amino acids to predict atom locations and types (Pfab et al.,
2020). Each U-Net learns its respective data type and results in accurate protein structure predictions
given a cryo-EM map. DeepTracer performs well only on high-resolution cryo-EM maps. With
medium to low-resolution cryo-EM maps, DeepTracer’s predictions worsen. The performance loss is
due to the U-Nets struggling to discern low resolution data (often containing a lot of noise), and a
failure to accurately determine the segmentation for each output.

Diffusion models are a class of generative models that can output new samples of data by iteratively
denoising pure Gaussian noise (Ho et al.,|2020). These models learn a data distribution by learning to
denoise data distorted by random noise. There have been numerous approaches to image segmentation
using diffusion, especially in the biomedical sciences. Existing methods use latent diffusion models
paired with an autoencoder. The encoder generates latent representations of input data, which are
then fed into a latent diffusion model and decoded into the predicted segmentation (Lin et al., 2024).
A drawback with an autoencoder and diffusion model setup is the need to run input through multiple
models and the potential requirement of training both an autoencoder and a diffusion model.

We present DeepTracer Diffusion. Rather than performing encoding and decoding steps with the
diffusion process, we use a single DDPM model. To support direct predictions of atom class labels,
we introduce a novel one-hot style reverse diffusion algorithm that produces discrete segmentation
masks at each timestep. Our approach achieves higher F1 scores and predicted residues, while not
bounded by cryo-EM map resolution and without the need to use encoding/decoding steps.
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2 Related Works

2.1 Diffusion for Image Segmentation

Several approaches have been proposed regarding diffusion probabilistic models for image segmenta-
tion task. SegDiff (Amit et al.,2022) utilizes diffusion models to iteratively refine segmentation maps
by merging information from input images and current estimations. MedSegDiff (Wu et al., 2022)
extends the use of diffusion models to medical imaging, introducing dynamic conditional encoding
and a Feature Frequency Parser to enhance segmentation performance across various medical tasks.
Furthermore, MedSegDiff was improved in MedSegDiff-V2 (Wu et al.,[2023) through the integration
of transformer mechanisms.

The versatility of diffusion models is evident in their success in generating a distribution of segmen-
tation masks, demonstrating promising results in medical imaging (Mo et al.l |2023b). Similarly,
another research effort models panoptic masks using diffusion models, demonstrating competitive
performance in both image and video segmentation tasks (Chen et al., [2023).

Latent diffusion models have also demonstrated promising results in image segmentation. A notable
project, SDSeg, utilizes a well-trained latent diffusion model for biomedical image segmentation
with a single-step reverse process (Lin et al., [2024)). In this approach, the predicted noise is used
to estimate a latent representation of a segmentation map, which is then passed into a pixel-space
decoder. This enables an efficient single-step reverse process. SDSeg boasts competitive inference
speeds compared to other segmentation models.

2.2 Protein Structure Modeling From Cryo-EM Maps

Protein structure modeling from cryo-EM maps has seen significant strides. Cryo2Struct (Gir1 and
Cheng| [2024)) employs a combination of 3D transformers and Hidden Markov Models (HMM) for
de novo modeling of atomic protein structures. This model features a transformer-encoder and a
skip-connected decoder for sequence-to-sequence prediction and voxel classification, followed by an
HMM to connect predicted atoms and construct protein backbones.

Diffusion techniques have also been used in the modeling of protein structures as demonstrated by
several studies. For instance, DiffModeler (Wang et al., 2024) employs a U-net architecture and
the Denoising Diffusion Implicit Model (DDIM) framework (Song et al., 2021)). In this approach,
Gaussian noise is added to the cryo-EM map during the forward diffusion process. In the reverse
diffusion process, the model predicts the positions and labels of backbone atoms using Dice Loss.

RFdiffusion (Watson et al., 2023) applies DDPM to generate protein structures from randomly
sampled noisy point clouds of atoms. Through iterative denoising steps guided by learned features,
RFdiffusion refines the structures, optimizing for specific functional and structural criteria.

3 Method

We propose a novel one-hot style diffusion algorithm (OneHotDiff) for voxel-wise image segmenta-
tion. OneHotDiff integrates the iterative denoising of diffusion models with a traditional segmentation
model that directly predicts discrete one-hot masks at each timestep. This achieves a direct reverse
diffusion process with a one-hot style output.

3.1 Forward Diffusion

Our forward diffusion process, depicted in fig. [T} follows the traditional forward sampling for DDPM
(Ho et al ., 2020).

In the forward process, Gaussian noise is gradually added over 7" steps, described by:
T
q(yi1 | vo) = HN(yt; Vo yi-1, 1— oyd) (D
t=1

The noisy sample y; at timestamp ¢ can be derived from 3, using the reparameterized equation:

Ye =Var Yo +vV1—ae )
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Figure 1: (a) The diffusion process of DeepTracer Diffusion: The process starts with creating masks
of classification labels from the PDB files as ground truth. These masks are then segmented into
64x64x64 cubes, each containing a channel for each classification label (Carbon-alpha, Nitrogen,
Carbon, and No Atom). The 64x64x64x4 sections are used as the target during the DDIM process. (b)
The 3D DiT joint transformer model is trained by randomly sampling a timestep with the pairing of
the noised 64x64x64x4 ground truth section with its corresponding 64x64x64 section of the Cryo-EM
map.

where € ~ N(0,1), & = [[\_, &, i € (0,1) is the diffusion schedule, yo is a one-hot mask
corresponding to atom classes for each voxel in a 3D grid, and y; is a weighted combination of the
clean one-hot mask and Gaussian noise.

3.2 Reverse Diffusion

The traditional diffusion algorithm reverses the forward process by predicting the noise € in the noisy
target y;. However, image segmentation requires extracting a one-hot prediction gy from y;, which
cannot be obtained by noise prediction alone.

To adapt DDPM for segmentation, we predict the clean one-hot mask ¢jy based on the noisy target
y; and input sample x. Specifically, a segmentation network f, estimates the clean mask, and a
cold-softmax (temperature 3 — 07) enforces a one-hot output:

go = softmaxg_,o+ (fo(x,yt,t)) 3)

With ¢ in hand, we compute the predicted noise:

Ye — vV Yo
V91— oy

€ =

“

For reverse sampling, we replace the stochastic DDPM step with the deterministic DDIM update

(Song et al., 2021):
Y1 =+V-190 + 1 — 1€ )

This loop continues until ¢ = 0, and the final one-hot mask prediction is gj.



4 Evaluation

To evaluate our diffusion-based structure prediction approach, we performed a head-to-head com-
parison with DeepTracer on a randomly selected benchmark set of 35 cryo-EM maps spanning high
to medium resolutions (1.68-5.8 A, average 4.45 A). DeepTracer’s pipeline is comprised of four
specialized 3D convolutional neural networks (CNNs), each implemented as a U-Net architecture
and trained for voxel-wise segmentation and coordinate inference (Pfab et al., 2020). The Atoms
U-Net classifies each voxel as alpha carbon (C-a), carbon (C), nitrogen (N), or background; the
Backbone U-Net labels voxels as backbone, side chain, or non-protein; the Secondary Structure
U-Net assigns helix, sheet, or coil conformations; and the Amino Acid Type U-Net predicts one of
the twenty standard amino acid identities.

To isolate the impact of our diffusion models, we replaced DeepTracer’s Atoms and Backbone U-Net
outputs with predictions from two separate diffusion networks: one for atom-type voxel classification
(C, C-a, N, background) and one for backbone segmentation. These diffusion outputs were paired
with DeepTracer’s unchanged Secondary Structure and Amino Acid type U-Nets. All four model
outputs were then fed into DeepTracer’s standard post-processing and residue-labeling pipeline, which
includes oxygen atom placement based on standard backbone geometry. Keeping these downstream
steps fixed ensures that any observed performance differences are derive exclusively from the initial
voxel classification and coordinate inference stages. The diffusion predictions were generated using a
DDIM scheduler with 25 sampling steps to balance inference speed and segmentation fidelity.

Table [1| presents six representative cases from the full test set, illustrating performance at both
resolution extremes. Each entry lists EMDB/PDB identifiers, reported resolution, number of deposited
residues, predicted residue count, and the resulting F1-score.

Table 1: Six representative cryo-EM maps spanning high to low resolutions, listing EMDB/PDB
identifiers, resolution, deposited vs. predicted residue counts, and Fl-scores for Diffusion and
DeepTracer. The bottom row reports the average resolution, residue counts, and F1-scores over the
full 35-map benchmark.

Diffusion DeepTracer

EMDB PDB  Resolution Deposited Residues  Predicted Residues F1-Score Predicted Residues ~ F1-Score
emd_20459  6psn 4.60 A 4154 4101 0.73 1573 0.50
emd_8278 5kp9 570 A 12120 13571 0.63 4814 0.39
emd_3669 Snp0 570 A 5056 6810 0.68 978 0.27
emd_46055  9cz0 1.86 A 2040 2044 0.99 1891 0.96
emd_48671 9mvu 220 A 2105 2121 0.97 1892 0.93
emd_48164 9mdl 3.03 A 764 1058 0.71 867 0.64

Total Average 4.45 3587.60 3817.46 0.75 1798.66 0.59

Across 35 cryo-EM maps, our diffusion-based approach achieved an average F1-score of 0.75 +
0.0268 (standard error of the mean: SEM) compared to DeepTracer’s 0.59 + 0.0452 (SEM). The
resulting 0.16 gap in Fl-score far exceeds both SEM value demonstrating a substantial improvement
in residues prediction.

We performed a paired t-test on the per-map F1-score differences:

t(34) = 6.86, p ~ 6.7 x 1078 (< 0.001) (6)

which confirms the improvement is highly significant. Moreover, our diffusion networks recover
more residues across all resolution ranges, with the largest gains observed in mid-range maps (3—5

o

A).

5 Dataset Preparation and Training

5.1 Data Preparation

The dataset is sourced from EMDataResource (Lawson et al.l 2016) and consists of 417 cryo-EM
maps paired with their corresponding Protein Data Bank (Berman et al., 2000) structures. Among



these, 129 maps are high resolution (0-3 A), 212 are medium resolution (3-5 A), and 76 are low
resolution (>5 A), spanning an overall resolution range from 2.5 A to 8.9 A.

We preprocess the cryo-EM maps by first standardizing the voxel size to 0.5 A through volume
data resampling through UCSF Chimera. This step ensures consistent voxel sizes across all maps,
facilitating accurate predictions. Next, we normalize the density values of the maps to a range
between 0 and 1.

To create our ground truth, we process the PDB structures using UCSF Chimera to create a mask.
We generate a set of masks for each output prediction type. For example: for the atom predictions
we make 4 masks, each with a voxel size of 0.5, labeling the voxels as NaN, C-«, C, or N atoms
respectively. These masks are then combined via one-hot encoding, assigning each voxel a class label
value of 0, 1, 2, or 3.

The one-hot encoded masks are paired with their corresponding cryo-EM map, and both data grids
are divided into multiple 64 subgrids. We use the inner 502 core for predictions, while the outer
7-voxel border is included to enhance border predictions and is ultimately discarded.

To account for class imbalance we compute cross-entropy weights for each label and adjust the cross
entropy loss during training. Let P be a vector of class probabilities, where P, is the number of
occurrences of class n, IN the total number of classes, and V the total voxels in the dataset. The class
weights W are calculated as:
v
W= L+ (7N
1 v
N Z P

which ensures proper normalization across classes based on voxel distributions.

5.2 Training DDPM for Classification

The training process involves using a classification procedure to calculate the loss used for training.
During each training step, we apply the Softmax function to the model’s output to obtain probability
distributions. Next, we employ the argmax function on the one-hot encoded target to derive the target
label. Finally, the cross-entropy loss is computed between the output predictions, the argmax of the
target label, and the precalculated cross-entropy weights. The loss used for training is the sum of the
cross-entropy loss for every label.

Along with cross-entropy loss, we employ dice loss. Using only cross-entropy loss resulted in
excessive voxel predictions. Using dice loss prevents the model from over-predicting voxels by more
heavily penalizing false positives. We found that training with both cross-entropy loss and dice loss
from scratch leads to unstable gradients, so we warm up our model with a lower learning rate using
only cross-entropy loss. After the warmup, when our cross entropy loss is around 0.1, we enable dice
loss along with cross entropy.

6 Conclusion

We introduce DeepTracer Diffusion, a novel framework that leverages Denoising Diffusion Implicit
Models (DDIM) for direct voxel-wise classification and coordinate inference of backbone atoms from
cryo-EM maps. By substituting DeepTracer’s Atoms and Backbone U-Nets with two specialized
diffusion networks, our approach delivers accurate all-atom structure predictions of protein complexes
based solely on their cryo-EM densities. In a head-to-head evaluation on 35 cryo-EM maps, the
diffusion model increased the mean F1-score from 0.59 to 0.75 and recovered more residues across
the entire resolution range.

In future work, we will scale up our diffusion models and expand the training dataset, reduce the voxel
patch size from 42 to 23 to capture finer structural features, as well as replace DeepTracer’s Secondary
Structure and Amino Acid Type U-Nets with diffusion-based counterparts. These improvements will
push us toward a fully diffusion-driven, end-to-end pipeline for high-fidelity, all-atom model building
from cryo-EM maps.
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A Full Test Set Results

Table [2] provides the complete head-to-head performance metrics on all 35 cryo-EM maps in our
benchmark. These detailed results extend the representative subset shown in Table I}



Table 2: Performance comparison between the Diffusion model and DeepTracer on a benchmark test
set of 35 cryo-EM maps. Each entry includes the EMDB and PDB identifiers, resolution, and the
number of deposited residues. For both methods, we report the number of residues predicted and
the resulting F1-score, reflecting residue prediction accuracy. The final row summarizes the average
resolution and F1-scores computed across the entire test set.

Diffusion DeepTracer

EMDB PDB  Resolution Deposited Residues Predicted Residues F1-Score Predicted Residues F1-Score
emd_20455  6pgx 4.60 960 1186 0.77 811 0.74
emd_20459  6psn 4.60 4154 4101 0.73 1573 0.50
emd_8278 5kp9 5.70 12120 13571 0.63 4814 0.39
emd_8786 Sw9k 4.60 4205 5634 0.69 2720 0.63
emd_8513 Subr 5.70 14952 7443 0.44 1997 0.20
emd_21136  6vac 5.70 1202 1065 0.55 175 0.21
emd_7439 6ca0 5.75 3698 4362 0.67 781 0.29
emd_3672 Snpl 5.70 2460 3087 0.74 1058 0.50
emd_6823 Sydz 5.80 1696 1620 0.71 475 0.38
emd_9577 6kv5 4.60 1679 1944 0.71 865 0.61
emd_9378 6nij 5.70 1972 3211 0.63 520 0.31
emd_8539 Sucy 4.60 2610 2493 0.56 1017 0.37
emd_9541 Sgw5 4.60 8446 9319 0.73 5958 0.66
emd_6826 SyeS 5.80 1856 2516 0.69 1291 0.67
emd_3669 Snp0 5.70 5056 6810 0.68 978 0.27
emd_8674 Svhf 5.70 6463 6538 0.48 1123 0.22
emd_8735 Svvr 5.80 4565 6390 0.64 582 0.20
emd_6489 3jbw 4.60 1946 2330 0.77 1475 0.70
emd_6906 5zam 5.70 1389 1847 0.61 649 0.47
emd_4400 6i2t 5.70 2252 3044 0.69 555 0.34
emd_5645 3j3x 4.60 8160 9342 0.70 5486 0.65
emd_3790 5oej 5.70 2825 4096 0.59 915 0.39
emd_3963 6evy 4.00 5166 5086 0.96 4370 0.89
emd_3949 6esh 5.10 738 878 0.70 235 0.42
emd_7020 6ayg 4.65 1756 1825 0.81 956 0.66
emd_46055  9cz0 1.86 2040 2044 0.99 1891 0.96
emd_46537  9d31 2.80 752 743 0.97 708 0.97
emd_70156 9061 1.68 2040 2117 0.98 2131 0.97
emd_65082  9vib 2.26 566 564 1.00 547 0.98
emd_60984  9iy4 2.00 2646 2597 0.98 2442 0.96
emd_39365 8ykd 2.90 1225 1188 0.98 1116 0.95
emd_48671 9mvu 2.20 2105 2121 0.97 1892 0.93
emd_48164 9mdl 3.03 764 1058 0.71 867 0.64
emd_46506 9d30 3.74 2324 2750 0.81 1644 0.76
emd_19930  9esO 2.58 8778 8691 0.99 8336 0.97

Total Average 4.45 3587.60 3817.46 0.75 1798.66 0.59

B Architecture

Our model extends the 3D Diffusion Transformer (DiT) framework of Mo et al.|(2023a) by integrating
the joint-conditioning transformer design of Stable Diffusion (Esser et al., 2024). As shown in fig.
each sub-model (M) has its own multi-head output layer. The current model uses 2 sub-models
(Atoms and Backbone) for replacing the Atoms and Backbone U-nets of DeepTracer.

To keep our implementation cleanly compatible with the existing DeepTracer pipeline, we process
cubic input volumes of size 64 voxels. In early tests, a finer patch embedding size (p = 2) yielded
sharper features but increased the token count eightfold—exceeding the 48 GB memory of our
NVIDIA RTX A6000 GPUs. Consequently, we settled on:

* Transformer layers (d): 24
 Patch embedding: 4
¢ hidden dimensional: 768

» Attention heads: 16
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that DeepTracer Diffusion replaces
U-Net-based segmentation with a diffusion-based generative model, improving performance
across cryo-EM resolutions. These claims are supported by benchmark results and detailed
methodology in the Evaluation and Dataset Preparation sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the 48 GB GPU memory constraints that led us to select a larger
patch embedding size and highlight how this trade-off influences model capacity. We also
acknowledge that our evaluation is limited to 35 cryo-EM maps and describe how residue
recovery varies across resolution ranges.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.



3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theoretical results, theorems, or proofs. The
focus of the paper is empirical, centered on architectural design, training methodology, and
performance evaluation of a diffusion-based segmentation model for cryo-EM data.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly describes the OneHotDiff algorithm, diffusion model training
procedure, and evaluation procedure, including diffusion mechanics, segmentation strategy,
and dataset pre-processing. These details provide a reproducible framework for validating
the main experimental results without requiring access to code or data

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The source code and trained model weights have not been released. Access to
raw data and pre-processing is described.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the resolution-based data split (high, medium, low), voxel resam-
pling procedure, normalization, one-hot mask encoding, and model architecture. These
descriptions provide the context for the F1-score differences and residue recovery improve-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Mean F1-scores, standard error of the mean, and a paired t-test are all used in
the evaluation section to show statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Justification: We report the GPU memory limit (48 GB on NVIDIA RTX
A6000), but omitted run times and total compute.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics. All dataset used are openly licensed,

community-curated repositories with clear provenance and no personally identifiable infor-
mation.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While the paper focuses mainly technical performance / evaluation and we do
briefly go over positive societal impact of de-novo cryo-EM atomic structure modeling.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work uses only publicly available, non-sensitive cryo-EM maps and PDB
structures.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: We cite EMDataResource and the PDB as data sources. Both are part of the
public domain.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The research does not involve crowdsourcing nor research with human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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