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ABSTRACT

We prove a sharp threshold for the robustness of cryptographic watermarking for
generative models. This is achieved by introducing a coding abstraction, which
we call messageless secret-key codes, that formalizes sufficient and necessary re-
quirements of robust watermarking: soundness, tamper detection, and pseudoran-
domness. Thus, we establish that robustness has a precise limit: For binary outputs
no scheme can survive if more than half of the encoded bits are modified, and for
an alphabet of size g the corresponding threshold is (1 — 1/¢) of the symbols.
Complementing this impossibility, we give explicit constructions that meet the
bound up to a constant slack. For every 6 > 0, assuming pseudorandom func-
tions and access to a public counter, we build linear-time codes that tolerate up to
(1/2)(1 =) errors in the binary case and (1 —1/¢)(1— ¢) errors in the g-ary case.
Together with the lower bound, these yield the maximum robustness achievable
under standard cryptographic assumptions.

We then test experimentally whether this limit appears in practice by looking at the
recent watermarking for images of Gunn, Zhao, and Song (ICLR 2025). We show
that a simple crop and resize operation reliably flipped about half of the latent
signs and consistently prevented belief-propagation decoding from recovering the
codeword, erasing the watermark while leaving the image visually intact.

These results provide a complete characterization of robust watermarking, identi-
fying the threshold at which robustness fails, constructions that achieve it, and an
experimental confirmation that the threshold is already reached in practice.

1 INTRODUCTION

In recent years, generative Al models such as GPT, Llama, and Claude have made it increasingly
difficult to tell human-produced content from machine-generated text, code, and images. This new
reality raises a central question for both technology and society: how can we reliably distinguish
what is Al-generated from what is authentically human?

Watermarking is one of the most promising strategies for meeting this challenge (Executive Office of
the President of the United States, 2023; European Parliament and Council of the European Union,
2024). The idea is to embed a secret, imperceptible pattern into model outputs at generation time,
enabling later verification by anyone with the appropriate key. Ideally, a watermark should be robust,
surviving even substantial adversarial editing, while also being undetectable to those without the key
and leaving the original content unchanged in quality or meaning (Aaronson, 2022; Kirchenbauer
et al., 2023; Christ & Gunn, 2024).

Recent work by Christ & Gunn (2024) formalized cryptographic watermarking using pseudorandom
error-correcting codes (PRCs), showing that such watermarks can be both undetectable and robust
to significant amounts of tampering. But their results naturally lead to a deeper question: what are
the true limits of robustness for any cryptographically grounded watermark? Is there a universal
barrier that no watermarking scheme, however cleverly designed, can overcome?

This question has been explored from two sides. On one side, the “Watermarks in the Sand” (WiTS)
work (Zhang et al., 2023; 2024) showed that any sufficiently robust watermark is, in principle,
vulnerable: if an adversary has enough power, especially access to quality and perturbation oracles, it
can eventually erase any watermark without degrading content quality. However, WiTS leaves open



the concrete thresholds for robustness that efficient watermarking schemes can actually achieve. On
the other side, PRC-based schemes demonstrate the power of current cryptographic techniques but
do not establish whether their level of robustness is the best possible.

In this paper, we bring these perspectives together. We introduce a conceptually simple abstraction,
the messageless secret-key code, which crystallizes the core challenges and possibilities of cryp-
tographic watermarking. Using this notion, we prove a tight information-theoretic threshold: no
watermark, regardless of computational assumptions, can reliably survive if more than half of the
encoded bits are altered in the binary case. More generally, for a g-ary alphabet, the limitis (1—1/q)
of the encoded symbols. Conversely, for any small constant §, we give explicit constructions that
approach these limits, providing robustness up to just under half of the bits (for binary) or just under
(1 —1/q) (for g-ary) of the symbols changed.

To make our results concrete, we analyze a recent state-of-the-art PRC-based watermarking scheme
for images by Gunn et al. (2025). We show that a simple crop-and-resize operation, one that visually
preserves the image but changes about half of its latent bits, is sufficient to reliably erase the water-
mark in practice. This demonstrates that the theoretical limit we establish is not just a worst-case
artifact, but a real constraint in practical watermarking. This attack exposes a striking contrast be-
tween modalities: in text, watermark removal requires extensive edits that inevitably alter content,
while for images, even a single benign transformation can erase the watermark without changing the
image in any meaningful way. This makes the problem of robust watermarking in images uniquely
delicate, as the watermark can disappear without a trace and without a visible cost.

Our findings position the impossibility results of WiTS in a precise, quantitative framework: WiTS
demonstrates that all robust watermarks are eventually breakable in the black-box oracle model,
while our work identifies the exact numerical threshold at which robustness becomes fundamentally
impossible for any PRC-style, cryptographically undetectable watermark.

Looking forward, our results highlight that any significant increase in watermark robustness will
require fundamentally new ideas, potentially leveraging semantic or structural features of content
rather than cryptographic pseudorandomness alone.

1.1 OUR CONTRIBUTIONS

Our work provides a definitive and technically sharp characterization of the possibilities and limita-
tions of cryptographic watermarking. Specifically, our contributions are as follows:

1. A Simplified Abstraction for Watermarking. We introduce and formalize messageless secret-
key codes (also referred to as “zero-bit” in prior literature), a cryptographic primitive that captures
the minimal requirements for watermarking generative models. These codes do not encode ex-
plicit messages but instead focus on pseudorandomness, soundness, and robust tamper-detection.
We prove that messageless codes are not only sufficient but also necessary for cryptographic wa-
termarking of generative Al outputs, even when the watermark detector has access to the prompt.

2. Optimal Constructions. We provide an explicit and efficient construction of messageless secret-
key codes under the standard assumption of secure pseudorandom functions and the existence of
an untamperable public counter. This construction achieves robustness up to nearly half the code-
word symbols, as formalized below. Our construction also supports codes over larger alphabets.

Theorem 1 (Optimal Messageless Code, Informal). For any constant 6 > 0 and any alphabet of
size q > 2, there exists a simple, explicit construction of a messageless secret-key code (using a
PRF and untamperable counter) that achieves tamper-detection robustness against adversarial
modification of fewer than the threshold o fraction of codeword symbols where

. [3(1-0), for binary alphabets;
(1—1/q)(1 = &), for q-ary alphabets.
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3. Tight Information-Theoretic Limits. We prove a matching lower bound: no messageless
secret-key code (and hence no cryptographic watermarking scheme, even with negligible sound-
ness and tamper-detection error) can robustly detect tampering if an adversary can modify more
than the threshold o* (as defined in (1) above) fraction of the symbols, for any constant § > 0.
This impossibility holds even if the watermark detector is provided the prompt, and applies to
both secret-key and public-key versions of the primitive.



4. Optimality of PRC-Based Watermarking. Our upper and lower bounds show that the robust-
ness achieved by the PRC watermarking schemes of Christ and Gunn (Christ & Gunn, 2024) is in
fact information-theoretically optimal. Any cryptographic watermark (binary or g-ary, secret-key
or public-key) cannot exceed these limits.

5. Concrete Attack. We demonstrate that these theoretical limits are tight and immediately rel-
evant in practice. Specifically, we show that a simple crop-and-resize transformation modifies
enough underlying latent bits to consistently and silently remove the state-of-the-art PRC water-
mark (Gunn et al., 2025), without visible quality loss.

Earlier work had already shown that watermarks can in principle be erased. WiTS established this
with oracle access, showing that by repeatedly regenerating high-quality outputs an adversary can
eventually reach an unmarked image (Zhang et al., 2023; 2024). More recently, the UnMarker at-
tack (Kassis & Hengartner, 2024) demonstrated removal in a fully black-box setting, but only by
perturbing essentially every pixel through computationally heavy spectral optimization, leaving
behind small but measurable degradation.

What distinguishes our result is that no such machinery is required. A single, routine crop-and-
resize suffices to drive the system exactly to the threshold where our lower bound guarantees
failure. In this sense, the limit is not just a theoretical boundary but a practical one, realized by
the most ordinary of edits.

Collectively, these results establish the precise information-theoretic boundary for cryptographic
watermark robustness, even under generous adversarial models. They show both what is achievable,
and what is fundamentally impossible, with cryptographic watermarking alone.

1.2 RELATED WORK

To meet space constraints, the related work is deferred to Appendix A.1.

2  PRELIMINARIES ON WATERMARKING FOR GENERATIVE MODELS

For the notation used in this work, we refer the reader to Appendix A.2. Below, we recall the
formalization of watermarking for generative models, following Zhang et al. (2023; 2024).

A generative model is any (possibly randomized) algorithm that, given a prompt x (such as a ques-
tion or a text description), produces an output y (such as text or an image).

Definition 1 (Generative models). A conditional generative model Model : X — ) is a probabilistic
polynomial-time (PPT) algorithm that, given a prompt x € X, outputs y € ). Here, X’ is the prompt
space, and ) is the output space. We write y <—s Model(z) to denote sampling a response from the
model on prompt z.

A watermarking scheme is a systematic way to mark the outputs of a generative model, so that later
a verifier with the appropriate key can detect whether a given output is watermarked. We focus on
secret-key watermarking: both embedding and detection require a secret key.

A watermarking scheme IT = (Watermark, Detect) for a family of generative models M =
{Model} consists of two efficient algorithms:

Watermark(1*, Model): On input a security parameter 1* and a model Model, the algorithm out-
puts a secret key x € K and a watermarked model Model,, : X — ).

Detect(k,x,y): On input a secret key x, a prompt € X, and an output y € ), this algorithm
returns either true or false, indicating whether y is watermarked (in response to x).

A robust watermarking scheme should satisfy three key properties. First, correctness: watermarked
outputs should always be recognized as such (the formal definition is given in Appendix A.3).
Second, soundness: non-watermarked outputs (such as human-written or independently generated
model outputs) should almost never be mistakenly detected as watermarked. Third, robustness: the
watermark should survive small modifications to the output. That is, an adversary cannot erase the
watermark by making limited edits unless a large fraction of the output is changed.



Definition 2 (Soundness of watermarking). Let M = {Model : X — Y} be a class of generative
models. We say that IT satisfies soundness if for every Model € M, every x € X, and every y € ),
P[Detect(r, z,y) = true : (k, Model,) <—s Watermark(1*, Model)| < negl(}).

Robustness requires that a watermark remain detectable even if an adversary modifies a small part
of the output. To capture this, we consider tampering functions f : ¥™ — X" which, for a fixed
parameter « € (0, 1), output a string of the same length as the input and differ from the original
output y € X" in at most an positions. Here, a specifies the maximum allowable fraction of edits.

We study two models of adversarial tampering: (1) In the arbitrary tampering model, the adversary
may choose any positions and values for up to an changes, allowing fully coordinated edits. (2) In
the independent tampering model, the adversary changes each symbol independently, subject to the
same overall budget an (e.g., each symbol is flipped with probability at most «).

Let ]:"a denote the set of (possibly randomized) functions f as above (arbitrary), and let ]:'(ijld - ]:"a
denote those which act independently on each symbol.

Definition 3 (F-Robustness of watermarking). Let M = {Model : ©* — ¥*} be a
class of generative models. A watermarking scheme II is F-robust if for every Model €
M, every x € X, and every f € F,, P[Detect(k,z,y) = false A§ # vy

(k, Model,;) s Watermark(1*, Model), y <—s Model,.(z); 9 < f(y)] < negl(\).

In our results, we primarily consider small constants o > 0. When we refer to f;“d, the impossi-
bility results become even stronger: if robustness fails against independent (random, uncoordinated)
edits, it necessarily fails against arbitrary (coordinated) ones.

We always require | f(y)| = |y|, meaning all tampering functions are length-preserving. This restric-
tion is standard in coding theory and only strengthens our impossibility results: if robust watermark-
ing is impossible even when the adversary must preserve output length, it is certainly impossible
when more general modifications, such as insertions or deletions, are permitted.

Our model further allows the watermarking algorithm to access the generative model’s internals, and
allows the detector to depend on both the prompt and output. Impossibility under these permissive
conditions immediately implies impossibility in any more restricted setting.

3 MESSAGELESS SECRET-KEY CODES

In this section, we develop a central ingredient for our theory: secret-key codes that do not encode
information, but instead provide a way to test the validity of a codeword and to detect tampering.
These “messageless” codes distill the core cryptographic challenges of watermarking into a simple
form. We formalize their properties, such as correctness, soundness, tamper detection, and pseudo-
randomness, and see how these definitions serve as the foundation for our results on watermarking.

A messageless secret-key codes permits to enables to (i) distinguishing valid codewords from invalid
ones, and (ii) detecting whether a codeword has been tampered with (possibly maliciously) during
transmission. We consider codes in the secret-key setting, where both encoding and decoding use
the same secret key. This secret-key variant is also simpler to construct than public-key analogues.

Formally, a messageless secret-key code is specified by a triple of polynomial-time algorithms I =

(KGen, Enc, Dec) over an alphabet X and a codeword space X"

KGen(1*): On input the security parameter 1*, the randomized key-generation algorithm outputs a
secret key sk.

Enc(sk): On input sk, the (possibly randomized) encoding algorithm outputs a codeword ~.

Dec(sk,~y): On input the secret key sk and a codeword ~, the deterministic decoding algorithm

outputs a symbol y € {valid, invalid, tampered}.

A messageless secret-key code I' should satisfy correctness: an honestly generated codeword is
always classified as valid by the decoding procedure. We provide the formal definition in Ap-
pendix A.4. For security, we require two properties. The first is soundness, which means that decod-



ing any fixed string (not produced by the encoder) yields invalid except with negligible probability
over the choice of the secret key sk. In other words, the code identifies codewords associated to sk.

Definition 4 (Soundness of messageless secret-key codes). We say that a messageless secret-key
code T satisfies soundness if for every fixed codeword 4 € X", P[Dec(sk,%) # invalid :
sk <5 KGen(1M)] < negl(\).

The second property is tamper detection with respect to a family 7 = {f : ¥ — X"} of codeword
modification functions (possibly randomized). This property requires that decoding a tampered
codeword 4 # v (with v <—s Enc(sk) and 4 s f(y)) yields tampered except with negligible prob-
ability.

Definition 5 (F-Tamper detection of messageless secret-key codes). We say a messageless secret-
key code T satisfies F-tamper detection if for any f € F, P[Dec(sk,7) # tampered A§ # 7 :
sk <—s KGen(11);y <—s Enc(sk); 7 <= f(7)] < negl()).

Some settings require a third property: pseudorandomness (i.e., the codewords are indistinguishable
from random). To meet space constraint, we move the formal definition to Appendix A.4.

3.1 IMPOSSIBILITY OF HIGH TAMPERING RATES

A central question for messageless secret-key codes is how robust they can be to tampering: if an
adversary is allowed to modify a fraction of the codeword, can the code reliably detect tampering
and also maintain soundness? It turns out that these two properties are fundamentally at odds if the
tampering is sufficiently strong.

To see the tension, consider the following intuition. If the set of possible tampering functions in-
cludes all constant functions (that is, for every string 4, there is a tampering function that always
outputs ), then the decoder faces a contradiction: soundness requires that, for almost every 4, the
decoder outputs invalid; yet tamper detection requires that, for any 4 produced by tampering with
a valid codeword, the decoder outputs tampered. Since the decoder must assign a single label to
each string, it cannot satisfy both properties for the same input 4.

This intuition extends to the case where the adversary is limited to changing only a fraction « of the
codeword, even if changes are made independently at random across positions. We now make this
precise.

Let X be an alphabet of size ¢ > 1, and let n denote the codeword length. Define Fiid as the
family of functions f where, for each input v € X", f(v) is produced by independently changing
each symbol: for each position, the symbol is replaced with a new random symbol from > with
probability p = 1 — 1/g, and remains unchanged with probability 1/q. The expected fraction of
changed positions is exactly 1 — 1/g.

Below we establish the formal theorem whose proof appears in Appendix A.9.1.

Theorem 2. Let I' be any messageless secret-key code over X with codeword length n > 1 and
|¥| = q > 1. Suppose T satisfies tamper detection for the family Fiid with o = (1 — 1/q)(1 + 9)
Sor some § € (0,1). Then T cannot satisfy soundness.

This bound is tight for the family of independent symbol tampering functions, and matches intuition
from coding theory: if too large a fraction of the codeword can be arbitrarily changed, no procedure
can reliably distinguish random tampering from invalid codewords. In the case of binary codewords
(thatis, 3 = {0, 1}), the impossibility threshold becomes particularly simple:

Corollary 1. Let T' be any messageless secret-key code with alphabet {0, 1} and codeword space
{0,1}" for n > 1. If T satisfies F'2I-tamper detection for o = (1+6)/2 for any & € (0, 1), then T
cannot also satisfy soundness.

These impossibility results do not depend on whether the decoder ever accepts any honestly gener-
ated codeword as valid. For instance, a code could be designed so that the decoder never outputs
valid at all; it would trivially satisfy soundness (since random strings are always labeled invalid)
and could still claim to detect tampering. Our theorems show that, even allowing for such “incor-
rect” codes, soundness and tamper detection cannot both be satisfied at high tampering rates. This
is why correctness is not assumed or required for our lower bounds.



Remark 1. It’s worth noting that the limitations described above are even more robust than they
may first appear. First, suppose we relax our expectations for soundness, allowing the decoder
to make mistakes on a constant fraction e of random inputs, rather than insisting on negligible
error. The underlying tension remains: once the adversary is able to tamper with a sufficiently large
fraction of the codeword, the code can only be sound for a fraction € of random strings if it tolerates a

correspondingly large tamper-detection error—specifically, at least (1—¢) (1—exp(— 5;” (1-1/q)))
for tampering rates @« = (1 — 1/¢)(1 + 0) and any § € (0,1). In essence, even a “lenient” code,

willing to make plenty of mistakes, still cannot robustly detect high-rate tampering.

Second, these limits do not depend on the codeword length being fixed in advance. If codewords are
allowed to be any length, the adversary can simply determine the length and tamper independently
with the appropriate fraction of positions, and the same contradiction arises. The impossibility
persists no matter how the codeword length is chosen.

Taken together, these points highlight a fundamental barrier that goes beyond the classical bounds
from error-correcting codes. Here, the impossibility is a direct consequence of trying to satisfy both
soundness and strong tamper detection, even in the highly flexible messageless setting.

Supporting messages, error correction, and tight construction. In Appendix A.5, we show that
the bound on « of Theorem 2 also applies to secret-key codes with messages and to secret-key error-
correcting codes. Moreover, in Appendix A.7, we present a simple and tight information-theoretic
construction that matches the bound established in Theorem 2.

3.2 CONNECTING WATERMARKING AND TAMPER DETECTION

The fundamental limits we have established for messageless secret-key codes also govern the ro-
bustness of watermarking schemes for generative models. To make this connection precise, we
show how any watermarking scheme that is sound and robust against tampering can be used to build
a secret-key code with exactly the same security guarantees.

The intuition is straightforward: if a generative model can reliably embed a watermark that survives
tampering, then by fixing a prompt and interpreting the model’s outputs as codewords, we obtain
a code that is robust to exactly the same set of manipulations. The code’s decoder simply runs the
watermark detector: if it finds a watermark, it signals tampering; otherwise, it outputs invalid.

We state this reduction for the most general case, allowing for models whose outputs can have
variable length. The resulting code inherits the tamper-resilience properties of the watermarking
scheme for any family of tampering functions that operates on variable-length strings. If the model
always produces fixed-length outputs, the same logic applies for fixed-length tampering. Below we
provide the formal theorem whose proof appears in Appendix A.9.2.

Theorem 3. Assume there exists a watermarking scheme 11 for a class of generative models M =
{Model : ¥* — X*} satisfying soundness and F-robustness (for some family F)."' Then, there
exists a messageless secret-key code 1" with alphabet space % and codeword space ¥* satisfying
soundness and F -tamper detection.

When the output of the generative model is a binary string (i.e., ¥ = {0, 1}), the connection above
becomes especially powerful. By mapping any robust watermarking scheme to a messageless secret-
key code, we can directly apply our main impossibility result for codes to watermarking itself.

Specifically, our earlier theorem (Theorem 2) shows that no messageless secret-key code can be
sound and robust to tampering beyond a certain threshold—even when the codewords may have
variable length. By combining this with the reduction above, we obtain an immediate impossibility
for robust watermarking of binary outputs:

Corollary 2. Let M = {Model : X — {0,1}*} be any class of generative models with binary

outputs. There is no watermarking scheme for M that achieves both soundness and ]:'g‘d—robusmess
Sfor any tampering rate o > (1 + 6)/2, for any 6 € (0,1). This holds even if the model’s prompt
space X is arbitrary, and even if the soundness is relaxed to allow a constant error probability.

"For the sake of clarity, we assume the prompt and output space of Model is defined over the same alphabet.
The result generalizes to different alphabets as well.



The impossibility threshold we have identified for tamper-resilient codes is not just a technical de-
tail; it serves as a universal limit for watermarking. Any watermarking scheme for generative models
with binary outputs must face this same upper bound, no matter how the scheme is constructed or
how input and output lengths are chosen. The recent work of Christ & Gunn (2024) provides a
compelling example: their PRC-based watermarking schemes achieve robustness against indepen-
dent bit-flip tampering up to the threshold o < (1 — §)/2, and their approach even accommodates
certain types of deletions. Our corollary shows that this rate is not only achievable but also optimal.
Although we do not claim a perfect correspondence between all watermarking schemes and all PRC
constructions, since this depends on the precise model and tampering family, the upper bound on
robustness holds for all such schemes.

4 A CONCRETE ATTACK

Our goal is to test whether the theoretical robustness threshold we proved manifests in practice. For
this purpose, we analyze the PRC watermark of Gunn, Zhao, and Song (Gunn et al., 2025), imple-
mented in Stable Diffusion 2.1 Base (512512 resolution, 50 denoising steps). This watermark is
representative of the state of the art: it preserves perceptual quality, is provably undetectable under
standard assumptions, and resists a wide class of natural manipulations.

The scheme embeds a PRC (pseudorandom) codeword in the latent space. Let v € R*x64x64

denote the latent tensor produced by the diffusion model. For each entry v; of v, the sign is aligned
with the corresponding codeword bit v; € {0,1} where v = ~1||...||yn is the bit composition
of a PRC codeword ~. If v; = 1, the sign is left unchanged; if 7; = 0, the sign is flipped. The
magnitudes of the latent remain untouched, so the watermarked latent still follows the Gaussian
distribution required for high-quality image generation. The codeword is pseudorandom, so without
the detection key the modified latent is indistinguishable from a fresh Gaussian sample.

Detection proceeds by first inverting a generated image & back into a latent v using an approximate
inversion procedure, and then comparing sign(v) to the expected PRC codeword ~. Because inver-
sion is lossy, v typically agrees with the original latent on about 90% of entries even in the absence of
any edits. To account for this, the detector employs a belief-propagation (BP) decoder that attempts
to correct errors and recover the original codeword. The key parameter is the pre-decoding sign
error rate. As reported in Gunn et al. (2025), the BP decoder is probabilistic and exhibits variable
robustness: it sometimes recovers the codeword under substantial perturbations, but overall it is less
reliable than the detector, which remains robust across a wide range of attacks. In our experiments
we observe that once the pre-decoding error rate approaches one-half of the latent positions, the BP
decoder fails consistently.

This threshold provides a benchmark for our study. The central question is whether simple image
manipulations can drive the recovered latent to the 50% error mark, thereby erasing the watermark.

4.1 FIRST ATTEMPTS

Before diving into our attack, we tested the robustness of Gunn et al. (2025) (while considering
quality preservation), by choosing a broad set of common image manipulations (including gaussian
noise, gaussian blur, pixel-wise color shifts, lossy format conversions). To meet space constraints,
the results of our experiments are presented in Appendix A.8. They demonstrate that, although the
images were visibly altered (sometimes severely), yet the watermark survived. From this outcomes,
we can draw a clear lesson: edits that preserve image quality produce far too few sign flips to reach
the 50% threshold, while edits that come closer to the threshold do so only at the cost of destroying
the image. To break the watermark without sacrificing fidelity, a qualitatively different kind of
transformation is required.

4.2 OUR SUCCESSFUL ATTACK

The failure of local manipulations suggests what is missing. Noise, blur, color shifts, and com-
pression alter pixel values but preserve the coordinate system of the image. The encoder still sees
essentially the same structure, and so the latent sign pattern (i.e., the PRC codeword +) drifts only
modestly. To break the watermark, we sought an operation that would force the encoder to reinter-



pret the image globally (significantly impacting the encoded codeword ), while leaving the picture
perceptually unchanged.

This reasoning led to the crop-and-resize attack. We take a watermarked 512 x 512 image, crop 15
pixels from each side to obtain a 482 x 482 image, and then resize it back to 512 x 512 using bicubic
interpolation.” The crop removes only a narrow border, and the interpolation smoothly reconstructs
missing pixels from their neighbors. Visually, the result is nearly indistinguishable from the original.
Examples are shown in Figure 1, where side-by-side comparisons reveal no perceptible difference
between the original and the cropped-and-resized images.

The effect on the watermark is decisive. Across more than one thousand test cases, the recovered
latent after crop-and-resize showed pre-decoding error rates concentrated near 50%. This error rate
is exactly the threshold at which BP decoding fails. Indeed, in every trial the decoder was unable to
recover the codeword, and detection failed completely. Unlike the earlier attacks, which either left
the watermark intact or visibly degraded the image, this single transformation erased the watermark
while keeping the content unchanged.

In short, crop-and-resize does what no other edit could: it simultaneously preserves perceptual qual-
ity and drives the latent representation to the theoretical boundary. The watermark disappears, not
because the image is damaged, but because the latent has been resampled in a way that overwhelms
the error-correcting capacity of the code.

(c) Original

(e) Original (f) Cropped & Resized (g) Original (h) Cropped & Resized

Figure 1: Comparison between original and crop & resize attacked images.

Why It Works. The success of crop-and-resize can be traced to how the encoder interprets the
image. Local edits (noise, blur, color shifts, compression) perturb pixel values but leave the grid
of the image intact. The encoder still recognizes the same arrangement, and the latent sign pattern
changes only in scattered places. Cropping followed by resizing is different. Cropping removes a
thin border, and resizing does not simply stretch the remaining pixels. It recomputes every pixel
value by bicubic interpolation on a new lattice. The encoder is then asked to describe the same
visual content in a new coordinate system. This global resampling is what drives nearly half of the
latent entries across zero, flipping their signs.

Latent-space effects. Figure 2 shows this effect in detail. The original latent sign pattern (top
left) encodes the watermark (i.e., the PRC codeword) as a pseudorandom arrangement of signs.
After crop-and-resize, the recovered latent (bottom left) is visibly scrambled. The difference map
before decoding (top right) shows that 48.07% of the signs have flipped. This is essentially the

*We use a 15px crop by default; for tightly framed images a smaller crop (e.g., 10px) suffices, as in
Figure 6.



information-theoretic boundary: once errors approach 50%, the codeword is indistinguishable from
random. This is exactly the core argument to prove the impossibility result (proven by demonstrating
a generic attack) of Theorem 2. The bottom-right panel shows the result after belief propagation, the
error-correcting decoder, has attempted to repair the errors. At this level of corruption, BP cannot
recover the original codeword and instead converges to a different pseudorandom codeword. As a
result, the measured error rises slightly to 48.96%. This increase is not paradoxical but diagnostic:
the decoder has lost all correlation with the true codeword. The image itself is unchanged, but the
watermark is irretrievable.

Original Watermarked Latent Sign Patter

red Latent Sign Patterr
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Figure 2: Latent sign analysis of a watermarked image before and after the crop and resize attack.
Top left: the original latent sign pattern (red = positive, blue = negative) that encodes the watermark
as a pseudorandom codeword. Bottom left: the latent recovered from the attacked image, which is
visibly scrambled compared to the original. Top right: a difference map comparing the original and
recovered latents, showing that 48.07% of signs have flipped (purple = flipped, white = unchanged).
Bottom right: a difference map after belief propagation, the error-correcting decoder, has tried to
repair the errors. Because the error rate is already near the 50% threshold, the decoder fails and
converges to a different pseudorandom codeword. The resulting error rate increases slightly to
48.96%, confirming that the watermark cannot be recovered.

Variants. Other global manipulations tell the same story. Figure 4 compares crop and resize with
several related operations. Cropping and padding with black pixels produced about 16.7% error and
left a conspicuous border. Downscaling and then upscaling, even aggressively to 312 x 312 before
resizing back, produced about 12.1% error. Neither came close to the threshold. Downscaling and
padding with black pixels did reach ~ 50% error (Figure 5), but the added border made the alteration
visually obvious, as shown in subfigure (d) of Figure 4. In contrast, crop and resize combined two
properties: it perturbed the latent enough to destroy the watermark, and it did so while preserving
the appearance of the image.

Generalization. The vulnerability is not limited to this specific setup. Generative models often
allow users to control framing explicitly. An adversary can request an image with an artificial border
and then remove it by cropping and resizing. Figure 6 illustrates this approach: the model produces
an image with a frame, the border is removed, and the watermark disappears while the content
remains intact. No knowledge of the watermark key is needed, and no optimization is required.
The principle is general: any transformation that globally resamples the image while keeping its
perceptual content unchanged will drive the latent to the robustness threshold.



ETHICS STATEMENT

Our study concerns the limits of watermarking schemes for generative models. It does not involve
human subjects, personal data, or datasets with ethical concerns. The results highlight that certain
vulnerabilities are not accidental but inherent: they arise from the structure of watermarking itself
and can be exploited regardless of our work. Making these limitations explicit serves the goal of
building more reliable methods, by clarifying where robustness is and is not possible. We therefore
view the main effect of this paper as reducing long-term risk rather than creating new avenues for
misuse. The work has no proprietary or commercial ties and does not differentially affect particular
groups.

REPRODUCIBILITY STATEMENT

We have taken the following steps to ensure the reproducibility of our results. For the theoreti-
cal contributions, the appendix provides complete proofs of all statements, theorems, and corol-
laries. For the practical contributions, the source code for reproducing all experiments, includ-
ing the implementation of the proposed attack, is available in the following anonymous repository:
https://anonymous.4open.science/r/PRC-Attacker—-2B6E/. The repository also
contains detailed instructions for executing the code.
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A APPENDIX

A.1 RELATED WORK

Watermarking refers to the process of embedding a signal in generated content such as im-
ages (Boland et al., 1995; Cox et al., 2007; Hayes & Danezis, 2017; Ruanaidh & Pun, 1997; Zhu
et al., 2018), text (Atallah et al., 2001; 2003), audio (Arnold, 2000; Boney et al., 1996), or video
that is imperceptible to humans but algorithmically detectable. Its primary use is to enable attri-
bution or provenance without significantly degrading content quality. The study of watermarking
spans decades and includes both practical systems and formal analyses, with results on constructing
watermarking schemes as well as breaking or proving impossibility. With the rise of modern gen-
erative models, watermarking has become a sharper test of the trade-offs between imperceptibility,
robustness, and efficiency.

Constructions. Watermarking methods are commonly classified based on when the watermark
is applied: either after generation (post-processing) or during the generation process itself (in-
processing). Post-processing schemes embed the watermark into the output after it has been gener-
ated. These approaches often degrade output quality (Cox et al., 2007; Wan et al., 2022; An et al.,
2024). In-processing schemes, by contrast, embed the watermark during content generation. They
were first introduced in image generators (Yu et al., 2021), and later adapted to large language mod-
els (LLMs) (Kirchenbauer et al., 2023). Image watermarking techniques include modifying weights
through pretraining or fine-tuning (Fei et al., 2022; Fernandez et al., 2023; Zeng et al., 2023; Zhao
et al., 2023), or intervening in the sampling trajectory of diffusion models (Wen et al., 2023). In
the LLM setting, most methods operate at inference time by biasing token selection in a way that
encodes a hidden message (Kirchenbauer et al., 2023; Christ et al., 2024). Some schemes further en-
sure that the overall distribution over outputs remains statistically indistinguishable from unmarked
outputs (Kuditipudi et al., 2024), preserving quality.

A more recent line of work leverages cryptographic and coding-theoretic tools to design undetectable
watermarking schemes. One direction (Christ & Gunn, 2024) proceeds via pseudorandom error-
correcting codes (PRCs) as the watermark signals. These codes can be constructed using low-density
parity-check (LDPC) codes (Christ & Gunn, 2024; Alrabiah et al., 2025; Ghentiyala & Guruswami,
2024) and allow for robust detection under edits. PRC-based watermarking was recently applied to
images (Gunn et al., 2025). The main limitation (Gunn et al., 2025) is that although the underlying
PRC is robust to modifications on a bounded number of bits, the resulting PRC-based watermarking
is robust only to independent changes, limiting its applicability in real-world scenarios. In parallel,
Fairoze et al. (2025) propose a public watermarking scheme that uses digital signatures, allowing
third parties to verify the watermark and ensuring robustness as long as a small window of the
generated content remains unmodified.

Attacks and Impossibilities. Alongside construction efforts, recent work has explored the limita-
tions of existing watermarking schemes. In text, the most prominent attack is paraphrasing (Cheng
etal., 2025; Krishna et al., 2023; Zhang et al., 2023; 2024), rewriting the watermarked content while
preserving its meaning, using language models, translation tools, or manual edits. These attacks
often succeed partially, but at the cost of degraded output quality. In the vision domain, a range of
attacks aim to remove watermarks by adding noise to the image or latent representation, or by using
optimization techniques to remove the watermark (Lukas et al., 2024; Saberi et al., 2024; Zhao et al.,
2024). Many of these attacks have limitations. For example, Zhao et al. (2024) focus on post-hoc
watermarking methods, while Saberi et al. (2024) require either white-box access to the detector or
access to many watermarked and unwatermarked examples.

A more general impossibility result by Zhang et al. (2024; 2023) shows that constructing robust
watermarking schemes is impossible under certain conditions. They model generated outputs as
nodes in a graph and prove that if an adversary has access to two oracles (a quality oracle that
tells the adversary whether the output is still valid, and a perturbation oracle that allows small edits
preserving semantics) then the adversary can walk through the graph until the watermark is erased
without degrading content quality. This result does not specify an exact condition for when removal
occurs, only that eventually such a walk succeeds.
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In contrast, our result makes no oracle assumptions and provides a concrete lower bound. We show
that if an adversary is willing to change more than half of the bits, then the watermark is surely
removed. Prior work demonstrates that robust watermarking cannot be sustained indefinitely. Our
result identifies the precise threshold at which robustness fails.

A.2 NOTATION

Small letters (such as x) denote individual objects or values; calligraphic letters (such as &X’) denote
sets; sans-serif letters (such as A) denote algorithms. For a string = € {0, 1}*, |x| denotes its length.
For a set X, |X| is its cardinality. If x is chosen uniformly at random from X, we write x <—s X.
The Hamming distance dist(x, 2) between two strings = and «’ (over an alphabet X)) is the number
of positions where they differ.

For a deterministic algorithm A, y = A(z) means that y is the output of A on input z. For a
randomized algorithm A, we write y <—s A(x) to indicate y is sampled from the output distribution
of A on input z. Alternatively, y = A(z;7) denotes the output when A runs on z with randomness
r. An algorithm A is called probabilistic polynomial-time (PPT) if it is randomized and always halts
in time polynomial in |z|.

We use negl(\) for an arbitrary negligible function of the security parameter A € N, i.e., for all
¢ > 0, negl(\) = o(A"¢). We use poly(A) to denote a polynomial function of A. Unless noted
otherwise, all algorithms receive the security parameter 1* as input.

A.3 DEFINITION OF CORRECTNESS OF WATERMARKING SCHEMES

Definition 6 (Correctness of watermarking). Let M = {Model : X — Y} be a class of genera-
tive models. We say that II satisfies correctness if for every Model € M and for every z € X,
P[Detect(k,z,y) = true : (k, Model,;) +—s Watermark(1*, Model), y s Model, ()] = 1.

A.4 DEFINITIONS OF CORRECTNESS AND PSEUDORANDOMNESS OF MESSAGELESS
SECRET-KEY CODES

Definition 7 (Correctness of messageless secret-key codes). We say that a messageless secret-
key code I' satisfies correctness if for all A\ € N and for all sk € KGen(1%), it holds that
Dec(sk,Enc(sk)) = valid. If Enc is randomized, we require P[Dec(sk, Enc(sk)) = valid] = 1
where the probability is over the randomness of the encoding.

Intuitively, a messageless secret-key code is pseudorandom if the output of Enc is indistinguishable
from a uniformly random string of the same length, even if Enc is called multiple times. This
property requires that Enc is randomized (since a deterministic encoder is trivially distinguishable
from random).

Definition 8 (Pseudorandomness of messageless secret-key codes). We say that a messageless
secret-key code I satisfies pseudorandomness if for every PPT distinguisher D,

|P[DO= (1) =1 : sk <=5 KGen(1*)] — P[D9=(1*) = 1]| < negl()),

where the inputless oracle Oyea (resp. Orand), €ach time it is invoked, returns Enc(sk) (resp.
p s 3™,

A.5 SUPPORTING MESSAGES AND ERROR CORRECTING SECRET-KEY CODES

Just as in the messageless case, we can define secret-key codes that are designed not only to detect
tampering, but also to carry and recover messages. Here, the code serves two roles at once: if a
codeword has not been altered, it should decode back to the original message; if the codeword has
been tampered with or is otherwise invalid, the decoder should indicate this fact.

Formally, such a code consists of three algorithms: a key generator KGen, an encoder Enc that takes
both a secret key and a message and outputs a codeword, and a decoder Dec that uses the secret
key to recover either the original message, or a special symbol (invalid or tampered) indicating
something has gone wrong.
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As before, we will be interested in the fundamental properties of such codes: correctness, soundness,
tamper detection, and pseudorandomness. The presence of a message simply means that correctness
now asks for exact message recovery from an unaltered codeword, and the other properties extend
in a natural way. For completeness, we give their formal definitions below.

Formally, a secret-key multi-message code is defined by a triple of polynomial-time algorithms I' =
(KGen, Enc, Dec), specified as follows:

KGen(1*): A randomized key-generation algorithm that, on input the security parameter, outputs a
secret key sk.

Enc(sk, u): A (possibly randomized) encoding algorithm that, given the secret key sk and a mes-
sage p € X, outputs a codeword v € X".

Dec(sk,~y): A deterministic decoding algorithm that, given the secret key sk and a codeword ~,
outputs either a message in ™, or one of the symbols invalid or tampered.

The key properties for such codes are defined as follows:

Definition 9 (Correctness). A secret-key multi-message code I satisfies correctness if for all A €
N, all sk € KGen(1*), and all messages 1 € ¥, P[Dec(sk, Enc(sk, 1)) = u] = 1, where the
probability is taken over the randomness of the encoding, if any.

Definition 10 (Soundness). A secret-key multi-message code I satisfies soundness if for every fixed
codeword 4 € X", P[Dec(sk, §) # invalid : sk s KGen(1*)] < negl(}).

Definition 11 (F-Tamper Detection). I' satisfies F-tamper detection if for any tampering function
f € F and any message p € X,

PP[Dec(sk, ) # tampered A5 # 7 : sk «s KGen(1), ~ s Enc(sk, uu), 7 = f(7)] < negl(X).

Definition 12 (Pseudorandomness). I' satisfies pseudorandomness if for every PPT distinguisher
D, |P[DP=(1*) = 1 : sk <—s KGen(1*)] — P[D®=4(1*) = 1]| < negl()), where Ojea (1) returns
Enc(sk, ) and Oyang () returns a uniformly random string from X™.

Remark 2. Our impossibility results extend from messageless codes to codes that also carry mes-
sages. The reason is simple: if you have a code that can both recover messages and detect tampering,
you can always just ignore the message part and use the code to check whether an input is valid,
tampered, or invalid. In other words, any code that solves the harder message-recovery problem
automatically solves the simpler messageless problem as well. So if it is impossible to achieve
soundness and tamper detection beyond a certain threshold without messages, it is also impossible
when messages are present.

A.6 FROM TAMPER DETECTION TO ERROR CORRECTION

The barrier we have identified for tamper detection in messageless codes also holds in the stronger
setting of error correction for codes that encode messages. This is because error correction necessar-
ily includes the task of detecting whether a codeword has been tampered with: if a code can recover
the message, it can certainly tell when decoding fails.

Formally, a code achieves error correction for a family of tampering functions F if, whenever a
codeword v encoding a message p is tampered with to produce 4 # <, the decoder outputs the
original message . except with negligible probability:

Definition 13 (F-Error Correction). A secret-key multi-message code I' achieves F-error correction
if, for all f € F and all i, when sk <s KGen(1%), v <—s Enc(sk, 1), and 7 = f(7) with 7 # , we
have P[Dec(sk,7) # p] < negl(A).

A code with correctness, soundness, error correction, and pseudorandomness is a pseudorandom
error-correcting code (PRC) (Christ & Gunn, 2024). In our model, the decoder may output a tam-
pered flag, but this does not affect the fundamental limits.

The key point is that impossibility for messageless codes immediately implies impossibility for
message-carrying codes. If a code can correct errors for even a single message, it can be viewed as
a messageless code by fixing that message and treating every successful decoding as “valid.” The
converse also holds. To obtain a multi-message code from a single-message code, one can apply the
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standard transformation of Christ & Gunn (2024), which converts any single-message PRC into a
multi-message one, preserving soundness and error correction.

Theorem 4 (Extension of Impossibility). Let F be any family of tampering functions. If no mes-
sageless secret-key code achieves soundness and F-tamper detection above a given tampering rate,
then no secret-key multi-message code (including PRCs) achieves error correction for messages
above that rate.

Proof. Suppose, for contradiction, that there exists a secret-key multi-message code I' achieving
JF-error correction above the threshold. Fix any message p*. Define a messageless code IV by
I".Enc(sk) = T.Enc(sk,u*) and T”.Dec(sk,vy) = valid if I'.Dec(sk,v) = u*, and invalid
otherwise. The error correction property for I' ensures tamper detection for IV, contradicting the
impossibility for messageless codes. For the multi-message setting, the construction of Christ &
Gunn (2024) can be applied to lift any single-message PRC to a multi-message PRC, preserving all
security properties. O

Corollary 3. No secret-key code (including PRCs (Christ & Gunn, 2024)) over a binary alphabet
can achieve error correction at tampering rates exceeding (1+0) /2, for any constant § > 0, without
losing soundness.

Thus, the impossibility is fundamental: it holds for all cryptographically meaningful coding
schemes, regardless of whether they detect or correct errors, or how many messages they support.

A.7 A CONSTRUCTION OF MESSAGELESS SECRET-KEY CODES

To demonstrate that the tightness of the impossibility threshold for robust watermarking, we give
a simple information-theoretic construction of a messageless secret-key code that attains optimal
soundness and tamper detection up to the threshold. This construction is explicit and efficient, with
all operations linear in the codeword length.

The main idea is to use the secret key itself as the codeword, and have the decoder distinguish
between “valid,” “tampered,” and “invalid” based on Hamming distance from the key. This divides
the space of possible codewords into three regions, separated by a threshold ¢.

‘We now formalize this construction.

Construction 1. Let n be the codeword length, and fix a parameter § € (0,1). Define t = n(1 —
%)(1 — ). The code ' = (KGen, Enc, Dec) is defined as:

Key Generation KGen(1*): Sample a secret key sk <—s %" uniformly at random, where || = ¢ =
n® for constant ¢ > 1.

Encoding Enc(sk): Output the codeword -y = sk.
Decoding Dec(sk,y): Giveny € X"

o If dist(v, sk) > t, output invalid.
 If 0 < dist (v, sk) < ¢, output tampered.
o If v = sk, output valid.

The correctness property for this construction is immediate: the decoder always accepts the honest
codeword, which is just the secret key.

What remains are the two core security properties: soundness, and robust detection of tampering up
to the optimal threshold. Both follow from a simple analysis of Hamming distance and concentra-
tion.

Theorem 5 (Security of the Simple Construction). Let n and q = |X| such that 3 € w(log A).? The

messageless secret-key code 1" from Construction 1 satisfies soundness and F,,-tamper detection
fora=(1- %)(1 —0) forany é € (0,1).

3This can be always enforced by increasing the codeword length n w.r.t. the cardinality g of 3.
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Proof. We prove each property in turn.

Soundness: Fix any string 4 € ™ and random key sk <—s >™. Let X be the number of positions

where 4[i] = sk[é]; X is binomial with mean n/q. The decoder outputs invalid unless X >
n(1 + &)/q (note that the last inequality holds whenever ¢ > 2).*
By Chernoff bound,

IP’[X > 3(1 +5)} < exp<622:)

which is negligible whenever ¢ € w(log A) and constant § > 0.

Tamper Detection: Fix any f € F,, witha = (1 — é)(l — ). Lety = sk and 4 = f(v), with
A # ~y. By definition of f, dist(¥, sk) < n(1— %)(1 —¢) = t. Thus, the decoder outputs tampered.

Both properties hold as claimed. O

Achieving Pseudorandomness. We can upgrade any deterministic messageless secret-key code
to achieve pseudorandomness as follows:

Construction 2 (Pseudorandom Messageless Secret-Key Code with Public Counter). Let I' =
(KGen, Enc, Dec) be any messageless secret-key code with codeword length n. Let F : {0, 1} x
{0,1}? — {0,1}"!°89 be a secure pseudorandom function. Define the upgraded code IV =
(KGen’, Enc’, Dec’):

Key Generation KGen’(\): Sample (sk, k) <—s I.KGen()) x {0,1}*.

Encoding Enc’((sk, k), 7): Output v/ = T.Enc(sk) @ F(k, ), where 7 € {0,1}? is a public
counter, where I'.Enc(sk) is binary.

Decoding Dec’((sk, x),~',7): Compute v = v' @ F(k, ) and output I".Dec(sk, 7).

Requirements on the Counter. To claim security, the value m must satisfy the following three
conditions: (¢) Publicly known to both encoder and decoder, (ii) never reused (each 7 is used at
most once), and (7i7) not settable or rewritable by the adversary.

Any deterministic, sound, and tamper-detecting code I" yields a pseudorandom code IV as above,
provided a secure PRF and a suitable counter implementation. In practice, such a counter may be
realized as a blockchain index, a hardware monotonic counter, or a database sequence number, as
long as it is monotonic and trusted. All security properties are preserved, and codewords are now
pseudorandom to any party not holding .

A.8 ROBUSTNESS OF GUNN ET AL. (2025) AGAINST COMMON IMAGE MANIPULATIONS
ATTACK VECTORS

Image manipulations. Gaussian noise, Gaussian blur, HSV perturbations, and attribute adjust-
ments (saturation, hue, exposure, contrast) were applied to watermarked images. Even when these
visibly degraded the images, the pre-decoding error rate never exceeded 26%, and BP reduced the
error to below 1%. The watermark remained detectable in every case.

Pixel-wise color shifts. Next, we modified each pixel by adding fixed or randomized RGB off-
sets. A uniform shift of (10,0, 0), making the image slightly redder, produced under 10% error.
A large uniform shift of (75,75, 75), which washed out the image, raised the error to only 12%.
Randomized RGB perturbations across all pixels, with values drawn uniformly between 0 and 50,
produced slightly higher disruption but never more than 23%. These results suggest that uniform
color manipulations do not significantly disturb the sign pattern in latent space.

“Indeed, since X is the random variable representing the number of identical symbols, the number of
differing symbols is n — X < n —n(l +4)/q = n(l — %)(1 + §) = t, which is exactly the condition
under which the decoder outputs either tampered or valid.
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Lossy format conversions. Finally, we tested whether re-encoding the image in lossy formats
could erase the watermark. JPEG compression at 15% quality produced heavy visible degradation
and a 32% pre-decoding error rate, which BP reduced to 10%. WebP conversion at similar quality
gave 34% error, reduced to 15% after decoding. In both cases, the watermark remained detectable.

(d) JPEG Attack: 32% Error (e) WebP Attack: 34% Error

Figure 3: A series of images showing various attacks on a watermarked image, none of which
removes the watermark

Representative examples of these attacks are shown in Figure 3. The images have been visibly
altered (sometimes severely) yet the watermark survived. The lesson is clear: edits that preserve
image quality produce far too few sign flips to reach the 50% threshold, while edits that come closer
to the threshold do so only at the cost of destroying the image. To break the watermark without
sacrificing fidelity, a qualitatively different kind of transformation is required.
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(d) Downscale & Pad (49.8% er- (e) Downscale & Upscale (12.1%
ror) error)

Figure 4: Visualization of this branch of attacks (b-e) compared to the original (a)
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(c) Downscale & Pad (d) Downscale & Upscale

Figure 5: Side-by-side comparison of latent space visualizations for the main attack and each variant
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(a) Original Watermarked Image (b) Watermark Removed Output (Cropping 10px)

Figure 6: Demonstration of watermark removal via cropping attack for prompt generated with border
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A.9 SUPPORTING PROOFS

A.9.1 PROOF OF THEOREM 2

Suppose, for contradiction, that such a code I exists.

Let sk +—s KGen(1*) and let v = Enc(sk) be an honestly generated codeword. Consider the tam-

pering function f that acts independently on each coordinate as follows: for each i € {1,...,n},
set
(F(7)i = a uniformly random symbol in ¥,  with probability 1 — 1/¢
= Vi with probability 1/¢

Let X be the number of positions where f(v) differs from 4. The random variables X; =
1{(f(v))i # ~i} are independent Bernoulli variables with E[X;] = 1 —1/¢,so E[X] =n(1—1/q).

Applying the multiplicative Chernoff bound, for any § € (0, 1),

PX > (14+6)n(l-1/q)] < exp(—di:n(l - 1/q))

which is negligible in n. Thus, with overwhelming probability, f changes at most an = (1 —
1/q)(1 + 6)n positions, so f € Find except with negligible probability.

Now, notice that f(v) is distributed exactly as a uniformly random string in ™. This is because
in each position, the symbol is resampled independently and uniformly, so the overall string is
independent of ~.

By the soundness property, for a randomly chosen 4 <—s X", P[Dec(sk, %) # invalid] < negl(\).
By tamper detection, for any honestly generated codeword v and any f € Fi'd, and for ¥ = f(v)

with 4 # ~, P[Dec(sk,7) # tampered] < negl()). But since f(7) is distributed as 4 +—s X" and
is almost always different from -, we have for a randomly chosen 4, P[Dec(sk,¥) = tampered]
> 1 —negl()).

Therefore, for most random strings 4, the decoder must output both invalid (by soundness) and
tampered (by tamper detection) except with negligible probability. This is impossible, since the
decoder can only output one of these values for each input.

We conclude that no messageless secret-key code can be sound and F'*d-tamper-detecting at tam-
pering rates o > (1 —1/q)(1 + ).

A.9.2 PROOF OF THEOREM 3
We start by describing the messageless secret-key code I'. Let T € X* be a fixed prompt.

Key generation I'.KGen(1%): The key-generation algorithm outputs sk = (x,Model,) where
(k, Model,;) <—s I1. Watermark(Model).

Encoding I'.Enc(sk): The encoding algorithm outputs v = y € ¥* where y <—s Model,, ().
Decoding I".Dec(sk,~): The decoding algorithm lets v = y and runs II.Detect(x,T,y). If the
result is false, it outputs invalid. If the result is true, it outputs tampered.

Note that the decoder never outputs valid, and thus I' does not satisfy correctness (which is not
required here).

Let us first prove the soundness property. By contradiction, assume I' is not sound. Then, there
exists some 74 € ¥* such that

P[[".Dec(sk,%) # invalid] = P[II.Detect(x,Z,4) = true] > 1/poly(N),

where the probability is over the choice of the secret key. This violates the soundness of the water-
marking scheme.

It remains to prove tamper detection. By contradiction, assume I' does not satisfy F -tamper detec-
tion. Then, there exists some function f € F such that

P[[".Dec(sk,?) # tampered A 5 # 7] = P[II.Detect(x, T, ) = false A§ # ] > 1/poly(A),
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where 7 < f () and where the probability is over the choice of the secret key and the randomness
used to generate -y <—s Model,; (Z). This violates robustness of the watermarking scheme.
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