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Abstract

Online conformal prediction has demonstrated its capability to construct a prediction set
for each incoming data point that covers the true label with a predetermined probabil-
ity. To cope with potential distribution shift, multi-model online conformal prediction has
been introduced to select and leverage different models from a preselected candidate set.
Along with the improved flexibility, the choice of the preselected set also brings challenges.
A candidate set that includes a large number of models may increase the computational
complexity. In addition, the inclusion of irrelevant models with poor performance may neg-
atively impact the performance and lead to unnecessarily large prediction sets. To address
these challenges, we propose a novel multi-model online conformal prediction algorithm that
identifies a subset of effective models at each time step by collecting feedback from a bi-
partite graph, which is refined upon receiving new data. A model is then selected from
this subset to construct the prediction set, resulting in reduced computational complexity
and smaller prediction sets. Additionally, we demonstrate that using prediction set size as
feedback, alongside model loss, can significantly improve efficiency by constructing smaller
prediction sets while still satisfying the required coverage guarantee. The proposed algo-
rithms are proven to ensure valid coverage and achieve sublinear regret. Experiments on
real and synthetic datasets validate that the proposed methods construct smaller prediction
sets and outperform existing multi-model online conformal prediction approaches.

1 Introduction

Machine learning models are rapidly improving in providing accurate predictions; however, it remains chal-
lenging to ensure that decisions inferred from these models are reliable. To address this challenge, uncertainty
quantification can be used to ensure model reliability by providing interval predictions instead of point es-
timates (Heskes, 1996; Patel, 1989). Reliable interval prediction is particularly important in safety-critical
applications such as autonomous driving (Doula et al., 2024; Dixit et al., 2023) and healthcare (Lu et al.,
2022; Boger et al., 2025; Vazquez & Facelli, 2022).

Conformal prediction is a model-agnostic and distribution-free uncertainty quantification framework that
constructs prediction sets of candidate output values such that the true output is covered in the set with
a predefined probability (Vovk et al., 2005). Conventional conformal prediction algorithms achieve the
desired coverage under the assumption of data exchangeability—i.e., a sequence of random variables whose
joint distribution remains invariant under any permutation of the indices (Balasubramanian et al., 2014).
The exchangeability assumption often fails to hold in practice, particularly in online settings where data is
collected sequentially. Such violations can lead to a failure to maintain the desired coverage. As a response,
adaptive conformal prediction has been introduced, where prediction sets are constructed in a time-varying
manner to cope with the challenges of online environments (Gibbs & Candès, 2021). Even though adaptive
conformal prediction algorithms can cover the true label with the desired probability, they may construct
inefficient prediction sets (e.g., excessively large sets). The efficiency of conformal prediction algorithms
depends on the underlying learning model, and a single model may not perform consistently well across all
sequential data.
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To address this issue, (Hajihashemi & Shen, 2024; Gasparin & Ramdas, 2024a) proposed leveraging multiple
learning models to provide diverse candidates for adaptive conformal prediction algorithms to select the ap-
propriate model. However, their approaches are limited to a set of candidate models with good performance.
The learning models used in their experiments are all high-performing, which may not simulate real-world
scenarios where lower-performing models are also present in the candidate set. Additionally, multi-model
conformal prediction methods can suffer from high computational complexity when the number of candidate
models is large, as it requires updating the adaptive conformal prediction parameters for each individual
model. To address these limitations, we introduce a new multi-model online conformal prediction algorithm,
which simulates the online model selection as graph-structured feedback. The proposed method dynamically
selects a subset of effective learning models and prunes weak ones at each time step by constructing a graph.
In addition, we propose an extension to the aforementioned algorithm, where the prediction set size of the
effective models is used as feedback. This extension enables the construction of significantly smaller predic-
tion sets while still achieving valid coverage of the true label, outperforming previously proposed multi-model
conformal prediction approaches.

Related work: Conformal prediction is a powerful framework for uncertainty quantification that has been
widely used to predict a set of candidate outcomes for input data (Shafer & Vovk, 2008; Vovk, 2015; Pa-
padopoulos et al., 2002). The goal is to quantify the uncertainty of a given black-box machine learning model
by constructing a prediction set. Conformal prediction frameworks can be utilized on both classification (Shi
et al., 2013; Romano et al., 2020; Ding et al., 2023) and regression (Romano et al., 2019; Boström et al., 2017;
Papadopoulos et al., 2011) tasks. Conformal prediction algorithms can be broadly categorized into split and
full variants (Barber et al., 2023). In split conformal prediction, the training data is divided into two disjoint
subsets: a proper training set and a calibration set. The proper training set is used to fit the point prediction
model, while the calibration set is used to compute nonconformity scores (Oliveira et al., 2024). In contrast,
full conformal prediction is significantly more computationally demanding, as it requires retraining or scoring
the point prediction model for each test point and every possible candidate label (Angelopoulos et al., 2020).
Hence, in this work, we only focus on split conformal prediction algorithms.

Employing standard conformal prediction in online environments, where the exchangeability assumption
may be violated, does not achieve the desired coverage guarantee. To address this, (Gibbs & Candès, 2021)
introduced the use of a time-varying miss coverage probability. However, this approach has certain limitations
(e.g., the need to specify the learning rate in advance (Podkopaev et al., 2024)). (Zaffran et al., 2022; Gibbs &
Candès, 2024) use expert learning techniques (Vovk, 1995; Cesa-Bianchi et al., 1997; Littlestone & Warmuth,
1994) to mitigate these limitations. (Lei & Candès, 2021; Tibshirani et al., 2019; Podkopaev & Ramdas,
2021) utilized reweighting techniques to cope with changes in online settings. However, these methods often
rely on some distributional assumptions. Despite achieving valid coverage guarantees, these methods may fail
to construct efficient prediction sets that are both small and able to cover the true label. Some recent works
propose using multiple learning models to enhance conformal prediction (Gasparin & Ramdas, 2024a;b; Yang
& Kuchibhotla, 2025; Bhagwat et al., 2025; Hajihashemi & Shen, 2024). Both (Yang & Kuchibhotla, 2025;
Bhagwat et al., 2025) leverage multiple models in the full conformal prediction setting, which suffers from
high computational cost. (Gasparin & Ramdas, 2024a) proposes a majority-vote strategy for aggregating
conformal sets in the split conformal prediction setting. However, their method suffers from coverage loss
and lacks a theoretical guarantee of achieving the desired 1 − α coverage. (Hajihashemi & Shen, 2024)
proposed selecting a model from a set of candidate models at each time step. This approach can incur high
computational cost and reduced efficiency when the set includes poorly performing candidates.

Contributions. Overall, our contributions can be summarized as follows:
I) We introduce a novel multi-model online conformal prediction algorithm, Graph-structured feedback
Multimodel Ensemble Online Conformal Prediction (GMOCP), designed for online environments. At each
time step, the algorithm selects a learning model to construct the prediction set from a subset of effective
models identified using a graph structure.
II) An adaptive framework is proposed for generating the graph based on the performance of each learning
model over previous time steps. It is proven that GMOCP achieves sublinear regret and guarantees valid
coverage.
III) Experiments on real and synthetic datasets demonstrate the effectiveness of the GMOCP method in

2



Under review as submission to TMLR

constructing more efficient prediction sets with lower computational complexity, while achieving a coverage
probability closely aligned with the target value.

2 Preliminaries

This section provides preliminaries on standard conformal prediction and adaptive conformal prediction.
Given a learning model m and a set of historical data {(Xτ , Y true

τ )}t−1
τ=1, where Xτ ∈ X denotes the input

data at time τ and Y true
τ ∈ Y is its corresponding true label, conformal prediction aims to construct a

prediction set Cm
α (Xt) ⊆ Y := {1, 2, . . . , K} for a new data Xt. Here, K denotes the total number of unique

labels. The prediction set Cm
α (Xt) is constructed such that it includes the true label Y true

t with probability
1 − α, where α denotes the given miss coverage probability. Upon receiving the true label Y true

t , the new
data pair (Xt, Y true

t ) is added to the historical dataset. In the online setting, conformal prediction uses
the evolving historical data as the calibration set to decide which candidate labels should be included in
the prediction set. The decision to include each candidate label is based on a threshold determined based
on the calibration set. For each datum Xτ and its corresponding true label Y true

τ , a non-conformity score
Sm(Xτ , Y true

τ ) is calculated based on the learning model m. This score represents the disagreement between
the ground-truth label Y true

τ and predicted label f̂m(Xτ ). A lower non-conformity score indicates a better
match between the true label and the predicted label by model m. Upon calculating non-conformity scores
for the entire historical dataset, {Sm(Xτ , Y true

τ )}t−1
τ=1, threshold q̂m

α is obtained by:

q̂m
α = Quantile

(
⌈t(1 − α)⌉

t − 1 , {Sm(Xτ , Y true
τ )}t−1

τ=1

)
, (1)

where Quantile(·, ·) sorts the nonconformity scores in ascending order and then outputs ⌈t(1−α)⌉
t−1 empirical

quantile of sorted scores. Next, prediction set for new data Xt is constructed as

Cm
α (Xt) = {Y ∈ Y | Sm(Xt, Y ) ≤ q̂m

α } (2)

In online settings, employing a time-invariant miss coverage probability α to determine the threshold q̂m
α may

not achieve the desired coverage guarantee. To address this issue, adaptive conformal prediction has been
developed, where a time-variant miss coverage probability αt is utilized instead of a fixed α to obtain the
desired coverage. By replacing α with it’s time-variant version αt in equation 1, the time-varying threshold
q̂m

αt
can be updated accordingly.

Even though employing time-variant miss coverage probability is useful in online environments, relying on
a single learning model across all time steps may be suboptimal. To address this issue, the use of multiple
learning models is considered in previous work (Hajihashemi & Shen, 2024). At each time step, based on
the performance of every learning model m ∈ [M ] over previous time steps, the model m̂ is selected, and
the prediction set is constructed according to threshold q̂m̂

α . However, among M candidate learning models,
some may exhibit poor performance due to, e.g., insufficient training data. Including such models may result
in inefficiently large prediction sets. Moreover, employing a large number of learning models increases the
computational complexity. To address these limitations, the present work develops a data-driven approach
to select a subset of effective models at each time step, and then choose m̂ from this subset.

3 Methodology

A data-driven algorithm, Graph-structured feedback Multimodal Ensemble Online Conformal Prediction
(GMOCP), which adaptively selects subsets of learning models, is detailed in Subsection 3.1. Subsection
3.2 then discusses the construction of the graph used to identify effective models at each time step. Finally,
Subsection 3.3 introduces Efficient GMOCP (EGMOCP), which incorporates prediction set size as feedback
to further reduce the size of the constructed prediction sets while maintaining coverage guarantees..

3.1 Data-driven Model Selection

To address the high computational complexity and inefficiency of large prediction sets, our first approach is
proposed, in which a subset of models is adaptively selected ’on the fly’ upon receiving new data samples.
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To adaptively select a subset of effective learning models, our proposed approach utilizes feedback from a
graph that is generated in an online fashion based on the performance of each learning model in previous
time steps. By doing this, the proposed approach avoids including learning models with weak performance
in the candidate set for the conformal prediction task. The details of feedback graph construction will be
presented in subsection 3.2.

Consider a time-variant bipartite graph Gt (Asratian et al., 1998), which includes two sets of nodes: M model
nodes {v

(l)
1 , ..., v

(l)
M } and J selective nodes {v

(s)
1 , ..., v

(s)
J } where v

(l)
m and v

(s)
j represents m−th learning model

and j-th selective node respectively. The edges of the graph represent associations between model nodes and
selective nodes. Increasing the number of model nodes connected to v

(s)
j can lead to higher computational

complexity. Therefore, the graph generation approach should impose a limitation on the maximum number
of model nodes connected to each selective node. In this work, each selective node is connected to at most
N model nodes. Given Gt at each time step t, one selective node is chosen and its associated model nodes,
forming a subset denoted by St, are used as the candidate set for the conformal prediction task. These
selected model nodes can contribute to the conformal prediction task either through a weighted sum or by
selecting a single model according to a PMF. In this work, we focus on the latter approach. The selection
is guided by the weight wm

t assigned to each model m ∈ [M ], which influences both the generation of the
graph Gt and the selection of model m̂ from the subset of effective models St. Specifically, we normalize the
weights of models in St, as w̄m

t = wm
t∑

m̄∈St
wm̄

t

, ∀m ∈ St. Then, a model is selected to create the prediction

set according to the PMF defined by the normalized weights ws
t = (wm̄

t )m̄∈St .

After creating the prediction set at time t, the true label Y true
t is observed. The threshold q̂m

α can be obtained
according to equation 1 based on non-conformity score functions, where each score function depends on a
specific learning model m. Given that different learning models yield different non-conformity scores, using
a single adaptive miss coverage probability αt for all learning models is inadequate. To address this, at
each time step t we assign a specific miss coverage probability αm

t to each learning model m ∈ [M ]. Since
the cardinality of St is at most N , there are at most N distinct miss coverage probabilities, each updated
independently. To update miss coverage probability αm

t for each m ∈ [St], we adopt the pinball loss defined
as (Koenker & Bassett, 1978):

L(ᾱm
t , αm

t ) = α(ᾱm
t − αm

t ) − min{0, ᾱm
t − αm

t }, (3)

where
ᾱm

t := sup{α̃ : Y true
t ∈ Cm

α̃ (Xt)} (4)
is the best possible value of miss coverage probability for model m at time t, which constructs the smallest
prediction set that covers Y true

t . The miss coverage probability αm
t+1 can be updated via SF-OGD (Orabona

& Pál, 2018) as

αm
t+1 = αm

t − η
∇αm

t
L(ᾱm

t , αm
t )√∑t

τ=1 ∥∇αm
τ

L(ᾱm
τ , αm

τ )∥2
2

, (5)

which follows an online gradient descent update with a time-dependent decaying learning rate. η is the
learning rate and

∇αm
t

L(ᾱm
t , αm

t ) = I[ᾱm
t < αm

t ] − α = errm
t − α, (6)

with errm
t := I[Y true

t /∈ Cm
αm

t
] = 1 if the predicted set does not contain the true label Y true

t , and 0 otherwise.
According to equation 5, the adaptive miss coverage probability is increased when the prediction set includes
the true label. This allows the prediction set to become smaller by excluding unnecessary labels Y ′ := {Y ′ ∈
Y | q̂m

ᾱm
t

< Sm(Xt, Y ′) ≤ q̂m
αm

t
} in next step. Conversely, if the prediction set fails to include the true label,

the adaptive miss coverage probability is decreased.

Additionally, the weights wm
t for m ∈ St are updated after observing the true label Y true

t by leveraging a
multiplicative update rule:

wm
t+1 = wm

t exp
(
−ϵlm

t /2b
)

, (7)
where b = ⌊log2 J⌋ and lm

t denotes the importance sampling loss estimates (Alon et al., 2017)

lm
t = L (ᾱm

t , αm
t )

qm
t

I{m ∈ St}, (8)
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Figure 1: (left): An illustrative example of the generated bipartite graph Gt with M learning models and
J = 2 selective nodes. (right) The selective node v

(s)
2 is chosen, and the subset St includes all learning

models connected to the selected node, highlighted by red edges.

where qm
t is the probability that the learning model m is included in St, which depends on how the graph

Gt is generated.

Then, a weight uj
t+1 is assigned to each selective node j ∈ [J ] according to the model nodes’ weights wm

t+1.
Specifically, uj

t+1 is calculated as the sum of the weights wm
t+1 of all model nodes connected to the selective

node j, as follows:
uj

t+1 =
∑

∀m:v(l)
m →∈v

(s)
j

wm
t+1. (9)

Moreover, the probability according to which a selective node is chosen in the next time step, denoted by
p′j

t+1, can be updated as p′j
t+1 = uj

t+1∑J

i=1
ui

t+1
. To sum up, at each time step, all model nodes connected to the

selected selective node form a subset of candidate learning models. This approach aims to avoid including
low-performing models in the candidate set for the conformal prediction task. One model is then selected
from this subset to construct the prediction set.

3.2 Online Graph Generation

The generation of Gt impacts both the selection of candidate learning models for the conformal prediction
and the computational complexity. A well-designed graph should lead to the selection of a selective node
that is connected to a subset of model nodes, which construct small prediction sets while still covering the
true label. Let At represent the M × J sub-adjacency matrix between two disjoint subsets {v

(l)
1 , ..., v

(l)
M } and

{v
(s)
1 , ..., v

(s)
J }. The entry At(m, j) denotes the m−th row and j−th column of matrix At, and it’s value is

1 if there is edge between model node m and selective node j in bipartite graph Gt; otherwise it is 0. The
probability of connecting model node v

(l)
m to each selective node is denoted by pm

t and can be obtained as:

pm
t = (1 − ηe) wm

t∑M
m̄=1 wm̄

t

+ ηe

M
. (10)

The second term in equation equation 10 allows exploration across all model nodes. Specially, each model
node is connected to a selective node v

(s)
j uniformly at random if ηe = 1. Each selective node v

(s)
j draws

model nodes in N independent trials. In each trial, the selective node draws one model node according to
PMF pt = (pm

t )M
m=1. According to the definition of pm

t in equation 10, the probability that the m−th model
node is connected to the j−th selective node is 1 − (1 − pm

t )N , where (1 − pm
t )N represents the probability

that mth model node is not selected by j−th selective node in any of N trials. Hence, the probability that
the learning model m is included in St is given by

qm
t :=

J∑
j=1

p′j
t

(
1 − (1 − pm

t )N
)

, (11)
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for all m ∈ M , and is used for importance sampling loss estimate in equation 8. The entire process for
generating the graph Gt is detailed in Algorithm 1. Given the graph Gt at each time step, one selective
node is chosen according to the PMF p′

t = (p′j
t )J

j=1, where p′j
t = uj

t∑J

i=1
ui

t

. Figure 1 illustrates an example

of the constructed bipartite feedback graph and the selective node selection process. By considering the
model nodes connected to the selected selective node as the set of candidates, one learning model is then
selected according to the PMF ws

t = (wm̄
t )m̄∈St

to construct the prediction set. The entire GMOCP method
is summarized in Algorithm 2. The per-iteration complexity of GMOCP algorithm is O(MNJ)

Algorithm 1 Generating Graph Gt

Require: Number of selective nodes J , exploration coefficient ηe > 0, the maximum number of connected
models to each selective node N , M pre-trained models.
Initialize At = 0J×M .
for m = 1, ..., M do

Set pm
t = (1 − ηe) wm

t∑M

m̄=1
wm̄

t

+ ηe

M .

end for
for j = 1, ..., J do

for n = 1, ..., N do
Select one of the models according to PMF pt = (pm

t )M
m=1

Set At(j, m̃) = 1 {m̃ is selected model from PMF}
end for

end for

Let CovE(T ) :=
∣∣∣ 1

T

∑T
t=1 E[errt] − α

∣∣∣ represent the coverage error. The expected error is calculated as

E[errt] =
∑J

j=1 ūj
t

∑Q=(M+N−1
M )

q=1 N !
(∏M

m=1
(pm

t )bm,q

bm,q !

)∑
m∈St,q

w̄mq
t errm

t where the expectation is over ev-

ery possible subset of effective models St. Note that here w̄mq
t = wm

t∑
m̄∈St,q

wm̄
t

. The following theorem

demonstrates that GMOCP has bounded coverage error (See proof in A.1).

Theorem 1 Given any initialization αm
1 ∈ [−η, 1 + η] for each model m ∈ [M ], the coverage error of

GMOCP algorithm, for fixed positive constants B1 and B2, is bounded as

CovE(T ) ≤ T − 1
4

(
2M + 2

√
2M(1 + η)

η
+ 2M(1 + η)

η
B2B1(1 + o(1)) + M

α3 log T

)
. (12)

For the regret analysis, we consider stochastic regret, which measures the difference between the expected
loss of the online algorithm and that of the best fixed miss coverage probability in hindsight. Formally, the
stochastic regret is defined as:

E[R(T )] :=
T∑

t=1
E[L(ᾱm̂

t , αm̂
t )] −

T∑
t=1

L(ᾱm∗

t , αm∗
) (13)

where

αm∗
= arg min

{αm,m∈[M ]}

T∑
t=1

L(ᾱm
t , αm) with αm = arg min

αm
t

T∑
t=1

L(ᾱm
t , αm

t ), (14)

and

E [L (ᾱm
t , αm

t )] =
J∑

j=1
ūj

t

(M+N−1
M )∑

q=1
N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

w̄mq
t L (ᾱm

t , αm
t ) . (15)

Based on the definitions above, we establish the sublinear regret bound for the GMOCP algorithm in the
following Theorem (see Appendix A.2 for detailed proof).
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Theorem 2 GMOCP algorithm satisfies the following regret bound

E[R(T )] ≤
√

T

(
MT

1
4

2η
(1 + 2η)2 + η

α
+ 2b ln M + T

1
4 (η + 1) + M2−b−1(1 + η)2

)
(16)

Algorithm 2 Graph-Structured feedback Multi-model Ensemble Online Conformal Prediction (GMOCP)
Require: α ∈ [0, 1], M pre-trained models, and step size ϵ ∈ (0, 1)

for t ∈ [T ] do
Receive new datum xt.
Generate graph Gt using Algorithm 1
Obtain uj

t =
∑

m∈vj
wm

t , ∀j ∈ [J ]
for j = 1, ..., J do

Set p′j
t = uj

t∑J

i=1
ui

t

end for
Select one of the selective nodes according to the PMF p′

t = (p′j
t )J

j=1.
Create a set St including connected models to the selected node.
Obtain normalized weights by w̄m

t = wm
t∑

m̄∈St
wm̄

t

, ∀m ∈ St

Select model m̂ according to the PMF ws
t = (wm̄

t )m̄∈St .
Obtain threshold q̂m̂

αm̂
t

according to equation 1, and construct prediction set Cm̂
αm̂

t
(Xt) via equation 2.

Observe the true label.
Calculates lm̄

t and update wm̄
t and αm̄

t according to equation 8, equation 7, and equation 5 ∀m̄ ∈ St

end for

3.3 Efficient GMOCP

In the previous subsection, a graph-structured feedback method was introduced to select a model m̂ from
a subset of effective models St, instead of the entire set of M models. While GMOCP effectively prunes
learning models that tend to construct inefficient prediction sets, its performance can be further improved
by incorporating the size of the prediction sets as an additional factor in model selection. In cases where all
or most of the effective models cover the true label, the loss function may yield close values across models.
In such scenarios, incorporating prediction set size helps differentiate between models by favoring those that
achieve smaller sets. In this subsection, we propose EGMOCP to directly incorporate the prediction set size.
Specifically, instead of relying solely on the loss-based term in the exponential update equation 7, we use a
linear combination of the loss and the prediction set size to update the weights wm

t for m ∈ St as:

wm
t+1 = wm

t exp
(

−ϵ

(
(1 − β) lm

t

2b
+ βLen (αm

t ) I{m ∈ St}
))

, (17)

where Len(αm
t ) is the length of the prediction set that has been created based on miss coverage probability

αm
t , and β ∈ (0, 1). The new update rule in equation 17 aims to reduce the probability of selecting models that

result in large prediction sets. The following two Theorems show that the EGMOCP algorithm guarantees
bounded coverage error and sublinear regret. (Proofs can be found A.3 and A.4).

Theorem 3 Given any initialization αm
1 ∈ [−η, 1 + η] for each model m ∈ [M ], the coverage error of

EGMOCP algorithm, for fixed positive constants C − 1 and B2, is bounded as

CovE(T ) ≤ T − 1
4

(
2M + 2

√
2M(1 + η)

η
+ 2M(1 + η)

η
B2C1(1 + o(1)) + M

α3 log T

)
. (18)
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Theorem 4 EGMOCP algorithm satisfies the following regret bound

E[R(T )] ≤
√

T

(
MT

1
4

2η
(1 + 2η)2 + η

α

)

+
√

T

( √
T√

T − 1
2b (ln M + K) + T

1
4 (η + 1) +

√
T − 1√

T

M(1 + η)2

2b+1 + (1 + η)K√
T

+ 1
T −

√
T

2b−1K2

)
(19)

4 Experiments

This section verifies how the proposed algorithms, GMOCP and EGMOCP, result in more efficient prediction
sets while covering the true label with the desired probability in practice. We first explain the experimental
settings used, and then compare the performance of our two proposed methods with a multi-model conformal
prediction algorithm. Note that throughout the experiments in this section, the desired miss coverage
probability α is 0.1. All experiments were performed on a workstation with NVIDIA RTX A4000 GPU.

4.1 Experiental Settings

Dataset: We utilize corrupted versions of CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), known as
CIFAR-10C and CIFAR-100C (Hendrycks & Dietterich, 2019). These datasets consist of 15 corruption types
(e.g., brightness, Gaussian noise, etc.) spanning 5 distinct levels of severity. To evaluate the effectiveness
of the two proposed algorithms, we consider two distinct settings: gradual and sudden distribution shifts.
In both settings, the severity of corruption changes (increases or decreases) after each batch of data. In the
gradual setting, severity starts at level 0 (uncorrupted data) and increases step-by-step with each batch until
it reaches level 5. It then decreases back to level 0, continuing this cycle throughout the experiment until
time T . This setup simulates a smooth, evolving shift in the data distribution. In the sudden setting, we
evaluate the algorithms’ ability to handle abrupt changes. Here, the severity alternates between uncorrupted
data (severity level 0) and the most severely corrupted version (severity level 5) after each batch, representing
an extreme case of distribution shift. For both settings, the data sequence is split into batches of 500 data
samples each.

Learning Models: We employ 6 candidate learning models: GoogLeNet (Szegedy et al., 2015), ResNet-50,
ResNet-18 He et al. (2016), DenseNet121 (Huang et al., 2017), MobileNetV2 (Sandler et al., 2018), and
EfficientNet-B0 (Tan & Le, 2019). To ensure a diverse range of performance across these models, each one is
trained under 3 distinct settings: High-performance setting (the model is trained for 120 epochs and initial-
ized with default pretrained weights from ImageNet (Deng et al., 2009)), Medium-performance setting (the
model is trained for only 10 epochs and initialized with random weights, resulting in weaker performance),
Low-performance setting (the model is trained for just 1 epoch with random weight initialization, yielding
the weakest performance among the 3). For clarity, we label each model according to its architecture and
training setting. For example, the three versions of DenseNet121 are denoted as: DenseNet121-120D (120
epochs, pretrained weights), DenseNet121-10N (10 epochs, random initialization), and DenseNet121-1N (1
epoch, random initialization). In all 3 settings, the learning rate is set to 10−3, and the batch size is fixed
at 64.

Score Functions: The nonconformity score defined in (Angelopoulos et al., 2020) is utilized to construct
prediction sets. Let

Sm(X, Y ) = ξ
√

max([kY − kreg], 0) + Utf̂
m
Y (X) + ρ(X, Y ), (20)

where f̂m
Y (X) denotes the probability of predicting label Y for input X by model m, and Ut is a ran-

dom variable sampled from a uniform distribution over the interval [0, 1]. The term kY := |{Y ′ ∈
Y | f̂m

Y ′(X) ≥ f̂m
Y (X)}| denotes the number of labels that have a higher or equal predicted proba-

bility than label Y according to the model’s output probability distribution, e.g., the softmax output.
ρ(X, Y ) :=

∑K
Y ′=1 f̂m

Y ′(X)I[f̂m
Y ′(X) > f̂m

Y (X)] sums up the probabilities of all labels that have a higher
predicted probability than label Y . The hyperparameters ξ and kreg are set to 0.02 and 5 for CIFAR-100C,
and 0.1 and 1 for Cifar-10C, respectively.

8



Under review as submission to TMLR

Evaluation Metrics: Coverage measures the percentage of instances in which the true label is included
in the prediction sets constructed by the conformal prediction algorithm over the period [T ]. Avg Width
represents the average size of the prediction sets constructed from t = 1 to T . Run Time indicates the time
required to complete the algorithm for one random seed. Lastly, Single Width measures the percentage that
prediction sets contain exactly one element while accurately covering the true label, highlighting cases that
are most informative for predictions.

Baseline: The two proposed methods are compared with MOCP (Hajihashemi & Shen, 2024) and COMA
(Gasparin & Ramdas, 2024a) algortihms. The MOCP algorithm employs M learning models and selects one
model from the entire set at each time step t. The selection is based on the weights assigned to each model,
and the prediction set is constructed using the selected model. The COMA algorithm obtains the prediction
set according to each specific learning model and then creates the final prediction set as:

Cαt(Xt) = {Y ∈ Y |
M∑

m=1
wt

mI{Y ∈ Cm
αt

(Xt)} >
1 + U(t)

2 }, (21)

where U(t) is a random variable uniformly distributed in [0, 1], and the weights {wt
m}M

m=1are updated over
time based on the performance of each model. Specifically, the weights are inversely proportional to the
exponential of the corresponding prediction set size.

Note that for all experiments conducted on CIFAR-10C and CIFAR-100C in this section, the parameters
ϵ, η, and β were selected through grid search, with values of 0.5, 0.05, and 0.05, respectively. Additionally,
we set T = 6000, indicating that the algorithm receives sequential data in an online manner over 6000 time
steps.

4.2 Results

For this section, experiments are conducted using a candidate set of eight different learning models, including:
DenseNet121-120D, ResNet-18-120D, GoogLeNet-120D, ResNet-50-120D, MobileNetV2-120D, EfficientNet-
B0-120D, DenseNet121-10R, and DenseNet121-1R. We evaluate performance across various configurations,
varying the maximum number of learning models connected to each selective node N ∈ {1, 3, 5}, and setting
the number of selective nodes J ∈ {1, 2, 4}. Table 1 demonstrates how, in an online setting where the data
distribution experiences abrupt shifts—i.e., significant differences between two successive batches, GMOCP
achieves better performance in terms of both average width and run time across all evaluated settings com-
pared to MOCP, and has lower computational complexity compared to COMA when the number of selective
nodes and model nodes is small. EGMOCP, which is specifically designed to further reduce prediction set
sizes while maintaining valid coverage, achieves this goal effectively. As shown in the table, EGMOCP
significantly reduces the average prediction set size and improves the single-width metric.

To enable selective nodes with different levels of exploration and exploitation—as considered in (Ghari &
Shen, 2020)—we use different ηe values across selective nodes in equation 10. For the case J = 2, we use ηe =
{0.2, 0.8}, and for J = 4, we use ηe = {0.1, 0.2, 0.3, 0.4}. This setup ensures that the last selective node places
more emphasis on exploration compared to the first node. Table 2 presents experimental results on CIFAR-
10C under gradual distribution shifts. Note that across all settings, GMOCP and EGMOCP algorithms
achieve coverage close to the desired level of 90%. GMOCP consistently demonstrates lower computational
complexity compared to MOCP while producing smaller prediction sets and a higher proportion of single-
width sets. GMOCP is also faster than COMA in cases where there are a small number of selective nodes
and model nodes. Furthermore, EGMOCP consistently constructs significantly smaller prediction sets and
yields a higher proportion of single-width prediction sets compared to all benchmarks. Note that even though
COMA obtains the desired coverage experimentally, such coverage is not guaranteed theoretically.

To demonstrate the effect of using prediction set size as feedback—which enables EGMOCP to constructs
more efficient prediction sets compared to GMOCP and MOCP—Figure 2 illustrates the behavior of
EGMOCP across the entire time horizon. To better visualize the differences among the 3 proposed training
configurations, the figure shows results for three versions of DenseNet121 under the setting N = 5 and
J = 2. As observed, better-performing models tend to construct smaller prediction sets. By incorporat-
ing prediction set size into the update rule equation 17, the algorithm assigns lower weights wm

t to weaker

9
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Table 1: Results on the CIFAR-100C dataset under sudden distribution shifts, evaluated across different
values of N and J . The target coverage is 90%. Bold numbers denote the best results in each column.
Bold numbers indicate the best performance in each column. GMOCP consistently achieves faster runtime
compared to MOCP across all settings. EGMOCP constructs smaller prediction sets and a higher proportion
of single-width sets.

N J Method Coverage (%) Avg Width Run Time Single Width

MOCP 89.71 ± 0.37 12.63 ± 3.53 14.12 ± 0.18 22.43 ± 2.53
COMA 90.00 ± 0.01 8.36 ± 0.95 12.08 ± 0.08 28.60 ± 1.83

1 1 GMOCP 89.11 ± 0.21 12.03 ± 2.80 9.96 ± 0.11 22.55 ± 3.62
EGMOCP 89.10 ± 0.28 6.91 ± 0.25 11.45 ± 0.07 28.62 ± 0.93

2 GMOCP 89.10 ± 0.19 12.07 ± 0.45 10.76 ± 0.13 23.55 ± 0.63
EGMOCP 89.03 ± 0.17 7.04 ± 0.14 12.39 ± 0.07 28.36 ± 0.91

4 GMOCP 89.04 ± 0.21 11.46 ± 0.48 10.36 ± 0.13 24.12 ± 0.93
EGMOCP 88.99 ± 0.21 6.92 ± 0.19 11.87 ± 0.07 28.50 ± 0.80

3 1 GMOCP 89.55 ± 0.28 10.68 ± 1.05 11.92 ± 0.13 23.45 ± 2.53
EGMOCP 89.38 ± 0.22 6.79 ± 0.19 15.50 ± 0.08 29.04 ± 0.69

2 GMOCP 89.50 ± 0.26 10.93 ± 0.53 11.53 ± 0.14 24.49 ± 0.63
EGMOCP 89.29 ± 0.21 6.48 ± 0.09 14.83 ± 0.09 29.03 ± 0.55

4 GMOCP 89.64 ± 0.34 10.81 ± 0.35 12.26 ± 0.13 24.30 ± 0.64
EGMOCP 89.38 ± 0.31 6.26 ± 0.14 15.58 ± 0.11 29.62 ± 0.68

5 1 GMOCP 89.55 ± 0.30 11.05 ± 1.24 11.84 ± 0.14 23.78 ± 1.90
EGMOCP 89.46 ± 0.36 6.59 ± 0.12 16.53 ± 0.10 29.10 ± 0.65

2 GMOCP 89.53 ± 0.26 11.35 ± 1.17 12.86 ± 0.14 23.85 ± 0.95
EGMOCP 89.44 ± 0.28 6.30 ± 0.13 17.10 ± 0.18 29.81 ± 0.46

4 GMOCP 89.73 ± 0.31 11.65 ± 0.81 14.01 ± 0.17 23.62 ± 0.62
EGMOCP 89.43 ± 0.27 6.18 ± 0.14 18.44 ± 0.10 29.91 ± 0.47

Table 2: Results on the CIFAR-10C dataset under gradual distribution shifts, evaluated across different
values of N and J . The target coverage is 90%. Bold numbers denote the best results in each column.
GMOCP consistently achieves faster runtime compared to MOCP across all settings. EGMOCP constructs
smaller prediction sets and a higher proportion of single-width sets.

N J Method Coverage (%) Avg Width Run Time Single Width

MOCP 90.03 ± 0.30 2.07 ± 0.35 13.73 ± 0.16 48.00 ± 7.84
COMA 90.02 ± 0.02 1.49 ± 0.07 11.05 ± 0.05 61.39 ± 2.92

1 1 GMOCP 89.36 ± 0.21 1.90 ± 0.27 9.17 ± 0.09 48.14 ± 4.22
EGMOCP 89.37 ± 0.22 1.52 ± 0.03 10.75 ± 0.19 57.48 ± 1.58

2 GMOCP 89.37 ± 0.17 1.78 ± 0.03 9.80 ± 0.06 52.30 ± 1.27
EGMOCP 89.35 ± 0.21 1.59 ± 0.02 11.77 ± 0.76 55.57 ± 1.19

4 GMOCP 89.25 ± 0.21 1.77 ± 0.04 10.17 ± 0.06 52.45 ± 1.03
EGMOCP 89.28 ± 0.16 1.55 ± 0.02 20.82 ± 0.13 56.69 ± 1.11

3 1 GMOCP 89.79 ± 0.25 1.78 ± 0.17 10.41 ± 0.14 50.97 ± 3.41
EGMOCP 89.83 ± 0.30 1.50 ± 0.02 13.81 ± 0.09 58.98 ± 1.07

2 GMOCP 89.78 ± 0.32 1.78 ± 0.04 11.33 ± 0.08 52.64 ± 1.23
EGMOCP 89.65 ± 0.22 1.37 ± 0.01 23.64 ± 0.13 61.51 ± 0.77

4 GMOCP 89.72 ± 0.28 1.73 ± 0.03 12.02 ± 0.07 53.68 ± 1.17
EGMOCP 89.60 ± 0.35 1.41 ± 0.02 24.45 ± 0.18 60.68 ± 1.21

5 1 GMOCP 89.72 ± 0.17 1.85 ± 0.15 11.33 ± 0.18 51.02 ± 2.96
EGMOCP 89.82 ± 0.26 1.48 ± 0.02 16.17 ± 0.08 59.39 ± 0.83

2 GMOCP 89.73 ± 0.26 1.80 ± 0.03 12.71 ± 0.10 52.27 ± 1.13
EGMOCP 89.87 ± 0.36 1.35 ± 0.01 26.58 ± 0.16 62.23 ± 0.57

4 GMOCP 89.88 ± 0.21 1.80 ± 0.02 13.64 ± 0.10 52.49 ± 0.92
EGMOCP 89.99 ± 0.24 1.38 ± 0.02 27.23 ± 0.24 61.84 ± 0.55

models, reducing their chances of being selected. As a result, EGMOCP favors high-performing models and
constructs significantly smaller prediction sets than the other two algorithms.

5 Conclusion

In this paper, we proposed 2 multi-model online conformal prediction algorithms. By leveraging graph-
based feedback, the proposed methods dynamically select a subset of effective learning models at each time

10
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Figure 2: Evaluation of prediction sets constructed by 3 training configurations of DenseNet121 under N = 5
and J = 2 over 6000 timesteps. The top plot shows the size of the prediction sets, while the bottom plot
shows the corresponding model weights wm

t over time. DenseNet121-120D consistently receives the highest
weight, indicating a higher likelihood of being selected. Moreover, models with better performance (e.g.,
DenseNet121-120D) create significantly smaller prediction sets.

step for the conformal prediction task. Additionally, we demonstrated that incorporating prediction set
size as feedback—alongside the loss function—into the model weight update rule significantly improves the
efficiency of the constructed prediction sets. This results in smaller prediction sets while still satisfying
the required coverage guarantee. It is proved theoretically that the 2 proposed algorithms guarantee valid
coverage and achieve sublinear regret. Experimental results in an online setting, simulating real-world online
environments, show that GMOCP consistently creates smaller prediction sets with lower computational
complexity compared to baselines. Furthermore, EGMOCP is able to construct even smaller prediction sets
by effectively selecting high-performance models.
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A Proofs

A.1 Proof of Theorem 1

Define am
t := α − errm

t . Suppose the sequence {am
t }t∈[T ] ∈ R and satisfies α ≤ |am

t | ≤ 1 for 0 < α < 1. The
proof of this lemma is based on a grouping argument. We start by defining new variables L and K as follows

L = ⌈T γ⌉, K = ⌈T

L
⌉ ≤ T 1−γ + 1,

where γ ∈ (0, 1) is a parameter to be chosen. The kth group out of all K groups is defined by

Gk = {tk−1 + 1, . . . , tk} := {(k − 1)L + 1, . . . , min(kL, T )}.

This results in
⋃K

k=1 Gk = [T ], with |Gk| = L for all k ∈ [K − 1], and |GK | ≤ L. For any k ≥ 2, we define
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For Sk and S̄k we have
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where (i) employed inequality ( 1√
x

− 1√
x+y

) ≤ y

2x
3
2

for x, y ≥ 0. Additionally (ii) considered two bounds∑tk

tk−1+1(am
τ )2 ≤ (tk − tk−1) ≤ L and

∑tk−1
τ=1 (am

τ )2 ≥ α2tk−1 = α2(k − 1)L. By using triangle inequality we
have:
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2(1 + η) + |Gk|(1 + η)B2
(
eB1ϵ − 1

)
= M(1 + η)

η

(
2 + |Gk|B2

(
eB1ϵ − 1

))
, (25)

where (i) follows the upper bound obtained in Lemma 3. Also for k = 1 we have
|
∑

t∈G1

∑(M+N−1
M )

q=1 N !
(∏M

m=1
(pm

t )bm,q

bm,q !

)∑
m∈St,q

w̄mq
t am

t | ≤ M |G1| ≤ ML. By summing bounds over
k ∈ [K] we have∣∣∣∣∣∣

T∑
t=1

Q∑
q=1

N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

w̄mq
t am

t

∣∣∣∣∣∣
≤ ML +

K∑
k=2

∣∣∣∣∣∣
∑

t∈Gk

Q∑
q=1

N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

w̄mq
t am

t

∣∣∣∣∣∣
≤ ML +

K∑
k=2

M(1 + η)
η

(
2 + LB2

(
eB1ϵ − 1

))√
(k − 1)L + ML

2α3

K∑
k=2

1
k − 1

≤ ML + 2M(1 + η)
η

(√
LK

3
2 + (KL) 3

2 B2(eB1ϵ − 1)
)

+ ML

2α3 log K

≤ M⌈T γ⌉ + 2M(1 + η)
η

(√
2T

3
2 −γ + T

3
2 B2(eB1ϵ − 1)

)
+ M⌈T γ⌉

2α3 log T 1−γ

(i)
≤ 2MT γ + 2M(1 + η)

η

(√
2T

3
2 −γ + T

3
2 B2(B1ϵ + (B1ϵ)2

2! + ...)
)

+ MT γ

α3 log T. (26)
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The exponential term is replaced with its Taylor series in (i). We can achieve convergence for coverage error
by setting γ ∈

( 1
2 , 1
)

and ϵ = T − 3
4 . Choosing γ = 3

4 and dividing by T , we obtain∣∣∣∣∣∣∣
1
T

T∑
t=1

Q=(M+N−1
M )∑

q=1
N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

w̄mq
t am

t

∣∣∣∣∣∣∣
≤ T − 1

4

(
2M + 2

√
2M(1 + η)

η
+ 2M(1 + η)

η
B2B1(1 + B1T − 1

4

2! + ...) + M

α3 log T

)
.

= T − 1
4

(
2M + 2

√
2M(1 + η)

η
+ 2M(1 + η)

η
B2B1(1 + o(1)) + M

α3 log T

)
. (27)

A.2 Proof of Theorem 2

To prove regret bound for GMOCP, we first establish the following two lemmas as a stepstone.

Lemma 1 For miss coverage probability assigned to any model m̃ ∈ [M ], we have the following bound
T∑

t=1
L(ᾱm̃

t , αm̃
t ) −

T∑
t=1

L(ᾱm̃
t , αm̃) ≤ M

√
T

2ηηe
(1 + 2η)2 + η

√
T

α
,

where αm̃ = arg minαm̃
t

∑T
t=1 L(ᾱm̃

t , αm̃
t ).

Proof: We first begin with

(αm̃
t+1 − αm̃)2 = (αm̃

t − η
∇αm̃

t
L(ᾱm̃

t , αm̃
t )I{m̃ ∈ St}√∑t

τ=1 ∥∇αm̃
τ

L(ᾱm̃
τ , αm̃

τ )∥2
2

− αm̃)2.

Then define adaptive learning rate ηt as

ηt := η√∑t
τ=1 ∥∇αm̃

τ
L(ᾱm̃

τ , αm̃
τ )∥2

2

,

where η√
t

≤ ηt ≤ η

α
√

t
. Then we have

(αm̃
t+1 − αm̃)2 = (ηt∇αm̃

t
L(ᾱm̃

t , αm̃
t )I{m̃ ∈ St})2 + (αm̃

t − αm̃)2 − 2ηt(αm̃
t − αm̃)∇αm̃

t
L(ᾱm̃

t , αm̃
t )I{m̃ ∈ St}.

Therefore,

(αm̃
t −αm̃)∇αm̃

t
L(ᾱm̃

t , αm̃
t )I{m̃ ∈ St} =

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

2ηt
+ ηt

2 (∇αm̃
t

L(ᾱm̃
t , αm̃

t )I{m̃ ∈ St})2. (28)

Since the loss function equation 3 is convex, we have the following inequality

L(ᾱm̃
t , αm̃

t ) − L(ᾱm̃
t , αm̃) ≤ (αm̃

t − αm̃)∇αm̃
t

L(ᾱm̃
t , αm̃

t ). (29)

Combining equation 28 and equation 29, we arrive at(
L(ᾱm̃

t , αm̃
t ) − L(ᾱm̃

t , αm̃)
)
I{m̃ ∈ St}

≤
(αm̃

t − αm̃)2 − (αm̃
t+1 − αm̃)2

2ηt
+ ηt

2 (∇αm̃
t

L(ᾱm̃
t , αm̃

t )I{m̃ ∈ St})2. (30)

Taking the expectation of left hand side of equation 30 with respect to I{m̃ ∈ St}, we obtain

E
[(

L(ᾱm̃
t , αm̃

t ) − L(ᾱm̃
t , αm̃)

)
I{m̃ ∈ St}

]
=
(
L(ᾱm̃

t , αm̃
t ) − L(ᾱm̃

t , αm̃)
)

× 1 × qm̃
t +

(
L(ᾱm̃

t , αm̃
t ) − L(ᾱm̃

t , αm̃)
)

× 0 ×
(
1 − qm̃

t

)
= qm

t

(
L(ᾱm̃

t , αm̃
t ) − L(ᾱm̃

t , αm̃)
)

(31)
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where qm̃
t is the probability that model m̃ is in the chosen subset of models. Moreover, for the expectation of

right hand side of equation 30, we have

E
[

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

2ηt
+ ηt

2 (∇αm̃
t

L(ᾱm̃
t , αm̃

t )I{m̃ ∈ St})2
]

=
(αm̃

t − αm̃)2 − (αm̃
t+1 − αm̃)2

2ηt
+ ηtq

m̃
t

2 (∇αm̃
t

L(ᾱm̃
t , αm̃

t ))2. (32)

Based on equation 8, In this setting we obtain

qm
t =

J∑
j=1

p′j
t

(
1 − (1 − pm

t )N
)

=
J∑

j=1
p′j

t pm
t

(
1 + ... + (1 − pm

t )M−1
)

≥
J∑

j=1
p′j

t pm
t ≥

J∑
j=1

ūj
t

ηe

M
= ηe

M
(33)

From equation 30, equation 31, and equation 32, we can conclude that

L(ᾱm̃
t , αm̃

t ) − L(ᾱm̃
t , αm̃) ≤

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

2ηtqm̃
t

+ ηt

2 (∇αm̃
t

L(ᾱm̃
t , αm̃

t ))2. (34)

By summing equation 34 over t = 1, ..., T , we have
T∑

t=1

(
L
(
ᾱm̃

t , αm̃
t

)
− L

(
ᾱm̃

t , αm̃
))

≤
T∑

t=1

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

2ηtqm̃
t

+
T∑

t=1

ηt

2

(
∇αm̃

t
L(ᾱm̃

t , αm̃
t )
)2

(i)
≤ M

√
T

2η

T∑
t=1

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

ηe
+ η

2

T∑
t=1

1√∑t
τ=1 ∥∇αm̃

τ
L(ᾱm̃

τ , αm̃
τ )∥2

2

≤ M
√

T

2ηηe

T∑
t=1

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2 + η

2

T∑
t=1

1√∑t
τ=1 ∥∇αm̃

τ
L(ᾱm̃

τ , αm̃
τ )∥2

2

≤ M
√

T

2ηηe

(
(αm̃

1 − αm̃)2 − (αm̃
T +1 − αm̃)2)+ η

2

T∑
t=1

1
α

√
t

(ii)
≤ M

√
T

2ηηe
(1 + 2η)2 + η

√
T

α
, (35)

where in (i) we use qm
t ≥ ηe

M as in equation 33 and (ii) used αm
t ∈ [−η, 1 + η].

Lemma 2 For any model m̃ ∈ [M ] following bound holds
T∑

t=1
E [L (ᾱm

τ , αm
τ )] −

T∑
t=1

L
(
ᾱm̃

τ , αm̃
τ

)
≤ 2b

ϵ
ln M + Tηe(η + 1) + Tϵ2b−1M

(1 + η)2

22b
(36)

Proof: Defining Wt :=
∑M

m=1 wm
t and ūj

t := uj
t

Ut
, we have

Wt+1

Wt
=

J∑
j=1

ūj
t

Wt+1

Wt
=

J∑
j=1

ūj
t

M∑
m=1

wm
t+1

Wt
=

J∑
j=1

ūj
t

M∑
m=1

wm
t

Wt
exp

(
−ϵ

lm
t

2b

)

=
J∑

j=1
ūj

t

M∑
m=1

pm
t − ηe

M

1 − ηe
exp

(
−ϵ

lm
t

2b

)
(37)
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Using the inequality exp(−x) ≤ 1 − x + x2

2 , ∀x ≥ 0 leads to

Wt+1

Wt
≤

J∑
j=1

ūj
t

M∑
m=1

pm
t − ηe

M

1 − ηe

1 − ϵ
lm
t

2b
+

ϵ2
(

lm
t

2b

)2

2


By taking the logarithm from both sides of above inequality we have

ln Wt+1

Wt
≤ ln

J∑
j=1

ūj
t

M∑
m=1

pm
t − ηe

M

1 − ηe

1 − ϵ
lm
t

2b
+

ϵ2
(

lm
t

2b

)2

2


(i)
≤

J∑
j=1

ūj
t

M∑
m=1

pm
t − ηe

M

1 − ηe

1 − ϵ
lm
t

2b
+

ϵ2
(

lm
t

2b

)2

2

− 1

(ii)=
J∑

j=1
ūj

t

M∑
m=1

pm
t − ηe

M

1 − ηe

−ϵ
lm
t

2b
+

ϵ2
(

lm
t

2b

)2

2

 (38)

where
(i)
≤ follows 1 + x ≤ exp x in case we replace x with ln y which leads to 1 + ln y ≤ y, and (ii)= follows∑J

j=1 ūj
t

∑M
m=1

pm
t − ηe

M

1−ηe
= 1. Summing equation 38 over t from 1 to T result in

ln WT +1

W1
≤

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t − ηe

M

1 − ηe

−ϵ
lm
t

2b
+

ϵ2
(

lm
t

2b

)2

2

 (39)

Furthermore, recall the updating rule of wm
t in equation 7, for any model m̃ ∈ [M ] we have

ln WT +1

W1
≥ ln

wm̃
T +1
W1

= ln wm̃
1 exp

(
T∑

t=1
−ϵ

lm̃
t

2b

)
− ln 1 = − ln M −

T∑
t=1

ϵ
lm̃
t

2b
(40)

combining equation 39 with equation 40 result in

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t − ηe

M

1 − ηe

−ϵ
lm
t

2b
+

ϵ2
(

lm
t

2b

)2

2

 ≥ − ln M −
T∑

t=1
ϵ
lm̃
t

2b

Multiplying 2b(1−ηe)
ϵ to both sides and rearrangement leads to

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t lm

t − (1 − ηe)
T∑

t=1
lm̃
t

≤ 2b(1 − ηe)
ϵ

ln M +
T∑

t=1

J∑
j=1

ūj
t

M∑
m=1

(pm
t − ηe

M )ϵ2b

2

(
lm
t

2b

)2
+

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

ηe

M
lm
t

(i)
≤ 2b

ϵ
ln M +

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t ϵ2b

2

(
lm
t

2b

)2
+

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

ηe

M
lm
t (41)

where (i) follows pm
t ≥ ηe

M since 0 < ηe ≤ 1. Recall the probability of observing the loss of m-th model at
time t is qm

t . The expected first and second moments of lm
t given the losses incurred up to time instant t − 1,
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i.e, {L (ᾱm
τ , αm

τ )}t−1
τ=1 can be written as

E [lm
t ] =

J∑
j=1

p′j
t

(
1 −

(
1 − pmj

t

)N
)

L (ᾱm
t , αm

t )
qm

t

= L (ᾱm
t , αm

t )

E
[
(lm

t )2] =
J∑

j=1
p′j

t

(
1 −

(
1 − pmj

t

)N
)

L2 (ᾱm
t , αm

t )
(qm

t )2 = L2 (ᾱm
t , αm

t )
qm

t

≤ (1 + η)2

qm
t

(42)

Taking the expected value of equation 41 at each time t we have
T∑

t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t L (ᾱm

t , αm
t ) −

T∑
t=1

L
(
ᾱm̃

t , αm̃
t

)

≤ 2b

ϵ
ln M +

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

ηe

M
(1 + η)

T∑
t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t

ϵ2b
(

(1+η)2

22bqm
t

)
2

= 2b

ϵ
ln M + Tηe(η + 1) +

T∑
t=1

M∑
m=1

pm
t ϵ2b−1 (1 + η)2

22bqm
t

(43)

Based on definition of qm
t , we obtain

qm
t =

J∑
j=1

pj
t

(
1 − (1 − pm

t )N
)

=
J∑

j=1
pj

t pm
t

(
1 + ... + (1 − pm

t )M−1
)

≥
J∑

j=1
pj

t pm
t =

J∑
j=1

ūj
t pm

t = pm
t (44)

So according to equation 44 we have
T∑

t=1

J∑
j=1

ūj
t

M∑
m=1

pm
t L (ᾱm

t , αm
t ) −

T∑
t=1

L
(
ᾱm̃

t , αm̃
t

)
≤ 2b

ϵ
ln M + Tηe(η + 1) + Tϵ2b−1M

(1 + η)2

22b
(45)

According to the procedure of generating the graph Gt which is presented in Algorithm 1, for each selective
node a subset of models is chosen in N independent trials. In fact, a subset of models is assigned to each node
in N independent trials and in each trial one model is assigned and its associated entry in the sub-adjacency
matrix becomes 1. Now let bm represents the frequency that m-th model is chosen in N independent trials.
Thus, {bm}M

m=1 can be viewed as the solution to the following linear equation

b1 + b2 + ... + bM = N, s.t. bm ≥ 0, bm ∈ N (46)

There are
(

M+N−1
M

)
different solutions for above equation. Let {bm,q}M

m=1 denote the q-th set of solutions.
For the expected value of loss we have

E [L (ᾱm
t , αm

t )] =
J∑

j=1
ūj

t

(M+N−1
M )∑

q=1
N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

w̄m
t L (ᾱm

t , αm
t )

≤
J∑

j=1
ūj

t

(M+N−1
M )∑

q=1
N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

L (ᾱm
t , αm

t ) , (47)

Note that the number of ways to solve equation 46 when m-th kernel is chosen at first trial is equals to the
number of ways to solve the following problem.

b̃1,m + b̃2,m + ... + b̃N,m = N − 1, s.t. b̃n,m ≥ 0, b̃n,m ∈ N. (48)
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There are
(

M+N−2
M

)
different solutions for equation 48, Let {b̃q

n,m}M
m=1 denotes the q-th set of solution for

equation 48. Therefore we can conclude the following quality.

J∑
j=1

ūj
t

(M+N−1
M )∑

q=1
N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

L (ᾱm
t , αm

t )

=
J∑

j=1
ūj

t

M∑
m=1

pm
t

(M+N−2
M )∑

q=1
N !
(

M∏
m=1

(pm
t )b̃q

n,m

b̃q
n,m!

)
L (ᾱm

t , αm
t ) (49)

where
∑(M+N−2

M )
q=1 N !

(∏M
m=1

(pm
t )b̃

q
n,m

b̃q
n,m!

)
is the total probability of all

(
M+N−2

M

)
of equation 48. Therefore,∑(M+N−2

M )
q=1 N !

(∏M
m=1

(pm
t )b̃

q
n,m

b̃q
n,m!

)
= 1. We obtain

E [L (ᾱm
t , αm

t )] ≤
J∑

j=1
ūj

t

M∑
m=1

pm
t L (ᾱm

t , αm
t ) (50)

So we have
T∑

t=1
E [L (ᾱm

t , αm
t )] −

T∑
t=1

L
(
ᾱm̃

t , αm̃
t

)
≤ 2b

ϵ
ln M + Tηe(η + 1) + Tϵ2b−1M

(1 + η)2

22b
(51)

which concludes to proof of Lemma 2.

Now, we define the best model in the static environment as

m∗ = arg min
m∈M

T∑
t=1

L(ᾱm
t , αm).

Then, we replace m̃ with best model m∗ in Lemma 1 and Lemma 2. Summing results of two lemmas lead
to:

T∑
t=1

E [L (ᾱm
t , αm

t )] −
T∑

t=1
L(ᾱm∗

t , αm∗
) ≤

√
T

(
M

2ηηe
(1 + 2η)2 + η

α

)
+ 2b

ϵ
ln M + Tηe(η + 1) + Tϵ2b−1M

(1 + η)2

22b

(i)
≤

√
T

(
MT

1
4

2η
(1 + 2η)2 + η

α
+ 2b ln M + T

1
4 (η + 1) + M2−b−1(1 + η)2

)
(52)

where in (i), we set ϵ = 1√
T

and ηe = T − 1
4

Lemma 3 By defining Am
t :=

∑Q
q=1 N !

(∏M
m=1

(pm
t )bm,q

bm,q !

)
w̄mq

t for any t ∈ Gk, we can say |Am
t − Am

t+1| ≤
2(N + 1)ϵ(1 + η) M

ηe2b

Proof: Based on definition of Am
t and Am

t+1 we have:

|Am
t − Am

t+1| =

∣∣∣∣∣∣
Q∑

q=1

N !(∏M
m=1 bm,q!

) (( M∏
m=1

(pm
t )bm,q

)
w̄mq

t −

(
M∏

m=1

(
pm

t+1
)bm,q

)
w̄mq

t+1

)∣∣∣∣∣∣
≤

Q∑
q=1

N !(∏M
m=1 bm,q!

) ∣∣∣∣∣
(

M∏
m=1

(pm
t )bm,q

)
w̄mq

t −

(
M∏

m=1

(
pm

t+1
)bm,q

)
w̄mq

t+1

∣∣∣∣∣
(53)
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By taking the ln from each term in absolute value of equation 53, the equation can be rewritten as:

∣∣∣∣∣ln
(

M∏
m=1

(pm
t )bm,q

)
w̄mq

t − ln
(

M∏
m=1

(
pm

t+1
)bm,q

)
w̄mq

t+1

∣∣∣∣∣
=

∣∣∣∣∣
M∑

m=1
bm,q ln pm

t + ln w̄mq
t −

M∑
m=1

bm,q ln pm
t+1 + ln w̄mq

t+1

∣∣∣∣∣
≤

M∑
m=1

bm,q

∣∣ln pm
t − ln pm

t+1
∣∣+
∣∣ln w̄mq

t − ln w̄mq
t+1
∣∣

=
M∑

m=1
bm,q

∣∣∣∣ln pm
t

pm
t+1

∣∣∣∣+
∣∣∣∣ln w̄mq

t

w̄mq
t+1

∣∣∣∣ =
M∑

m=1
bm,q

∣∣∣∣∣∣ln (1 − ηe) wm
t

Wt
+ ηe

M

(1 − ηe) wm
t+1

Wt+1
+ ηe

M

∣∣∣∣∣∣+
∣∣∣∣ln wmq

t W q
t+1

wmq
t+1W q

t

∣∣∣∣
(54)

According to the update rule equation 7, we have
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Note that in (i) we replace the ϵ
lm
t

2b terms with their maximum value f(ϵ). (ii) follows equation 33 and the
fact that maximum length of every prediction set would be K. By defining B1 := 2 M

ηe2b (1+η)(N +1) we have:∣∣∣∣∣ln
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where (ii) follow |x − y| <= eC − 1 if | ln x − ln y| <= C, x, y[0, 1]. (iii) follows the definition B2 :=∑Q
q=1

N !(∏M

m=1
bm,q !

) .

A.3 Proof of Theorem 3

The proof of coverage for EGMOCP follows the same steps as the proof for the GMOCP algorithm up
to the point where the upper bound in equation 25 is derived using Lemma 3. At this stage, we instead
apply Lemma 5, where the constant C1 replace the original constant B1. As a result, the coverage error for
EGMOCP is bounded as follows:∣∣∣∣∣∣∣

1
T

T∑
t=1

Q=(M+N−1
M )∑

q=1
N !
(

M∏
m=1

(pm
t )bm,q

bm,q!

) ∑
m∈St,q

w̄mq
t am

t

∣∣∣∣∣∣∣
≤ T − 1

4

(
2M + 2

√
2M(1 + η)

η
+ 2M(1 + η)

η
B2C1(1 + o(1)) + M

α3 log T

)
. (58)

A.4 Proof of Theorem 4

To prove regret bound for EGMOCP, we first establish the following lemma.

Lemma 4 for any model m̃ ∈ [M ] following bound holds
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(59)

Proof: Defining Wt :=
∑M

m=1 wm
t and ūj

t := uj
t
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, we have
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ūj

t

M∑
m=1

wm
t

Wt
exp

(
−ϵ

[
(1 − β) lm

t

2b
+ βLen(αm

t )I{m ∈ St}
])

=
J∑

j=1
ūj
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Using the inequality exp(−x) ≤ 1 − x + x2

2 , ∀x ≥ 0 leads to
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 (61)

By taking the logarithm from both sides of above inequality we have
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 (62)

where
(i)
≤ follows 1 + x ≤ exp x in case we replace x with ln y which leads to 1 + ln y ≤ y, and

(ii)
≤ follows∑J

j=1 ūj
t

∑M
m=1

pm
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= 1. Summing equation 62 over t from 1 to T result in
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Furthermore, recall the updating rule of wm
t in equation 17, for any model m̃ ∈ [M ] we have
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combining equation 63 with equation 64 result in
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Multiplying 2b(1−ηe)
ϵ(1−β) to both sides and rearrangement leads to
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Taking the expected value of equation 66 at each time t we have
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So according to equation 44 we have
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By following the same steps as equation 46-equation 49, we obtain
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which concludes to proof of Lemma equation 4.

Then, we replace m̃ with best model m∗ in Lemma 1 and Lemma 4. Summing results of two lemmas lead
to:
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where in (i), we set ϵ = β = 1√
T

and ηe = T − 1
4

Lemma 5 By defining Am
t :=
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)
Proof of Lemma 5 The proof begins with the same steps as in the proof of Lemma 3, up to equation
equation 54. However, since the weight update rule in EGMOCP differs from that in GMOCP, we proceed
by applying the update rule defined in equation 17. Therefore, we have:∣∣∣∣∣ln

(
M∏

m=1
(pm

t )bm,q

)
w̄mq

t − ln
(

M∏
m=1

(
pm

t+1
)bm,q

)
w̄mq

t+1

∣∣∣∣∣
≤

M∑
m=1

bm,q

∣∣∣∣ln pm
t

pm
t+1

∣∣∣∣+
∣∣∣∣ln w̄mq

t

w̄mq
t+1

∣∣∣∣ =
M∑

m=1
bm,q

∣∣∣∣∣∣ln (1 − ηe) wm
t

Wt
+ ηe

M

(1 − ηe) wm
t+1

Wt+1
+ ηe

M

∣∣∣∣∣∣+
∣∣∣∣ln wmq

t W q
t+1

wmq
t+1W q

t

∣∣∣∣
=

M∑
m=1

bm,q

∣∣∣∣∣∣ln
M(1−ηe)wm

t +ηeWt

WtM

M(1−ηe)wm
t+1+ηeWt+1

Wt+1M

∣∣∣∣∣∣+

∣∣∣∣∣∣ln wmq
t W q

t+1

wmq
t exp

(
−ϵ
(

(1 − β) lm
t

2b + βLen (αm
t )
))

W q
t

∣∣∣∣∣∣
≤

M∑
m=1

bm,q

∣∣∣∣ln Wt+1

Wt

∣∣∣∣+
M∑

m=1
bm,q

∣∣∣∣ln M(1 − ηe)wm
t + ηeWt

M(1 − ηe)wm
t+1 + ηeWt+1

∣∣∣∣
+
∣∣∣∣ln W q

t+1
W q

t

∣∣∣∣+ ϵ

(
(1 − β) lm

t

2b
+ βLen (αm

t )
)

(72)

25



Under review as submission to TMLR

By expressing weights at time t + 1 in terms of its value at time t, we have:
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Note that in (i) we replace the ϵ
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)

terms with their maximum value f(ϵ). (ii)
follows equation 33 and the fact that maximum length of every prediction set would be K. By defining
C1 := 2(N + 1)
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where (i) follows |x − y| <= eC − 1 if | ln x − ln y| <= C, x, y[0, 1]. (ii) follows the definition B2 :=∑Q
q=1

N !(∏M

m=1
bm,q !

) .

B Additional Experiments

B.1 Equal Number of Models From Each Training Setting

To evaluate the performance of the proposed methods in scenarios with more weak-performing learning
models, we conduct additional experiments using a new set of candidate models that includes three versions
each of DenseNet121, GoogLeNet, ResNet-18, and ResNet-50—amounting to a total of 12 models. For these
experiments, we use the CIFAR-100C dataset under a gradual distribution shift. The results are reported in
Table 3 for J ∈ {1, 2, 4} and N ∈ {1, 3, 5, 7}. It can be observed that, across all settings, GMOCP constructs
smaller prediction sets in less time while satisfying the desired coverage compared to MOCP. Additionally,
EGMOCP achieves the smallest prediction sets compared to all benchmarks.
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Table 3: Results on the CIFAR-100C dataset under gradual distribution shifts and utilizing 12 learning
models, evaluated across different values of N and J . The target coverage is 90%. Bold numbers denote the
best results in each column. GMOCP consistently achieves faster runtime compared to MOCP across all
settings. EGMOCP constructs smaller prediction sets and a higher proportion of single-width sets.

N J Method Coverage (%) Avg Width Run Time Single Width

MOCP 89.98 ± 0.26 27.28 ± 4.34 20.77 ± 0.53 8.25 ± 1.93
COMA 90.01 ± 0.01 7.12 ± 0.54 18.08 ± 0.13 27.39 ± 0.69

1 1 GMOCP 88.92 ± 0.19 25.41 ± 3.12 13.63 ± 0.22 9.22 ± 1.15
EGMOCP 88.98 ± 0.22 10.86 ± 0.26 15.66 ± 0.17 20.32 ± 0.53

2 GMOCP 89.13 ± 0.32 22.92 ± 1.05 13.74 ± 0.21 11.08 ± 0.80
EGMOCP 89.12 ± 0.14 11.78 ± 0.26 15.72 ± 0.15 19.05 ± 0.70

4 GMOCP 88.94 ± 0.17 22.46 ± 0.58 13.92 ± 0.27 11.54 ± 0.43
EGMOCP 88.97 ± 0.25 11.20 ± 0.24 15.92 ± 0.25 19.68 ± 0.46

3 1 GMOCP 89.60 ± 0.25 25.23 ± 2.45 14.96 ± 0.31 8.37 ± 0.99
EGMOCP 89.63 ± 0.24 10.10 ± 0.30 18.90 ± 0.15 22.10 ± 0.79

2 GMOCP 89.60 ± 0.39 22.35 ± 1.05 15.40 ± 0.25 11.08 ± 0.70
EGMOCP 89.74 ± 0.23 9.27 ± 0.23 19.01 ± 0.14 23.26 ± 0.54

4 GMOCP 89.64 ± 0.24 21.91 ± 0.58 16.08 ± 0.25 11.19 ± 0.62
EGMOCP 89.63 ± 0.33 8.47 ± 0.21 19.81 ± 0.17 23.59 ± 0.61

5 1 GMOCP 89.54 ± 0.30 24.08 ± 1.00 16.19 ± 0.29 9.34 ± 1.34
EGMOCP 89.72 ± 0.38 8.95 ± 0.25 21.20 ± 0.15 23.97 ± 0.58

2 GMOCP 89.75 ± 0.38 23.87 ± 1.36 16.66 ± 0.11 9.95 ± 0.74
EGMOCP 89.63 ± 0.24 8.17 ± 0.15 21.63 ± 0.41 24.58 ± 0.42

4 GMOCP 89.83 ± 0.46 23.66 ± 0.78 17.95 ± 0.25 10.53 ± 0.42
EGMOCP 89.97 ± 0.16 7.82 ± 0.23 22.85 ± 0.36 24.93 ± 0.47

7 1 GMOCP 89.79 ± 0.29 22.72 ± 2.99 17.45 ± 0.41 10.36 ± 1.82
EGMOCP 89.68 ± 0.29 8.19 ± 0.18 23.43 ± 0.36 24.99 ± 0.44

2 GMOCP 89.70 ± 0.28 22.52 ± 1.50 17.86 ± 0.29 10.64 ± 0.66
EGMOCP 89.75 ± 0.35 7.60 ± 0.13 23.30 ± 0.24 25.66 ± 0.38

4 GMOCP 89.74 ± 0.16 23.72 ± 0.81 19.61 ± 0.30 10.40 ± 0.83
EGMOCP 89.73 ± 0.23 7.30 ± 0.17 25.10 ± 0.27 25.81 ± 0.40

9 1 GMOCP 89.81 ± 0.29 23.09 ± 2.62 17.48 ± 0.23 10.34 ± 1.26
EGMOCP 89.73 ± 0.29 7.52 ± 0.10 23.20 ± 0.39 25.97 ± 0.46

2 GMOCP 89.69 ± 0.30 25.23 ± 2.44 18.98 ± 0.34 8.70 ± 1.53
EGMOCP 89.72 ± 0.35 7.25 ± 0.19 24.75 ± 0.25 26.07 ± 0.43

4 GMOCP 89.66 ± 0.33 24.26 ± 0.95 22.46 ± 0.56 9.99 ± 0.69
EGMOCP 89.62 ± 0.30 7.01 ± 0.15 28.74 ± 0.18 26.41 ± 0.52

B.2 CIFAR-10C Dataset

For cases where different selective nodes have equal exploration ratios, experiments on CIFAR-10C with
gradual distribution shifts are provided. The results, presented in Table 4, show that GMOCP achieves the
fastest run time, while EGMOCP constructs the smallest prediction sets.

B.3 TinyImageNet Dataset

Here, we conduct experiments on a new dataset featuring a gradual distribution shift using TinyImageNet-
C, a corrupted version of the TinyImageNet dataset (Le & Yang, 2015) that contains 200 distinct classes.
For this experiment, the hyperparameters ξ and kreg are set to 0.01 and 20, respectively. Additionally, the
number of sequential data points is 2500, ϵ = 0.1, and β = 0.02. Note that since the number of candidate
labels is large (200), we report the proportion of prediction sets that include the true label and have a
size smaller than 40, instead of focusing solely on prediction sets of length 1. Table 5 shows that GMOCP
consistently achieves smaller prediction sets in shorter time compared to MOCP. Additionally, EGMOCP is
able to generate smaller prediction sets than both MOCP and GMOCP across all settings.

B.4 Synthetic Dataset

Additional experiments is conducted sing synthetic data generated in (Hajihashemi & Shen, 2024), which
creates distribution shifts using two distinct transformation sequences. From each sequence, two datasets
are generated with random variations to ensure uniqueness across samples. Each dataset contains 3,000
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Table 4: Results on the CIFAR-10C dataset under gradual distribution shifts, evaluated across different
values of N and J . The target coverage is 90%. Bold numbers denote the best results in each column.
Bold numbers indicate the best performance in each column. GMOCP consistently achieves faster runtime
compared to MOCP across all settings. EGMOCP constructs smaller prediction sets and a higher proportion
of single-width sets.

N J Method Coverage (%) Avg Width Run Time Single Width

MOCP 90.03 ± 0.30 2.07 ± 0.35 13.63 ± 0.17 48.00 ± 7.84
COMA 90.00 ± 0.02 1.49 ± 0.07 11.39 ± 0.05 61.39 ± 2.92

1 1 GMOCP 89.36 ± 0.21 1.90 ± 0.27 9.17 ± 0.09 48.14 ± 4.22
EGMOCP 89.37 ± 0.22 1.52 ± 0.03 10.75 ± 0.19 57.48 ± 1.58

2 GMOCP 89.39 ± 0.29 1.79 ± 0.03 9.88 ± 0.51 52.06 ± 0.72
EGMOCP 89.40 ± 0.23 1.57 ± 0.02 10.91 ± 0.12 55.95 ± 1.14

4 GMOCP 89.26 ± 0.15 1.76 ± 0.04 9.74 ± 0.12 52.78 ± 0.90
EGMOCP 89.27 ± 0.12 1.55 ± 0.02 11.25 ± 0.06 56.74 ± 0.96

3 1 GMOCP 89.79 ± 0.25 1.78 ± 0.17 10.41 ± 0.14 50.97 ± 3.41
EGMOCP 89.83 ± 0.30 1.50 ± 0.02 13.81 ± 0.09 58.98 ± 1.07

2 GMOCP 89.98 ± 026 1.78 ± 0.04 11.01 ± 0.13 53.03 ± 1.37
EGMOCP 89.76 ± 0.36 1.48 ± 0.01 14.28 ± 0.13 59.13 ± 0.86

4 GMOCP 89.69 ± 0.28 1.70 ± 0.04 11.69 ± 0.16 54.26 ± 1.25
EGMOCP 89.53 ± 0.28 1.44 ± 0.02 15.17 ± 0.10 60.17 ± 0.98

5 1 GMOCP 89.72 ± 0.17 1.85 ± 0.15 11.33 ± 0.18 51.02 ± 2.96
EGMOCP 89.82 ± 0.26 1.48 ± 0.02 16.17 ± 0.08 59.39 ± 0.83

2 GMOCP 89.80 ± 0.35 1.78 ± 0.06 12.16 ± 0.15 52.62 ± 1.72
EGMOCP 89.87 ± 0.18 1.44 ± 0.01 17.01 ± 0.13 60.30 ± 0.75

4 GMOCP 89.82 ± 0.23 1.80 ± 0.03 13.35 ± 0.15 52.44 ± 0.88
EGMOCP 89.97 ± 0.28 1.43 ± 0.01 18.06 ± 0.11 60.67 ± 0.59

Table 5: Results on the TinyImageNet dataset under gradual distribution shifts, evaluated across different
values of N and J . The target coverage is 90%. Bold numbers denote the best results in each column.
Bold numbers indicate the best performance in each column. GMOCP consistently achieves faster runtime
compared to MOCP across all settings. EGMOCP constructs smaller prediction sets.

N J Method Coverage (%) Avg Width Run Time Width < 40

MOCP 89.61 ± 0.46 170.59 ± 1.03 4.18 ± 0.03 0.11 ± 0.05
COMA 90.00 ± 0.05 161.61 ± 1.56 4.09 ± 0.03 0.34 ± 0.12

1 1 GMOCP 87.90 ± 0.28 165.68 ± 1.34 3.07 ± 0.01 0.12 ± 0.09
EGMOCP 87.67 ± 0.35 164.51 ± 1.16 3.38 ± 0.01 0.15 ± 0.06

2 GMOCP 87.81 ± 0.40 165.57 ± 2.08 3.15 ± 0.04 0.20 ± 0.18
EGMOCP 87.95 ± 0.36 165.43 ± 1.33 3.48 ± 0.01 0.20 ± 0.10

4 GMOCP 87.54 ± 0.27 165.28 ± 1.77 3.26 ± 0.02 0.16 ± 0.11
EGMOCP 87.65 ± 0.33 164.28 ± 1.75 3.60 ± 0.02 0.18 ± 0.17

3 1 GMOCP 88.91 ± 0.37 167.66 ± 1.43 3.31 ± 0.01 0.11 ± 0.05
EGMOCP 88.86 ± 0.42 166.97 ± 1.73 4.06 ± 0.03 0.16 ± 0.09

2 GMOCP 88.98 ± 0.38 168.01 ± 1.29 3.54 ± 0.03 0.08 ± 0.06
EGMOCP 89.04 ± 0.53 167.07 ± 1.50 4.26 ± 0.05 0.19 ± 0.12

4 GMOCP 88.98 ± 0.34 168.98 ± 1.01 3.85 ± 0.02 0.12 ± 0.07
EGMOCP 89.14 ± 0.50 167.24 ± 1.41 4.63 ± 0.02 0.18 ± 0.11

images across 20 classeswhich creates distribution shifts using two distinct transformation sequences. From
each sequence, two datasets are generated with random variations to ensure uniqueness across samples.
Each dataset contains 3,000 images across 20 classes. Gradual shifts are simulated by sampling within a
single transformation type, while sudden shifts are modeled by alternating between datasets from different
transformations. Results are presented in Table 6. It can be observed that the two algorithms proposed in
this work, GMOCP and EGMOCP, achieve smaller prediction sets compared to the benchmarks across all
settings. Please note that, in this set of experiments, there are no prediction sets of size one that cover the
true label; therefore, this metric is equal to zero for every setting.
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Table 6: Results on the Synthetic dataset, evaluated across different values of N and J . The target coverage
is 90%. Bold numbers denote the best results in each column. GMOCP consistently achieves faster runtime
compared to MOCP across all settings. EGMOCP constructs smaller prediction sets and a higher proportion
of single-width sets.

N J Method Coverage (%) Avg Width Run Time Single Width

MOCP 89.92 ± 0.28 18.00 ± 0.01 22.15 ± 0.52 0.00 ± 0.00
COMA 89.99 ± 0.01 18.01 ± 0.04 17.20 ± 0.09 0.00 ± 0.00

1 1 GMOCP 89.24 ± 0.12 17.88 ± 0.06 15.60 ± 0.12 0.00 ± 0.00
EGMOCP 89.18 ± 0.15 17.84 ± 0.12 33.21 ± 0.84 0.00 ± 0.00

2 GMOCP 89.26 ± 0.15 17.86 ± 0.07 15.76 ± 0.12 0.00 ± 0.00
EGMOCP 89.27 ± 0.19 17.85 ± 0.07 33.12 ± 0.37 0.00 ± 0.00

3 1 GMOCP 89.60 ± 0.20 17.96 ± 0.04 16.57 ± 0.34 0.00 ± 0.00
EGMOCP 89.53 ± 0.20 17.92 ± 0.04 38.06 ± 0.51 0.00 ± 0.00

2 GMOCP 89.60 ± 0.17 17.96 ± 0.02 17.42 ± 0.13 0.00 ± 0.00
EGMOCP 89.47 ± 0.22 17.93 ± 0.04 38.97 ± 0.48 0.00 ± 0.00

5 1 GMOCP 89.77 ± 0.27 17.95 ± 0.02 17.44 ± 0.50 0.00 ± 0.00
EGMOCP 89.70 ± 0.28 17.94 ± 0.02 42.95 ± 1.10 0.00 ± 0.00

2 GMOCP 89.73 ± 0.26 17.97 ± 0.04 18.29 ± 0.19 0.00 ± 0.00
EGMOCP 89.66 ± 0.41 17.94 ± 0.03 43.13 ± 0.57 0.00 ± 0.00
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