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Abstract

As a leading unsupervised classification algo-
rithm in artificial intelligence, multi-view sub-
space clustering segments unlabeled data from
different subspaces. Recent works based on the
anchor have been proposed to decrease the com-
putation complexity for the datasets with large
scales in multi-view clustering. The major dif-
ferences among these methods lie on the objec-
tive functions they define. Despite considerable
success, these works pay few attention to guar-
anting the robustness of learned consensus an-
chors via effective manner for efficient multi-
view clustering and investigating the specific lo-
cal distribution of cluster in the affine subspace.
Besides, the robust consensus anchors as well
as the common cluster structure shared by dif-
ferent views are not able to be simultaneously
learned. In this paper, we propose Robust Con-
sensus anchors learning for efficient multi-view
Subspace Clustering (RCSC). We first show that
if the data are sufficiently sampled from indepen-
dent subspaces, and the objective function meets
some conditions, the achieved anchor graph has
the block-diagonal structure. As a special case,
we provide a model based on Frobenius norm,
non-negative and affine constraints in consensus
anchors learning, which guarantees the robust-
ness of learned consensus anchors for efficient
multi-view clustering and investigates the spe-
cific local distribution of cluster in the affine sub-
space. Experiments performed on eight multi-
view datasets confirm the superiority of RCSC
based on the effectiveness and efficiency.
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1. Introduction
Clustering is an important field in artificial intelligence and
machine learning (Jain, 2008). As the information technol-
ogy develops, large amounts of data from multiple views
or channels (Liu et al., 2025; Qin et al., 2023d) can be col-
lected in real-world scenarios. This type of data is termed
as multi-view data and it widely exists in the world. For
instance, we can depict an image by multiple represen-
tations, such as local binary pattern (LBP), histogram of
oriented gradient (HOG) and Gabor feature representation.
For dealing with the multi-view data in clustering tasks,
various multi-view clustering approaches have been pre-
sented in the literature. As opposed to clustering for the
data with single view (Qin et al., 2023e;a; 2021; 2022b;
2025b; Pu et al., 2024), multi-view clustering can achieve
more reasonable performance in practice (Qin et al., 2022a;
Liu et al., 2024; Qin et al., 2023b; Liu et al., 2023b; Qin
et al., 2023c; Sun et al., 2024; Qin et al., 2024a; Liu et al.,
2022a; Qin et al., 2024d; Liu et al., 2023a; Qin et al., 2025c;
Liu et al., 2022b; Qin et al., 2025e). It is able to integrate
diverse feature representations of an object obtained by dif-
ferent views and provide more comprehensive object infor-
mation. Among the existing multi-view clustering works,
methods based on the graph have gained significant atten-
tion in recent years.

The graph-based methods for multi-view clustering (Nie
et al., 2017b; Zhan et al., 2019; Wang et al., 2020) can re-
flect the relationships among samples in multi-view data
by constructing graph structures. Then the final results can
be achieved based on the partiton of the obtained graph.
These methods usually adopt an n × n adjacent graph to
formulate the relationships among data points. Cao et al.
(Cao et al., 2015) presented a multi-view clustering method
based on diversity and smoothness, which investigates the
complementarity among different representations. Wang et
al. (Wang et al., 2020) learned the unified global graph
and view-specific graphs by adopting the mutual reinforce-
ment technique. Chen et al. (Chen et al., 2020) simultane-
ously learned the global self-representation, latent embed-
ding space and cluster structure for subspace learning on
multi-view data. Liang et al. (Liang et al., 2020) utilized
the multi-view graph learning to learn a unified graph and
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leveraged the incosistency and consistency among multi-
ple view-specific graphs. Nie et al. (Nie et al., 2017a)
presented to simultaneously perform local structure learn-
ing and semi-supervised classification/clustering. Wang et
al. (Wang et al., 2020) coupled unified graph, graph in-
duced by similarity across views and indicator into a uni-
fied framework. Despite significant progress, most of these
multi-view clustering approaches tend to suffer from high
computation complexity. It takes O(n2) to construct an
n × n adjacent graph and needs O(n3) in partitioning this
graph, which limits their scalability for multi-view datasets
with large scales.

For dealing with the computation complexity issue, multi-
view clustering methods based on the anchor have been
given (Qin et al., 2025a;d; Qin & Qian, 2024; Qin et al.,
2024c;b), which show promising capability in real appli-
cations. Different from constructing an n × n graph, the
methods based on the anchor typically produce small num-
ber of anchors from the dataset and represent the structure
of data by building an n × l anchor graph, where l de-
notes the total number of anchors. In general, l is lower
than n, which enables the scale of data to be greatly de-
creased for reaching the goal of increasing the clustering
efficiency. Specifically, Yang et al. (Yang et al., 2021) in-
creased the efficiency and all views are required to yield
the same anchors. Kang et al. (Kang et al., 2020) em-
ployed the subspace learning based on the anchor to learn
a anchor graph for each view and then heuristically com-
bined different anchor graphs into a unified one. Li et al.
(Li et al., 2022) presented a scalable multi-view clustering
method by fusing anchor graphs. It is able to employ the
discrete cluster structure to adaptively learn a unified graph
by anchor graph fusion. Wang et al. (Wang et al., 2022)
employed multiple projection matrices and a set of latent
consensus anchors to learn a unified anchor graph. Yang et
al. (Yang et al., 2022) seeked for l anchors on the original
data with the guidance of K-means. The produced cen-
troids are regarded as anchors and a sparse anchor graph is
constructed between the obtained anchors and the original
dataset. Despite great success, these methods pay few at-
tention to ensuring the robustness of learned consensus an-
chors for efficient multi-view clustering and investigating
the specific local distribution of cluster in the affine sub-
space. The correlation among the learned consensus an-
chors, which encourages the grouping effect and tends to
group highly correlated anchors together, is not able to be
fully explored. Besides, the robust consensus anchors and
the common cluster structure shared by different views are
not able to be simultaneously learned in a unified frame-
work. Then the mutual enhancement for these procedures
is not guaranteed in this manner and more discriminative
consensus anchors as well as cluster indicator are not ob-
tained.

To cope with the above issues, we propose a novel Robust
Consensus anchor learning for efficient multi-view Sub-
space Clustering (RCSC). We first theoretically show that
a block-diagonal anchor graph can be obtained if the ob-
jective function meets certain conditions based on the in-
dependent subspace assumption. As a special case, we
provide a model based on Frobenius norm, non-negative
and affine constraints in consensus anchors learning, which
guarantees the robustness of learned consensus anchors for
efficient multi-view clustering and investigates the specific
local distribution of cluster in the affine subspace. While
it is simple, we theoretically give the geometric analysis
regarding the formulated RCSC. The union of these three
constraints is able to restrict how each data point is de-
scribed in the affine subspace with specific local distribu-
tion of cluster for guaranting the robustness of learned con-
sensus anchors. We can fully explore the correlation among
the learned consensus anchors with the view-specific pro-
jection, which encourages the grouping effect and groups
highly correlated anchors together. The robust anchor
learning, partition and anchor graph construction are jointly
modeled in a unified framework. Then the robust consensus
anchors and the common cluster structure shared by differ-
ent views are able to be simultaneously learned. We can
guarantee the mutual enhancement for these procedures in
this manner and achieve more discriminative consensus an-
chors as well as the cluster indicator. By imposing the or-
thogonal constraints on the actual bases, we constrain a
factor matrix to be the cluster indicator matrix based on
the rigorous clustering interpretation. We then develop an
alternate minimizing algorithm for solving the formulated
problem. The major contributions in this paper are:

1. We propose a novel Robust Consensus anchor learn-
ing for efficient multi-view Subspace Clustering
(RCSC). We first theoretically demonstrate that an
anchor graph with block-diagonal structure can be
achieved if the objective function satisfies certain con-
ditions. As a special case, we give a model based on
Frobenius norm, non-negative and affine constraints
in consensus anchors learning, which guarantees the
robustness of learned consensus anchors for efficient
multi-view clustering and investigates the specific lo-
cal distribution of cluster in the affine subspace.

2. We are able to fully explore the correlation among the
learned consensus anchors with the guidance of view-
specific projection, which encourages the grouping ef-
fect and tends to group highly correlated anchors to-
gether. We jointly perform the robust anchor learn-
ing, partition and anchor graph construction in a uni-
fied framework. Then, the robust consensus anchors
and the common cluster structure shared by different
views are simultaneously learned, which ensures the
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mutual enhancement for these procedures and helps
lead to more discriminative consensus anchors as well
as the cluster indicator.

3. We impose the orthogonal constraints on the actual
bases and constrain a factor matrix to be the cluster
indicator matrix built on the rigorous clustering inter-
pretation. Extentive experiments on different multi-
view datasets validate the effectivenss and efficiency
of RCSC, especially on the datasets with large scales.

2. Methodology
In this section, we present the motivation and formulation
of RCSC, followed by the optimization process and the re-
lated analysis of computation complexity for RCSC.

2.1. Motivation

The anchor strategy is usually employed to find the under-
lying structure by choosing a small number of data points
as anchor bases. Some existing mutli-view clustering meth-
ods based on the anchor conduct K-means to achieve clus-
tering centroids with the anchor bases being fixed. Despite
great success, these methods pay few attention to guarant-
ing the robustness of learned consensus anchors for effi-
cient multi-view clustering and investigating the specific
local distribution of cluster in the affine subspace. The cor-
relation among the learned consensus anchors, which en-
courages the grouping effect and groups highly correlated
anchors together, is ignored to be fully explored. More-
over, the robust consensus anchors and the common cluster
structure shared by multiple views are not simultaneously
learned. Therefore, the mutual enhancement for these pro-
cedures is not effectively ensured and more discriminative
consensus anchors as well as cluster indicator are not ac-
quired.

2.2. Formulation

We generate view-specific data points via certain gener-
ation model based on a latent space. Given multi-view
dataset {Xp ∈ Rdp×n}vp=1 with dp and n being the di-
mension and size of dataset, we first assume that the data
are noise free and formulate the corresponding objective
function as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F ,

s.t. (Up)TUp = I, ATA = I,

(1)

where S ∈ Rl×n is the shared affinity matrix, {Up}vp=1 ∈
Rdp×d indicates a projection matrix as the consensus an-
chor guidance, A ∈ Rd×l represents the unified anchors,
l and d are the number of anchors and shared dimension

across views, respectively. UpA ∈ Rdp×l represents the
basis matrix. We then theoretically demonstrate that a
block-diagonal anchor graph can be achieved if the cor-
responding objective function satisifies certain conditions
based on the independent subspace assumption, which is
shown as Theorem 1 in the following.

Theorem 1. Assume the subspaces {Ωi}ki=1 are indepen-
dent, Xp

i is a matrix with columns consisting of some vec-
tors from Ωi and Up

i Ai is a matrix with columns consisting
of a basis of Ωi, where (Up)TUp = I and ATA = I . The
solution S to the following form

Xp = (UpA)S (2)

is block-diagonal and unique.

Proof. For data point xp ̸= 0 and xp ∈ Ωi, we just
need to prove that there exists a unique s, xp = (UpA)s,
where s = [sT1 , · · · , sTk ], with si ̸= 0 and sj = 0 for all
j ̸= i. Since (Up)TUp = I and ATA = I , we can obtain
(UpA)T (UpA) = AT (Up)TUpA = I . Thus, UpA is or-
thogonal. Due to the orthogonality among subspaces, there
exists a unique decomposition for xp as follows:

xp = 0 + · · ·+ xp + · · ·+ 0

= (Up
1A1)s1 + · · ·+ (Up

i Ai)si + · · ·+ (Up
kAk)sk,

(3)

where (Up
i Ai)si ∈ Ωi and i = 1, · · · , k. Therefore,

(Up
i Ai)si = xp and (Up

j Aj)sj = 0 for all j ̸= i. Since
Up
i Ai is a basis of Ωi, we have si ̸= 0, si is unique, and

sj = 0 for all j ̸= i.

Accoring to Theorem 1, a basis of Xp can be learned and
we use it as the dictionary. It is easy to obtain a true so-
lution by solving the problem in Eq. (1) if subspaces are
independent. To deal with more general multi-view clus-
tering issue in the affine subspace, we introduce the affine
constraint ST1 = 1 to the original objective function and
obtain the optimization problem as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F , s.t. ST1 = 1,

(Up)TUp = I, ATA = I,

(4)

where 1 denotes the vector with all entries being one. To
locally depict the distribution of contaminated data points
from different subspaces, we add a non-negative constraint
for S and achieve the problem as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F , s.t. S ≥ 0, ST1 = 1,

(Up)TUp = I, ATA = I.

(5)
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Thus, the non-negative constraint endows the learned S
with the probabilistic meaning. In real applications, the
data are usually contaminated with the possible noise. We
then adopt the Frobenius norm for penalizing the noise
based on affine and non-negative constraint in Eq. (5), for-
mulated as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F + λ∥S∥2F , s.t. S ≥ 0,

ST1 = 1, (Up)TUp = I, ATA = I,

(6)

where λ > 0 is a parameter to balance different parts. We
then guarantee the robustness for efficient multi-view clus-
tering and investigate the specific local distribution of clus-
ter in the affine subspace. The grouping effect is stated in
the theorem as follows.

Theorem 2. Given data point xp ∈ Rdp , matrix UpA ∈
Rdp×n and parameter λ. Assume each column of UpA is
normalized. Let s∗ be the optimal solution to the following
problem:

min
Up,A,s

v∑
p=1

||xp − UpAs||22 + λ∥s∥22, s.t. S ≥ 0,

ST1 = 1, (Up)TUp = I, ATA = I.

(7)

We have

∥s∗i − s∗j∥2
∥xp∥2

≤ 1

λ

√
2(1− r), (8)

where r = (up
i ai)

T (up
jaj) denotes the basis correlation.

Proof. Let L(s) = ∥xp − UpAs∥22 + λ∥s∥22. Since s∗ is
the optimal solution to Eq. (7), it meets

∂L(s)

∂sk

∣∣∣∣
s=s∗

= 0. (9)

Since (Up)TUp = I and ATA = I , we can obtain
(UpA)T (UpA) = AT (Up)TUpA = I . Thus, UpA is or-
thogonal. Then we have

−2(up
i ai)

T (xp − UpAs∗) + 2λs∗i = 0, (10)

−2(up
jaj)

T (xp − UpAs∗) + 2λs∗j = 0, (11)

Thus

s∗i − s∗j =
1

λ
((up

i ai)
T − (up

jaj)
T )(xp − UpAs∗), (12)

∥up
i ai∥

2 = ∥up
jaj∥

2 = 1, (13)

and

(up
i ai)

Tup
jaj = 0. (14)

Then we have ∥up
i ai − up

jaj∥2 =
√
2. Note that s∗ is the

optimal solution to Eq. (7), we can obtain

∥xp − UpAs∗∥22 + λ∥s∗∥22 = L(s∗) ≤ L(0) = ∥xp∥22.
(15)

Therefore, ∥xp − UpAs∗∥2 ≤ ∥xp∥2. Thus, Eq. (15) im-
plies

∥s∗i − s∗j∥2
∥xp∥2

≤
√
2

λ
. (16)

The grouping effect in the above theorem demonstrates that
the obtained solution is correlation dependent. Theorem 2
shows that the difference between s∗i and s∗j is nearly zero
if up

i ai and up
jaj are highly correlated. We then fully ex-

plore the correlation among the learned consensus anchors
A with the guidance of view-specific projection Up, which
encourages the grouping effect and groups highly corre-
lated anchors together.

As abovementioned, we introduce the Frobenius norm,
non-negative and affine constraints into the shared affinity
matrix learning. While it is simple, the union of these three
constraints can restrict how each data point is described in
the affine subspace with specific local distribution of cluster
for guaranting the robustness of learned consensus anchors.
We then denote the basis matrix UpA as

UpA = [(UpA)1, · · · , (UpA)t, · · · , (UpA)k], (17)

where (UpA)t is the basis matrix lying in the t-th affine
subspace. We adopt (UpA)t−i to denote basis matrices in
the t-th affine subspace except the basis (UpA)i. (UpA)−t

is employed to indicate basis matrices in all affine sub-
spaces except the t-th affine subspace. The sets of ba-
sis in (UpA)t, (UpA)−t and (UpA)t−i can be denoted by
Γ((UpA)t), Γ((UpA)−t) and Γ((UpA)t−i), respectively.
A basis tends to locate in three possible positions re-
garding (UpA)t, i.e., edge, inside and vertex. We adopt
edge((UpA)t), inside((UpA)t) and vertex((UpA)t) to in-
dicate these three positions. For non-vertex (edge and in-
side) basis, we first give the lemma and then have the theo-
rem as follows:

Lemma 1. Assume that A and D are square matrices, we
can obtain∣∣∣∣∣
∣∣∣∣∣
(
A B
C D

) ∣∣∣∣∣
∣∣∣∣∣
∗

≥

∣∣∣∣∣
∣∣∣∣∣
(
A 0
0 D

) ∣∣∣∣∣
∣∣∣∣∣
∗

= ∥A∥∗ + ∥D∥∗ for

matrices B and C with compatible dimension.

Theorem 3. For any non-vertex basis (UpA)i ∈
edge((UpA)t) and (UpA)i ∈ inside((UpA)t) with t =
1, 2, · · · , k, the optimal solution to Eq. (6) is block diago-
nal if Γ((UpA)t) does not intersect with Γ((UpA)−t).

Proof. We prove the above theorem by the contrapositive
and assume that there is an optimal solution S to Eq. (6)
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and S does not have the block diagonal property. We set
the block diagonal matrix W as

Wij =

{
Sij , if (UpA)i and (UpA)j in same subspace,
0, otherwise.

(18)

Then Q = S − W is adopted to denote the difference
between S and W . We employ ∁ = {j : (UpA)j ∈
Γ((UpA)t)} and k = {j : (UpA)j /∈ Γ((UpA)t)} to indi-
cate indices of basis for the t-th affine subspace and other
affine subspaces, respectively. Each edge and inside ba-
sis (UpA)i lying in Γ((UpA)t) which causes S against the
block diagonal structure can be written as∑

j∈k
Qij(U

pA)j = (UpA)i −
∑
j∈∁

Wij(U
pA)j . (19)

Since
∑

j∈∁ Wij +
∑

j∈k Qij = 1, we divide two sides of
Eq. (19) by

∑
j∈k Qij and obtain:∑

j∈k Qij(U
pA)j∑

j∈k Qij
=

(UpA)i −
∑

j∈∁ Wij(U
pA)j∑

j∈k Qij

=
(UpA)i −

∑
j∈∁ Wij(U

pA)j

1−
∑

j∈∁ Wij
.

(20)

We observe that the left and right sides of Eq. (20) are
basis in Γ((UpA)−t) and Γ((UpA)t), respectively. It
can be concluded that Γ((UpA)−t) does intersect with
Γ((UpA)t). Therefore, according to Lemma1, we have
∥S∥∗ ≥ ∥W∥∗. Then, W is the optimal and owns the block
diagonal structure. Though it is hard to give sufficient con-
ditons of the similar structure for vertices as Theorem 3, we
find that the proportions of vertices are far more less than
edge and inside basis in practice.

To integrate the partition into the unified framework, we
adopt the orthogonal and nonnegative factorization to di-
rectly assign clusters to the data. Then extra post-
processing steps are not needed in recovering cluster struc-
tures based on the factor matrix. Specifically, we impose
the orthogonal constraint on the actual bases. The above
process is formulated as:

min
α,Up,A,S,G,F

v∑
p=1

α2
p||Xp − UpAS||2F + λ∥S∥2F

+ β∥S −GF∥2F , s.t. S ≥ 0, ST1 = 1,

αT1 = 1, (Up)TUp = I, ATA = I, GTG = I,

Fij ∈ {0, 1},
k∑

i=1

Fij = 1, ∀j = 1, 2, · · · , n,

(21)

where α2
p denotes the learned coefficients, β > 0 is a pa-

rameter for balancing different terms, G ∈ Rl×k stands for

the centroid matrix and F ∈ Rk×n represents the cluster
assignment with Fij = 0 if j-th data point is not belonged
to the i-th cluster and 1 otherwise.

2.3. Optimization

For solving the problem in Eq. (21), we design an alter-
nate optimization algorithm to seek for the solution to each
variable while fixing the other variables.

Up-subproblem: With the other variables being fixed, the
objective function regarding Up is

min
Up

v∑
p=1

α2
p||Xp − UpAS||2F , s.t. (Up)TUp = I.

(22)

We then transform the above optimization problem by trace
as follows:

max
Up

Tr((Up)TCp), s.t. (Up)TUp = I, (23)

where Cv = XpSTAT . Assuming the singular value de-
composition (SVD) of Cv is U ′

CΣCV
T
C , we can easily ob-

tain the optimal Up by calculating U ′
CV

T
C .

S-subproblem: With the other variables being fixed, the
objective function regarding S is

min
S

v∑
p=1

α2
p||Xp − UpAS||2F + λ∥S∥2F + β∥S −GF∥2F ,

s.t. S ≥ 0, ST1 = 1.

(24)

We then rewrite it by the quadratic programming (QP)
problem as follows:

minhTS:,j +
1

2
ST
:,jWS:,j , s.t. S ≥ 0, ST

:,j1 = 1,

(25)

where hT = −2
∑v

p=1(X
p
:,j)

TUpA−2βFT
:,jG

T and W =

2(
∑v

p=1 α
2
p + λ+ β)I . Thus, we tackle the QP problem to

achieve the optimization for each column in S.

A-subproblem: With the other variables being fixed, the
objective function regarding A is

min
A

v∑
p=1

α2
p||Xp − UpAS||2F , s.t. ATA = I. (26)

Likewise, Eq. (26) is equal to the problem as follows:

max
A

Tr(ATB), s.t. ATA = I, (27)

where B =
∑v

p=1 α
2
p(U

p)TXpST . Then the optimal A is
U ′
BV

T
B , where B = U ′

BΣBV
T
B .
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F -subproblem: With the other variables being fixed, the
objective function regarding F is

min
F

β∥S −GF∥2F , s.t. Fij ∈ {0, 1},

k∑
i=1

Fij = 1, ∀j = 1, 2, · · · , n.
(28)

We then independently solve each object for the optimiza-
tion problem and obtain

min
F:,j

β∥S:,j −GF:,j∥2, s.t. F:,j ∈ {0, 1}k, ∥F:,j∥1 = 1.

(29)

We can find the optimal row by

i∗ = argmin
i
∥S:,j −G:,i∥2. (30)

G-subproblem: With the other variables being fixed, the
objective function regarding G is

min
G

β∥S −GF∥2F , s.t. GTG = I. (31)

Then the optimization problem regarding G is rewritten as

max
G

Tr(GTJ), s.t. GTG = I, (32)

where J = SFT . Then, the optimal G is equal to U ′
JV

T
J ,

where J = U ′
JΣJV

T
J .

αp-subproblem: With the other variables being fixed, the
objective function regarding αp is

min
α

v∑
p=1

α2
p||Xp − UpAS||2F , s.t. αT1 = 1. (33)

Based on Cauchy-Buniakowsky-Schwarz inequality, the
optimal αp can be obtained by

αp =

1
||Xp−UpAS||F∑v

p=1
1

||Xp−UpAS||F
. (34)

The objective function monotonically decreases in each
iteration until convergence since the convex property for
each sub-problem. We list the procedure of RCSC in Algo-
rithm 1.

2.4. Complexity Analysis

The computation cost of our method includes the costs
brought by optimizing all variables. Specificlly, it costs
O(l3n) to update S. In optimizing Up, conducting ma-
trix multiplication needs O(dpdk

2) and SVD consumes
O(dpd

2) for each view. It needs O(dlk2) in matrix mul-
tiplication and O(dl2) in SVD for optimizing A. The

Algorithm 1 Algorithm of RCSC

Input: Multi-view dataset {Xp}vp=1, parameter λ, β,
number of clusters k.

Output: Cluster assignment F .
1: Initialize: Initialize A, Up, {αp}vp=1, S, F and G.
2: repeat
3: Update S by solving Eq. (24);
4: Update {Up}vp=1 by solving Eq. (22);
5: Update A by solving Eq. (26);
6: Update G by solving Eq. (31);
7: Update F by solving Eq. (28);
8: Update α by solving Eq. (33);
9: until convergence

complexity of O(lnk) is needed to optimize F . It takes
O(lk2 + lk3) to update G, which consists of the time cost
in SVD and matrix multiplication. It needs O(1) to update
αp. The total time cost of our method is O((pd2 + pdk2 +
dlk2+nl3+ lk2+ lk3+dl2+ lnk)o) with o being the total
number of iterations, where p =

∑v
p=1 dp. Since n ≫ k

and n ≫ l, the computation cost of our method is nearly
linear to O(n).

3. Experiments
In this part, we evaluate the proposed method against the
representive methods on eight multi-view datasets under
different metrics in terms of effectiveness and efficiency.

3.1. Datasets and Experimental Settings

For the experimental evaluation, we use eight real-world
multi-view datasets, namely, ORL, Mfeat, Caltech101-
20, Caltech101-all, SUNRGBD (Song et al., 2015),
NUSWIDEOBJ (Chua et al., 2009), AWA and Youtube-
Face. Eight representive multi-view clustering methods
are employed for comparison, including AMGL (Nie et al.,
2016), SFMC (Li et al., 2022), BMVC (Zhang et al., 2019),
LMVSC (Kang et al., 2020), MSGL (Kang et al., 2022),
FRMVS (Wang et al., 2022), EOMSC-CA (Liu et al.,
2022c) and OMSC (Chen et al., 2022).

We need to determine the anchor number in evaluating the
clustering performance of all methods. For ensuring the
fairness, the best parameters are used for compared meth-
ods. The anchor number of our method is tuned in the range
of [2k, 3k, · · · , 7k], where k denotes the total number of
clusters in dataset. To reduce the randomness, we repeat
each experiment for 20 times and report their mean values
and variances in the experiment. We evaluate the cluster-
ing results by three widely adopted metrics, which consists
of accuracy (ACC), normalized mutual information (NMI)
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Figure 1. The first and second line are parameter selection of λ, β on eight datasets, respectively. The third line is sensity investigation
of anchor number on eight datasets.

Table 1. Clustering results based on ACC (%) on all datasets. “N/A ” denotes out of memory.
Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours

ORL 64.50±0.01 61.40±0.05 48.70±0.05 58.60±0.02 21.00±0.05 52.00±0.50 62.20±0.05 63.80±0.00 65.20±0.00
Mfeat 82.60±0.02 75.50±0.20 69.30±0.05 81.75±0.05 75.40±0.02 82.20±0.05 82.25±0.03 84.00±0.05 85.60±0.00

Caltech101-20 28.70±0.20 59.40±0.05 16.80±0.05 29.00±0.30 48.00±0.02 66.15±0.10 64.10±0.50 65.00±0.10 67.40±0.00
Caltech101-all 14.80±0.01 17.70±0.05 21.20±0.03 15.50±0.01 14.10±0.02 27.50±0.05 22.30±0.03 24.00±0.00 28.00±0.50

SUNRGBD 9.80±0.01 11.30±0.05 16.70±0.01 18.00±0.05 13.00±0.01 23.40±0.05 23.70±0.05 25.20±0.00 27.00±0.00
NUSWIDEOBJ N/A 12.20±0.05 12.90±0.05 14.70±0.05 12.00±0.05 19.20±0.05 19.60±0.05 21.00±0.05 23.50±0.00

AWA N/A 3.92±0.03 8.60±0.05 7.20±0.03 8.00±0.02 8.90±0.01 8.65±0.05 9.00±0.10 10.50±0.10
YoutubeFace N/A N/A 8.90±0.05 14.00±0.02 16.70±0.01 23.00±0.03 26.45±0.05 26.50±0.00 27.80±0.00
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Figure 2. Robustness study of our method on datasets under ACC.

Figure 3. Logarithm of running time on different datasets.

and F1-score. A high value for each of these metrics indi-
cates better clustering performance on the dataset.

We first study how parameters β and λ influence the final
clustering performance. These two parameters are adopted

to negotiate the importances of partition term and Frobe-
nious norm term. We illustrate the clustering performance
of the proposed method with varying parameters λ and β
in Fig. 1. It is observed that appropriate values for these
two parameters are generally beneficial to the clustering re-
sults on different datasets. According to Fig. 1, we observe
that relatively desired clustering results are achieved when
β = 0.1 and λ = 0.1 on various datasets. Moreover, the
results of the proposed method are generally stable over
varying values within the range of parameters β and λ on
different datasets, which shows that RCSC is generally ro-
bust to these two parameters.

3.2. Experimental results and analyis

In this section, the proposed method is compared with the
eight representive methods on several multi-view datasets.
To be specific, we report the clustering results with respect
to ACC, NMI and F1-score of all multi-view clustering
methods in Tables 1-3, respectively. We adopt N/A to in-
dicate that the method is not able to be computationally
feasible on the dataset caused by out of memory. Based on
the obtained clustering results in Tables 1-3, we can draw
some conclusions as follows:
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Table 2. Clustering results based on NMI (%) on all datasets. “N/A ” denotes out of memory.
Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours

ORL 87.10±0.07 82.70±0.01 67.70±0.03 78.50±0.03 43.70±0.02 74.40±0.05 88.10±0.02 88.50±0.10 90.00±0.00
Mfeat 84.70±0.05 84.80±0.10 66.05±0.15 76.00±0.20 76.54±0.05 79.40±0.01 83.20±0.15 84.20±0.10 85.32±0.15

Caltech101-20 47.50±0.20 42.80±0.00 16.20±0.03 41.20±0.10 31.50±0.05 63.30±0.05 51.10±0.05 51.80±0.30 52.40±0.00
Caltech101-all 35.30±0.01 26.10±0.03 42.50±0.04 33.30±0.02 26.10±0.02 34.10±0.05 24.65±0.05 30.00±0.00 31.30±0.00

SUNRGBD 18.50±0.10 2.30±0.05 19.50±0.05 24.50±0.05 9.30±0.05 24.10±0.05 22.50±0.01 24.30±0.00 25.00±0.10
NUSWIDEOBJ N/A 0.96±0.01 12.90±0.02 12.80±0.05 5.70±0.03 13.20±0.05 13.20±0.15 14.00±0.00 15.20±0.00

AWA N/A 0.30±0.05 9.70±0.02 8.50±0.05 7.90±0.03 8.50±0.03 9.70±0.03 10.00±0.02 10.22±0.00
YoutubeFace N/A N/A 5.90±0.05 11.80±0.01 0.07±0.01 2.40±0.01 0.32±0.01 0.37±0.00 0.50±0.00

Table 3. Clustering results based on F1-score (%) on all datasets. “N/A ” denotes out of memory.
Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours

ORL 51.20±0.03 30.60±0.05 30.50±0.04 45.90±0.09 51.50±0.20 38.40±0.15 62.10±0.00 63.20±0.10 65.00±0.00
Mfeat 79.80±0.05 71.10±0.15 58.80±0.01 72.50±0.02 70.10±0.02 76.00±0.40 77.00±0.01 78.20±0.00 79.90±0.00

Caltech101-20 21.80±0.05 31.60±0.02 11.40±0.20 25.60±0.50 41.80±0.05 66.00±0.05 64.70±0.20 65.00±0.10 66.79±0.20
Caltech101-all 4.05±0.10 4.65±0.10 18.00±0.05 10.50±0.05 8.60±0.04 17.90±0.03 10.80±0.03 15.00±0.00 18.20±0.15

SUNRGBD 6.40±0.40 12.10±0.00 10.20±0.01 11.60±0.20 9.50±0.15 16.00±0.05 15.30±0.05 17.00±0.00 19.20±0.00
NUSWIDEOBJ N/A 11.50±0.01 8.80±0.02 9.30±0.05 8.50±0.05 13.50±0.07 13.60±0.05 14.50±0.00 15.60±0.10

AWA N/A 4.60±0.03 5.59±0.02 3.60±0.05 4.20±0.01 6.20±0.05 5.90±0.05 6.20±0.00 7.00±0.20
YoutubeFace N/A N/A 5.80±0.02 8.30±0.01 15.00±0.10 14.00±0.05 16.40±0.01 17.10±0.00 18.50±0.00

. For most datasets, the proposed method achieves more
desired performance under different metrics and still
behaves well on multi-view datasets with relatively
large scale. For example, the clustering performance
gain of the proposed method is about 2.32% higher
than MSGL in terms of NMI on AWA.

. Methods based on anchor tend to generate better per-
formance under three metrics in most cases on multi-
view datasets with large scales compared with general
graph-based methods, which demonstrates that buid-
ing the graph based on the anchor is helpful to handle
the multi-view datasets with large scales.

. Our method produces consitently better results than
other methods based on the anchor for most of the
multi-view datasets, which validates the necessarity
of ensuring the robustness of learned consensus an-
chors for efficient multi-view subspace clustering and
exploring the correlation among the learned consensus
anchors with the guidance of view-specific projection
in the manner of encouraging the grouping effect and
grouping highly correlated anchors together.

3.3. Sensitivity Investigation and Robustness Study

We investigate how the total number of anchors impacts
the clustering results in this part. For simplicity, we fix the
shared dimension and conduct the sensity analysis for the
number of anchors on several datasets in terms of different
metrics. According to Fig. 1, we find that the proposed
method is not significantly influenced by the number of an-
chors and the clustering results with different number of
anchors are relatively stable.

We also study the robustness of the proposed method on

different datasets. To be specific, we randomly select half
of the multi-view dataset to be corrupted with white Gaus-
sian noise. This type of noise is added to the selected data
point xp

i via x̃p
i = xp

i + pj, where x̃p
i ∈ [0, 255], p de-

notes the corrupted ratio and j is the noise satisfying the
standard Gaussian distribution. According to Fig. 2, we
can observe that the proposed method is robust on different
datasets compared with other methods and performs better
on these datasets, which can be explained by the fact that
the ensuring the robustness of learned consensus anchors in
the affine subspace for efficient multi-view subspace clus-
tering is helpful in achieving satisfied performance.

3.4. Running Time

We report the execution times of the compared methods
and ours on different datasets. Note that Caltech101-20
and Caltech101-all are two versions of Caltech101 dataset
and we just list the running time of Caltech101-all for sim-
plicity. As shown in Fig. 3, it is observed that the proposed
method has shown comparable logarithm of running time
cost to the existing efficient methods on most of the multi-
view datasets, i.e., MSGL. Thus, our method can obtain
advantageous clustering results on various datasets while
maintaining relatively competitive efficiency. It can be ex-
plained by the fact that jointly modeling the robust consen-
sus anchors and the common cluster structure in a unified
framework is crucial to guide the efficiency for multi-view
clustering. The extra clustering algorithm is not needed to
obtain the final results, i.e., spectral clustering.

4. Conclusion
We propose a novel RCSC in this work. We theoretically
demonstrate that a block-diagonal anchor graph is obtained
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if the objective function satisfies certain conditions. As a
special case, we give a model based on Frobenius norm,
non-negative and affine constraints in consensus anchors
learning, which guarantees the robustness of learned con-
sensus anchors for efficient multi-view clustering and in-
vestigates the specific local distribution of cluster in the
affine subspace. Extensive experiments verify the effec-
tiveness and efficiency of the proposed method on different
multi-view datasets under three metrics.
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