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ABSTRACT

We propose a novel technique for training Energy-based Models (EBMs), which
are neural network-based models capable of modeling complex probability distri-
butions. The standard approach to EBM training relies on samples generated from
the modeled distribution using Stochastic Gradient Langevin Dynamics (SGLD).
However, this training method is known to be unstable, as SGLD may fail to
provide reliable samples. Compared to other popular generative models, EBMs
can directly evaluate unnormalized log-likelihoods for input observations. Unfortu-
nately, trained EBMs typically fail to robustly estimate the likelihoods for distant
input observations, as the training procedure only considers the gradients of the
log-likelihood with respect to the observations and not the actual log-likelihood
values. This paper proposes a generalization of the standard training objective that
addresses both issues. The proposed objective explicitly incorporates estimated un-
scaled log-likelihoods, allowing the EBM to estimate the likelihoods more reliably.
Notably, EBMs do not need to (and as we point out, cannot) correctly estimate
log-likelihoods to be effective for sampling using the non-convergent SGLD pro-
cedure. The proposed objective is controlled by a single hyper-parameter, which
balances the trade-off between the quality of the estimated log-likelihoods and
the generated samples. A specific setting of this parameter recovers the standard
EBM training objective. Moreover, the proposed objective enhances robustness to
unreliable SGLD samples by de-weighting contributions from samples that appear
inconsistent with the modeled distribution, i.e., samples with very low estimated
likelihoods compared to other generated samples or real training data. We demon-
strate the improvement in log-likelihood modeling on toy datasets and enhanced
stability in a real data scenario, where this stability leads to better performance.

1 INTRODUCTION

Unrestricted probabilistic Energy-based Models (EBMs) (Du & Mordatch, 2019; Nijkamp et al.,
2019; Xie et al., 2016) are powerful generative models. Theoretically, trained EBMs can generate
new data following the Markov Chain Monte Carlo (MCMC) iterative procedure. However, two
closely related approaches, score-based generative models (Hyvärinen & Dayan, 2005; Vincent, 2011;
Song & Ermon, 2019; 2020; Song et al., 2021) and diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020), have shown superior quality in the tasks of generating new data, typically shown on
image datasets. Nevertheless, EBMs stand out as they can directly provide unnormalized likelihood
values for each input, unlike the alternative approaches. The promise of having reliable unscaled
likelihood values could give rise to new approaches requiring them (Du et al., 2023) or improve the
performance of existing ones that rely on likelihood from alternative generative models (Kingma
& Welling, 2013; Dinh et al., 2016; Kingma & Dhariwal, 2018). The most widely used approach
of training EBMs via Maximum Likelihood Estimation (MLE) is based on generated approximate
samples from the EBM that are treated as true samples. This EBM training is unstable in most cases,
which is considered as currently one of the biggest issues related to EBMs (Grathwohl et al., 2019).
An expert can remedy some cases by fine-tuning all the necessary hyperparameters, but usually at
the cost of restricting the architecture or causing a potential drop in performance. This makes it not
just time-consuming but also impractical as the whole process might need to be repeated when a
change in data, model architecture, or hyperparameters is required, let alone joint training, where
EBM would represent only a part of the whole system. Unfortunately, except for the stability issues,
trained EBMs typically suffer from poor estimates of unscaled likelihood values when comparing the
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likelihoods of two distant input observations. Instead, what is considered informative and utilized
after training are the local changes in log-likelihood values, also known as score∇x log pθ(x).

The standard approach to training EBMs does not directly utilize the actual likelihood values; instead,
it relies solely on the score used during the generation of model samples required for training. Our
method is motivated by the fact that in real scenarios, only approximate and often unreliable model
samples will be generated. To better handle these cases, we propose a generalized training approach
(loss) that has a single hyperparameter β, whose specific setting β = 0 recovers the standard training.
All other settings result in training that explicitly requires values of unscaled log-likelihoods, so
log-likelihoods directly play a role in the optimization process. The parameter β controls the dynamic
range of these weights. We can trade off sample quality for a more credible estimate of likelihood
values and improved training stability based on the setting of β. We demonstrate this effect on the
toy dataset. Additionally, we show increased training stability on a real dataset; however, we were
unable to train models that could benefit from better-estimated likelihoods because the utilized SGLD
sampler was ineffective.

2 ENERGY-BASED MODELS

An Energy-Based model (EBM) is a generative model capable of representing complex probability
distributions. However, there is no straightforward method for sampling from this distribution.
Moreover, given an input observation x and model parameters θ, typically represented by a neural
network, we can only evaluate pθ(x) up to an unknown normalization constant. For continuous x,
the probability distribution is given by

pθ(x) =
e−Eθ(x)

Zθ
=

efθ(x)

Zθ
. (1)

The energy1 function Eθ(x) assigns a score to each continuous input observation x ∈ RDx . To ensure
that pθ(x) is a properly normalized distribution, the partition function is defined as Zθ =

∫
x
efθ(x)dx.

The gradient of the objective function, which is the expected log-likelihood of training data distribution
pd(x), can be expressed as

∇θEpd(x) [log pθ(x)] = ∇θEpd(x) [fθ(x)− logZθ] = Epd(x) [∇θfθ(x)]−Epθ(x) [∇θfθ(x)] . (2)

Minimizing ∇θ logZθ = Epθ(x) [∇θfθ(x)] directly is intractable. An overview of existing ap-
proaches for EBMs training is presented in Song & Kingma (2021). This work focuses on a common
strategy that addresses the optimization by approximating Epθ(x) via sampling. The method first
draws N positive samples x+

i ∼ pd(x) and M negative samples x–
j ∼ pθ(x) to approximate the

computation in Equation 2 by

∇θEpd(x) [log pθ(x)] ≈
1

N

N∑

i

∇θfθ(x
+
i )−

1

M

M∑

j

∇θfθ(x
–
j). (3)

2.1 STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Since fθ is represented by an unrestricted neural network, there is no direct way to obtain negative
samples x–

j ∼ pθ(x). Typically, time-consuming Markov chain Monte Carlo (MCMC) sampling
methods must be employed. Specifically, Stochastic Gradient Langevin Dynamics (SGLD) (Welling
& Teh, 2011) begins with a sample from the initial distribution2 x0 ∼ p(x0) and aims to generate
samples from pθ(x) through an iterative procedure

xt = xt−1 +
αt

2
∇xfθ(x

t−1) + ut, ut
i ∼ N (0, αt), 1 ≤ i ≤ Dx, (4)

where t denotes the time step. In theory, if the conditions
∑

t α
t =∞ and

∑
t(α

t)2 <∞ hold, it is
guaranteed that xt will become a sample from pθ(x) as t→∞. In practice, we resort to a modified
version of SGLD by significantly limiting the number of time steps and hand-tuning the schedule
for the step size α, which is typically set to a convenient value and kept fixed for all time steps.

1We will refer to the negative energy fθ(x) instead of energy Eθ(x) for brevity.
2The initial distribution is typically uniform or Gaussian.
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The number of steps needed to generate a reasonable sample can be optionally reduced by carefully
choosing the initial sample x0. One commonly used technique builds upon Persistent Contrastive
Divergence (PCD) (Tieleman, 2008) by maintaining a buffer of previously generated samples, from
which the initial samples are drawn (Du & Mordatch, 2019).

SGLD suffers from known issues, such as a slow mixing rate, the need for a suitable step size, and
problematic sampling from areas of constant likelihood values. We describe these in more detail in
Appendix A. Similarly, Hamiltonian Monte Carlo (HMC), an alternative MCMC approach to sample
from pθ(x), can result in inaccurate samples.

2.2 SOURCE OF POTENTIALLY UNRELIABLE LIKELIHOOD VALUES

The described training procedure does not directly incorporate likelihood or log-likelihood values, as
they are absent in Equation 3, and the negative examples3 are generated solely based on the score
∇xfθ(x) (Equation 4). In theory, likelihoods do not need to be evaluated to train the model because
it is assumed that we have access to true samples from pθ(x). Nijkamp et al. (2019) demonstrated
that even when negative examples are not true samples from pθ(x), the training can still converge. In
such cases, we can generate samples distributed similarly to pd(x), but the learned distribution pθ(x)
may differ significantly from pd(x). We can interpret SGLD as a procedure that transforms the initial
distribution p(x0) into the distribution SGLD(pθ(x))

4, using the gradient of the negative energy of
pθ(x), thereby generating samples from this distribution. If the SGLD procedure converges, then
SGLD(pθ(x)) will be equivalent to pθ(x). However, when the initial distribution is far from pθ(x),
using a limited number of SGLD steps may not produce samples from pθ(x) utilizing the gradient of
its true negative energy. Nonetheless, a different EBM might exist, potentially far from the desired
pθ(x), that models pd(x) Its negative energy gradient in the non-convergent SGLD procedure can
transform the initial distribution into pd(x). This scenario is illustrated in the first three columns
of Figure 2, which show the true distribution pd(x), the incorrectly learned distribution pθ(x),
and the distribution of generated examples SGLD(pθ(x)). If this occurs, the training converges
as pd(x) = SGLD(pθ(x)). While this approach offers the advantage of constructing an implicit
generative model (sampler) of pd(x), we must avoid relying on unnormalized likelihood values, as
fθ(x) may correspond to a completely different EBM. Additionally, the ability to generate realistic
data is sensitive to the specific setting of hyperparameters for the SGLD procedure. Modifications
such as increasing the number of steps can significantly degrade the sample quality.

2.3 FORCE ANALOGY OF EBM TRAINING

We liken EBM training via Equation 3 to shaping the surface of the probability density function
by balancing two forces as it can provide an intuitive explanation and motivation for our technique.
The first (positive) force increases the log-likelihood (via fθ(x)) at the locations of training data
x ∼ pd(x), as illustrated in Figure 1a. The locations of the second (negative) force, which decreases
the log-likelihood values, should be determined by pθ(x) (Figure 1b). The force strength emitted
by all positive and negative examples is equivalent. When negative examples are true samples from
pθ(x), both positive and negative forces will be balanced everywhere as the training progresses, and
pθ(x)→ pd(x). However, from a force balancing point of view, using the same approach when an
excessive number of negative examples originate from regions of low likelihood, positive examples
keep increasing fθ(x), but negative examples decrease fθ(x) at different locations. This discrepancy
can lead to an unconstrained increase or decrease of fθ(x), possibly causing training divergence. Our
approach tries to address this issue by mitigating the damage caused by negative examples with low
likelihood values.

3 GENERALIZED TRAINING APPROACH FOR ENERGY-BASED MODELS

The negative force depicted in Figure 1b can be alternatively obtained by sampling from the uniform
distribution u(x) while adjusting the force strength to match pθ(x) (Figure 1c). However, this
approach is impractical for real-world applications involving high-dimensional spaces with low-
dimensional support, as it necessitates an extremely large number of samples to locate some with
nonnegligible likelihood values. The cases shown in Figure 1b and Figure 1c represent two extremes

3We further use the terms positive and negative examples instead of samples to highlight that negative
examples might not be true samples from the desired distribution.

4We denote the distribution of SGLD samples obtained using the negative energy of pθ(x) as SGLD(pθ(x)).
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(a) Positive examples x+ ∼ pd(x) (b) Standard negative examples x– ∼ pθ(x)

(c) Non-informative negative examples x– ∼ u(x) (d) Proposed negative examples x– ∼∝ pθ(x)
1−β

Figure 1: The difference between the standard and proposed EBM training. The standard EBM
training is illustrated as forces of (a) positive and (b) negative examples pushing the value of log-
likelihood against each other, with each example exerting the same force. The size of the arrows
depicts the force acting on the log-likelihood. In the proposed method, we replace the negative force
in (b) with (d), which samples x– ∼∝ pθ(x)

1−β , while assigning the force proportional to pθ(x)
β .

Cases (b) and (c) are special instances of (d) for β = 0 and β = 1.

of a broader scheme we propose. In essence, we derive negative examples by sampling from a
distribution that is more uncertain than pθ(x) and adjust the force strength accordingly, as illustrated
in Figure 1d. Sampling from a more uncertain distribution can enhance the mixing efficiency of
the SGLD procedure. However, the primary motivation for this method is that while the SGLD
procedure may, and indeed does in practice, produce biased samples, relative adjustments to the
force strength across negative examples can be calculated precisely. This enables soft rejection of
inaccurate negative examples with low likelihood values.

We propose a new training approach that is a generalization of the standard SGLD-based approach
described in Section 2. We want to split the responsibility for the quality of negative examples
from possibly biased sampling into the processes of sampling and subsequent reweighting, which
we hope to reduce the overall bias. We achieve this by first expressing pθ(x) via two different
distributions qθ(x) and rθ(x) as pθ(x) ∝ qθ(x)rθ(x) and leveraging self-normalized importance
sampling (SNIS) (Bishop, 2007; Owen, 2013). Applying SNIS to Epθ(x) [∇θfθ(x)] in Equation 2,
using samples x–

j ∼ qθ(x), 1 ≤ j ≤M , we have

Epθ(x) [∇θfθ(x)] =
Eqθ(x) [w̃(x)∇θfθ(x)]

Eqθ(x) [w̃(x)]
≈
∑M

j w̃(x–
j)∇θfθ(x

–
j)∑M

j w̃(x–
j)

=

M∑

j

w(x–
j)∇θfθ(x

–
j).

(5)
The relative (unnormalized) weight is determined as w̃(x) ∝ pθ(x)

qθ(x)
∝ rθ(x), and the absolute

(normalized) weight as w(x–) = w̃(x–)∑M
j w̃(x–

j)
. By plugging Equation 5 into Equation 2, we replace

Equation 3 with a more general form

∇θEpd(x) [log pθ(x)] ≈
1

N

N∑

i

∇θfθ(x
+
i )−

M∑

j

w(x–
j)∇θfθ(x

–
j). (6)
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Equation 6 holds in general for any pθ(x), qθ(x) and rθ(x), but in this work, we consider the
specific factorization pθ(x) = pθ(x)

1−β
pθ(x)

β . That corresponds to EBMs qθ(x) ∝ e(1−β)fθ(x)

and rθ(x) ∝ eβfθ(x). When β is set between 0 and 1, the inverse temperature β can be interpreted as
a proportion of responsibility assigned to reweighting. With the considered factorization, negative
examples are drawn as x–

j ∼∝ e(1−β)fθ(x
–
j), and Equation 6 can be expressed as

∇θEpd(x) [log pθ(x)] ≈
1

N

N∑

i

∇θfθ(x
+
i )−

∑M
j eβfθ(x

–
j)∇θfθ(x

–
j)∑M

j eβfθ(x
–
j)

. (7)

Equation 3 is a special case of Equation 7 when β = 0, for which w̃(x–) is proportional to the
uniform distribution u(x). Consequently, w(x–) = 1/M, which is independent of x, unlike in any
other setting, where β ̸= 0. Training the EBM using Equation 7 corresponds to the visualization in
Figure 1d through force balancing.

3.1 INCLUDING POSITIVE EXAMPLE AS AN EXTRA NEGATIVE EXAMPLE

When equipped with a true sampler of pθ(x)
1−β , using β = 0 is the most rational choice, as

increasing β only reduces the effective sample size. However, in the context of a biased sampler,
the proposed method offers two key benefits. First, negative examples’ unnormalized probabilities
(evaluated with the inverse temperature β) are directly integrated into the loss calculation, ensuring
that these probabilities can no longer be ignored during optimization. Second, as a consequence,
the contribution from negative examples that are out of distribution (OOD) relative to pθ(x) is
diminished, based on the comparison to the other negative examples, which behaves as a soft filtering
of untrustworthy negative examples. Nevertheless, its efficacy relies on the presence of at least one
negative example that is a true sample or has a likelihood comparable to true samples. When all
negative examples are OOD, we would like to filter them all, i.e. set w(x–)

.
= 0 for all x–. However,

this is impossible as the proposed method is constrained by
∑

M w(x–) = 1.

Because we train pθ(x) to approximate pd(x), it makes positive examples x+ ∼ pd(x) suitable
candidates to serve as approximate negative examples x– ∝ pθ(x)

1−β , with a high likelihood value.
Using it as an additional sample in the calculation of the denominator in Equation 5, Eqθ(x) [w̃(x)],
would allow us to have w(x–)

.
= 0 for all x–. At this point, the contributions from all positive

(
∑

i
1/N = 1) and all negative (

∑
M w(x–) = 1) examples are balanced. We want to retain this

balance to avoid further training instabilities related to the force-balancing analogy of EBM training.
However, leveraging positive examples to improve the estimate of the denominator in Equation 5
without affecting its numerator would break this balance. As a result, while we would prevent the
likelihood of negative examples from an unconstrained decrease, the likelihood of positive examples
would remain unrestricted in its potential growth. Instead, we propose to include positive examples
into negative ones, which maintains the balance, as the positive examples used as negative ones
are effectively assigned negative weights. We propose a specific method of incorporating positive
examples among negative ones. First, we interpret Equation 6 as a contribution from N positive
examples, while each positive example has M shared negative examples. With this interpretation,
we then include one additional negative example, which is different for each x+

i , and this additional
negative example is x+

i itself. As a result of this construction, Equation 6 is replaced with

1

N

N∑

i

(1− +
w(x+

i ))


∇θfθ(x

+
i )−

M∑

j=1

w(x–
j)∇θfθ(x

–
j)


 , (8)

where
+
w(x+) = w̃(x+)

w̃(x+)+
∑M

j w̃(x–
j)

corresponds to the absolute weight that the positive example would

get assigned if it was part of the negative examples. We can see that compared to Equation 6, the
mere change is that the individual contributions from these positive examples are rescaled by a factor
of 1− +

w(x+
i ). The effect of this factor is discussed in the next section, and we provide more details

and steps to derive Equation 8 from Equation 6 in Appendix B.

3.2 ANALYSIS

The particular choice of including positive examples among negative ones, which resulted in Equa-
tion 8, might seem arbitrary. However, this decision is motivated by the fact that Equation 8 can

5
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alternatively be viewed as a form of discriminative training. Further insight into this interpretation
is provided in Appendix C. Unlike Equation 6, which can replace Equation 2 without affecting the
optimized objective, using Equation 8 instead is not equivalent. Importantly, the resulting objective
being maximized is a lower bound of the objective that was optimized before including this additional
negative example. The proof is provided in Appendix D. We also study the effect of including a
positive example among negative ones from a mechanistic point of view. This reveals two effects.
First, it rescales the gradient for each batch, depending on the difference between the negative
energy of positive and negative examples. As fθ(x+)− fθ(x

–) increases, the scale of the gradient
becomes smaller, allowing for the possibility of ignoring all negative examples from the batch that do
not have competitive likelihoods. Similar to a rescaling of gradient contributions among negative
examples introduced by β, the second effect resulting from replacing Equation 6 with Equation 8
leads the rescaling of the gradient contributions among positive examples. This rescaling effectively
slows down the growth of the log-likelihood value for positive examples that have relatively high
likelihoods among other positive examples. This effect is magnified as the performance of the SGLD
sampler decreases, i.e., when fθ(x

+)− fθ(x
–) increases. Derivations and more details are provided

in Appendix E. We expect these effects to positively influence training. However, as mentioned, they
result in a biased objective that is a lower bound of the original objective, which may be undesirable
in certain cases. To address this, it is possible to isolate the effect of rescaling the overall gradient in
each batch based on how inaccurate the negative examples are, resulting in the optimization of the
original unbiased objective. These variants also serve as ablations, and all details and derivations are
described in Appendix E.1.

Our proposed modification of EBM training involves two main components. First, we introduced
the β-parameterized objective in Section 3. Second, we incorporated positive examples among
negative ones in Section 3.1. Isolating the effect of including a positive example without introducing
β may seem intriguing; however, this approach is not useful since it corresponds to β = 0. In
this case, including a positive example results in only a slight modification to the learning rate, as
demonstrated in Appendix F. Section 3 discusses sampling based on negative energy 1 − β and
subsequent reweighting according to β. Notably, these two values do not necessarily need to sum
up to 1; arbitrary values can be employed instead, corresponding to a different parameterization of
the EBM. We derive this in Appendix G, based on an analysis of key aspects of the practical SGLD
sampler, including its extension to β ̸= 0 settings.

Section 2.2 explains that when β = 0, the learned EBM pθ(x) might be significantly different from
pd(x). With some simplifications, we expect that if training converges for β ̸= 0, pθ(x) must partially
reflect pd(x), but at the same time, it must compensate for the differences between SGLD(pθ(x))
and pd(x). As a result, for values of x where SGLD(pθ(x)) > pd(x), we expect pθ(x) < pd(x).
We explain our reasoning in Appendix I and discuss additional trade-offs related to the different
settings of β in Appendix I.1.

If, during many subsequent updates, we fail to generate any reasonable negative examples, the
proposed method will not assist with training stabilization when combined with optimizers that
apply an adaptive learning rate. We provide more details in Appendix H. Although encountering this
failure state necessitates modifying the approach for generating negative examples, we aim to raise
awareness about why we cannot prevent instability in this case.

3.3 EFFICIENT IMPLEMENTATION

With modern libraries that support automatic differentiation, such as PyTorch (Paszke et al., 2019)
and TensorFlow (Abadi et al., 2016), the proposed method can be implemented in a compact form
while ensuring efficient computation, with negligible overhead compared to the case when β = 0.
Algorithm 1 demonstrates the difference in the loss calculation in pseudocode using vectors fp and
fn, where fpi = fθ(x

+
i ) and fnj = fθ(x

–
j). We define methods in their typical sense: u.mean()

calculates the mean of the vector u; the operation stack(u,v) vertically stacks the row vectors u
and v into a matrix; u.LSE() computes log

∑
eu over the first dimension of the tensor, reducing

its dimensionality by one; and b. expand(k) creates a vector with k elements, where each element
is b. The justification for using this computation is most apparent from LHS of Equation 22, which
is equivalent to Equation 8. Aside from the loss calculation, the only difference is that the SGLD
procedure runs with negative energy multiplied by (1− β), making it extremely easy to integrate into
existing systems.

6
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Algorithm 1 Loss Calculation in Pseudocode

Input: fp ∈ RN , fn ∈ RM , β
1: if β = 0 then
2: L← fn.mean()− fp.mean()
3: else
4: L← stack(fp ∗ β, (fn ∗ β).LSE(). expand(N)).LSE().mean()/β − fp.mean()
5: end if

4 EXPERIMENTS
4.1 EVALUATION ON TOY DATASETS

To verify whether the expected behavior holds in practice, we focus on experiments using toy
datasets, where we can visually compare the learned densities. Specifically, we adopt the 2D toy
dataset setup from Nijkamp et al. (2020), which initializes the SGLD procedure with a Gaussian
distribution and employs Adam (Kingma & Ba, 2014) as the optimizer. For evaluation, we consider
the standard circles dataset and modify the standard Gaussian Mixture Model (GMM) dataset by
assigning different weights to each component. This modification is useful for examining the effects
of the proposed method. We follow the non-convergent setup described in Nijkamp et al. (2020),
where only a limited number of SGLD steps with a constant step size are used to generate negative
samples, leading to incorrectly learned energy functions. To expedite the experiments, we reduced
the number of SGLD steps from 100 to 20, compensating it with a larger SGLD step size and, in the
case of the GMM dataset, by using an adapted learning rate schedule. The rest of the setup, including
the architecture, remains unchanged.

Data p SGLD p SGLD p SGLD p SGLD
= 0.0 = 0.1 = 0.5 = 0.9

Density

Log-density

Density

Log-density

Figure 2: The default setup comparing different values of β.

We present the results for the default experimental setup in Figure 2. The first two rows correspond
to the GMM datasets, while the last two rows relate to the circles dataset. Odd rows visualize the
density, whereas even rows visualize the log of density. The first column displays the true density
of the data distribution pd(x). Each subsequent pair of columns corresponds to different β settings,
showing the learned density pθ(x) followed by SGLD(pθ(x))

5. SGLD(pθ(x)) is obtained using
the code published by Nijkamp et al. (2020) as the kernel density estimate of the samples generated
by the same non-convergent SGLD used during training. With β = 0, the modeled distribution pθ(x)
(and visually even its logarithm) significantly deviates from the true data distribution. However, as
also observed in Nijkamp et al. (2020), when the same non-convergent SGLD is used for both model
training and generation of samples from the trained model, the distribution of the generated samples
SGLD(pθ(x)) closely resembles the training data. Even a relatively small value of β = 0.1 results
in the modeled distribution being much closer to the training data distribution compared to β = 0.
Conversely, applying the non-convergent SGLD procedure to the correctly learned density does not

5It differs from the distribution of negative examples SGLD(pθ(x)
1−β) used during training.
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yield true samples, as demonstrated by the GMM dataset with β = 0.9. However, if we were to
sample from this distribution using (convergent) SGLD with a large number of steps, the samples
would eventually follow the correctly learned density pθ(x). These results confirm that we can trade
off sample quality for the quality of the learned distribution pθ(x) by adjusting β.

We provide additional experiments in Appendix K.1, demonstrating that although the quality of the
learned distribution improves with increasing β, in the case of the non-convergent SGLD sampler,
the learned distribution must compensate for this bias. This confirms the expected behavior based
on the theoretical analysis discussed in Appendix I. Furthermore, in Appendix K.2, we compare the
performance of different variants related to how positive examples are incorporated into negative ones.
The results suggest that our default variant, corresponding to the computation in Equation 8, should
be preferred over alternatives utilizing Equation 7, Equation 33, and Equation 34. Consequently, in
the rest of this work, we will consider only the default variant.

4.2 ENERGY-BASED MODEL APPLIED ON REAL DATASET

To determine how the improved performance in learning distributions with increasing β transfers
to real data problems, we extended the setup of Nijkamp et al. (2019) to incorporate the proposed
generalized training method and performed experiments on the CIFAR-10 (Krizhevsky et al., 2009)
dataset with various settings of β. Our goal was to examine the influence of β on training while
exploring a range similar to that in the previous section, i.e., 0.1 < β < 0.9. However, we were unable
to train the models with these settings. When β = 0, it is known that non-convergent SGLD, with a
limited number of steps, might not be a good sampler of pθ(x), but it still provides negative examples
that resemble positive examples. The distribution of energies for positive and negative examples is
typically similar throughout training, making both negative and positive examples of comparable
quality in terms of likelihood under pθ(x)6. As β increases, the distribution of negative examples
changes due to the replacement of SGLD(pθ(x)) with SGLD(pθ(x)

1−β
). However, the difference

between samples from SGLD(pθ(x)) and SGLD(pθ(x)
0.9

) when using the same pseudorandom
seed is very small, meaning that the difference in sampling during training for β = 0 and β = 0.1 is
minimal. Noticeable differences arise for larger values of β. When we attempted to train the system
with β = 0.1, the gap between the likelihood values of positive and negative examples became
substantial after only a few parameter updates. According to true EBM training, these negative
examples should not be used. Our approach successfully diminishes the weight of these examples.
However, this is not a temporary problem. The non-convergent SGLD systematically fails to provide
any negative examples with likelihood values comparable to those of the positive examples. Since we
rely on informative negative examples, the training cannot progress. As a result, we are restricted to
very small values of β. Since the SGLD procedures are effectively equivalent in these cases, sampling
from more uncertain distributions cannot be the cause of the differences we observe. We provide
more details and visualizations in Appendix L.

Our experiments suggest that the practical non-convergent version of SGLD is not an effective
sampler for EBM in general, and we elaborate on this further in Section 5. We also tried a few
simple modifications to the SGLD sampler in hopes of improving its performance; however, these
attempts did not yield satisfactory results, and the development of a more sophisticated approach
is beyond the scope of this work. The motivation for our method is to improve the learned density
and avoid training instabilities. However, the setup from Nijkamp et al. (2019) does not suffer from
training divergence, and we are unable to train models with values of β that may positively affect
the model’s likelihood values. To address this, we shift our attention to a different setup for which
training instabilities occur.

4.3 STABILIZED TRAINING OF JOINT ENERGY-BASED MODELS

In the experiments conducted on the toy dataset reported in Appendix K, we introduced two setups
where β = 0 led to training divergence, whereas β ̸= 0 did not. To investigate whether increasing β
can stabilize EBM training on real data, we utilized the Joint Energy-based Model (JEM) (Grathwohl
et al., 2019). JEM integrates an EBM with a classifier into a single model and is known for its
instability issues. Grathwohl et al. (2019) reported having no solution to training this model directly,
as the training would continuously diverge. The only viable option was to repeatedly load the model
from the last saved checkpoint before the divergence occurred and change the random seed until the

6Even though true samples may be quite different.
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desired model was obtained. Even the default setup of publicly available code provided by Grathwohl
et al. (2019) fails to finish due to training instabilities. We extended this code with the proposed
method and performed experiments. Due to space limitations, the detailed description of JEM and the
full extent of the experiments are reported in Appendix M, while this section only briefly summarizes
them.
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Figure 3: Evolution of Inception Score (IS) and the difference in average negative energy between
positive and negative examples during JEM training for various β.

Similarly to Section 4.2, we are limited to very small values of β due to the performance of the
SGLD sampler. We present the evolution of the difference between fθ(x

+) and fθ(x
–), along with

the Inception Score (IS) (Salimans et al., 2016), under different β settings in Figure 3. While JEM
training with β = 0 diverges around epoch 55, we can postpone or even eliminate these training
instabilities by increasing β. This adjustment allows us to achieve superior performance in terms
of classification accuracy, IS, and Fréchet Inception Distance (FID) (Heusel et al., 2017) compared
to what was possible with β = 0, as shown in Table 1. Negative examples used during training for
β = 0.000025 are depicted in Figure 4. When further modifying the default hyperparameters related
to the generative component of JEM, we observe that training with β = 0 can result in divergence
even in the first few epochs of training, while increasing β prevents it. More details are provided in
Appendix M.1. While we demonstrated that the proposed method can achieve better performance,
we believe that the ability to stabilize the training process is far more valuable. In practice, managing
training instabilities can be more discouraging than experiencing a slight performance degradation.

Table 1: Comparison of classification ac-
curacy on the CIFAR-10 test set, Inception
Score (IS), and Fréchet Inception Distance
(FID) for various β values using the default
JEM setup.

β Accuracy↑ [%] IS↑ FID↓
0.000000 90.5 7.7 39.6
0.000025 91.2 8.6 38.9
0.000050 91.2 7.7 44.1
0.000100 91.6 7.1 50.9
0.000200 91.7 6.6 59.6
0.000500 91.5 5.2 85.3 Figure 4: Negative examples generated during

epoch 107 of JEM training (β = 2.5× 10−5).

5 DISCUSSION AND CONCLUSION

We proposed a new training approach, parameterized by β, for training Energy-based Models using
negative examples generated by SGLD. This method generalizes the standard approach, which
corresponds to setting β = 0. This work focuses on establishing a theoretical foundation for
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the proposed approach and includes a non-trivial analysis. Due to space limitations, most of the
theoretical details are presented in the Appendix. The motivation behind this method is to mitigate
the negative influence of inaccurate negative examples that are not true samples from pθ(x), which
should, in turn, improve likelihoods and reduce training instabilities. However, this approach may
lead to a decrease in the quality of generated examples when using a practical non-convergent SGLD
sampler. Fortunately, we can balance these effects by tuning β. Our method extends standard EBM
training by effectively deweighting unreliable training samples as analyzed in Appendix E. This effect
can be split into three components: the weight that rescales the contribution of negative examples,
preventing fθ(x

–) from shrinking to large negative values; the weight that adjusts the contribution
of positive examples, preventing fθ(x

+) from growing excessively; and the weight that scales the
overall contribution of a single batch based on the energy difference between positive and negative
examples, reducing the importance of batches with a significant gap between fθ(x

+) and fθ(x
–).

On a toy dataset, we confirmed our theoretical hypothesis regarding the behavior of β and demon-
strated that the learned density improves as β increases. However, with the real dataset, we were
unable to fully realize this potential, successfully training models only with extremely small values
of β, such us β = 10−6. This limitation arose because, with small values of β such as β = 0.01,
the SGLD sampler struggled to produce negative examples x– with energies comparable to those
of positive examples. In contrast, when β = 0, both negative and positive examples exhibited
comparable energies; however, this gap gradually widened as β increased. To explain this behavior,
we propose a hypothesis in Appendix J, suggesting that training with β = 0 follows a more general
approach of “attractor-repeller training”. Fortunately, we demonstrated that we can mitigate training
instabilities by using very small values of β. This was illustrated in the training of JEM, where setting
β = 0 can lead to divergence, which may occur even within the first few epochs.

Even though training stabilization is an important aspect, we believe that improving likelihood could
potentially be even more valuable. Unfortunately, achieving this requires a different sampling method
that produces negative examples with higher fθ(x–), enabling the training of models with values in
the range 0.1 < β < 0.5. It is unclear whether existing approaches could be adapted for this purpose,
whether a new method needs to be developed, or if the issue could be resolved through alternative
strategies, such as better initialization of the SGLD or a specialized architecture.

Our method is applicable in any context where SGLD samples are used to train EBMs with the
standard loss function (β = 0). This integration is straightforward and can potentially enhance
performance or address stability issues. However, since this work primarily focuses on building
a theoretical foundation, our method introduces additional possibilities. By efficiently filtering
out negative examples with low fθ(x

–), we shift from the theoretical requirement that all negative
examples must be valid to a more flexible condition—that at least one negative example is good. This
flexibility allows for the combination of multiple techniques for generating negative examples, such
as using both SGLD and HMC or deploying multiple SGLD samplers with varying hyperparameters.

Furthermore, in the case of JEM, we demonstrated that the proposed method could overcome phases of
training where most, if not all, generated examples were unreliable. This flexibility is a powerful tool,
as it enables adaptive HMC or SGLD sampling that can optimize parameters during training, which
has been reported to be challenging for β = 0 due to instabilities limiting exploration. Additionally,
the introduced weights can also serve as effective monitoring tools for EBM training.

Our approach can also help assess how much a system relies on the introduced attractor-repeller
scheme by comparing systems trained with β = 0 to those trained with, for example, β = 0.01.
In this work, we addressed the issue of samplers frequently producing samples with low fθ(x).
Similarly, if a sampler tends to produce samples with excessively high fθ(x

–) values (e.g., sampling
from ∝ pθ(x

–)4), the proposed approach could be adapted by using negative values of β. Lastly, all
values of β correspond to EBM training, allowing for dynamic adjustments of β during training or
the simultaneous optimization of objectives with varying β values.
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A SGLD ISSUES

A.1 AREAS OF CONSTANT OR UNDEFINED LIKELIHOOD

SGLD (MCMC chain) can travel through areas of constant likelihood only based on diffusion, i.e.
Gaussian noise added at each step. It requires a large step size or a large number of steps to escape
these areas. Practical applications with a limited number of SGLD steps will likely result in an SGLD
sample originating in this area, which artificially increases the probability of producing samples from
these areas, therefore, resulting in sampling from a modified distribution.

According to the manifold hypothesis, in many real applications, the support of the data distribution
forms a low-dimensional manifold in the observed space. In other words, the true data distribution
pd(x) = 0 for most x. It can be interpreted as the score ∇xfθ(x) being either 0 or undefined. The
training objective minimizes KLD between pd(x) and pθ(x). When pθ(x) starts converging to pd(x),
the importance of this flaw increases. Convolving the data distribution with a Gaussian filter (adding
Gaussian noise to each x) can alleviate it, but it would require a large amount of noise to remove that
issue entirely. This is not suitable as the resulting distribution would be very noisy.

A.2 MIXING RATE

SGLD has a slow mixing rate. Once the MCMC chain imposed by SGLD enters a particular mode
of multimodal distribution, it will likely stay in that mode when only a limited number of steps
with suitable step size is performed. Within a single distribution mode, Langevin Dynamics are not
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affected by the weight (probability mass) of that mode, and it is believed that SGLD might provide
genuine samples from the underlying distribution mode. However, in a real scenario, it results in the
probability of obtaining a sample from each mode m not being affected by the weight of each mode,
i.e. the mode mixture weight pθ(m) =

∫
x
pθ(x,m). Instead, we believe that the weight will roughly

correspond to a probability of the MCMC chain being initialized in that mode p0(m) =
∫
x0 p(x

0,m),
where p(x0) is the distribution used to initialize Markov chain of SGLD.

A.3 SGLD STEP SIZE

As training progresses, the optimal SGLD step size can vary. Since we perform only a limited number
of steps, typically with a fixed size, too small step sizes will not cause enough movement, while too
large step sizes will only cause uninformative jumping over the space under the exploration. Too-large
step sizes could be avoided or at least detected by incorporating Metropolis-Hastings acceptance
probability, which gives rise to Metropolis-adjusted Langevin algorithm (Besag, 1994), but it is
typically not applied during training.

B DERIVATIONS FOR INCLUDING POSITIVE EXAMPLE AS NEGATIVE ONE

We propose including an extra negative example, which will differ for each positive example.
Specifically, we propose that every positive example acts as its negative example with index M + 1,
i.e. x–

M+1 = x+
i and this section describes how to derive Equation 8. We begin by interpreting

Equation 6 as a contribution from N parts, given by

1

N

N∑

i

(
∇θfθ(x

+
i )−

∑M
j w̃(x–

j)∇θfθ(x
–
j)∑M

j w̃(x–
j)

)
. (9)

Next, we include an extra negative example, specific for each x+
i , resulting in

1

N

N∑

i

(
∇θfθ(x

+
i )−

∑M+1
j w̃(x–

j)∇θfθ(x
–
j)∑M+1

j w̃(x–
j)

)
. (10)

Substituting that additional negative example x–
M+1 = x+

i , we obtain

1

N

N∑

i

(
∇θfθ(x

+
i )−

w̃(x+
i )∇θfθ(x

+
i ) +

∑M
j w̃(x–

j)∇θfθ(x
–
j)

w̃(x+
i ) +

∑M
j w̃(x–

j)

)
. (11)

For brevity, we denote
∑M

j w̃(x–
j) as s, then

1

N

N∑

i

1

w̃(x+
i ) + s


(w̃(x+

i ) + s)∇θfθ(x
+
i )− w̃(x+

i )∇θfθ(x
+
i )−

M∑

j

w̃(x–
j)∇θfθ(x

–
j)


 . (12)

This simplifies to

1

N

N∑

i

1

w̃(x+
i ) + s


s∇θfθ(x

+
i )−

M∑

j

w̃(x–
j)∇θfθ(x

–
j)


 . (13)

Substituting s back and using the absolute weight w(x–) = w̃(x–)∑M
j w̃(x–

j)
instead of the relative weight,

we get

1

N

N∑

i

∑M
j w̃(x–

j)

w̃(x+
i ) +

∑M
j w̃(x–

j)


∇θfθ(x

+
i )−

M∑

j

w(x–
j)∇θfθ(x

–
j)


 . (14)

Finally, plugging in the absolute weight, which positive example would get assigned if it was part of
the negative examples

+
w(x+) = w̃(x+)

w̃(x+)+
∑M

j w̃(x–
j)

recovers Equation 8 as

1

N

N∑

i

(1− +
w(x+

i ))


∇θfθ(x

+
i )−

M∑

j=1

w(x–
j)∇θfθ(x

–
j)


 . (15)
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C INCLUDING POSITIVE EXAMPLE RESULTS IN DISCRIMINATIVE TRAINING

We can interpret the proposed training in Equation 8 as a special case of discriminative training and
this section aims to provide more details.

C.1 DISCRIMINATIVE TRAINING

For simplicity, we use the same symbols for parameters, training data, distributions, and inverse
temperature for both generative and discriminative models. Training a classifier of x parameterized by
θ is typically achieved by minimizing expected cross-entropy H between the true posterior distribution
p and modeled posterior distribution pθ over the possible Dy values of label y. In practice, we collect
tuples (xi, yi) ∈ DS, where p(y = yi | x = xi) = 1 and search for θ maximizing

−Ep(x) [H(p, pθ)] = −Ep(x)

[
−
∑

y∈Y

p(y | x) log pθ(y | x)
]
≈ 1

|DS|

|DS|∑

i=0

log pθ(y
i | xi). (16)

It is common to transform x by a neural neural network gθ(x) to Dy-dimensional vector and model
pθ(y | x) via Softmax function SM(gθ(x);β) : RDy → (0, 1)Dy as

pθ(y = i | x) = SM(gθ(x);β)i =
eβgθ(x)i

∑Dy

j=1 e
βgθ(x)j

, (17)

where
∑

i SM(·)i = 1. While the inverse temperature β is typically set to 1, we keep it general. The
gradient of the maximized objective (Equation 16) for a single tuple (x, y = i) is

∇θ log pθ(y = i | x) = ∇θ log SM(gθ(x);β)i = ∇θβgθ(x)i −∇θ log

Dy∑

j=1

eβgθ(x)j . (18)

C.2 DERIVATION

For EBM training with β ̸= 0 (i.e. excluding the standard approach β = 0), we have
∑M

j eβfθ(x
–
j)∇θfθ(x

–
j)

∑M
j

[
eβfθ(x

–
j)
] =

1

β

∑M
j ∇θe

βfθ(x
–
j)

∑M
j

[
eβfθ(x

–
j)
] =

1

β
∇θ log

M∑

j

eβfθ(x
–
j). (19)

Using this result, Equation 7 can be further reformulated as

1

N

N∑

i

∇θfθ(x
+
i )−

1

β
∇θ log

M∑

j

eβfθ(x
–
j) =

1

N

N∑

i

1

β
∇θ


βfθ(x

+
i )− log

M∑

j

eβfθ(x
–
j)


 . (20)

Considering an extra negative example x–
j = x+

i , Equation 20 becomes

1

N

N∑

i

1

β
∇θ


βfθ(x

+
i )− log

M+1∑

j

eβfθ(x
–
j)


 . (21)

We aim to show that the content of the parenthesis in Equation 21 and Equation 18 can be mapped to
each other. To establish this mapping, for each x+

i , we construct Xi = [x+
i ,x

–
1, . . . ,x

–
M ]. Instead of

having a gθ(x) that maps x to a vector with Dy = M + 1 dimensions, we interpret fθ(·) as a vector
function mapping Xi to M + 1-dimensional vector, where y-th element of this mapping is fθ(Xi

y).
Then, Equation 21 is equivalent to

1

N

N∑

i

1

β


∇θβfθ(x

+
i )−∇θ log(e

βfθ(x
+
i) +

M∑

j

eβfθ(x
–
j))


= 1

N

N∑

i

1

β
∇θ log SM(fθ(X

i);β)0,

(22)
which corresponds to the task of indicating in Xi where the positive example resides. Denoting the
index within Xi as y, we have SM(fθ(X

i);β)0 = pθ(y = 0 | Xi), revealing how Equation 8 relates
to discriminative training.
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D EFFECT OF INCLUDING POSITIVE EXAMPLE AMONG NEGATIVE ONES ON
OBJECTIVE

To understand the implications of including a positive example among negative ones, we first show
that setting β ̸= 0 allows for an alternative way of expressing the objective. Based on Equation 19
and Equation 20, the gradient of the proposed objective (Equation 7) can be alternatively expressed as

1

N

N∑

i


∇θfθ(x

+
i )−

1

β
∇θ log

M∑

j

eβfθ(x
–
j)


 , (23)

which is also equivalent to

1

N

N∑

i

1

β


∇θ log e

βfθ(x
+
i) −∇θ log

M∑

j

eβfθ(x
–
j)


 = ∇θ

1

β

1

N

N∑

i

log

(
pθ(x

+
i )

β

∑M
j pθ(x–

j)
β

)
. (24)

Therefore, we can alternatively express the objective as

1

β
Ex+∼pd(x)

[
log

(
pθ(x

+)
β

∑M
j pθ(x–

j)
β

)]
. (25)

If x– ∼∝ pθ(x
–)

1−β , the term 1/M
∑M

j pθ(x
–
j)

β ≈∝
∫
x
pθ(x)

1−β
pθ(x)

β
= 1, resulting in

∇θ log
(∑M

j pθ(x
–
j)

β
)
≈ 0. Substituting it into Equation 25 confirms that it reduces to the negative

cross-entropy between pd(x) and pθ(x), which is the original objective. This confirms the legiti-

macy of maximizing 1
βEx+∼pd(x)

[
log

(
pθ(x

+)β∑M
j pθ(x–

j)
β

)]
, which we use to investigate the impact of

introducing an additional negative example.

The addition of an extra negative example can be expressed alternatively as

pθ(x
+)

β

∑M+1
j pθ(x–

j)
β
=

pθ(x
+)

β

pθ(x+)
β
+
∑M

j pθ(x–
j)

β
=

1

1 +
∑M

j pθ(x–
j)

β

pθ(x+)β

= σ

(
log

(
pθ(x

+)
β

∑M
j pθ(x–

j)
β

))
,

(26)

where σ(·) denotes the logistic sigmoid. Using the RHS of Equation 26 to express the addition of the
positive example among negative ones applied to Equation 25 yields

1

β
Epd(x)

[
log σ

(
log

pθ(x)
β

∑M
j pθ(x–

j)
β

)]
. (27)

Since log(σ(·)) is a concave function, applying Jensen’s inequality yields

1

β
Epd(x)

[
log σ

(
log

pθ(x)
β

∑M
j pθ(x–

j)
β

)]
≤ 1

β
log σ

(
Epd(x)

[
log

pθ(x)
β

∑M
j pθ(x–

j)
β

])
. (28)

By considering M + 1 negative examples, we maximize a lower bound of the loss function on the
RHS. Since log(σ(·)) is also a monotonic function, it follows that if fθ(x) is powerful enough, then

argmax
θ

1

β
log σ

(
Epd(x)

[
log

pθ(x)
β

∑M
j pθ(x–

j)
β

])
= argmax

θ

1

β
Epd(x)

[
log

pθ(x)
β

∑M
j pθ(x–

j)
β

]
. (29)

Thus, by including an extra positive example among negative ones, we maximize the lower bound of
the objective function with M negative examples.
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E IS BIASED OBJECTIVE PREFERRED?

We manipulate Equation 8 to isolate 2 effects that were introduced by adding positive examples
among negative ones as

(
1

N

N∑

i

1− +
w(x+

i )

)

︸ ︷︷ ︸
GradScale




N∑

i

(
1− +

w(x+
i )

1
N

∑N
l 1− +

w(x+
l )

)

︸ ︷︷ ︸
v(x+

i)

∇θfθ(x
+)−

M∑

j=1

w(x–
j)∇θfθ(x

–
j)




. (30)

GradScale rescales the overall gradient computed in each batch, while v(x+) can be interpreted
as an absolute weight that rescales the gradient of positive examples similarly as w(x–) rescaled
gradients of negative examples. If v(x+) = 1/N, then the effect of applying Equation 30 compared
to Equation 6 would only be rescaling the overall gradient computed in each batch. The value of
GradScale decreases as the difference between fθ(x

+) and fθ(x
–) increases, which is what we want

to achieve. Conversely when fθ(x
+) ≈ fθ(x

–), which can be interpreted as SGLD procedure is
producing reliable examples, then GradScale ≈ M

M+1 and it will have a negligible effect on the
optimization process.

Now we investigate the effect of the absolute weight for positive example v(x+). Rewriting it as

v(x+
i ) =

1− +
w(x+

i )

1
N

∑N
l 1− +

w(x+
l )

=

∑M
j w̃(x–

j)

w̃(x+
i)+

∑M
j w̃(x–

j)

1
N

∑N
l

∑M
j w̃(x–

j)

w̃(x+
l)+

∑M
j w̃(x–

j)

=

1
w̃(x+

i)+
∑M

j w̃(x–
j)

1
N

∑N
l

1
w̃(x+

l)+
∑M

j w̃(x–
j)

(31)

demonstrates that the absolute weight for positive example v(x+) corresponds to relative (unnor-
malized) weight for positive example ṽ(x+) = 1

w̃(x+)+
∑M

j w̃(x–
j)

. Comparing the ratio between the

relative weights of two positive examples ṽ(x+
1) and ṽ(x+

2), we get

ṽ(x+
1)

ṽ(x+
2)

=
w̃(x+

2) +
∑M

j w̃(x–
j)

w̃(x+
1) +

∑M
j w̃(x–

j)
=

eβfθ(x
+
2) +

∑M
j w̃(x–

j)

eβfθ(x
+
1) +

∑M
j w̃(x–

j)
. (32)

When fθ(x
+)≫ fθ(x

–), i.e. SGLD procedure is not producing competitive examples, then ṽ(x+) ≈
1/pθ(x

+)β. In the context of force analysis (Figure 1a), this can be interpreted as increasing the
log-likelihood values of positive examples with already high likelihoods to a lesser extent compared
to those positive examples with low likelihood values. We suggested that when fθ(x

+) grows
without constraints, it might cause training divergence. Therefore, ṽ(x+) helps mitigate this kind of
training divergence. As the gap between fθ(x

+) and fθ(x
–) decreases, the effect of this rescaling

decreases. This is the desired behavior because when the quality of the sampler of negative examples
improves, the effect of the bias decreases.

E.1 REMOVING THE BIAS INTRODUCED BY AN EXTRA NEGATIVE EXAMPLE

We incorporated the positive example among the negative ones primarily to prevent unwanted changes
in θ when negative examples are not appropriate, as such updates would lack informativeness. We
demonstrated that it is, indeed, happening, by an automatic decrease of the gradient magnitude
GradScale defined in Equation 30. At the same time, it introduces the weight v(x+) that rescales the
gradients within positive examples. It causes paying more attention to x+ with a smaller pθ(x+). As
discussed in Appendix D, this results in a biased objective. This section describes the way to keep
the gradient rescaling of each batch similarly to GradScale, but remove its dependency on positive
examples, which eliminates the bias. This results in the introduction of two additional variants, which
can be used for an ablation study.

Within each batch, we can correct the bias by making
+
w(x+

i ) independent of i through averaging as
1
N

∑N
i

+
w(x+

i ). This is equivalent to hard-wiring v(x+
i ) = 1/N in Equation 30, so we calculate

(
1

N

N∑

i

1− +
w(x+

i )

)

︸ ︷︷ ︸
GradScale




N∑

i

∇θfθ(x
+)−

M∑

j=1

w(x–
j)∇θfθ(x

–
j)


 . (33)
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Even though this removes the within-batch bias, GradScale still depends on x+. To achieve that
gradient scaling does not get influenced by

+
w(x+), we further propose to split N positive examples

into two parts, A and B, each with L = N/2 examples. A contains xa+
i and B contains xb+

i . Then
we replace

+
w(xa+

i ) by
+
w(x+

A) and
+
w(xb+

i ) by
+
w(x+

B), which are defined as
+
w(x+

A) = 1
L

∑L
i

+
w(xb+

i )

and
+
w(x+

B) = 1
L

∑L
i

+
w(xa+

i ). We perform the computation for A and B in parallel and average the
contributions. The computation for part A then becomes

(
1

L

L∑

i

1− +
w(xb+

i )

)


L∑

i

∇θfθ(x
a+
i )−

M∑

j=1

w(x–
j)∇θfθ(x

–
j)


 . (34)

This makes the gradient multiplier 1− +
w(x+

A) independent of xa+
i , resulting in an unbiased estimator

of the gradient computed in Equation 2. Negative examples in the batch have no dependency on
positive examples from that batch, so we can simply perceive it as extra-added stochasticity through
varying learning rates in each batch when using true samples.

F INCLUDING POSITIVE EXAMPLE DOES NOT HELP THE STANDARD EBM
TRAINING

The trick of adding the positive example as an extra negative (Section 3.1) cannot be applied to the
standard training approach corresponding to β = 0. It would only result in a slightly decreased
learning rate and no other effect. Since we assume that the extra negative example x–

M+1 is different
for each positive example, the negative energy corresponds to

fθ(x
–
M+1) =

1

N

N∑

i

fθ(x
+
i ). (35)

Plugging this result into Equation 3 yields

1

N

N∑

i

∇θfθ(x
+
i )−

1

M + 1

M+1∑

j

∇θfθ(x
–
j) =

M

M + 1


 1

N

N∑

i

∇θfθ(x
+
i )−

1

M

M∑

j

∇θfθ(x
–
j)


 .

(36)
The same result can can also be derived from Equation 8 by setting β = 0, for which 1− +

w(x+) =
M/M+1 and w(x–

j) = 1/M .

G PRACTICAL SGLD SAMPLER

Reducing the amount of noise added at each SGLD step (Equation 4) has been a common practice in
prior works, often deemed necessary for generating negative examples of reasonable quality within
a limited number of steps. Instead of ut

i ∼ N (0, αt), typically ut
i ∼ 0.01 ∗ N (0, αt) is used and

1/2 multiplying fθ(x
t−1) is ommitted as well. This adjustment is sometimes incorrectly referred

to as a practical trick, as it is a legitimate technique corresponding to EBM parametrization with a
different temperature. This modification can be rewritten as a proper sampling from EBM having
negative energy 20000fθ(x), i.e. pθ(x) ∝ e20000fθ(x). Consequently, it is crucial to scale fθ(x) by
20000 when comparing unnormalized log-likelihood values. We can still apply the same objective
function, as the reparametrization from fθ(x) to 20000fθ(x) only causes the overall scaling of
the loss. Alternatively, we could achieve the same outcome by keeping the proper noise level in
the SGLD procedure, but scaling the output of the last NN layer by 20000 and possibly adjusting
the learning rate, which reveals the true essence of the trick. For optimizers such as Adam, this
parameterization (both explicit and implicit via the change of SGLD amount of noise) effectively
multiplies the learning rate in the last layer of NN modeling fθ(x) by 20000.

G.1 THE SAME PARAMETER UPDATE TRAINS DIFFERENT EBMS

In Section 3, we explained the proposed method via sampling from qθ(x) ∝ e(1−β)fθ(x) and
then using rθ(x) ∝ eβfθ(x) for reweighting the gradient. For illustration, we set β = 0.5, then
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qθ(x) = rθ(x) = sθ(x) ∝ e1/2fθ(x). The sampling from sθ(x), followed by reweighting based
on sθ(x) should train pθ(x) with β = 0.5. If we would like to train sθ(x) with the standard EBM
training approach (β = 0) instead, the gradient computation would be

∇θEpd(x) [log sθ(x)] = 1/2
(
Epd(x) [∇θfθ(x)]− Esθ(x) [∇θfθ(x)]

)
. (37)

A comparison with Equation 2 reveals that the difference between the equations for pθ(x) and
sθ(x) lies solely in the magnitude of the gradient, and the distribution from which SGLD samples.
Consequently, as long as the negative examples are samples from pθ(x)

k for an arbitrary k, the same
computation used to update θ trains an EBM with a negative energy of kfθ(x). This flexibility
enables us to potentially train some EBM pθ(x) ∝ ekfθ(x) using the same θ update rule (Equation 2)
as long as SGLD provides samples from the current pθ(x)k for any k. However, the drawback is that
we will not know the exact value of k.

We mention this in the context of the proposed method for two main reasons. First, we suggested that
sampling should be based on (1− β)fθ(x) and then reweighting should be based on βfθ(x). This
approach can be also related to discriminative training using softmax with inverse temperature β when
considering a variant with an included extra negative example. In terms of explained parametrization,
1 − β and β can be replaced by arbitrary values a and b as they will correspond to a = k(1 − β)
and b = kβ for some k. Second, the argument about the flexibility of training remains valid as long
as SGLD provides samples from pθ(x)

k for any k even for β ̸= 0. So the possibility of training
different EBMs using Equation 2 extends to Equation 7.

H THE NEGATIVE INFLUENCE OF ADAPTIVE LEARNING RATE

When all generated negative examples have low likelihood values, and for sufficiently large β, the
parameter (θ) updates during training are effectively disregarded due to the presence of the additional
positive example. The positive example multiplies the gradient by (1− +

w(x+)) ≈ 0 in Equation 8.
When a certain θ is reached during training and then suddenly all negative examples stop being
proper, the proposed updates should almost not modify θ, thus preserving the currently achieved
solution θ. Conversely, the standard training approach (β = 0) continues to modify θ, essentially
erasing previously learned information.

However, it is important to note a potential complication that could prevent the described behavior.
If negative examples are consistently inadequate for many iterations, we should observe very low
gradient values as (1− +

w(x+)) ≈ 0. Despite this, certain optimizers like AdaGrad (Duchi et al., 2011)
or Adam (Kingma & Ba, 2014) might adapt to this situation and effectively amplify the gradient
values. In such cases, the proposed solution would only slow down the effect of diverging from the
current θ, but it would not prevent it. Nevertheless, if no competitive negative example is generated
for an extended duration, proactive measures should be taken. This involves adjusting the procedure
for generating negative examples to ensure that at least some have comparable likelihood values.
Failing to do so would compromise the effectiveness of training EBM.

I REQUIREMENTS FOR SOLUTION OBTAINED WHEN TRAINING CONVERGES

In Section 2.2, we discussed that for setting β = 0 if SGLD(pθ(x)) = pd(x), it is a solution
to the optimization problem. In general, the sufficient condition for convergence is satisfied
based on a moment matching and not necessarily distribution matching (Nijkamp et al., 2019),
i.e. ESGLD(pθ(x)) [∇θfθ(x)] = Epd(x) [∇θfθ(x)], but for the sake of the following discussion, we
will not distinguish between these two cases. When β ̸= 0, this is no longer valid. The larger the
β, the more important fθ(x) is over ∇xfθ(x), which is employed in SGLD procedure. Consider-
ing an arbitrary value of β, the convergence is reached when pd(x) ∝ SGLD(pθ(x)

1−β
)eβfθ(x)

or alternatively pd(x) ∝ eβfθ(x)+log SGLD(pθ(x)
1−β). If7 SGLD(pθ(x)

1−β
) = SGLD(pθ(x))

1−β ,
then we could interpret the result as pd(x) ∝ eβfθ(x)+(1−β) log SGLD(pθ(x)), therefore, for β ̸= 0 :
fθ(x) = 1/β log pd(x)+(1−1/β) log SGLD(pθ(x))+c = log pd(x)+(1−1/β)(log SGLD(pθ(x))−
log pd(x))+ c, where c is an arbitrary constant. The learned negative energy will have to compensate

7Even though it might not hold in practice, it helps as an analysis tool.
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for the difference between log SGLD(pθ(x)) and log pd(x). For values of β between 0 and 1, 1− 1/β
will be negative. Consequently, for x where SGLD(pθ(x)) > pd(x), we will have pθ(x) < pd(x),
and vice versa. The gap between pd(x) and pθ(x) increases as β grows; however, it is also expected
that the difficulty of reaching a convergent solution will increase with larger values of β. This analysis
also shows that when β ̸= 0, the negative energy fθ(x) must encode some information about pd(x).

When using a buffer of previously stored generated examples (PCD) for initial distribution in SGLD,
we might effectively increase the number of performed SGLD steps. This would cause the desirable
behavior as SGLD(pθ(x)) gets closer to pθ(x). As a result, even in the case β = 0, fθ(x) would
contain some information about pd(x). However, setting β ̸= 0 would not break this logic. It is fair
to mention that the buffer is used in some cases while it is not used in others. The disadvantage of
using the buffer is the problematic sampling at the inference time.

I.1 THE ROLE OF β VALUE

We highlighted the drawbacks of setting β = 0, on the other hand, setting β ≈ 1 presents its
challenges. In this scenario, negative examples are drawn from the uniform distribution u(x) ∝
e0fθ(x) as shown in Figure 1c. In the context of the manifold hypothesis, most (practically all) of
these examples would reside in low-likelihood regions carrying little information about the desired
expectation and we would like them to be filtered out. Increasing β makes SGLD steps more driven
by sampled noise than∇xfθ(x). This will have an unwanted effect on the number of required SGLD
steps needed to travel from low-likelihood to high-likelihood regions. On the other hand, the mixing
rate (traveling across distribution modes) should improve. The effectiveness of filtering out unwanted
negative examples (sensitivity to detect outliers) increases with increasing value of β as the weight is
determined based on eβfθ(x).

The automatic decrease of gradient magnitude is based on the likelihood comparison between a single
positive and the sum of all negative examples. However, especially when considering a small number
of negative examples M and a large β, the likelihood of a positive example can be much higher,
even with a proper sampler of negative examples. This is because a positive example is drawn from
pd(x), while negative from pθ(x)

1−β rather than pθ(x), but the effect can be partially counteracted
by adjusting the learning rate.

These arguments demonstrate a trade-off between larger and smaller values of β. However, we want
to emphasize that as an extension of this work, it is also possible to arbitrarily change the value of β
during training as long as it is fixed for all negative examples within each batch.

J ATTRACTOR-REPELLER DYNAMICS: AN EBM TRAINING HYPOTHESIS

We initially expected that the difference between EBM training with β = 0 and β < 0.01 would
be imperceptible or, at most, result in minimal differences. However, when applied to real data, the
difference is pronounced. While the SGLD sampler is capable of providing negative examples x–

with fθ(x
–) close to fθ(x

+) for β = 0, it fails for β = 0.01, resulting in inefficient training. From a
theoretical point of view, updating parameters based on calculations with β = 0.01 should be more
precise. However, we propose a hypothesis that explains why this less precise update can help the
SGLD sampler be more effective. This hypothesis is based on the concepts of attractors and repellers,
which we refer to as “attractor-repeller training”.

As β increases, the weight of negative examples with lower likelihood values decreases to the point
where they are effectively ignored. This approach is in line with the principles of EBM training, as
these negative examples should not be produced in the first place. However, as a consequence, fθ(x–)
remains unaffected around this x–, and the SGLD procedure also remains unchanged. Consequently,
repeating the SGLD procedure with the same initialization is likely to yield a similar negative example.
In contrast, when β = 0, such negative examples are treated as true samples, further incorrectly
decreasing already small fθ(x–), which causes the trained EBM to deviate from modeling the correct
distribution. Therefore, this process reduces the probability of generating the same negative example
again.

We can interpret this by conceptualizing the practical SGLD procedure as an implicit multi-step gen-
erator that iteratively explores the domain of x. As fθ(x+) increases for positive examples x+, local
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maxima may form, serving as attractors for the SGLD procedure. Simultaneously, negative examples
function as repellers, as updates can create local minima at those locations. The establishment of a
local minimum forces SGLD to search for another negative example in the subsequent iteration. This
explains why the effectiveness of the SGLD procedure is significantly greater when β = 0 compared
to β = 0.01. The setting β = 0 produces an effective implicit sampler, resembling GAN (Goodfellow
et al., 2020) training; however, as we have shown, it does not correspond to the training of EBM
modeling the true data distribution.

Moreover, since increasing β eliminates the divergent behavior, the attractor-repeller training appears
to be responsible for training instabilities. It tends to decrease fθ(x

–) too rapidly in regions where
fθ(x

–) is already small, which consequently leads to unrestricted growth of fθ(x+)—a phenomenon
that would not occur in true EBM training. While true EBM training can also be viewed as an
attractor-repeller scheme, we use this term to describe a more general training method that does not
require negative examples to be sampled from the model. Instead, it only requires that increasing
fθ(x) raises the probability of x being sampled, while decreasing fθ(x) lowers this probability.

K DETAILED ANALYSIS OF DENSITY LEARNED ON TOY DATASETS

This section extends Section 4.1 by providing additional scenarios for the toy datasets.

K.1 IMPACT OF SGLD SAMPLER BIAS ON LEARNED LIKELIHOOD

The training with the default setup for the circles dataset didn’t converge, and running twice as many
training steps results in learned pθ(x) that is more similar to pd(x) when β > 0. For the reference,
we provide the comparison in Figure 5. In some cases, especially for β = 0, the likelihood or even
log-likelihood might appear to have no variations, i.e. score ∇xfθ(x) appears to be 0. However,
the local estimates of scores are usually still informative as they guide the SGLD procedure, but
the values of likelihood are way too low to be shown by different colors. Investigating the variant
β = 0.9 illustrates that even when twice as many iterations are performed, pθ(x) does not converge to
pd(x) as the weight of each circle is estimated incorrectly. This corresponds to the analysis provided
in Appendix I. The analysis suggests that the learned fθ(x) must compensate for incorrect SGLD
samples, i.e. decreasing the log-likelihood at places where SGLD(pθ(x)

1−β
) > pd(x)

1−β and vice
versa. In this case, SGLD tends to produce negative examples more often in the central part of the
plot because it is closer to the initial distribution of SGLD. To confirm this behavior, we created an
additional experimental setup with a different initial Gaussian distribution, having half the size of the
standard deviation and mean shifted to the bottom right quadrant of the default initial distribution. At
the same time, we increased the SGLD step size 10 times to compensate for the additional distance
needed to travel. Examination of the results shown in Figure 6 confirms the same pattern. As the
SGLD procedure with limited steps needs to transport probability mass from the bottom right corner
into the top left corner of the plot, it affects the learned density. When β = 0, SGLD still learns
to generate samples resembling the data distribution, although fθ(x) corresponds to another EBM.
Settings β ̸= 0 again correspond to fθ(x) that better reflects the data distribution. Similarly, learned
pθ(x) needs to compensate for the shift between SGLD(pθ(x)) and pθ(x). This adjusted setup
resulted in training divergence for β = 0 and the circles dataset.

K.2 COMPARISON OF APPROACHES FOR INCORPORATING POSITIVE EXAMPLE

We compare our default variant that incorporates a positive example among negative ones (Equation 8),
to the variant without including it (No pos, Equation 7). Additionally, we compare it to variants,
where we remove the objective bias caused by including positive example within the batch (Batch
corr, Equation 33) or within the whole training (True obj, Equation 34) as described in Appendix E.1.
Note that all variants are equivalent for the baseline system (β = 0).

The performance of all considered proposed variants appears to be very similar in the default setup
(Figure 7). To see the difference, we introduce two additional setups. First, we limit the number of
generated negative examples per batch to 3, which are additionally generated using only 3 SGLD
steps, and show how both the temperature and variants affect learned density on the GMM dataset in
Figure 10 and the circles dataset in Figure 11. The results suggest that the default variant should be
preferred over the others (No pos, True obj, Batch corr), so the bias it causes appears to positively
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affect the training. The motivation for introducing our default variant was to handle cases when all
negative examples might be uninformative. To examine the limits of this setup, we further resort to a
single negative example per batch that directly comes from the initial distribution (0 SGLD steps).
Figure 8 comparing different variants illustrates that the default variant is still able to learn some
characteristics of the data distribution. Moreover, we show that as β increases, pθ(x) gets closer to
pd(x) in Figure 9. This result should be taken with a grain of salt, as this behavior is probably limited
to low-dimensional (toy) datasets. However, as we did not observe any case when the default variant
performs worse than other variants, we only consider the default variant in the following experiments.
Since we did not perform any SGLD steps in this setup, the column corresponding to SGLD(pθ(x))
visualizes the default initial distribution.

Data p SGLD p SGLD p SGLD p SGLD
= 0.0 = 0.1 = 0.5 = 0.9

Density

Log-density

200k IT

Density

Log-density

100k IT

Figure 5: The default setup on the circles dataset compared to twice as long run (200k iterations).

Data p SGLD p SGLD p SGLD p SGLD
= 0.0 = 0.1 = 0.5 = 0.9

Density

Log-density

Density

Log-density

Figure 6: The default setting with the modified initial distribution. The initial samples now originate
from the bottom right part of the plots.
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Data p SGLD p SGLD p SGLD p SGLD p SGLD
= 0.0 No pos, = 0.5 True obj, = 0.5 Batch corr, = 0.5 Default, = 0.5

Density

Log-density

Density

Log-density

Figure 7: Different proposed variants compared in the default setup. With enough negative examples
and SGLD steps, all proposed variants perform similarly.

Data p SGLD p SGLD p SGLD p SGLD p SGLD
= 0.0 No pos, = 0.5 True obj, = 0.5 Batch corr, = 0.5 Default, = 0.5

Density

Log-density

Density

Log-density

Figure 8: Degenerated setup, where we use only a single negative example initialized from Gaussian
distribution per each batch and do not perform any SGLD steps. The learned negative energy of the
default proposed method partially reflects the true log-likelihood of data.

Data p SGLD p SGLD p SGLD p SGLD p SGLD
= 0.0 = 0.1 = 0.5 = 0.9 = 1.0

Density

Log-density

Density

Log-density

Figure 9: Degenerated setup, where we use only a single negative example initialized from Gaussian
distribution per each batch and do not perform any SGLD steps. The learned log-likelihood contains
some information about the true log-likelihood of data when β ̸= 0.
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Data p SGLD p SGLD p SGLD

= 0.1 = 0.5 = 0.9

Density

Log-density

Default

Density

Log-density

Batch corr

Density

Log-density

True obj

Density

Log-density

No pos

Figure 10: Comparison of different variants and different values of β in the restricted setup of the
GMM toy dataset. We allow only 3 (default 20) negative examples per each batch of 50 positive
examples and perform 3 (default 20) SGLD steps. The default variant learns the most similar energy
function.
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Data p SGLD p SGLD p SGLD

= 0.1 = 0.5 = 0.9

Density

Log-density

Default

Density

Log-density

Batch corr

Density

Log-density

True obj

Density

Log-density

No pos

Figure 11: Comparison of different variants and different values of β in the restricted setup of the
circles toy dataset. We allow only 3 (default 100) negative examples per each batch of 100 positive
examples and perform 3 (default 100) SGLD steps. The default variant learns the most similar energy
function.

L DETAILED ANALYSIS OF ENERGY-BASED MODEL TRAINING ON CIFAR-10

We compare the difference in the training of EBMs based on the value of β using the setup of Nijkamp
et al. (2019). We conduct experiments with very small values of β. For β in this range, the SGLD
procedure remains effectively unaffected. In Figure 12, we visualize the evolution of the negative
energy means for both negative and positive examples, with means calculated based on the examples
in a single batch. As β increases, the gap between fθ(x

+) and fθ(x
–) widens. Since efficient training

requires negative examples with comparable likelihood values, this slows the training down. Note
that, in the case of an inaccurate sampler, reweighting the negative examples due to β > 0 provides a
more reliable estimate of the true weight that should be used in the correct EBM parameter updates.
However, once we begin to “properly” reduce the weights of these examples, the SGLD procedure
fails to generate negative examples with likelihoods comparable to those of the positive examples.
This suggests we are performing a less biased update of the model parameters, but as a result, the gap
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between fθ(x
+) and fθ(x

–) increases further. In contrast, for β = 0, the model parameter update is
less precise, but it does not widen the gap between fθ(x

+) and fθ(x
–).

We further investigate the behavior of the trained models8. We generate negative examples x– using
the SGLD procedure with the hyperparameters used during training and compare the histograms of
fθ(x

–) and fθ(x
+) in Figure 13. This confirms the difference between the distribution of negative

and positive examples. The goal of EBM training is to reduce the likelihood of negative examples
while increasing the likelihood of positive examples. From this perspective, increasing β would lead
to better-trained models, if the negative examples were representative. We verify that they are not
representative by running SGLD with a different setting. We increase the SGLD step size by a factor
of four and show the results in Figure 14. From a theoretical standpoint, this change should not alter
the distribution of generated examples. However, we observe that it is indeed possible to produce
negative examples with much higher likelihood values, confirming that the model is poorly trained in
terms of likelihood values. Finally, we demonstrate that the visual quality of the negative examples
generated from trained models using the unmodified SGLD degrades as β increases, as shown in
Figure 15.

8We refer to models as trained after performing 100, 000 updates, although models with larger β may not be
fully trained.
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Figure 12: The evolution of the average value of fθ(x+) and fθ(x
–) during training EBM. The

averages are calculated over positive and negative examples within a single batch, sampled once
every 100 iterations.
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Figure 13: Visualization of the distribution of fθ(x) values for trained EBMs using CIFAR-10 dataset.
We compare CIFAR-10 training data with generated negative examples. Each plot corresponds to a
model trained with a different β, indicated below the respective plot.
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Figure 14: Visualization of the distribution of fθ(x) values for trained models using CIFAR-10
dataset. We compare CIFAR-10 training data with negative examples generated with a modified
SGLD procedure. The modification lies in performing 4× larger step sizes. Each plot corresponds to
a model trained with a different β, indicated below the respective plot.
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Figure 15: The negative examples generated during the final (100k) training iteration of EBM. Each
image grid corresponds to a model trained with a different β, indicated below the respective grid.
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M DETAILED ANALYSIS OF JOINT ENERGY-BASED MODEL TRAINING

The Joint Energy-based Model (JEM) (Grathwohl et al., 2019) combines an energy-based model
with a classifier by modeling the negative energy hθ (x) [y] of the joint distribution pθ(x, y), where
y represents the class in the classification model. In this formulation, ehθ(x)[y] ∝ pθ(x, y). Since

log pθ(y | x) = log
pθ(x, y)

pθ(x)
= log

pθ(x, y)∑
y pθ(x, y)

= log
ehθ(x)[y]

∑
y e

hθ(x)[y]
, (38)

the negative energy hθ (x) [y] can be directly used as the logits for the classifier. The negative energy
fθ(x) of pθ(x) is related to the negative energy of pθ(x, y) as

efθ(x) ∝ pθ(x) =
∑

y

pθ(x, y) ∝
∑

y

ehθ(x)[y]. (39)

Given that the negative energy of a distribution is the logarithm of a likelihood plus an arbitrary
constant, it can be obtained as fθ(x) = log

∑
y e

hθ(x)[y]. We maximize log pθ(x, y) by factorizing
it as log pθ(x, y) = log pθ(x) + log pθ(y | x). This allows us to separately maximize log pθ(x)
as a standard energy-based model (Equation 3) and log pθ(y | x) as a classifier by minimizing the
cross-entropy, as described in Appendix C.1.

We selected this work to demonstrate the usefulness of our method for two key reasons. First, it
uses a standard architecture, Wide Residual Networks (Zagoruyko & Komodakis, 2016), rather
than a specialized one designed for generative performance. This choice leads to frequent training
instabilities, and the authors report that the only remedy is restarting training from the last checkpoint
and resetting the random seed. A further increase in the number of SGLD steps becomes necessary if
that proves ineffective. These instabilities worsen with any changes to the hyperparameters, making
model development particularly challenging. We demonstrate that an appropriate choice of β can
mitigate these training divergences. Second, demonstrating the model’s utility becomes challenging
when the SGLD procedure ceases to provide good samples. To address this, we leverage JEM’s
ability to function as a classifier, which allows us to evaluate its classification accuracy.

M.1 EXPERIMENTS

The experiments were conducted using the publicly available code from Grathwohl et al. (2019),
extended with the proposed method. Their implementation effectively introduces an additional hyper-
parameter, the output scale, with a default value of 20,000. Details are provided in Appendix M.2,
though understanding these details is not essential for this section. The rest of their setup remained
unchanged, except for continuing the training for two additional epochs after detecting divergence9,
for analysis purposes. The setup uses only 20 SGLD steps10, but incorporates persistent contrastive
divergence. The replay buffer has a size of 10,000, with a 0.05 probability of reinitializing a negative
example using uniformly distributed noise. Training runs for 200 epochs with 703 iterations (updates)
per epoch, using 64 positive and 64 negative examples per iteration. SGLD employs a step size of
α = 0.0001, and the training data is augmented with Gaussian noise with 0.03 standard deviation.
We perform experiments using the default dataset, CIFAR-10.

The summary of training behavior using the default setup with different values of β is presented
in Figure 16. The first graph tracks training progress by measuring the difference between average
fθ(x

+) and fθ(x
–) for each batch. We aggregate 200 consecutive values, representing them with

their minimum and maximum (the transparent regions), and use the center of gravity of these points
in the graph11 as the representative value. The other graphs in Figure 16 display the evolution of
Inception Score (IS) (Salimans et al., 2016), Fréchet Inception Distance (FID) (Heusel et al., 2017),
and classification accuracy on the test set throughout training. IS and FID are calculated based on
the content of the replay buffer. As shown in the graphs, JEM training cannot be completed with the
standard loss (β = 0) due to an abrupt divergence around epoch 55, associated with a sudden drop in
the quality of generated images, as illustrated in Figure 17.

9In some cases, divergence occurred earlier than detected, but the timing is not critical for these experiments.
10Nijkamp et al. (2019) used 100 SGLD steps.
11We use the center of gravity instead of the mean value to account for the symmetrical logarithmic scale of

the vertical axis.
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We can prevent this divergence by using a suitable β. We discovered that the number of malformed
examples generated by the SGLD procedure increases as training progresses. This is not apparent for
models trained with β = 0, as the training instabilities prevent us from observing this. In Figure 18,
we provide images generated from the model trained with β = 0.000025 at different stages of training.
Note that the use of these negative examples did not lead to training divergence, and there was a phase
in training where the number of malformed examples temporarily dropped to zero. As β increases,
the proportion of generated examples that are still early in their MCMC chain also increases. These
examples resemble noise and exhibit low likelihood values, as illustrated in Figure 19. In terms of the
best IS and FID achieved during training, increasing β reduces performance. Since the reported IS
and FID are based on the content of the replay buffer, negative examples in the buffer that are early in
their MCMC chain will cause overly pessimistic estimates for larger β. However, based on visual
comparisons, there is still a decrease in the quality of images as β increases, although the difference
might not be as large as IS and FID suggest.

The test classification accuracy fluctuates around similar values, with minimal improvements as β
increases. Note that the learning rate is multiplied by 0.3 in epochs 160 and 180, which accounts
for the behavioral changes around these epochs. We only experiment with very small values of
β. For larger values, we observed a significant gap between fθ(x

+) and fθ(x
–), which hindered

effective training of the generative part of the model, as SGLD failed to produce good x–, similar to
the experiments discussed in Section 2. For the reported values of β, there should be no noticeable
effect on the SGLD procedure12 since 1− β ≈ 1, indicating that our method effectively impacts only
the loss computation.
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Figure 16: Training progress for the JEM in scenario 1 (default setup). We report the evolution of the
difference between the mean of the positive and negative energies, test accuracy, IS, and FID.

To demonstrate that the observed behavior is not confined to the default setup, we introduce additional
configurations by adjusting hyperparameters related to EBM training. Our goal is not to find the
configuration with the best performance but to primarily assess the training stability under various

12Assuming the practical SGLD procedure approximates the intended theoretical distribution.
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Epoch 54, Iteration 437 Epoch 54, Iteration 537

Figure 17: The default setup of JEM training with β = 0 results in a sudden change. The difference
in the quality of images used as negative examples is shown 100 iterations apart.

conditions. Each configuration is referred to as a “scenario”, with the default setting corresponding to
the first scenario. For clarity, we number them as follows:

1. Default setup of JEM
2. Reducing the number of SGLD steps
3. Reducing the number of negative examples
4. Increasing the output scaling factor to 40,000
5. Decreasing the output scaling factor to 10,000
6. Increasing the SGLD step size α by a factor of 4
7. Decreasing the SGLD step size α by a factor of 4

The performance of the default setup is also summarized in the first line of Table 2 where we compare
the best performance reached with β = 0 and β ̸= 0. We report the test accuracy reached in the
epoch with the best validation set performance and the best value reached throughout training for IS
and FID with β reported in Figure 16.

Table 2: Comparison of the baseline system performance with β = 0 and the best system with β ̸= 0
for each metric and its corresponding β value. We report β∗ = β/o rounded to 1 decimal place for
better readability, where o is the output scaling factor.

# Setup β = 0 Best Performance β ̸= 0

Modification ACC↑ IS↑ FID↓ ACC↑ IS↑ FID↓ β∗
ACC β∗

IS β∗
FID

1 The default setup 90.5% 7.7 39.6 91.7% 8.6 38.9 4.0 0.5 0.5
2 SGLD steps (20→ 5) 10.0% 1.8 439.6 88.3% 7.9 48.0 2.0 0.5 0.5
3 Neg. examples (64→ 8) 89.3% 7.6 41.9 91.1% 7.9 42.0 2.0 0.5 0.5
4 Output scale (2×) 91.0% 7.4 41.7 92.8% 7.8 41.9 10.0 0.5 0.5
5 Output scale (0.5×) 87.6% 7.4 43.2 90.2% 8.2 41.8 2.0 0.5 0.5
6 SGLD step size (4×) 36.2% 2.9 154.1 92.4% 8.0 41.5 4.0 0.5 0.5
7 SGLD step size (0.25×) 86.5% 7.7 41.9 88.0% 8.1 42.7 1.0 0.1 0.1

In scenario 2, we reduce the number of SGLD steps from 20 to 5, with results summarized in
Figure 20. The training instabilities for β = 0 were even more severe, leading to divergence in
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Epoch 91 Epoch 136

Epoch 151 Epoch 182

Epoch 190 Epoch 199

Figure 18: Generated images using the default JEM setup with β = 0.000025. Some images start
being malformed (epoch 91) but the divergence is avoided. No malformed images are seen in epoch
151, although they reappear later. The epoch is indicated below the respective plot.
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Epoch 30 Epoch 100

Epoch 150 Epoch 199

Figure 19: Quality of generated images using the default setup of JEM with β = 0.0005. As β
increases, no malformed images are presented, but some generated images appear to be still early in
the MCMC chain. This effect gradually increases with increasing β. The epoch is indicated below
the respective plot.
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the first epoch. In scenario 3, we reduce the number of negative examples M from 64 to 8, as an
alternative way to limit computation. The behavior shown in Figure 21 leads to the same conclusions
as in the default scenario.

To examine the effect of the output scaling factor set to 20,000, we test scenario 4 and scenario 5,
adjusting it to 40,000 and 10,000, respectively. The results, shown in Figure 22 and Figure 23, both
show earlier divergence for β = 0. Notably, in Figure 22, for β = 0.00005, the quality of negative
examples begins to decrease rapidly around epoch 100, but the model maintains discriminative
performance for over 30 epochs before eventually diverging. This also describes the behavior as β
decreases further compared to the default scenario. For small values of β, divergence is delayed but
not eliminated, and as β increases, the divergence becomes more gradual.

Finally, we adjust the SGLD step size from α = 0.0001 to α = 0.0004 and α = 0.000025 in
scenario 6 and scenario 7, respectively. This effectively scales the output of fθ(x) by a factor of 4
and increases the standard deviation of the noise added in each SGLD step by a factor of 2. Figure 25
illustrates the effect of reducing the step size. For the increased step size, we also adjusted the
output scaling factor from 20, 000 to 5, 000 to counteract the implicit scaling of fθ(x) and reduced
the learning rate by a factor of 4. Despite these adjustments, training with β = 0 still resulted in
divergence by the third epoch, as shown in Figure 24.
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Figure 20: Training progress for the JEM in scenario 2, where 20 SGLD steps are reduced to 5. We
report the evolution of the difference between the mean of the positive and negative energies, test
accuracy, IS, and FID.

Based on the results in Table 2, we observe that in all scenarios, except for the default setup (where
the second-largest β achieved the highest classification accuracy), the largest β consistently resulted
in the best accuracy. In contrast, the smallest non-zero β produced the best IS and FID scores among
models trained with β ̸= 0. This suggests that experimenting with even smaller β could further
improve FID, although this is not our primary goal. Notably, the test accuracy with β = 0 was the
lowest across all scenarios. The results also indicate that increasing the output scaling factor improves
test accuracy, even in the β = 0 setting.

The same approach is applied in JEM, where during SGLD sampling to maximize log pθ(x), the neg-
ative energy is scaled: fθ(x) = 20000 log

∑
y e

hθ(x)[y] is used instead of fθ(x) = log
∑

y e
hθ(x)[y].
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Figure 21: Training progress for the JEM in scenario 3, where 64 negative examples per update are
reduced to 8. We report the evolution of the difference between the mean of the positive and negative
energies, test accuracy, IS, and FID.
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Figure 22: Training progress for the JEM in scenario 4, where the output scaling factor is set to
40,000 instead of the default 20,000. We report the evolution of the difference between the mean of
the positive and negative energies, test accuracy, IS, and FID.
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Figure 23: Training progress for the JEM in scenario 5, where the output scaling factor is set to
10,000 instead of the default 20,000. We report the evolution of the difference between the mean of
the positive and negative energies, test accuracy, IS, and FID.
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Figure 24: Training progress for the JEM in scenario 6, where SGLD step size α is scaled up by a
factor of 4. We report the evolution of the difference between the mean of the positive and negative
energies, test accuracy, IS, and FID.
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Figure 25: Training progress for the JEM in scenario 7, where SGLD step size α is scaled down by a
factor of 4. We report the evolution of the difference between the mean of the positive and negative
energies, test accuracy, IS, and FID.

M.2 PRACTICAL IMPLEMENTATION

In Appendix G, we explain that, in practice, the amount of noise used in the SGLD procedure
is reduced, which has minimal impact on EBM training. This change corresponds to a different
parametrization of fθ(x), with pθ(x) ∝ eo f(x). We denote o as the output scaling factor, typically
set to 20,000. The introduction of o has a more significant effect in the context of JEM. Consequently,
the SGLD procedure generates samples based on the negative energy fθ(x) = o log

∑
y e

hθ(x)[y],
instead of fθ(x) = log

∑
y e

hθ(x)[y]. The corresponding objective for log pθ(x) then becomes

∇θEpd(x) [log pθ(x)] ≈
1

N

N∑

i

∇θ o log
∑

y

ehθ(x
+
i)[y] − 1

M

M∑

j

∇θ o log
∑

y

ehθ(x–
j)[y]. (40)

However, the JEM implementation omits scaling by o = 20, 000. The introduction of o has two
consequences. First, the reduction in SGLD noise alters the negative energy of pθ(x, y) from
hθ (x) [y] to (o−1) log∑y e

hθ(x)[y] + hθ (x) [y]. This can be derived from

log pθ(x) + log pθ(y | x) = o log
∑

y

ehθ(x)[y] + hθ (x) [y]− log
∑

y

ehθ(x)[y] + c, (41)

where c is a constant independent of x and y. Second, instead of maximizing log pθ(x, y), the
objective becomes 1/o log pθ(x) + log pθ(y | x).
In our first experiment, we attempted to remove the scaling factor of 20,000 by setting it to o = 1.
However, this caused ∇xfθ(x) to become too small, leading to ineffective movement during the
SGLD procedure. Similarly, applying the scaling factor of 20,000 to hθ (x) [y] instead of fθ(x),
which would only represent a different parameterization of JEM, resulted in poor discriminative
performance. Intuitively, the SGLD procedure requires rapid changes in fθ(x), while maintaining
uncertainty in pθ(y | x). Using the default setup with o = 20, 000 achieves this balance. Although
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all experiments were conducted with small values of β, it is important to recognize that when
β = 1/20000 = 0.00005, the reweighting becomes proportional to

∑
y e

hθ(x)[y].

The proposed method is incorporated into JEM by introducing the following modifications:

• The negative energy in the SGLD procedure is scaled by 1 − β, i.e., we use fθ(x) =
(1− β) o log

∑
y e

hθ(x)[y]

• The calculation of the log pθ(x) loss is based on Equation 8 rather than Equation 3.
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