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Abstract: How can we imbue robots with the ability to manipulate objects pre-
cisely but also to reason about them in terms of abstract concepts? Recent works
in manipulation have shown that end-to-end networks can learn dexterous skills
that require precise spatial reasoning, but these methods often fail to generalize
to new goals or quickly learn transferable concepts across tasks. In parallel, there
has been great progress in learning generalizable semantic representations for vi-
sion and language by training on large-scale internet data, however these repre-
sentations lack the spatial understanding necessary for fine-grained manipulation.
To this end, we propose a framework that combines the best of both worlds: a
two-stream architecture with semantic and spatial pathways for vision-based ma-
nipulation. Specifically, we present CLIPORT, a language-conditioned imitation-
learning agent that combines the broad semantic understanding (what) of CLIP [1]
with the spatial precision (where) of Transporter [2]. Our end-to-end framework
is capable of solving a variety of language-specified tabletop tasks from packing
unseen objects to folding cloths, all without any explicit representations of object
poses, instance segmentations, memory, symbolic states, or syntactic structures.
Experiments in simulated and real-world settings show that our approach is data
efficient in few-shot settings and generalizes effectively to seen and unseen se-
mantic concepts. We even learn one multi-task policy for 10 simulated and 9
real-world tasks that is better or comparable to single-task policies.

1 Introduction
Ask a person to “get a scoop of coffee beans” or “fold the cloth in half” and they can naturally take
concepts like scoop or fold and ground them in concrete physical actions within an accuracy of a
few centimeters. We humans do this intuitively, without explicit geometric or kinematic models of
coffee beans or cloths. Moreover, we can generalize to a broad range of tasks and concepts from a
minimal set of examples on what needs to be achieved. How can we imbue robots with this ability
to efficiently ground abstract semantic concepts in precise spatial reasoning?

Recently, a number of end-to-end frameworks have been proposed for vision-based manipulation
[2, 3, 4, 5]. While these methods do not use any explicit representations of object poses, instance seg-
mentations, or symbolic states, they can only replicate demonstrations with a narrow range of vari-
ability and have no notion of the semantics underlying the tasks. Switching from packing red pens
to blue pens involves collecting a new training set [2], or if using goal-conditioned policies, involves
the user providing a goal-image from the scene [5, 6]. In realistic human-robot interaction settings,
collecting additional demonstrations or providing goal-images is often infeasible and unscalable. A
natural solution to both these problems is to condition policies with natural language. Language pro-
vides an intuitive interface for specifying goals and also for implicitly transferring concepts across
tasks. While language-grounding for manipulation has been explored in the past [7, 8, 9, 10], these
pipelines are limited by object-centric representations that cannot handle granular or deformable ob-
jects and often do not reason about perception and action in an integrated manner. In parallel, there
has been great progress in learning models for visual representations [11, 12] and aligning represen-
tations of vision and language [13, 14, 15] by training on large-scale internet data. However, these
models lack a fine-grained understanding on how to manipulate objects, i.e. physical affordances.
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“align the rope from back 
right corner to back left corner”

“pack the yoshi !gure 
in the brown box”

“pack all the blue and black sneaker 
objects in the brown box”

“put the brown block 
on the blue and red blocks”

“push the pile of purple blocks 
into the green square”

“move the red ring 
to the middle of the stand”

“pack the hexagon 
in the brown box”

“put the gray letter E in the 
left letter E shape hole”

“put the blue blocks 
in a green bowl”

“pack all the yellow and blue 
blocks in the brown box”

“pick all the cherries
and put them in the box”

“pack the scissors 
in the brown box”

“move the rook 
one block forward”

“fold the cloth 
in half”

“sweep the beans 
into the blue zone”
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Figure 1. Language-Conditioned Manipulation Tasks: CLIPORT is a broad framework applicable to a wide range of language-conditioned
manipulation tasks in tabletop settings. We conduct large-scale experiments in Ravens [2] on 10 simulated tasks (a-j) with 1000s of unique
instances per task. See Appendix A for challenges pertaining to each task. CLIPORT can even learn one multi-task model for all 10 tasks that
achieves better or comparable performance to single-task models. Similarly, we demonstrate our approach on a Franka Panda manipulator with
one multi-task model for 9 real-world tasks (k-o; only 5 shown) trained with just 179 image-action pairs.

To this end, we propose the first framework that combines the best of both worlds: end-to-end
learning for fine-grained manipulation with the multi-goal and multi-task generalization capabilities
of vision-language grounding systems. We introduce a two-stream architecture for manipulation
with semantic and spatial pathways broadly inspired by (or vaguely analogous to) the two-stream
hypothesis in cognitive psychology [16, 17, 18]. Specifically, we present CLIPORT, a language-
conditioned imitation-learning agent that integrates the semantic understanding (what) of CLIP [1]
with the spatial precision (where) of Transporter [2]. Transporter has been applied to a wide range
of rearragement tasks from industrial packing [2] to manipulating deformable objects [6]. The key
insight of the approach is formulating tabletop manipulation as a series of pick-and-place affordance
predictions, where the objective is to detect actions rather than detect objects and then learn a policy.
This action-centric approach to perception [19] is data efficient and effective at circumventing the
need for explicit “objectness” in learnt representations. However, Transporter is a tabula rasa system
that learns all visual representations from scratch and so every new goal or task requires collecting
a new set of demonstrations. To address this problem, we bake in a strong semantic prior while
learning policies. We condition our semantic stream with visual and language-goal features from
a pre-trained CLIP model [1]. Since CLIP is pre-trained to align image and language features
from millions of image-caption pairs from the internet, it provides a powerful prior for grounding
semantic concepts that are common across tasks like categories, parts, shapes, colors, texts, and
other visual attributes, all without a top-down pipeline that requires bounding boxes or instance
segmentations [13, 14, 15, 20]. This allows us to formulate tabletop rearrangement as a series of
language-conditioned affordance predictions, a predominantly vision-based inference problem, and
thus benefit from the strengths of data-driven paradigms like scale and generalization.

To study these benefits, we conduct large-scale experiments in the Ravens [2] framework with a
simulated suction-gripper robot. We propose 10 language-conditioned tasks with 1000s of unique
instances per task that require both semantic and spatial reasoning (see Figure 1 a-j). CLIPORT is
not only effective at solving these tasks, but surprisingly, it can even learn a multi-task model for
all 10 tasks that achieves better or comparable performance to single-task models. Further, our
evaluations indicate that our multi-task model can effectively transfer attributes like “pink block”
across tasks, having never seen pink blocks or the word ‘pink’ in the context of the evaluation task.
We also demonstrate our approach on a Franka Panda manipulator with one multi-task model for 9
real-world tasks trained with just 179 image-action pairs (see Figure 1 k-o).
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In summary, our contributions are as follows:
• An extended benchmark of language-grounding tasks for manipulation in Ravens [2].
• Two-stream architecture for using internet pre-trained vision-language models for condi-

tioning precise manipulation policies with language goals.
• Empirical results on a broad range of manipulation tasks, including multi-task models,

validated with real-robot experiments.
The benchmark, code, and pre-trained models are available at: cliport.github.io.

2 Related Work
Vision-based Manipulation. Traditionally, perception for manipulation has centered around object
detectors, segmentors, and pose estimators [21, 22, 23, 24, 25, 26]. These methods cannot handle
deformable objects, granular media, or generalize to unseen objects without object-specific training
data. Alternatively, dense descriptors [27, 28, 29] and keypoint representations [30, 31, 32] forgo
segmentation and pose representations, but do not reason about sequential actions and struggle to
represent scenes with variable numbers of objects. On the other hand, end-to-end perception-to-
action models can learn precise sequential policies [2, 4, 6, 33, 34, 35], but these methods have lim-
ited understanding of semantic concepts and rely on goal-images to condition policies. In contrast,
Yen-Chen et. al [36] showed that pre-training on semantic tasks like classification and segmentation
helps in improving efficiency and generalization of grasping predictions.

Semantic Models. With the advent of large-scale models [37, 38, 39], a number of methods for
learning joint vision and language representations have been proposed [13, 14, 15, 20, 40]. How-
ever, these methods are restricted to bounding boxes or instance segmentations, which make them
inapplicable for detecting things like piles of coffee beans or squares on a chessboard. Alternatively,
works in contrastive learning forgo top-down object-detection and learn continuous representations
by pre-training on unlabeled data [11, 12]. Recently, CLIP [1] applied a similar approach to align
vision and language representations by training on millions of image-caption pairs from the internet.

Language Grounding for Robotics. Several works have proposed systems for instructing robots
with natural language [7, 8, 9, 10, 41, 42, 43, 44, 45, 46, 47]. However, these methods use dis-
entangled pipelines for perception and action with the language primarily being used to guide the
perception. As such, these pipelines lack the spatial precision necessary for tasks like folding cloths.
Recently, Lynch et. al [48] proposed an end-to-end system for grounding language in continuous
control, but it requires several hours of human teleoperation data for a single simulated desk setting.

Two-Stream Architectures are prevalent in action-recognition networks [49, 50, 51] and audio-
recognition systems [52, 53]. In robotics, Zeng et. al [54] and Jang et. al [55] have proposed two-
stream pipelines for affordance predictions of novel objects. The former requires goal-images and
the latter is restricted to one-step grasps with single-category goals. In contrast, our framework
provides a rich and intuitive interface with composable language commands for sequential tasks.

3 CLIPORT

CLIPORT is an imitation-learning agent based on four key principles: (1) Manipulation through a
two-step primitive where each action involves a start and final end-effector pose. (2) Visual rep-
resentations of actions that are equivariant to translations and rotations [56, 57]. (3) Two separate
pathways for semantic and spatial information. (4) Language-conditioned policies for specifying
goals and also transferring concepts across tasks. Combining (1) and (2) from Transporter with (3)
and (4) allows us to achieve generalizable policies that go beyond just imitating demonstrations.

Section 3.1 describes the problem formulation, gives an overview of Transporter [2], and presents
our language-conditioned model. Section 3.2 provides details on the training approach.

3.1 Language-Conditioned Manipulation

We consider the problem of learning a goal-conditioned policy ⇡ that outputs actions at given input
�t = (ot, lt) consisting of a visual observation ot and an English language instruction lt:

⇡(�t) = ⇡(ot, lt) ! at = (Tpick, Tplace) 2 A (1)
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Figure 2. CLIPORT Two-Stream Architecture. An overview of the semantic and spatial streams. The semantic stream uses a frozen
CLIP ResNet50 [1] to encode RGB input, and its decoder layers are conditioned with tiled language features from the CLIP sentence encoder.
The spatial stream encodes RGB-D input, and its decoder layers are laterally fused with the semantic stream. The final output is a map
of dense pixelwise features that is used for pick or place affordance predictions. This same two-stream architecture is used in all 3 Fully-
Convolutional-Networks fpick,�query, and �key with fpick is used to predict pick actions, and �query and �key are used to predict place actions.
See Appendix C for the exact architecture.

The actions a = (Tpick, Tplace) specify the end-effector pose for picking and placing, respectively.
We consider tabletop tasks where Tpick, Tplace 2 SE(2). The visual observation ot is a top-down
orthographic RGB-D reconstruction of the scene where each pixel corresponds to a point in 3D
space. The language instruction lt either specifies step-by-step instructions e.g. “pack the scissors”

! “pack the purple tape” ! etc., or a single goal description for the whole task e.g “pack all the

blue and yellow boxes in the brown box”. See Figure 4 for specific examples.

We assume access to a dataset D = {⇣1, ⇣2, . . . , ⇣n} of n expert demonstrations with associated
discrete-time input-action pairs ⇣i = {(o1, l1,a1), (o2, l2,a2), . . .} where at = (Tpick, Tplace) corre-
sponds to expert pick-and-place coordinates at timestep t. These expert demonstrations are used to
supervise the policy ⇡.

Transporter for Pick-and-Place. The policy ⇡ is trained with Transporter [2] to perform spatial
manipulation. The model first (i) attends to a local region to decide where to pick, then (ii) computes
a placement location by finding the best match through cross-correlation of deep visual features.

Following Transporter [2, 6], the policy ⇡ is composed of two action-value modules (Q-functions):
The pick module Qpick decides where to pick, and conditioned on this pick action the place module
Qplace decides where to place. These modules are implemented as Fully-Convolutional-Networks
(FCNs) that are translationally equivariant by design. As we will describe in more detail below,
we extend these networks to two-stream architectures that can handle language input. The pick
FCN fpick takes input �t = (ot, lt) and outputs a dense pixelwise prediction Qpick 2 RH⇥W of
action-values, where are used to predict the pick action Tpick:

Tpick = argmax
(u,v)

Qpick((u, v)|�t) (2)

Since ot is an orthographic heightmap, each pixel location (u, v) can be mapped to a 3D picking
location using the known camera calibration. fpick is trained in a supervised manner to predict the
pick action Tpick that imitates the expert demonstration with the specified language instruction at
timestep t.

The second FCN �query takes in �t[Tpick], which is a c ⇥ c crop of ot centered at Tpick along with
the language instruction lt, and outputs a query feature embedding of shape Rc⇥c⇥d. The third FCN
�key consumes the full input �t and outputs a key feature embedding of shape RH⇥W⇥d. The place
action-values Qplace are then computed by cross-correlating the query and key features:

Qplace(�⌧ |�t, Tpick) =
�
�query(�t[Tpick]) ⇤ �key(�t)

�
[�⌧ ] (3)
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where �⌧ 2 SE(2) represents a potential placement pose. Since ot is an orthographic heightmap,
rotations in the placement pose �⌧ can be captured by stacking k discrete angle rotations of the crop
before passing it through the query network �query. Then Tplace = argmax�⌧

Qplace(�⌧ |�t, Tpick),
where the place module is trained to imitate the placements in the expert demonstrations. For all
models, we use c = 64, k = 36 and d = 3. As in Transporter [2, 6], our framework can be
extended to handle any motion primitive like pushing, sliding, etc. that can be parameterized by two
end-effector poses at each timestep. For more details, we refer the reader to the original paper [2].

Two-Stream Architecture. In CLIPORT, we extend the network architecture of all three FCNs
fpick,�query and �key from Transporter [2] to allow for language input and reasoning about high-level
semantic concepts. We extend the FCNs to two-pathways: semantic (ventral) and spatial (dorsal).
The semantic stream is conditioned with language features at the bottleneck and fused with inter-
mediate features from the spatial stream. See Figure 2 for an overview of the architecture.

The spatial stream is identical to the ResNet architecture in Transporter – a tabula rasa network that
takes in RGB-D input ot and outputs dense features through an hourglass encoder-decoder model.
The semantic stream uses a frozen pre-trained CLIP ResNet50 [1] to encode the RGB input2 õt

up until the penultimate layer õt ! v(0)
t

: R7⇥7⇥2048, and then introduces decoding layers that
upsample the feature tensors to mimic the spatial stream v(l�1)

t
! v(l)

t
: Rh⇥w⇥C at each layer l.

The language instruction lt is encoded with CLIP’s Transformer-based sentence encoder to produce
a goal encoding lt ! gt : R1024. This goal encoding gt is downsampled with fully-connected layers
to match the channel dimension C and tiled to match the spatial dimensions of the decoder features
such that gt ! g(l)

t
: Rh⇥w⇥C . The decoder features are then conditioned with the tiled goal

features through an element-wise product v(l)
t

� g(l)
t

(Hadamard product). Since CLIP was trained
with contrastive loss on the dot-product alignment between pooled image features and language
encodings, the element-wise product allows us to use this alignment while the tiling preserves the
spatial dimensions of the visual features. This language conditioning is repeated for three subsequent
layers after the bottleneck inspired by LingUNet [58]. We also add skip connections to these layers
from the CLIP ResNet50 encoder to utilize different levels of semantic information from shapes to
parts to object-level concepts [59]. Finally, following existing two-stream architectures in video-
action recognition [51], we add lateral connections from the spatial stream to the semantic stream.
These connections involve concatenating two feature tensors and applying 1 ⇥ 1 conv to reduce
the channel dimension [v(l)

t
� g(l)

t
;d(l)

t
] : Rh⇥w⇥Cv+Cd ! Rh⇥w⇥Cv , where v(l)

t
and d(l)

t
are

the semantic and spatial tensors at layer l, respectively. For the final fusion of dense features,
addition for fpick and 1 ⇥ 1 conv fusion for �query and �key worked the best empirically. See
Appendix C for details on the exact architecture.

3.2 Implementation Details

Training from demonstrations. Similar to Transporter [2] we train CLIPORT through imitation
learning from a set of expert demonstrations D = {⇣1, ⇣2, . . . , ⇣n} consisting of discrete-time input-
action pairs ⇣i = {(o1, l1,a1), (o2, l2,a2), . . .}. During training, we randomly sample an input-
action pair from the dataset and supervise the model end-to-end with one-hot pixel encodings of
demonstration actions Ypick : RH⇥W⇥k and Yplace : RH⇥W⇥k with k discrete rotations. In simu-
lated experiments with the suction-gripper, we use k = 1 for pick actions and k = 36 for place
actions. The model is trained with cross-entropy loss: L = �EYpick [logVpick] � EYplace [logVplace]
where Vpick = softmax(Qpick((u, v)|�t)) and Vplace = softmax(Qplace((u0, v0,!0)|�t, Tpick)). Com-
pared to the original Transporter models that were trained for 40K iterations, we train our models for
200K iterations (with data augmentation; see Appendix E) to account for additional semantic vari-
ation in tasks – randomized colors, shapes, objects. All models are trained on a single commodity
GPU for 2 days with a batch size of 1.

Training multi-task models. Multi-task training is nearly identical to single-task training except
for the sampling of training data. First, we randomly sample a task, and then select a random input-
action pair from that task in the dataset. Using this strategy, all tasks are equally likely to be sampled
but longer horizon tasks are less likely to reach full coverage of input-action pairs available in the
dataset. To compensate for this, we train all multi-task models 3⇥ longer for 600K iterations or 6
GPU days.

2We cannot use depth information with CLIP since it was trained with RGB-only image-caption pairs from
the internet.
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4 Results

We perform experiments both in simulation and hardware aimed at answering the following ques-
tions: 1) How effective is the language-conditioned two-stream architecture for fine-grained manip-
ulation compared to one-stream alternatives and other simpler baselines? 2) Is it possible to train a
multi-task model for all tasks, and how well does it perform and generalize? 3) How well do these
models generalize to seen and unseen semantic attributes like colors, shapes, and object categories?

4.1 Simulation Setup

Environment. All simulated experiments are based on a Universal Robot UR5e with a suction
gripper. The setup provides a systematic and reproducible environment for evaluation, especially for
benchmarking the ability to ground semantic concepts like colors and object categories. The input
observation is a top-down RGB-D reconstruction from 3 cameras positioned around a rectangular
table: one in the front, one on the left shoulder, and one on the right shoulder, all pointing towards
the center. Each camera has a resolution of 640⇥ 480 and is noiseless.

Language-Conditioned Manipulation Tasks. We extend the Ravens benchmark [2] set in Py-
Bullet [60] with 10 language-conditioned manipulation tasks. See Figure 1 for examples and Ta-
ble 3 for challenges associated with each task. Each task instance is constructed by sampling a
set of objects and attributes: poses, colors, sizes, and object categories. 8 of the 10 tasks have
two variants, denoted by seen and unseen, depending on whether the task has unseen attributes (e.g.
color) at test time. For colors: Tseen colors = {yellow, brown, gray, cyan} and Tunseen colors =
{orange, purple, pink, white} with 3 overlapping colors Tall = {red, green, blue}
used in both the seen and unseen spilts. For packing objects, we use 56 tabletop objects from the
Google Scanned Objects dataset [61] and split them into 37 seen and 19 unseen objects. The lan-
guage instructions are constructed from templates for simulated experiments, and human-annotated
for real-world experiments. For more details about individual tasks, see Appendix A.

Evaluation Metric. We adopt the 0 (fail) to 100 (success) scores proposed in the Ravens bench-
mark [2]. The score assigns partial credit based on the task, e.g. 3/5 ) 60.0 for packing 3 out of
5 objects specified in the instructions, or 30/56 ) 53.6 for pushing 30 out of 56 particles into the
correct zone. See Appendix A for the specific evaluation metric used in each task. During an evalua-
tion episode, an agent keeps interacting with the scene until an oracle indicates task-completion. We
report scores on 100 evaluation runs for agents trained with n = 1, 10, 100, 1000 demonstrations.

4.2 Simulation Results

Figure 3. Average scores across seen and unseen splits for all tasks in Table 1.

Table 1 presents results from
our large-scale experiments in
Ravens [2] and Figure 3 sum-
marizes these results with aver-
age scores across seen and unseen
splits.

Baseline Methods. To study
the effectiveness of our two-stream architecture, we broadly compare against two baselines:
Transporter-only and CLIP-only. Transporter-only is the original Transporter [2], or equivalently,
the spatial stream of CLIPORT with RGB-D input. Although Transporter-only does not receive any
language goals, it shows what can be achieved through chance by exploiting the most likely actions
seen during training. On the other hand, CLIP-only is just the semantic stream of CLIPORT with
RGB and language input. CLIP-only shows what can be achieved by fine-tuning a pre-trained se-
mantic model for manipulation without spatial information, particularly depth.

Two-Stream Performance. Figure 3 (seen) captures the essence of our main claims. The perfor-
mance of Transporter-only saturates at 50% since it doesn’t use the language instruction to ground
the desired goal. CLIP-only does have a goal, but lacks the spatial precision to go the last mile and
thus saturates at 76%. Only CLIPORT (single) achieves more than 90%, which indicates that both
the semantic and spatial streams are crucial for fine-grained manipulation. Further, CLIPORT (sin-
gle) achieves 86% on most tasks with just 100 demonstrations, showcasing its efficiency.

In addition to these baselines, we present various ablations and alternative one-stream and two-
stream models in Appendix F. To briefly summarize these results, CLIP is essential for few-shot
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packing-box-pairs
seen-colors

packing-box-pairs
unseen-colors

packing-seen-google
objects-seq

packing-unseen-google
objects-seq

packing-seen-google
objects-group

packing-unseen-google
objects-group

Method 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter-only [2] 44.2 55.2 54.2 52.4 34.6 48.7 47.2 54.1 26.2 39.7 45.4 46.3 19.9 29.8 28.7 37.3 60.0 54.3 61.5 59.9 46.2 54.7 49.8 52.0
CLIP-only 38.6 69.7 88.5 87.1 33.0 65.5 68.8 61.2 29.1 67.9 89.3 95.8 37.1 49.4 60.4 57.8 52.5 62.0 89.6 92.7 43.4 65.9 73.1 70.0
RN50-BERT 36.2 64.0 94.7 90.3 31.4 52.7 65.6 72.1 32.9 48.4 87.9 94.0 29.3 48.5 48.3 56.1 46.4 52.9 76.5 86.4 43.2 52.0 66.3 73.7
CLIPORT (single) 51.6 82.9 92.7 98.2 45.6 65.3 68.6 71.5 14.8 59.5 86.8 96.2 27.2 50.0 65.5 71.9 52.7 67.0 84.1 94.0 61.5 66.2 78.4 81.5
CLIPORT (multi) 66.8 88.6 94.1 96.6 59.0 69.7 76.2 71.4 41.6 78.4 85.0 84.4 40.7 51.1 65.8 70.3 71.3 84.6 89.6 88.3 68.4 69.6 78.4 80.3
CLIPORT (multi-attr) – – – – 46.2 72.0 86.2 80.3 – – – – 35.4 45.1 78.9 87.4 – – – – 48.6 69.3 84.8 89.1

stack-block-pyramid
seq-seen-colors

stack-block-pyramid
seq-unseen-colors

separating-piles
seen-colors

separating-piles
unseen-colors

towers-of-hanoi
seq-seen-colors

towers-of-hanoi
seq-unseen-colors

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter-only [2] 4.5 2.3 5.2 4.5 3.0 4.0 2.3 5.8 42.7 52.3 42.0 48.4 41.2 49.2 44.7 52.3 25.4 67.9 98.0 99.9 24.3 44.6 71.7 80.7
CLIP-only 6.3 28.7 55.7 54.8 2.0 12.2 18.3 19.5 43.5 55.0 84.9 90.2 59.9 49.6 73.0 71.0 9.4 52.6 88.6 45.3 24.7 47.0 67.0 58.0
RN50-BERT 5.3 35.0 89.0 97.5 6.2 12.2 21.5 30.7 31.8 47.8 46.5 46.5 33.4 44.4 41.3 44.9 28.0 66.1 91.3 92.1 17.4 75.1 85.3 89.3
CLIPORT (single) 28.3 64.7 93.3 98.8 13.7 24.3 31.2 41.3 54.5 59.5 93.1 98.0 47.2 51.0 76.6 75.2 59.4 92.9 97.4 100 56.1 89.7 95.9 99.4
CLIPORT (multi) 33.5 75.3 96.8 96.5 23.3 26.8 31.7 22.2 48.9 72.4 90.3 89.0 56.6 62.6 64.9 62.8 61.6 96.3 98.7 98.1 60.1 65.6 76.7 68.7
CLIPORT (multi-attr) – – – – 15.5 51.5 59.3 79.8 – – – – 49.9 51.8 48.2 59.8 – – – – 56.7 78.0 88.3 96.9

align-rope packing-unseen-shapes assembling-kits-seq
seen-colors

assembling-kits-seq
unseen-colors

put-blocks-in-bowls
seen-colors

put-blocks-in-bowls
unseen-colors

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter-only [2] 6.9 30.6 33.1 51.5 16.0 20.0 22.0 22.0 5.8 11.6 28.6 29.6 7.8 17.6 25.6 28.4 16.8 33.3 62.7 64.7 11.7 17.2 14.8 18.7
CLIP-only 13.4 48.7 70.4 70.7 13.0 28.0 44.0 50.0 0.8 9.2 19.8 23.0 2.0 4.6 10.8 19.8 23.5 60.2 93.5 97.7 11.2 34.2 33.2 44.5
RN50-BERT 3.1 25.0 63.8 57.1 19.0 25.0 32.0 44.0 2.2 5.6 11.6 21.8 1.6 6.4 10.4 18.4 13.8 44.5 81.2 91.8 16.2 23.0 30.3 23.8
CLIPORT (single) 20.1 77.4 85.6 95.4 21.0 26.0 40.0 37.0 12.2 17.8 47.0 66.6 16.2 18.0 35.4 34.8 23.5 68.3 92.5 100 18.0 35.3 37.3 25.0
CLIPORT (multi) 19.6 49.3 82.4 74.9 25.0 35.0 37.0 31.0 11.4 34.8 46.2 52.4 7.8 21.6 29.0 25.4 54.0 90.2 99.5 100 32.0 48.8 55.3 45.8
CLIPORT (multi-attr) – – – – – – – – – – – – 7.6 10.4 43.8 34.6 – – – – 23.0 41.8 66.5 75.7

Table 1. Language-Conditioned Test Results. Task success scores (mean %) from 100 evaluation instances vs. # of training demonstrations
(1, 10, 100, or 1000). The challenges pertaining to each task are described in Appendix A. CLIPORT (single) models are trained on seen splits,
and evaluated on both seen and unseen splits. CLIPORT (multi) models are trained on seen splits of all 10 tasks with 1T, 10T, 100T, and
1000T demonstrations where T = 10. CLIPORT (multi-attr) indicate CLIPORT (multi) models trained on seen-and-unseen splits from all
tasks except for that one particular heldout task, for which it is trained only the seen split. See Figure 3 for an overview with average scores.

learning (i.e. n � 10) in lieu of semantic stream alternatives like ImageNet-trained ResNet50 [62]
with BERT [38]. Image-goal models outperform CLIPORT (single) in packing Google objects, but
this is only because they do not have to solve the language-grounding problem.

Multi-Task Performance. In realistic scenarios, we want the robot to be capable of any task, not
just one task. We investigate this through CLIPORT (multi) in Table 1 with one multi-task model
trained on all 10 tasks. CLIPORT (multi) models are trained only on seen-splits of tasks, so an
unseen attribute like ‘pink’ is consistent throughout single and multi-task settings. Surprisingly,
CLIPORT (multi) outperforms single-task CLIPORT (single) models in 41/72 = 57% of the eval-
uations in Table 1. This trend is also evident in Figure 3 (seen), especially in instances with 100
demonstrations or less. Although CLIPORT (multi) is trained on more diverse data from other tasks,
both CLIPORT (multi) and CLIPORT (single) have access to the same amount of data per task. This
supports our premise that language is a strong conditioning mechanism for reusing concepts from
other tasks without learning them from scratch. It also validates a trait of data-driven approaches
where training on lots of diverse data leads to more robust and generalizable representations [1, 63].
However, CLIPORT (multi) performs worse on longer-horizon tasks like align-rope. We hypothesize
that this is because longer-horizon tasks get less coverage of input-action pairs in the dataset. Future
works could use better sampling methods that balance tasks according to their average time horizon.

Generalizing to Unseen Attributes. Tasks that require generalizing to novel colors, shapes, and
objects are more difficult and all our agents achieve relatively lower performance on these tasks,
as shown in Figure 3 (unseen). However, CLIPORT (single) models do substantially better than
chance, i.e., Transporter-only. The lower performances are due to the difficulty of grounding unseen
attributes such as ‘pink’ and ‘orange’ in the language instruction “put the pink block on the orange
bowl”, when the agent has never encountered words ‘orange’, ‘pink’ or their corresponding visual
characteristics in the context of the physical environment. Although pre-trained CLIP has been
exposed to the attribute ‘pink’, it could correspond to different concepts in the physical setting
depending on factors like lighting condition, and thus requires at least few examples to condition
the trainable semantic decoder layers. Additionally, we notice that CLIPORT (single) is also less
prone to overfitting compared to Transporter-only. As evidenced in towers-of-hanoi-seq-unseen-colors
task in Table 1, Transporter-only suffers from a performance drop because of rings with unseen
colors despite the fact that Tower of Hanoi can be solved without attending to the colors and simply
focusing on the ring size. We hypothesize that since CLIP was trained on diverse internet data, it
enables our agent to focus on task-relevant concepts while ignoring irrelevant aspects of the task.
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“put the green letter R shape
in the right R shape hole”

“pack the white tape
in the brown box”

“unfold the cloth” “sweep the beans
into the yellow zone”

“pack all the yellow and blue 
blocks into the brown box”
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Figure 4. Affordance predictions from CLIPORT (multi) models in sim (left two) and real settings (right three). More examples in Appendix H.

Transferring Attributes across Tasks. One solution for dealing with unseen attributes is to explic-
itly learn these attributes from other tasks. We study this with CLIPORT (multi-attr) in Table 1 and
Figure 3 (unseen). For these models, CLIPORT (multi) is trained on both seen-and-unseen splits from
all tasks except for the task being evaluated on, for which it was only trained on the seen split. As
such, this evaluation measures whether having seen pink blocks in put-blocks-in-bowl-unseen-colors
helps solve “pack all the pink and cyan boxes” in packing-box-pairs-unseen-colors. Results indicate
that such explicit transfers result in significant improvements. For instance, on the put-blocks-in-
bowls-unseen-colors task for n = 1000, CLIPORT (multi)’s performance increases from 45.8 to 75.7.

4.3 Real-Robot Experiments
Task # Train (Samples) # Test Succ. %

Stack Blocks 5 (13) 10 70.0
Put Blocks in Bowl 5 (10) 10 65.0
Pack Objects 10 (31) 10 60.0
Move Rook 4 (29) 10 70.0
Fold Cloth 9 (9) 10 57.0
Read Text 2 (26) 10 55.0
Loop Rope 4 (12) 10 60.0
Sweep Beans 5 (23) 5 60.6
Pick Cherries 4 (26) 5 75.0

Table 2. Success rates (%) of a multi-task model trained
an evaluated 9 real-world tasks (see Figure 1). Samples
indicate total image-action pairs, e.g 1 in Figure 9.

We validated our results in hardware with a Franka
Panda manipulator. See Appendix D for setup de-
tails. Table 2 reports success rates for a multi-task
model trained and evaluated on 9 real-world tasks. Due
to COVID restrictions, we could not conduct large-
scale user-studies, so we report on small train (5-10 de-
mos) and test sets (5-10 runs) per task. Overall, CLI-
PORT (multi) is effective at few-shot learning with just
179 samples, and the performances roughly correspond
to those in simulated experiments, with simple block ma-
nipulation tasks achieving ⇠ 70%. We estimate that for more robust real-world performance at least
50 to 100 training demonstrations are necessary, as evident in Figure 3. Interestingly, we observed
that the model sometimes exploits biases in the training data instead of learning to ground instruc-
tions. For instance, in Put Blocks in Bowl, the training set consisted of only one datapoint on “yellow
blocks” being placed inside a “blue bowl”. This made it difficult to condition the model to place
“yellow blocks” in non-blue bowls. But instances with just one or two examples where a colored
block went to different colored bowls was sufficient to make the model pay attention to the language.
In summary, unbiased datasets containing both a good coverage of expected skills and invariances,
and a decent number of training demonstrations, are crucial for good real-world performance.

5 Conclusion
We introduced CLIPORT, an end-to-end framework for language-conditioned fine-grained manip-
ulation. Our experiments, specifically with multi-task models, indicate that data-driven approaches
to generalization have yet to be fully-exploited in robotics. Coupled with the right action abstrac-
tion and spatio-semantic priors, end-to-end methods can quickly learn new skills without requiring
top-down pipelines that need task-specific engineering.

While CLIPORT can solve a range of tabletop tasks, extending it to dexterous 6-DOF manipula-
tion that goes beyond the two-step primitive remains a challenge. As such, it cannot handle com-
plex partially-observable scenes, or output continuous control for multi-fingered hands, or predict
task-completion (see Appendix I for an extended discussion). But overall, we are excited by the
confluence of data and structural priors for building scalable and generalizable robotic systems.
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