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Abstract

While image-to-text models have demonstrated significant advancements in various
vision-language tasks, they remain susceptible to adversarial attacks. Existing
white-box attacks on image-to-text models require access to the architecture, gradi-
ents, and parameters of the target model, resulting in low practicality. Although
the recently proposed gray-box attacks have improved practicality, they suffer
from semantic loss during the training process, which limits their targeted attack
performance. To advance adversarial attacks of image-to-text models, this paper
focuses on a challenging scenario: decision-based black-box targeted attacks where
the attackers only have access to the final output text and aim to perform targeted
attacks. Specifically, we formulate the decision-based black-box targeted attack as
a large-scale optimization problem. To efficiently solve the optimization problem,
a three-stage process Ask, Attend, Attack, called AAA, is proposed to coordinate
with the solver. Ask guides attackers to create target texts that satisfy the specific
semantics. Attend identifies the crucial regions of the image for attacking, thus
reducing the search space for the subsequent Attack. Attack uses an evolutionary
algorithm to attack the crucial regions, where the attacks are semantically related
to the target texts of Ask, thus achieving targeted attacks without semantic loss.
Experimental results on transformer-based and CNN+RNN-based image-to-text
models confirmed the effectiveness of our proposed AAA.

1 Introduction

Image-to-text models, referring to generating descriptive and accurate textual descriptions of images,
have received increasing attention in various applications, including image-captioning [1, 2], visual-
question-answering [3, 4], and image-retrieval [5, 6]. Despite the remarkable progress, they are
vulnerable to deliberate attacks, giving rise to concerns about the reliability and trustworthiness
of these models in real-world scenarios. For example, one may mislead models to output harmful
content such as political slogans and hate speech by making imperceptible perturbations to images [7,
8, 9, 10, 11].

To gain insight into the reliability and trustworthiness of the image-to-text models, a series of
adversarial attack methods have been proposed to poison the outputted textual descriptions of given
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Figure 1: The semantic loss problem is existing in existing gray-box targeted attack methods.

images [7, 12, 13, 10]. Specifically, based on the attacker’s level of access to information about
the target model, they can be divided into three categories: white-box attacks [7, 14, 12], gray-box
attacks [13, 10], and black-box attacks [15, 16, 17, 18, 19]. The white-box attacks can obtain target
models’ information including the entire architecture, parameters, gradients of both the image encoder
and text decoder, and probability of each word of the output text. Gray-box attacks can only access the
architecture, parameters, and gradients of the image encoder, while black-box attacks cannot access
any internal information of the target model, but only the output text of the model. Furthermore,
black-box attacks can be divided into score-based and decision-based attacks. Score-based black-box
attacks can access the probability of each word of the output text [16], while decision-based black-
box attacks can only access the output text [15, 20, 21]. Because less information about the target
models is provided, decision-based black-box attacks are more challenging than other categories
[21]. Additionally, these attack methods can be categorized based on whether the attacker is able
to specify the incorrect output text, dividing them into two types: targeted and untargeted attacks
[22, 13].

Although numerous adversarial attack methods for image-to-text models have been proposed, to
our best knowledge, the study on black-box attacks is under-explored, especially decision-based
black-box targeted attacks. This kind of attack is more challenging due to the following reasons.
Firstly, less information on the target model can be accessed. Specifically, only the output text instead
of gradients, architectures, parameters, and the probability of each word in the output text is available.
Secondly, the attackers not only cause the target model to output incorrect text, but also outputs the
specified target text. Existing attacks easily suffer from the loss of semantics, resulting in the inability
to effectively output the specified target text. Figure 1 (a) show that transfer+query [10] fabricates
one target text to poison the target image-to-text model, leading to this model outputting an incorrect
text. However, the output text could mismatch the original semantics of the target text, as the target
image-to-text model may focus on secondary information while ignoring the crucial semantics of the
target text behind the target image, resulting in semantic loss. More examples are in Appendix B.1.

To narrow the research gap, we propose a decision-based black-box targeted attack approach for
image-to-text models. In our work, only the output text of the target model can be accessed, which
is closer to the real-world cases [15]. Additionally, Figure 1 (b) demonstrates our targeted attack
method, which optimizes against the target text directly under the decision-based black-box conditions,
preventing semantic loss and maintaining semantic consistency with the target text.

Perturbing pixels in the image can change the output text. Therefore, the objective of the targeted
attack can be considered to find the imperceptible pixel modification to make the output text similar
to the target text. In this manner, the targeted attack can be formulated as a large-scale optimization
problem, where pixels are decision variables and the optimization objective is to poison the output text.
Inspired by the distinctive competency of evolutionary algorithms for solving large-scale optimization
problems [23, 24, 25, 26, 27], we develop a dedicated evolutionary algorithm-based framework
for decision-based black-box targeted attacks on image-to-text models. However, directly applying
evolutionary algorithms to solve this large-scale optimization problem could suffer from low search
efficiency, due to the numerous pixels and their wide range of values. To address the issue, we embed
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Figure 2: Diagram of our decision-based black-box targeted attack method Ask, Attend, Attack.

three-step processes, i.e., Ask, Attend, Attack, into the proposed evolutionary algorithm-based attacks.
As shown in Figure 2, during the Ask stage, attackers can arbitrarily specify words related to certain
semantics, such as photograph. Then, candidate words (e.g., camera, scenic, and phone) that are
related to certain semantics are searched. Meanwhile, these words are close to the clean image in
the feature space of the target image-to-text model. By selecting words from the candidate words,
the target text (e.g., a cute girl using a phone to take pictures of the fantastic TV) related to the
attacker’s specified semantics can be formed to poison the target model. Subsequently, based on the
attention mechanism, Attend identifies the crucial regions of the clean image (e.g. attention heatmap)
[28, 29], thus reducing the search space for the subsequent Attack. Lastly, Attack uses a differential
evolution strategy to impose imperceptible adversarial perturbations on the crucial regions, where the
optimization objective is to minimize the discrepancy between the target text in Ask stage and the
output text of the target model. Our contributions can be summarized as follows:

1. We first propose a decision-based black-box targeted attack Ask, Attend, Attack (AAA) for
image-to-text models. Specifically, our method achieves targeted attacks without losing
semantics while only the model’s output text can be accessed.

2. We designed a target semantic directory to guide attackers in creating target text and utilized
attention heatmaps to significantly reduce search space. This improves the search efficiency
of evolutionary algorithms in adversarial attacks and makes attacks difficult to perceive.

3. We conducted extensive experiments on the Transformer-based VIT-GPT2 model and
CNN+RNN-based Show-Attend-Tell model, which are the two most-used image-to-text
models in HuggingFace, and surprisingly found that our decision-based black-box method
has stronger attack performance than existing gray-box methods.

2 Related work

2.1 White-box Attack

In white-box attacks, the attacker has full access to all parameters, gradients, architecture of the
target model, and the probability of each word of the output text. The authors in [7] add invisible
perturbations to the image to make the image-to-text model produce wrong or targeted text outputs.
The authors in [30] add global or local perturbations to the image to make the vision and language
models unable to correctly locate and describe the content of the image. The authors in [14] modify
the content of the image at the semantic level to make the image-to-text model output text that is
inconsistent with the original image. The authors in [31] craft adversarial examples with semantic
embedding of targeted captions as perturbation in the complex domain. The authors in [32] preserve
the accuracy of non-target words while effectively removing target words from the generated captions.
The authors in [33] generate coherent and contextually rich story endings by integrating textual
narratives with relevant visual cues. The authors in [12] add limited-area perturbations to the image
to make the image-to-text model fail to correctly describe the content of the perturbed area. The
above methods require complete information of the image-to-text target model, including architecture,
gradients, parameters, and probability distribution of the output text, which limits their practicality.
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2.2 Gray-box Attack

To improve the practicality of adversarial attacks for image-to-text models, recent research explores
how to attack with partial knowledge of the target model. All existing gray-box attack studies
[34, 22, 13, 10] assume full access to the image encoder of the image-to-text model. The basic idea of
gray-box targeted attacks is to reduce the distance between the adversarial image and the target image
generated based on the target text in the image encoder’s feature space. The authors in [34] generate
adversarial images to mimic the feature representation of original images. The authors in [22] use
a generative model to destroy the image encoder’s features, achieving the untargeted attack. The
authors in [13] minimize the feature distance in the image encoder between the adversarial image
and the target image, thereby using gradient back-propagation to optimize the adversarial image and
achieve the targeted attack. The authors in [10] combine existing gray-box method [13] with pseudo
gradient estimation method [35] to achieve better performance in targeted attack. It is worth noting
that they [10] call their method a black-box attack, but since they use the image encoder of the target
model as the surrogate model, we classify their method as a gray-box attack. These gray-box attacks
on image-to-text models are more practical than white-box attacks, but it is still unrealistic to assume
that attackers can access the image encoder of the image-to-text model. Moreover, existing gray-box
methods may have poor targeted attack performance due to the semantic loss mentioned above.

3 Methodology

3.1 Problem Formulation

The image-to-text model G : X → Y maps the image domain X to the text domain Y . A well-trained
model should be able to accurately describe the content of the image using grammatically correct
and contextually coherent text. Given a target text yt, the attacker’s goal is to find an adversarial
image xadv that is visually similar to clean image x and can generate an adversarial text yadv that is
semantically similar to yt. We formalize the optimization problem for black-box targeted attack as:

argmax
xadv

S(G(xadv), yt) s.t.
1

n

n∑
i=1

∥xadv(i)− x(i)∥≤ ϵ, (1)

where S(·, ·) represents the semantic similarity function between two texts, ϵ is the threshold for
the average perturbation size per pixel, xadv(i) and x(i) represents the value of the i-th pixel in the
adversarial and clean images. n is the total number of pixels in all channels of the image.

3.2 Overview

To enhance the efficiency and stealth of decision-based black-box attacks, we propose the Ask, Attend,
Attack (AAA) framework as shown in Figure 2. Ask: We compile a semantic dictionary from words
within the input image’s search space that align with the attacker’s specified semantics. This facilitates
targeted text generation, meeting the attacker’s target semantics while simplifying the search process.
Attend: We employ attention visualization and a surrogate model to generate an attention heatmap
for the target text on the image, narrowing the search to significant decision variables and enhancing
perturbation stealth. Attack: We use the differential evolution in the reduced search space to find the
optimal solution that can mislead the target model to output target text. The framework’s pseudo-code
is detailed in Appendix A.1.

3.3 Ask Stage

According to the target semantics, the goal of Ask is to find words in the feature space of the target
model to form a target semantic dictionary. These words should be closer to the input image. Firstly,
we treat each pixel in each channel of image x as a variable, which means the search space size is the
product of length, width, and number of channels. And then generate NP (number of population)
individuals to form a population based on the following formula:

xj(i) = x(i) + rand(−1, 1) · η, (2)
where x(i) is the i-th variable of clean image x, xj(i) is the i-th variable of the j-th individual in the
population, η is a hyperparameter about the maximum search range, rand(-1,1) is a random number
from the range of -1 to 1.
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Secondly, for each variable, random mutation occurs between different individuals. The mutation for
the i-th variable of the j-th individual xj(i) is as follows:

vg
j (i) = xg

r1(i) + F ∗ (xg
r2(i)− xg

r3(i)), (3)

where vg
j (i) is the mutated variable for mutation in the g-th generation of xj(i). x

g
r1(i), x

g
r2(i), and

xg
r3(i) are three randomly selected individuals from the current population who are different from

each other, F is the scaling factor.

Thirdly, each individual crossovers with the mutated individuals with a certain probability of generat-
ing candidate individuals. The formula is as follows:

ug
j (i) =

{
vg
j (i), if rand (0, 1) ≤ CR,

xg
j (i), otherwise, (4)

where CR is crossover probability factor, ug
j (i) is the i-th variable of the candidate individual in the

g-th generation of the j-th individual in the population.

Fourthly, we use WordNet [36], a synonym dictionary, to measure the similarity between the target
semantics and each individual’s output text. WordNet groups words with the same semantics into
synonyms, each representing a basic concept. We use WordNet to count the same semantic words m
between each individual’s output text and the target semantics. We calculate the Precison=(m/t)
and Recall=(m/r), where t is the output text word count and r is the target semantics word count.
Then, we calculate semantic similarity using the following formula:

Ssem =
(1− γ( chm )θ)(α2 + 1) · Precision ·Recall

α2 · Precision+Recall
, (5)

where Ssem is the semantic similarity between the individual’s output text and the target semantics
[36], α balances the precision and recall weights, γ and θ control the penalty factor strength, ch is the
number of consecutive word sets that match between the output text and the target semantics, with
fewer chunks meaning more consistent word order.

Ultimately, we select offspring based on Ssem, choosing the current and candidate individuals that
match the target semantics better as the next generation:

xg+1
j =

{
ug
j , Ssem(G(ug

j ), TS) ≥ Ssem(G(xg
j ), TS),

xg
j , otherwise, (6)

where TS is the attacker’s target semantics. We extract nouns, adjectives, and verbs from the output
texts of all the more semantically relevant and preserved individuals of each generation, expanding
the target semantic dictionary. We use G(xg+1

j ) = {w1, w2, · · ·, wn} to represent the target model
G’s output text for the next generation of individuals, where wi is the i-th word of the text and n is the
word count. Then we use the following formula to extract important words and make a dictionary:

Dg+1
j = {w ∈ G(xg+1

j ) | w is noun, adjective or verb}, (7)

where Dg+1
j is the dictionary for the preserved individual. We combine the dictionaries of each

preserved individual in each generation to get the target semantic dictionary D = D2
1∪D2

2∪···∪Dm
NP,

where m is the total number of generation. The attacker selects words from dictionary D that match
the specified semantics to make the target text yt. Words in dictionary D near input image x in
feature space enhance searchability, enabling more efficient targeted attacks.

3.4 Attend Stage

The goal of Attend is to calculate the target text’s attention area on the image x. Because we do not
have access to the internal information of the target model, we can only calculate the Grad-CAM
attention heatmap [37] with the help of surrogate model f (such as ResNet trained in ImageNet).
The surrogate model’s sole purpose is to the compute attention heatmap. Since different models
produce similar heatmaps for the same target text and input image, selecting a well-established visual
model suffices [38]. The calculation formula of attention heatmap A is as follows:

A(i, j) = MAX

0,
1

Z

∑
k

∑
i

∑
j

· ∂yc
∗

∂Fk(i, j)
· Fk(i, j)

 , (8)
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where A(i, j) is the decision-making contribution of the image to the target text at pixel (i, j),
Fk(i, j) is the pixel (i, j) of the feature map of the k-th convolution kernel of the last convolutional
layer of the surrogate model f , Z is the feature map’s pixel count, yc

∗
is the probability that f predicts

that the image x belongs to class c∗. We use C = {c1, c2, · · ·, c1000} for the ImageNet category
names, where ci is the i-th category name. We make the category text yci = “a photo of” + ci from
the category name ci. We calculate the category c∗ as:

c∗ = argmax
ci∈C

E(yt) · E(yci)

∥E(yt)∥2∥E(yci)∥2
, (9)

where E is the text encoder of the pre-trained CLIP model, and c∗ is the closest category to the target
text. We substitute c∗ into Formula 8 to get the target text’s attention heatmap A. A(i, j) is the pixel
(i, j)’s contribution to the target text. 1 means more contribution, and 0 means less contribution.

Table 1: Performance comparison (%) of different attack methods.

ϵ Attack Methods
VIT-GPT2 Show-Attend-Tell

METEOR BLEU CLIP SPICE METEOR BLEU CLIP SPICE

Clean Sample 0.201±0.11 0.24±0.11 0.64±0.07 0.156±0.07 0.21±0.11 0.229±0.13 0.646±0.09 0.179±0.08

transfer (black) 0.206±0.11 0.246±0.11 0.639±0.07 0.165±0.07 0.211±0.12 0.225±0.14 0.648±0.09 0.185±0.11
transfer+query (black) 0.221±0.16 0.264±0.15 0.651±0.18 0.167±0.07 0.219±0.11 0.231±0.14 0.654±0.05 0.187±0.14

25
transfer (gray) 0.414±0.23 0.396±0.14 0.821±0.09 0.32±0.16 0.382±0.26 0.348±0.17 0.782±0.11 0.299±0.17

transfer+query (gray) 0.433±0.21 0.411±0.12 0.832±0.13 0.35±0.09 0.401±0.21 0.355±0.15 0.794±0.11 0.311±0.13
AAA (w/o Attend) 0.541±0.25 0.519±0.19 0.854±0.24 0.477±0.11 0.642±0.19 0.564±0.19 0.841±0.06 0.455±0.14

AAA (w/o Ask) 0.398±0.21 0.384±0.18 0.795±0.25 0.412±0.13 0.364±0.21 0.322±0.19 0.754±0.08 0.376±0.13
AAA 0.696±0.21 0.658±0.22 0.952±0.29 0.634±0.15 0.855±0.15 0.799±0.21 0.964±0.04 0.786±0.14

transfer (black) 0.204±0.09 0.241±0.15 0.627±0.18 0.164±0.07 0.232±0.13 0.236±0.14 0.643±0.08 0.187±0.09
transfer+query (black) 0.211±0.14 0.256±0.15 0.644±0.15 0.181±0.09 0.245±0.13 0.246±0.11 0.656±0.06 0.203±0.09

15
transfer (gray) 0.398±0.24 0.381±0.15 0.816±0.11 0.325±0.16 0.361±0.24 0.359±0.17 0.778±0.11 0.296±0.16

transfer+query (gray) 0.408±0.19 0.399±0.11 0.824±0.15 0.341±0.13 0.375±0.19 0.368±0.15 0.784±0.11 0.311±0.13
AAA (w/o Attend) 0.461±0.21 0.423±0.15 0.808±0.11 0.375±0.09 0.438±0.15 0.434±0.16 0.827±0.04 0.422±0.14

AAA (w/o Ask) 0.378±0.25 0.361±0.17 0.768±0.15 0.356±0.15 0.341±0.15 0.337±0.18 0.749±0.07 0.365±0.13
AAA 0.556±0.31 0.504±0.26 0.851±0.12 0.44±0.17 0.617±0.25 0.574±0.22 0.913±0.05 0.553±0.14

3.5 Attack Stage

The goal of Attack is to search for the best individual (adversarial sample) that outputs the target
text yt in the smaller search space reduced by the attention heatmap. Firstly, we copy the attention
heatmap A three times in the channel dimension to match the shape of the image x. We generated
NP (number of population) individuals as a population with this formula:

xj(i) = x(i) + rand(−A(i),A(i)) · η, (10)
where x(i) is the i-th variable of clean image x, xj(i) is the i-th variable of the j-th individual in the
population, A(i) is the contribution of the i-th variable to the target text, and rand(−A(i),A(i)) is
a random number in the range from −A(i) to A(i). The value of A is less than 1, and its mean and
median are about [0.3,0.4]. The search space volume from the attention heatmap is much smaller
than a hypersphere with radius η, because the radius and volume have an exponential relationship.
This improves the search efficiency and concealment of adversarial perturbation.

Secondly, in order to accelerate convergence and better find the global optimal solution, we use the
following CurrentToBest mutation [39]:

vg
j (i) = xg

j (i) + F ∗ (xg
r1(i)− xg

r2(i))

+ F ∗ (xg
best(i)− xg

j (i)),
(11)

where xg
j (i) is the i-th variable of the j-th individual in the g-th generation, vg

j (i) is the mutated
variable, xg

best is the best fitness individual in the g-th generation population, xg
r1 and xg

r2 are two
randomly selected individuals in the g-th generation population, and F is the scaling factor. The main
advantage of this mutation strategy is that it combines the information of the current individual xj

and the best fitness individual xbest, which can better guide the search process towards the direction
of the optimal solution.

Thirdly, we use Formula 4 to calculate the candidate individual ug
j (i). We design the following

formula to calculate the deep feature similarity Sclip between two texts (u and v):

Sclip = 1− E(u) · E(v)

∥E(u)∥2∥E(v)∥2
, (12)
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Figure 3: We compared the convergence curves of populations with and without Attend under the
same perturbation size ϵ in (a-b). The fitness function is Sclip in Formula 12, where lower values
mean stronger attacks. The dashed line is the average fitness value, and the solid line is the best
fitness value. The green line is AAA and the red line is AAA w/o Attend. (c) shows the attention
heatmap. (d) and (e) show the visual effects of adversarial image with and without Attend, with
minimal perturbation of 100% attack success rate.

Figure 4: Grad-CAM attention heatmaps of different surrogate models for the same target text a
woman is holding a pair of shoes. M is METEOR, B is BLEU, C is CLIP, S is SPICE.

where E is the text encoder of the pre-trained CLIP model. Text is discrete and complex, so it cannot
calculate the distance directly [40]. Therefore, we use the CLIP text encoder E to extract the deep
features of the texts, and then calculate the feature distance to obtain the similarity Sclip between the
texts. The closer Sclip is to 0, the higher the similarity between the two texts u and v.

Ultimately, we select offspring using the following formula:

xg+1
j =

{
ug
j , Sclip(G(ug

j ), yt) ≤ Sclip(G(xg
j ), yt),

xg
j , otherwise, (13)

where xg+1
j is the next individual with closer feature distance between the output text and the target

text yt. After performing the above evolutionary calculations multiple times, the optimal solution
(adversarial sample) for outputting the target text is found.

4 Evaluation and Results

4.1 Experiment setups

Model and dataset We experimented with the two most-used image-to-text models on Hug-
gingFace: VIT-GPT2 (Transformer-based) [41] and Show-Attend-Tell (CNN+RNN-based) [42].
VIT-GPT2 was trained on ImageNet-21k. Show-Attend-Tell was trained on MSCOCO-2014. We only
used the target model’s output text, not its internal information like gradients, parameters, or word
probability. Following this work [13], we used Flick30k as our dataset, which has 31783 images and
5 caption texts each. We removed samples with less than 0.7 similarities between predicted text and
truth text to ensure the target model’s accuracy on clean images.

Evaluation metrics We used these evaluation metrics in our experiments: (1) BLEU(#4), an early
machine translation metric that measures text precision [43]. 1 means similar, and 0 means dissimilar.
(2) METEOR, a more comprehensive metric that considers synonyms, stems, word order, etc [36]. 1
means similar, and 0 means dissimilar. (3) CLIP, the distance between the CLIP text encoder’s deep
features for two texts [44]. 1 means similar, and 0 means dissimilar. (4) SPICE, an evaluation metric
tailored for image-to-text models [45]. 1 means similar, and 0 means dissimilar. (5) ϵ, the mean
perturbation size of each pixel of the adversarial sample [13].
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Figure 5: Performance of adversarial image attacks varies with perturbation size ϵ. The ϵ of (a) and (f)
is 25, ϵ of (b) and (g) is 15, ϵ of (c) and (h) is 10, ϵ of (d) and (i) is 5. (e) is our attention heatmap of
the target text on the image. (j) is the target image generated based on the target text used in existing
works. M is METEOR score, B is BLEU score, and C is CLIP score.

4.2 Experiment results

Comparison experiment of existing gray-box attacks. We evaluate state-of-the-art gray-box
attacks [13, 10] on image-to-text models. We designate the gray-box attack [13] as transfer (gray)
and the one [10] as transfer+query (gray). To simulate a black-box environment, we adapted
these gray-box attacks by employing the CLIP model’s image encoder in lieu of the target model’s
encoder, resulting in “transfer (black)” and “transfer+query (black)” variants. As depicted in Table
1, adversarial samples generated by the original gray-box attacks exhibit a marked increase in
textual similarity to the target text when compared to clean samples. Conversely, the black-box
adaptations maintain a similarity level akin to that of clean samples, indicating a significant loss of
attack capability upon changing the image encoder. This underscores the dependency of gray-box
attacks on the target model’s image encoder. Our proposed method AAA demonstrates superior
attack performance in black-box scenarios compared to the existing methods in their native gray-box
settings. This is attributed to the semantic loss inherent in existing gray-box attacks, which constrains
their attacking potential. It is noteworthy that our work represents the first black-box attack on
image-to-text models. So we can only compare our approach with existing gray-box attacks. We have
adapted these gray-box attacks into a black-box version solely to demonstrate their ineffectiveness in
a black-box scenario.

Ablation experiment of our black-box attack. We conducted ablation experiments on our AAA
method. AAA (w/o Attend) means no attention heatmap to reduce the search space, but the proportional
reduction of the search range. AAA (w/o Ask) means the target text is not from the target semantic
dictionary, but random words. Table 1 shows that losing any module decreases our attack performance.
In addition, Ask performs worse than AAA (w/o Attend), indicating that finding a target text with
lower search difficulty contributes relatively more to the performance of our targeted attack.

Qualitative experiment of attention. We presented the optimization curves of AAA and AAA
(w/o Attend) in Figure 3. Figure 3 (a) and (b) illustrate the best and average fitness values during
AAA and AAA (w/o Attend) optimization of VIT-GPT2 and Show-Attend-Tell. It is evident that the
inclusion of Attend expedites and enhances the convergence of the population, with an equivalent
perturbation size. Consequently, AAA exhibits more effective concealment in adversarial perturbations,
maintaining the same level of attack efficacy, as depicted in Figures 3 (d) and (e). Furthermore, we
evaluated the impact of selecting different surrogate models during Attend. Notably, the sole function
of the surrogate model is to compute the attention heatmap. Figure 4 demonstrates that, despite
significant structural variances among several surrogate models, they produce strikingly similar
attention heatmaps for the same target text and input images. This similarity arises from mapping the
target text to the most pertinent category within the surrogate model’s label space (as Formula 9).
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Figure 6: Comparison of computation time for generating a single adversarial sample using different
adversarial attack methods. The y-axis is a measure of similarity between the generated text and the
target text, with higher values indicating better target attack performance. The x-axis represents the
computation time, and the shorter the time required to find a stable solution, the better.

The position of the same category of objects on the same picture is constant, and the model needs to
focus on the object first, no matter what structure it is [38]. Performance comparisons, as shown in
Figure 4, indicate that the similarity in attention heatmaps across different surrogate models leads
to similar final attack performances. Therefore, we opted for a stable, well-established, pre-trained
model, such as ResNet-50, to serve as our surrogate model.

Qualitative experiment of different perturbation sizes. We used the words mirror, cell phone,
man, looking at from the target semantic dictionary (as shown in Appendix B.2) to make the target
text a man is looking at a cell phone in a mirror. We compared output texts of our black-box method
AAA and the existing gray-box method [10] for adversarial samples with different ϵ, the average
pixel perturbation size, in Figure 5. The same conclusion drawn from both methods is that bigger
perturbation causes worse concealment and better attack performance; too small perturbation causes
attack failure. Moreover, (f) and (j) in Figure 5 show that the existing methods have a semantic loss
that limits their attack performance. Subjectively, target image (j) accurately draws the semantics of
the target text, and the output text of adversarial image (f) perfectly describes the content of the target
image (j). However the adversarial sample (f)’s output text does not have the semantics of the target
text. Our method does not have semantic loss, so our black-box method AAA does a better targeted
attack than the existing gray-box method. More examples of semantic loss are in Appendix B.1.

Comparison experiment on computation time. We evaluated the computational efficiency of
various attack methodologies for generating adversarial samples in image-to-text models. As depicted
in Figure 6, our black-box attack method AAA, demonstrates a longer computation time to reach
an optimal solution compared to existing gray-box attacks. For instance, the transfer approach [13]
illustrated in Figure 6 (a) produces an adversarial sample with a CLIP score of 0.82 within a mere 29
seconds, while the transfer+query approach [10] achieves a CLIP score of 0.85 in just 97 seconds.
Conversely, our AAA method requires 151 seconds to generate an adversarial sample with a superior
CLIP score of 0.951. The shorter computation times of the existing gray-box methods are expected
due to their ability to access real gradients, which significantly expedites the optimization process.
Given that adversarial attacks are not time-sensitive operations and considering that our AAA method
delivers a more potent attack capability and is applicable in a broader range of realistic black-box
scenarios, the trade-off for a higher computational cost is deemed acceptable. Additional experiments
on similarity measurements are included in the Appendix B.5.

Further analyses. Firstly, we show the impact of different forms of target semantics TS in Ask
on the target semantic dictionary, as shown in Appendix B.2. More ambiguous target semantics
can enrich the target semantic dictionary, which also means that the attacker has more choices
when designing yt. Secondly, we show the effect of different word selection strategies of yt based
on target semantic dictionary on the final attack effect, as shown in Appendix B.3. Thirdly, we
compare the convergence curves of different population sizes and choose a population size of 40
based on the trade-off of attack performance and convergence efficiency, as shown in Appendix B.4.
Furthermore, we compare the effects of different evolutionary algorithms on attack performance and
convergence efficiency, as shown in Appendix B.6. Additionally, to better observe the attack effect of
our framework, we show more examples of attention heatmaps A, optimization convergence curves,
target text yt, and output text, as shown in Appendix B.7. Lastly, we discuss the limitations of our
framework, defense strategies, and future work in Appendix C.
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5 Conclusion

In our research, we introduce a novel and practical approach for adversarial attacks on image-to-
text models. We propose the Ask, Attend, Attack (AAA) framework, a decision-based black-box
attack method that achieves targeted attacks without semantic loss, even with access limited to the
target model’s output text. Our framework uses the target semantic directory to guide the creation
of target text and attention heatmap to reduce the search space, thereby improving the efficiency
of evolutionary algorithms and making our attack harder to detect. Our extensive experiments
on the Transformer-based VIT-GPT2 model and the CNN+RNN-based Show-Attend-Tell model
demonstrate that our decision-based black-box method outperforms existing gray-box methods in
targeted attack performance. These findings highlight the vulnerabilities in current image-to-text
models and underscore the need for more robust defense mechanisms, significantly contributing to
the field of adversarial machine learning and enhancing the security of vision-language systems.
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Overview

In this appendix, we describe implementation details, additional experiment results and analyses to
support the methods proposed in the main paper. In addition, we show more examples of black-box
adversarial attacks using AAA, each of which includes clean image, attention heatmap, adversarial
image, optimization curve, target text, output text, and attack performance.

Reproducibility

Our source code and data are included in the supplemental material and uploaded, and we will
publish the code on GitHub after the paper is accepted. We provide concise and understandable
pseudo-code below.
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A Additional implementation details

A.1 Pseudo code of our proposed framework

Algorithm 1 Ask, Attend, Attack (AAA) Framework

1: Input: Image x, Target text yt, Target semantics TS, Surrogate model f , Pre-trained CLIP
model E

2: Output: Adversarial image xadv that generates text yadv semantically similar to yt
3: Initialize hyperparameters: population size NP, mutation factor F , crossover probability CR,

perturbation threshold ϵ, maximum search range η
4: Initialize target semantic dictionary D← ∅
5: function ASK(x, TS)
6: Generate initial population with perturbations using Eq. (2)
7: for each generation g do
8: Perform mutation using Eq. (3)
9: Perform crossover using Eq. (4)

10: Calculate semantic similarity Ssem using Eq. (5)
11: Select offspring based on Ssem using Eq. (6)
12: Update D with relevant words from G(xg+1

j ) using Eq. (7)
13: end for
14: return D
15: end function
16: function ATTEND(x, yt, f )
17: Determine the category c∗ closest to yt using Eq. (9)
18: Attention heatmap A is calculated by surrogate model f using Eq. (8)
19: return A
20: end function
21: function ATTACK(x, yt, A)
22: Generate initial population with attention-guided perturbations using Eq. (10)
23: for each generation g do
24: Perform CurrentToBest mutation using Eq. (11)
25: Perform crossover using Eq. (4)
26: Calculate deep feature similarity Sclip using Eq. (12)
27: Select offspring based on Sclip using Eq. (13)
28: end for
29: return Best individual as xadv

30: end function
31: D← ASK(x, TS)
32: yt ← The attacker create a sentence from the dictionary D
33: A← ATTEND(x, yt, f )
34: xadv ← ATTACK(x, yt, A)

A.2 Basic setups

We set the population size NP to 40, scaling factor F to 0.7, cross probability factor CR to 0.7, γ
to 0.5, α to 1, and θ to 3, and η to ϵ required in the experiment divided by the average of attention
heatmap A. Our device uses three GPUs of RTX2080ti with 11GB memory, and a CPU of Intel(R)
Core(TM) i5-10400F. Our operating system is linux, the evolutionary algorithm framework uses the
Geatpy library, and the deep learning framework uses Pytorch.

A.3 Standard deviation in the experiments

In the quantitative experiment of our paper, experiments were repeated for 10 times, and the optimal
performance was obtained for each experiment, and the mean value and standard deviation were
finally obtained.
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Figure 7: More examples of semantic loss of existing gray-box targeted attacks. The target text is the
error-generated text of the image-to-text model that the attacker wants to obtain. The target image
is the image generated by using the text-to-image model (Stable Diffusion) based on the target text.
The output text is based on the target image using the image-to-text target model (VIT-GPT2/Show-
Attend-Tell). similarity indicates the similarity between the target text and the output text. We also
show the similarity between the target text and the output text. M stands for METEOR score, B for
BLEU score, C for CLIP score, and S for SPICE score.

A.4 Evaluation metrics

(1) iteration, the number of iterations for the differential evolution algorithm in Attack to find the
optimal solution (no more fitness convergence). Fewer iterations mean fewer queries and faster attack.
(2) ϵ, the mean perturbation size of each pixel of the adversarial sample. Smaller value means higher
concealment of adversarial perturbation. (3) diversity, the number of words in the target semantic
dictionary from Ask. More words mean more diversity. (4) correlation, the average CLIP score
between each word in the target semantic dictionary and the target semantics. The higher correlation,
the more relevant the words in the target semantic dictionary are to the target semantics.

B Additional experiments

B.1 Analysis of semantic loss

We show more examples of the semantic loss phenomenon, as shown in Figure 7. In order to realize
the targeted attack with the existing gray-box methods, it is necessary to convert the target text
into the target image with the help of text-to-image model (such as Stable Diffusion). Then the
distance between the adversarial image and the target image is narrowed, so that the text decoder of
the image-to-text target model mistakes the adversarial image as the target image and outputs the
description of the target image incorrectly. The target image often contains more semantic information
than the target text, and the image-to-text target model may focus on the semantic information that
is not specified by the attacker, which leads to semantic loss. For example, in Figure 7 (c), the
text-to-image model generates the target image corresponding to the target text (a man is watching tv)
very accurately, and the image-to-text target model also generates the output text (a man sitting on a
chair next to a fire hydrant) of the target image very accurately, but the output text and the target text
are very different. This means that even if there is a gray-box method that can completely make the
features of the adversarial image identical to the features of the target image, the image-to-text target
model can only generate the output text after semantic loss, and the targeted attack performance is
limited by semantic loss.
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Figure 8: The top ten words in the target semantic dictionary for different target semantics, with the
word frequency on the vertical axis. (a) is for animal; (b) is for photograph.

B.2 Comparison experiment of target semantic dictionary

We showed the target semantic dictionary’s diversity and correlation for different perturbations in
Table 2. More perturbation means more word choices for the target text. The correlation between
dictionaries and target semantics is not affected by the size of perturbations. We also see that one
vague word for target semantic makes more diversity and relevance in the dictionary than the detailed
sentences. This is because a word has vague semantics, resulting in more words that are closer to the
input image in the feature space being added to the dictionary. So we suggest using simple words as
target semantics, as attackers can get richer dictionaries to make target text.

Table 2: Target semantic dictionaries for different semantics. animal word means the vague word
animal, while animal sentence means a dog is running after a cat. photograph word means the vague
word photograph, while photograph sentence means a photo of a parking lot.

semantic animal word animal sentence photograph word photograph sentence
ϵ 10 15 25 10 15 25 10 15 25 10 15 25

diversity↑ 50.6 65.4 90.1 38.9 54.1 79.6 51.7 62.5 87.7 43.1 52.6 75.5
correlation (%)↑ 0.746 0.742 0.744 0.653 0.65 0.654 0.842 0.841 0.843 0.765 0.761 0.758

Table 3: Output text under different word selection strategies.
Strategy Target Text Output Text Similarity

A
a bird is flying
through air

a bird is flying
through the air

great

A
a girl is taking
pictures by cam-
era

a girl is using
a camera to take
pictures

great

B
a camera is fly-
ing through the
air

a man is holding a
camera medium

C
a giraffe is eat-
ing grass

a person is cutting
a piece of food bad

C
a boy is captur-
ing a beautiful
moment

a man is looking
at his cell phone bad

D
the helicopter is
hovering in the
sky

a man is holding a
knife in his hand bad
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Figure 9: The best fitness curve and average fitness curve of the population under the same target text
and different population sizes.

Table 4: The time (s) required for one optimization iteration under different population sizes.
population 10 20 40 60 80 100

iteration time 0.41 0.65 1.14 1.65 2.14 2.56

B.3 Word selection strategies for target semantic dictionaries

We showed the words and frequencies in the target semantic dictionary for different semantics in
Figure 8. We compared different word selection strategies for targeted attacks with these dictionaries.
The results show that: (1) Words in the dictionary do better when the semantics are similar, while
words outside may fail; (2) Words from two dictionaries in one sentence decrease the performance.

We used four word selection strategies based on two dictionaries in Figure 8 to compare how different
target texts yt affect our method: (A) All words in yt are from the same dictionary; (B) Some words in
yt are from each of the two dictionaries; (C) yt is artificially created with the target semantics (animal
or photograph), but without any words from the target semantic dictionary; (D) yt is artificially

Table 5: Performance (%) of different evolutionary algorithms and average number of iterations to
find the optimal solution.

CTB-DE R-DE S-GA
iteration↓ 46.47±37.11 57.35±43.62 15.41±11.52

METEOR↑ 0.696±0.209 0.538±0.264 0.327±0.254
BLEU↑ 0.658±0.219 0.546±0.218 0.279±0.172
CLIP↑ 0.95±0.291 0.871±0.112 0.748±0.096
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Figure 10: Comparison of computation time for generating a single adversarial sample using different
adversarial attack methods. The y-axis is a measure of similarity between the generated text and the
target text, with higher values indicating better target attack performance. The x-axis represents the
computation time, and the shorter the time required to find a stable solution, the better.

created with different semantics from both target semantics (animal and photograph), and without
any words from either target semantic dictionary. The output texts of the adversarial images obtained
from different yt word selection strategies are shown in Table 3.

The first row of Table 3 shows that strategy (A) can achieve a strong targeted attack, making the
output text very similar to the target text. This is because words in the same dictionary are close
to each other in the feature space. Strategy (B) selects the words flying and air from dictionary
animal in Figure 8 (a), and camera from dictionary photograph in Figure 8 (b), to form the target
text. The third row of Table 3 shows that the output text and the target text yt are not very similar.
The output text only contains the word camera in dictionary (b). This is because the feature distance
between the two dictionaries is large, even though they are both close to the input image and easy
to search in the feature space. It is hard to optimize the target text yt that contains words from both
target semantic dictionaries. Strategy (C) randomly creates yt based on the animal and photograph
semantics, without using any words from dictionary (a) and (b). For example, giraffe is an animal, but
not in dictionary (a), and capture beautiful moment is related to photograph, but not in dictionary (b).
The output text and the target text yt are totally different, indicating a failed targeted attack. Strategy
(D) randomly creates yt with different semantics from both target semantics, and without any words
from either target semantic dictionary. The targeted attack also fails. Therefore, we recommend
selecting words from one target semantic dictionary for the target text yt, which will greatly improve
the success rate of our method’s targeted attack.

B.4 Comparison experiment on population size

We show convergence curves with the same target text but different population sizes NP to observe
how they affect the optimization iteration process of Attack. Figure 9 shows that when NP is 10 and
20, the best fitness values are 0.2 and 0.1, corresponding to CLIP scores of 0.8 and 0.9 for the output
texts and target texts, respectively. When NP is larger than 40, the output text and the target text are
completely consistent (CLIP score = 1). This means that a larger NP can find better solutions with
fewer iterations [24, 46]. However, a larger NP also increases the computation time per iteration,
as Table 4 shows. Moreover, as this is a large-scale optimization problem with 196608 decision
variables per individual, a larger NP demands more hardware resources [47, 39]. Considering all
factors, we set the population size NP to 40.

B.5 Comparison experiment on computation time

In Figure 6 of the main paper, we show the computational efficiency of two metrics, CLIP score and
BLEU score. In this part, we will supplement the other two metrics, METEOR score and SPICE
score. As shown in Figure 10, the computation time of the existing gray-box attack methods to
find the optimal solution is still shorter than that of our black-box attack method. For example, the
transfer approach [13] illustrated in Figure 10(a) produces an adversarial sample with a METEOR
score of 0.34 within a mere 62 seconds, while the transfer+query approach [10] achieves a METEOR
score of 0.49 in just 119 seconds. Conversely, our AAA method requires 179 seconds to generate an
adversarial sample with a superior METEOR score of 0.75. Because our method is more practical
and performs better, the additional computation time is acceptable.

20



Figure 11: Attention heatmaps, optimization convergence curves, target text, output text and attack
performance for more adversarial samples.

B.6 Comparison experiment of optimization algorithms

We compared different optimization strategies in Attack: CurrentToBest Differential Evolution (CTB-
DE) [39], Rand Differential Evolution (R-DE) [47], and Stud Genetic Algorithm (S-GA) [48].
Table 5 shows that the genetic algorithm needs the fewest iterations, but easily gets stuck in local
optima, leading to poor attack performance. Differential evolution needs more iterations but finds
better solutions. Also, the CurrentToBest mutation does better and faster than the random mutation.
So we adopted the CurrentToBest differential evolution strategy in Attack.
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B.7 Visualization of more adversarial samples

We presented attention heatmaps A, optimization convergence curves, target text yt, and output text
for more adversarial samples, as shown in Figure 11.

C Discussion

C.1 Limitation

Our work represents the first black-box targeted attack on image-to-text models, with the core idea
utilizing evolutionary algorithms to solve a large-scale optimization problem. The drawbacks of
evolutionary algorithms, which are also the limitations of our work, include: (1) Low optimization
efficiency. Gradient-based algorithms use the gradient information of the objective function, which
is a powerful guide regarding the optimization direction. Evolutionary algorithms do not directly use
gradient information but search through random mutation and crossover operations. Compared to
gradient optimization algorithms, evolutionary algorithms require more iterations to find the optimal
solution. (2) High number of queries. Each individual in the population requires access to the target
model in every iteration, and the service provider of the image-to-text target model can simply set a
limit on the number of accesses to defend against our attack.

C.2 Future work

Our black-box targeted attack framework Ask, Attend, Attack on image-to-text models employs
classic evolutionary algorithms. In our future work, we will explore how our framework AAA can be
combined with the current state-of-the-art (SOTA) evolutionary algorithms, which have the fastest
convergence efficiency, to mitigate the limitations mentioned above.

22



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. We have clearly stated our novel methodology and its
implications in the abstract and introduction, and these are further elaborated upon and
validated in the main body of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our experiments in Section 4.2 and our conclusions in Section 5 describe the
limitations of our approach.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper presents a framework for adversarial attacks based on evolutionary
algorithms. The underlying techniques employed, such as differential evolution and similar-
ity computation, are well-established with their theoretical foundations extensively proven
in existing literature.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental Settings in section 4.1, we use public data sets, and
we provide pseudocode and source code in supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have packaged our source code and data into a zip file and uploaded it to
the system as supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental Settings in section 4.1, and we provide pseudocode
and source code in supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In our performance comparison experiments, we report the results of 10
repeated experiments as mean ± standard deviation. This provides a measure of the variability
of the results, and gives a better understanding of the range of performance we can expect
from our method.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the GPU models in Section 4.1 and a comparison experiment on
computation time in Section 4.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics in all respects. We
have ensured fairness and transparency in all our experiments, respected the rights of all
participants, and our research does not violate any laws or regulations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our research may have potential negative societal impacts. Malicious actors
could potentially use our black-box adversarial attack techniques to generate adversarial
samples to deceive commercial image-to-text models, thereby damaging the reputation of
the models. An effective solution could be to set a threshold for the number of accesses.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The original intention of our proposed adversarial attack technique is to
provide a baseline for researchers in the robustness of deep neural networks, but it could still
potentially be misused by malicious actors. To prevent these actors from using our method
to attack commercial image-to-text models, we have proposed a defensive measure, which
is to set a limit on the number of accesses.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used open data sets and correctly referenced the source code papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have introduced new assets in the form of source code in our paper. This
code is well documented, with comments explaining the functionality of different sections.
We have included this code in the supplementary material zip file that we have submitted
alongside our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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