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ABSTRACT

Image geolocalization aims to predict the geographic location of images captured
anywhere on Earth, but its global nature presents significant challenges. Current
evaluation methodologies suffer from two major limitations. First, static datasets:
advanced approaches often rely on large vision-language models (LVLMs) to
predict image locations, yet these models are frequently pretrained on the test
datasets, compromising the accuracy of evaluating a model’s actual geolocalization
capability. Second, existing metrics primarily rely on exact geographic coordinates
to assess predictions, which not only neglects the reasoning process but also raises
privacy concerns when user-level location data is required. To address these issues,
we propose GeoArena, a first open platform for evaluating LVLMs on worldwide
image geolocalization tasks, offering true in-the-wild and user-preference-based
benchmarking. GeoArena enables users to upload in-the-wild images for a more
diverse evaluation corpus, and it leverages pairwise human judgments to determine
which model output better aligns with human expectations. Our platform has
been deployed online for three months, during which we collected over thousands
voting records. Based on this data, we conduct a detailed analysis and establish a
leaderboard of different LVLMs on the image geolocalization task. GeoArena has
been open-sourced1 to support future research.

1 INTRODUCTION

Image worldwide geolocalization is a highly challenging task that lies at the intersection of computer
vision (Szeliski, 2022; He et al., 2016) and geographic artificial intelligence (Mai et al., 2022). It
aims to pinpoint the exact location on Earth where a given image was taken, as illustrated in Figure 1.
This task has significant application potential, such as in navigation, positioning, crime tracking,
and disaster monitoring. Despite its broad utility, geolocalization remains a hard problem due to the
enormous variability in visual appearances across the globe (Wilson et al., 2021; Vo et al., 2017),
coupled with the need for fine-grained spatial reasoning.

Recently, advanced methods for image worldwide geolocalization have increasingly relied on pow-
erful large vision-language models (LVLMs) to generate predictions (Vivanco Cepeda et al., 2023;
Zhou et al., 2024; Jia et al., 2024). To assess the performance of different methods on geolocalization
tasks, the research community has proposed a series of benchmark studies (Li et al., 2025b; Huang
et al., 2025; Jay et al., 2025; Liu et al., 2024; Wang et al., 2024; Astruc et al., 2024). Without
exception, these benchmarks are based on static datasets and evaluate model performance using
ground-truth labels (i.e., by calculating the distance between the predicted GPS location and the
ground-truth GPS), as shown in Table 1. This evaluation approach is efficient and requires relatively
few resources. However, it has two notable limitations: (1) Static datasets: static test datasets are
inevitably subject to data leakage, meaning that the test data may be included in the pretraining data
of LVLMs; and (2) GPS-based evaluation: existing evaluations only consider the spatial distance
between the final prediction and the ground truth, ignoring the model’s reasoning process. This
can lead to cases where models with flawed reasoning processes achieve higher scores by chance

1https://anonymous.4open.science/r/GeoArena-6EDE
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GPT4o mini

Input Image

Input Prompt

You are an expert in image geolocalization. Given an
image, provide the most likely location it was taken.

Excellent. Based on the distinct features in the image, I can identify this location with high confidence. The image was taken at
the Ngātoroirangi Māori Rock Carvings in Mine Bay, on Lake Taupō, New Zealand.

Here is my analysis: 1. The Central Carving: The most significant clue is the massive carving of a face on the rock cliff. This
style of art, with its intricate spiral patterns (koru) and facial markings, is unmistakably Māori, the indigenous Polynesian people of
mainland New Zealand. The carving is a modern interpretation of traditional tā moko (tattoo). 2. The Environment: The carving is
situated directly on a rock face that meets a large body of clear, greenish-blue water. This, combined with the surrounding rugged
cliffs and native New Zealand bush, is characteristic of the scenery around Lake Taupō, the country’s largest lake.
3. Accessibility: The photograph is taken from the water, which is the only way to view these carvings up close. They are a
popular destination for boat cruises and kayaking trips departing from Taupō town.

Additional Information: 1. This impressive 14-metre-high artwork is not ancient. It was sculpted in the late 1970s and completed
in 1980 by master carver Matahi Whakataka-Brightwell and his team. 2. The main carving depicts Ngātoroirangi, a legendary
navigator and high priest who guided the Tūwharetoa and Te Arawa iwi (tribes) to the Taupō area over a thousand years ago.
3. The smaller carvings surrounding the main face represent his ancestors and other significant cultural figures.

The approximate coordinates for the Ngātoroirangi Māori Rock Carvings are: -38.74503, 175.92218

The image depicts the famous rock carving known as the Mine Bay Māori Rock Carvings, located on Lake
Taupō, New Zealand. These carvings were created in the 1970s and are a popular tourist attraction in the area.

Gemini 2.5 Pro

Figure 1: Example of geolocalization: identifying the Ngātoroirangi Māori Rock Carvings.

Table 1: Comparison with different benchmarks on different properties.
Benchmarks OSV-5M LLMGeo ETHAN Location-Inference FairLocator IMAGEO-Bench GeoArena

Conference CVPR’24 CVPR’24 Arxiv’24 AAAI’25 Arxiv’25 Arxiv’25 -
Reference Astruc et al. (2024) Wang et al. (2024) Liu et al. (2024) Jay et al. (2025) Huang et al. (2025) Li et al. (2025b) Ours
Evaluation GPS Country GPS GPS, Country, City GPS, Street, City, Country, Continent GPS, City, State, Country User Preference

Dynamic Datasets ✗ ✗ ✗ ✗ ✗ ✗ ✓
User-Preference-Based ✗ ✗ ✗ ✗ ✗ ✗ ✓

when they predict closer to the ground truth. Moreover, relying on exact geographic coordinates
for evaluation raises privacy concerns, since it requires access to sensitive user-level location data.
To address these limitations and develop a more effective evaluation approach, it is necessary to
build a dynamic and user-preference-based benchmarking platform that can capture the real-world
challenges of image geolocalization.

Designing such an evaluation platform is inherently challenging. It involves gathering a steady
stream of diverse and representative user images that capture the variability of real-world conditions.
Furthermore, the platform must support scalable and efficient evaluation pipelines capable of handling
a wide range of model submissions. Finally, designing a reasonable model ranking system based on
user preferences is also essential. These challenges highlight the need for careful design and robust
infrastructure to create a meaningful and practical benchmarking platform for image geolocalization.

To this end, we introduce GeoArena, an open platform for benchmarking Large Vision-language
Models on worldwide image geolocalization. Specifically, when a user enters GeoArena and submits
an image for geolocalization, two anonymous models each generate a response indicating the predicted
location. The user then votes on which response is more satisfactory. After collecting a large volume
of voting data, we apply statistical methods to generate reliable rankings for all models. These
rankings can serve as valuable references for users in the field, guiding them in selecting models that
best align with geolocalization needs. In this way, GeoArena addresses two critical issues in current
evaluation practices. First, GeoArena collects in-the-wild images contributed by real-world users,
ensuring data diversity and dynamic updates, which help mitigate data leakage from static datasets.
Second, GeoArena employs user preferences to assess the quality of model predictions, moving
beyond sole reliance on GPS accuracy and mitigating the privacy risks associated with requiring exact
user location data. Through these improvements, GeoArena establishes a new evaluation framework
for image geolocalization that is more dynamic, privacy-preserving, and reflective of real-world
user preferences. This approach bridges the gap between automated metrics and human-centered
evaluation, providing a more robust and generalizable benchmark for the community.

GeoArena has been successfully deployed since June 2025, operating for over three months and
collecting thousands of records. Our deployment has already revealed clear patterns: frontier systems
like Gemini 2.5 dominate the leaderboard, while strong open-source families such as Qwen 2.5
and Gemma 3 are closing the gap. User preference analysis shows that longer and more structured
responses are consistently favored, highlighting the importance of reasoning quality. We also find that
top proprietary models align more closely with human judgment than open-source models, though
noticeable gaps remain. These insights demonstrate GeoArena’s ability to both benchmark models
dynamically and uncover the factors that shape human evaluations in geolocalization. We will release
all the collected voting data to support advancements in related areas, such as reward modeling (Zhong
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et al., 2025) and geographic foundation models (Mai et al., 2024). Our key contributions can be
summarized as follows:

1. We develop GeoArena, the first dynamic, user-preference-based open platform for addressing long-
standing issues in geolocalization evaluation, including static-dataset leakage, missing reasoning
assessment, and privacy concerns.

2. We conduct a comprehensive analysis of the collected user inputs and voting data to demonstrate
the reliability and capabilities of GeoArena.

3. We publicly release the collected prompts, images, and voting data to support research and
development in related fields such as reward modeling and geographic foundation models.

2 RELATED WORK

Worldwide Image Geolocalization. Worldwide image geolocalization is an interdisciplinary task
that bridges geography and computer science, involving GeoAI (Janowicz et al., 2020), spatial data
mining (Wang et al., 2020), and multi-modal modeling (Wang et al., 2023). In recent years, thanks to
the strong world knowledge and visual understanding capabilities of Large Vision-Language Models
(LVLMs), image geolocalization has made significant progress (Li et al., 2024; Haas et al., 2024;
Dou et al., 2024; Sarkar et al., 2024; Astruc et al., 2024; Dufour et al., 2025). Methodologically,
GeoCLIP (Vivanco Cepeda et al., 2023) leverages the CLIP architecture to separately model images
and GPS coordinates, retrieving the GPS candidate closest to the image’s representations through
vector similarity matching. Img2Loc (Zhou et al., 2024) is the first to introduce LVLMs into image
geolocalization, retrieving similar images’ information and incorporating it as prompts into the LVLM
input to utilize the world knowledge acquired during pretraining to predict the image’s location.
G3 (Jia et al., 2024) further improves upon Img2Loc by optimizing both the image retrieval and
reasoning processes, enabling the model to obtain more accurate reference information and fully
exploit the prediction potential of LVLMs. GLOBE (Li et al., 2025a) enhances the reasoning ability of
LVLMs through reinforcement learning, enabling backbone LVLMs can accurately infer the shooting
location from images.

Benchmark of Geolocalization. Common evaluation datasets used in geolocalization tasks include
IM2GPS (Hays & Efros, 2008) and YFCC (Thomee et al., 2016). On the benchmarking side,
LLMGeo (Wang et al., 2024) collects datasets from Google Street View and evaluates models
including GPT-4V (Achiam et al., 2023), Google Gemini (Team et al., 2023), BLIP (Li et al., 2023),
Fuyu (Bavishi et al., 2023), InternLM-VL (Dong et al., 2024), and LLaVA (Liu et al., 2023). Liu et al.
(2024) evaluates the performance of LVLMs on IM2GPS and YFCC and shows that incorporating
Chain-of-Thought (CoT) (Wei et al., 2022) reasoning can improve performance on geolocalization
tasks. Jay et al. (2025) also extracts data from Google Street View to create a more generalized
evaluation set, finding that LVLMs already outperform the average human baseline in geolocalization
capabilities. FairLocator (Huang et al., 2025) evaluates LVLMs’ urban geolocalization abilities and
focuses on biases in the geolocalization capabilities of LVLMs. In contrast to these methods and
benchmark studies, we propose GeoArena, the first dynamic and user-preference-based benchmark
for image geolocalization. GeoArena collects in-the-wild images uploaded by users, effectively
mitigating the data leakage issues of static datasets while also avoiding the privacy risks associated
with requiring exact GPS annotations. In addition, the image distribution in GeoArena is more
representative of real-world use cases, and the platform uses user preferences to generate rankings of
model capabilities. This provides a more robust and user-aligned evaluation framework for image
worldwide geolocalization.

3 GEOARENA

GeoArena is an interactive platform designed to evaluate the geolocalization capabilities of various
LVLMs. In this section, we provide a detailed description of GeoArena, including its live interface
(Section 3.1), data collection process (Section 3.2), the models it encompasses (Section 3.3), and the
ranking computation methods (Section 3.4).
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Input Component

Instruction

You are an expert in
image geolocalization.

Given an image, provide
the most likely location it

was taken.

Model Pool

Sample

Model A

Model B

Response A

Response B

Voting Component

Vote for A Tie Vote for B

Voting

Database Leaderboard

Users

Users Image

Figure 2: Overview of GeoArena.

3.1 LIVE INTERFACE

To facilitate user interaction, GeoArena is an online platform that allows any user to conveniently
access the leaderboard and participate in data collection through a public link. As shown in Figure 2,
the live interface consists of two main components: an input component and a voting component. (1)
The input component includes both an image input and a prompt input. Users can upload images that
they wish to geolocate, while the prompt input allows users to specify personalized geolocalization
instructions. To improve efficiency, we also provide a default instruction derived from previous
work (Zhou et al., 2024; Jia et al., 2024). (2) The voting component displays two side-by-side outputs
generated by two anonymized models that are automatically sampled. After clicking the submit
button, three voting options pop up: “vote for left”, “vote for right”, and “tie” (indicating comparable
quality between the two outputs). Once the user submits a vote, the true model identities are revealed
to maintain user impartiality during the voting process.

3.2 DATA COLLECTION

GeoArena collects essential data for each evaluation session to enable rigorous analysis and reliable
leaderboard computation. For every voting event, we record the names of the two models being
compared, the winning model, the user-provided prompt, the uploaded image, and the generated
responses. This information ensures the traceability of each comparison, supports the calculation of
rankings, and allows for reproducible experiments. All data are stored in structured JSON files, which
facilitate downstream analysis and leaderboard generation. To preserve user privacy, we anonymize
user inputs and apply filters to remove any potentially sensitive or inappropriate content.

3.3 PARTICIPATING MODELS

To ensure comprehensive and meaningful comparisons, GeoArena includes a wide range of both
open-source and proprietary models. Our selection covers popular LVLMs from multiple providers.
For the GPT series (Achiam et al., 2023), we include GPT 4o, GPT 4o mini, GPT 4.1, GPT 4.1 mini,
and GPT 4.1 nano. From the Gemini family (Team et al., 2023), we incorporate Gemini 2.5 pro and
Gemini 2.5 flash. The Claude series includes Claude Opus 4 and Claude Sonnet 4. We also evaluate
Llama 4 maverick and Llama 4 scout (Touvron et al., 2023), as well as Gemma 3 models (Team et al.,
2025) in sizes of 27B, 12B, and 4B. Additionally, our platform features Qwen 2.5 VL models in sizes
of 72B, 32B, 7B (Bai et al., 2025). As shown in Table 2, in total, GeoArena currently benchmarks
17 models. This broad coverage ensures that users and researchers can evaluate model performance
across different architectures, training paradigms, and capabilities.

3.4 RANKING COMPUTATION METHODS

Online Elo Ranking. The Elo rating system is a widely used approach to estimate the relative
strength of different models or players based on pairwise comparisons. Originally introduced for
ranking chess players, it has been extended to various evaluation tasks in machine learning and

4
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Table 2: Large-scale models benchmarked in GeoArena. Prices are USD / million tokens (input/out-
put) and USD / thousand (image).

Model Company Params Openness API Price (input / output / image)

GPT 4o OpenAI Unknown Proprietary $2.50 / $10.00 / $3.61
GPT 4o mini OpenAI Unknown Proprietary $0.15 / $0.60 / $0.22
GPT 4.1 OpenAI Unknown Proprietary $2.00 / $8.00 / -
GPT 4.1 mini OpenAI Unknown Proprietary $0.40 / $1.60 / -
GPT 4.1 nano OpenAI Unknown Proprietary $0.10 / $0.40 / -
Gemini 2.5 flash Google DeepMind Unknown Proprietary $0.15 / $0.60 / $0.62
Gemini 2.5 pro Google DeepMind Unknown Proprietary $1.25 / $10.00 / $5.16
Claude Sonnet 4 Anthropic Unknown Proprietary $3.00 / $15.00 / $4.80
Claude Opus 4 Anthropic Unknown Proprietary $15.00 / $75.00 / $24.00
Llama 4 maverick Meta 17B/402B Open-source $0.15 / $0.60 / $0.67
Llama 4 scout Meta 17B/109B Open-source $0.08 / $0.30 / -
Gemma 3 27B Google 27B Open-source $0.10 / $0.20 / $0.03
Gemma 3 12B Google 12B Open-source $0.15 / $0.10 / -
Gemma 3 4B Google 4B Open-source $0.02 / $0.04 / -
Qwen 2.5 VL 72B Alibaba 72B Open-source $0.25 / $0.75 / -
Qwen 2.5 VL 32B Alibaba 32B Open-source $0.90 / $0.90 / -
Qwen 2.5 VL 7B Alibaba 7B Open-source $0.20 / $0.20 / -

artificial intelligence. Elo rating provides an interpretable score that reflects the expected probability
of one model outperforming another. Formally, given two models i and j with Elo ratings Ri and Rj ,
the expected probability that model i will outperform model j is defined as:

E(i, j) =
1

1 + 10(Rj−Ri)/α
(1)

where α is a scaling parameter that controls the spread of the probability function, typically set to 400
in most implementations. After observing the actual outcome S(i, j), where S(i, j) = 1 if model
i wins, S(i, j) = 0.5 for a tie, and S(i, j) = 0 if model i loses, the Elo rating of model i will be
updated as: R′

i = Ri + K · (S(i, j) − E(i, j)), where K is a learning rate that determines how
quickly the rating adapts to new results. From the above description, we can summarize two key
features of the Elo rating system. First, it can operate without requiring a complete history of past
matches, updating each model’s rating using only its current Elo rating and the outcome of its most
recent match. Second, the Elo rating system inherently assumes that the strength of each participant
changes over time, rather than remaining constant. However, in the context of evaluating LVLMs,
we generally assume that model capabilities are static. Furthermore, Elo ratings are more strongly
influenced by recent matches, making them highly sensitive to the order of matches—an effect that is
undesirable in our setting. To address this, we follow prior work (Chiang et al., 2024) and apply the
Bradley-Terry model (Bradley & Terry, 1952) to estimate the final Elo ratings for each model on the
image geolocalization task, ensuring a stable and order-invariant ranking.

Bradley-Terry Model. The Bradley-Terry (BT) model provides a principled way to estimate the
relative strength of competing models through pairwise comparisons. In this framework, each model
i is assigned a latent strength parameter Ri. The probability that model i outperforms model j is
given by:

P (i > j) =
1

1 + 10(Rj−Ri)/α
, (2)

where α is a scaling parameter (typically set to 400) that controls the spread of probabilities. The BT
model estimates the parameters Ri by maximizing the likelihood of all observed pairwise outcomes,
accounting for repeated comparisons through a weighting term Wij . The likelihood function is
defined as:

L(R) =
∑

i,j∈N,i̸=j

Wij log

(
1

1 + 10(Rj−Ri)/α

)
(3)

To compute the final Elo ratings, we apply a linear transformation to align the model scores with
the Elo rating scale. Specifically, after fitting the BT model via logistic regression, the estimated
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Table 3: GeoArena Leaderboard in September 2025.
Ranking Model ELO Rating 95% CI lower 95% CI upper

0 Gemini 2.5 pro 1319.7 974.8 1443.8
1 Gemini 2.5 flash 1206.5 1062.2 1330.6
2 Qwen 2.5 VL 72B 1094.5 982.6 1181.9
3 Gemma 3 12B 1086.5 1002.6 1186.4
4 Gemma 3 27B 1065.5 959.3 1159.8
5 GPT 4.1 mini 1059.8 970.0 1161.4
6 Llama 4 maverick 1046.6 944.6 1115.3
7 Qwen 2.5 VL 32B 1044.8 964.9 1119.0
8 GPT 4.1 1044.8 964.9 1119.0
9 Claude Opus 4 1042.3 933.8 1130.0
10 Gemma 3 4B 1027.3 936.3 1102.0
11 Claude Sonnet 4 1019.9 921.3 1113.8
12 GPT 4o 1000.0 1000.0 1000.0
13 Llama 4 scout 984.2 876.0 1077.1
14 Qwen 2.5 VL 7B 950.9 868.4 1056.2
15 GPT 4.1 nano 917.9 819.1 1015.5
16 GPT 4o mini 871.6 715.2 1114.7

parameters R̂i are transformed as: Eloi = scale · R̂i + init_rating, where scale is typically set to 400
and init_rating is set to 1000. This transformation preserves the relative ranking among models while
making the scores more interpretable and consistent with standard Elo rating conventions.

Confidence Interval. To ensure that the model ranking results are not overly dependent on a particular
sample of comparisons, we estimate confidence intervals (CIs) for the elo scores. Specifically, we
adopt a bootstrap procedure similar to the methodology employed in Chatbot Arena (Chiang et al.,
2024), which repeatedly resamples the battle outcomes and re-computes the rating estimates. This
approach allows us to quantify the variability in model rankings and provides statistically grounded
intervals around each estimate. The inclusion of confidence intervals is essential because it enables us
to distinguish between meaningful performance differences and those that may arise due to sampling
noise. As a result, our reported rankings are not only more robust but also more interpretable from a
statistical perspective, offering stronger evidence of the relative strengths of different LVLMs on the
image geolocalization task.

3.5 GEOARENA-1K DATASET

Based on GeoArena, we further release the GeoArena-1K dataset. This dataset consists of samples
each containing the user-uploaded image, the textual instructions, pairwise model responses, the
names of the competing models, and the corresponding user voting outcomes. To the best of our
knowledge, this is the first user preference dataset for LVLMs in the domain of image geolocalization.
Beyond serving as a preference dataset on image geolocalization, GeoArena-1K provides a valuable
resource for advancing research in reward modeling and the development of geographic foundation
models. More details about the GeoArena-1K dataset are illustrated in Appendix A.1.

4 BENCHMARKS AND RESULTS ANALYSIS

4.1 ARENA LEADERBOARD

Table 3 presents the GeoArena leaderboard as of September 2025. The reported 95% confidence
intervals (CI lower, CI upper) are computed via bootstrap resampling over 100 rounds, capturing
rating variability under different voting subsets. To ensure the data aligns with the geolocalization
task, we manually filtered the user-uploaded prompts. From this table, several key observations can
be drawn: (1) Gemini models from DeepMind achieve the strongest performance, with Gemini 2.5
pro (Elo 1319.7) and Gemini 2.5 flash (Elo 1206.5) clearly outperforming all other systems. This
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Figure 3: Pair-wise Performance Comparison of Models (Win-Rate and Battle Count).

highlights the advantage of large-scale, production-level multimodal pre-training in the challenging
image geolocalization task. (2) Open-source families such as Qwen 2.5 and Gemma 3 obtain
competitive rankings. For example, Qwen 2.5 VL 72B (Elo 1094.5) surpasses Gemma 3 12B (Elo
1086.5) and performs comparably to the GPT 4.1 series, suggesting that open-source initiatives are
rapidly narrowing the gap with proprietary frontier systems. (3) Several models, including Llama 4
maverick, GPT 4.1, and Claude Opus 4, cluster within the Elo 1040-1050 range. Their confidence
intervals overlap substantially, indicating no statistically significant differences between these models.
(4) Smaller variants such as GPT 4.1 nano, GPT 4o mini, and the lightweight Qwen model (Qwen 2.5
VL 7B) exhibit clear performance degradation, with ratings below 960. This underscores the inherent
difficulty of image geolocalization, where reduced model capacity limits generalization across diverse
global contexts. (5) The wide rating spread (1320 down to 870) validates the discriminative power
of GeoArena. It provides a reliable platform to distinguish frontier-level systems from lightweight
baselines, which is crucial for advancing research on geospatial reasoning in LVLMs.

4.2 BATTLE DATA ANALYSIS

To provide a comprehensive view of comparative model performance, we conduct a pair-wise analysis
of model battles, reporting both win-rates and battle counts. Figure 3 reports a pair-wise comparison
across models, with the left panel showing head-to-head win rates (ties excluded) and the right panel
showing the corresponding battle counts. Models are ordered by their average win rate, which makes
the block structure of the heatmap interpretable. We can find: (1) Frontier models consistently
dominate. Gemini 2.5 pro, Gemini 2.5 flash, and GPT 4.1 occupy the top rows, maintaining win
rates close to or above 0.7 against nearly all competitors. Their advantage is not limited to small
baselines but extends to strong models from other families, suggesting that both model capacity
and advanced alignment procedures contribute to their robustness. (2) Mid-scale systems show
transitional behavior. Models such as Gemma 3 12B, Qwen 2.5 VL 72B, and GPT 4.1 mini occupy
the middle tier. They achieve favorable outcomes against smaller instruction-tuned variants but
exhibit substantial performance gaps when challenged by the frontier tier. This indicates a stepwise
stratification that correlates with effective model size and tuning intensity. (3) Lower-capacity
models underperform broadly. Systems including Gemma 3 4B, Qwen 2.5 VL 7B, GPT 4.1 nano,
and GPT 4o mini cluster near the bottom of the heatmap, with win rates typically below 0.3 against
larger peers. Their deficits are systematic across families, reflecting limited parameter budgets and
less extensive post-training data. (4) Family-specific patterns emerge. Within families, performance
scales predictably with size. For example, the Qwen 2.5 VL series shows clear gains moving from
7B to 72B parameters. These intra-family trends suggest that scaling and alignment strategies jointly
determine competitiveness.
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Table 4: Agreement Analysis between Expert and Crowd.
Expert \ Crowd Left Win Tie Right Win Agreement Rate

Left Win 30 3 3 83.3%
Tie 5 21 6 65.6%

Right Win 2 3 27 84.4%
Agreement Rate 81.1% 77.8% 75.0% 78.0%

0 100 200

Gemma 3 4B
Gemma 3 12B

Qwen 2.5 VL 32B
Gemma 3 27B
Gemini 2.5 pro

Llama 4 maverick
Gemini 2.5 flash
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GPT 4.1
Claude Opus 4
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Figure 4: Distribution of Style Features in Model Outputs.

4.3 RELIABILITY ANALYSIS OF VOTING

To validate the quality of the voting data, we randomly sample 100 examples from the dataset and have
expert annotators evaluate them. Specifically, given an image to be geolocalized, a textual prompt, and
two anonymized model responses, the expert is asked to judge which response is better, or to select a
tie if applicable. Expert is allowed to use any external tools, including search engines, to assist their
decision-making. On average, each evaluation takes approximately 3–5 minutes. Table 4 presents
the distribution of preferences between experts and crowds on the sampled examples. Overall, we
observe a consistently high agreement rate between expert and crowd annotations, typically ranging
from 75% to 85%, with an average agreement of 78%. According to prior studies (Chiang et al.,
2024), this constitutes a strong agreement level, supporting the reliability of the collected voting data.

4.4 PREFERENCE ANALYSIS

To better understand which characteristics of model responses drive user preference, following
previous work (Chiang et al., 2024; Tianle Li, 2024; Dubois et al., 2024), we extend the standard
Bradley-Terry regression framework by incorporating style-related features as confounding variables.
In practice, this means that for each model comparison, we not only encode which two models are
being compared, but also include additional features that describe the differences in response style,
such as normalized response length, number of lists, headers, emphasis markers, or the ratio of GPS
outputs. By including these features in the regression, we can separate the effect of style from the
intrinsic ability of the model. The style coefficients (β) are estimated via logistic regression, where
style features are normalized and included alongside model indicators in an extended Bradley-Terry
design matrix. The style coefficients, therefore, quantify how much specific stylistic traits influence
user choices. A higher coefficient β for a style feature indicates that this attribute contributes more
positively to user preference. In this study, we primarily consider five different style features: response
length (measured by the number of words), lists count (including both unordered and ordered lists),
headers count, emphasis count (including the number of bold and italic items), and GPS output ratio

Table 5: Estimated Influence of Style Features on User Preference. A higher coefficient (β) for a
style feature indicates that this attribute contributes more positively to user preference.

Features Response Length Lists Count Headers Count Emphasis Count GPS Output Ratio

Coefficient β 0.526 0.095 -0.153 -0.117 0.06

8
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(the proportion of responses containing GPS-level predictions). Figure 4 illustrates the distribution
of these features across different models, showing clear stylistic variation in model outputs. From
the experimental results in Table 5, we observe consistent findings with prior work (Chiang et al.,
2024; Steyvers et al., 2024; Tianle Li, 2024): response length exhibits a strong positive correlation
with human preference (i.e., βresponse = 0.526), as longer responses are more likely to be favored
by users. In addition, both lists count (βlist = 0.095) and GPS output ratio (βGPS = 0.06) are
positively correlated with preference, where a higher number of lists often reflects more explicit
reasoning steps, and GPS outputs provide finer-grained and more concrete answers. However, headers
count and emphasis count do not show positive associations with human preference. A possible
explanation is that excessive use of structural markers or textual emphasis may be perceived as
superficial formatting rather than substantive content, and thus does not contribute to the perceived
quality or informativeness of the response.

4.5 ALIGNMENT STUDY BETWEEN LVLM AND USER

Table 6: Alignment accuracy of
LLMs with human judgments on
sampled response pairs.

Model Accuracy

Gemini 2.5 pro 0.6579
Qwen 2.5 VL 72B 0.4667

To further examine whether LVLMs can serve as reliable
judges for geolocalization responses, we conduct an alignment
study that compares LLM preferences with human annotations.
Specifically, we randomly sample 100 response pairs from the
dataset. For each pair, we ask an LVLM to decide which re-
sponse (generated by Model A or Model B) is better in terms of
accuracy, reasoning, and clarity, and require the model to output
only one of three labels: win, tie, or loss. The prompt template we used is shown in Appendix A.2. We
then compute the agreement accuracy between the LVLM’s judgment and the human-provided ground
truth labels. Table 6 reports the alignment results for two representative models, the top-performing
proprietary and open-source models on the GeoArena leaderboard, Gemini 2.5 pro and Qwen 2.5 VL
72B. The results show that Gemini 2.5 pro achieves a substantially higher agreement rate (65.79%)
with human evaluations compared to Qwen 2.5 VL 72B (46.67%). This suggests that Gemini 2.5 pro
exhibits stronger alignment with human judgment in assessing geolocalization task responses. These
findings highlight that while LLMs can approximate human preferences to a certain extent, significant
gaps remain. This motivates future work on designing more faithful and robust LLM-based evaluators
for geolocalization and other multimodal tasks.

4.6 CASE STUDY

To illustrate our framework, we present a case study using an image of the Ngātoroirangi Māori Rock
Carvings at Mine Bay on Lake Taupō, New Zealand. As shown in Figure 1, different models exhibit
varying levels of reasoning depth and factual accuracy. Gemini 2.5 pro produces a comprehensive
analysis, identifying salient visual features such as the Māori face carving, surrounding cliffs, and
water-based accessibility, while also providing historical and cultural context (e.g., the carving’s
creation in 1980 by Matahi Whakataka-Brightwell). In contrast, GPT 4o mini generates only a brief
description, lacking explicit reasoning and omitting cultural details. This comparison underscores
the importance of reasoning quality and contextual grounding in geolocalization tasks, showing that
structured analyses align more closely with human preferences and task requirements. We also give
hard cases analysis and more case studies in Appendix A.3 and Appendix A.4.

5 CONCLUSION

In this work, we present GeoArena, a dynamic and user-preference-based benchmarking platform
for evaluating LVLMs on worldwide image geolocalization tasks. By collecting in-the-wild user-
submitted images and integrating pairwise user preference evaluations, GeoArena overcomes the
limitations of existing static benchmarks that often suffer from data leakage, insufficient reasoning
assessment, and privacy issues. We implement a stable Bradley-Terry model, enabling reliable and
interpretable ranking of models under diverse real-world conditions. Overall, GeoArena offers a
practical, scalable, and user-aligned framework that bridges the gap between automated metrics
and human evaluation. We believe GeoArena will facilitate future research in LVLMs and GeoAI,
providing valuable resources for developing robust, generalizable, and user-preference-aligned
geolocalization systems.
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ETHICS STATEMENT

Our work involves the development and deployment of GeoArena, an open benchmarking platform
that evaluates LVLMs on worldwide image geolocalization tasks using real-world images and human
preferences. Our ethical statement is detailed as follows:

1. We prioritize user privacy and data protection. GeoArena does not collect or store any personally
identifiable information, and users are not required to submit GPS coordinates or metadata tied
to private locations. All uploaded images and preference votes are anonymized and stored in
compliance with ethical data management practices.

2. Our human evaluation is limited to pairwise preference voting and does not involve sensitive
demographic or personal data. No compensation or recruitment was involved, and the voting
interface includes disclaimers and consent mechanisms.

3. Our benchmark is explicitly designed for research purposes, with all model outputs and analysis
made publicly available to support transparent and responsible evaluation. The voting data will be
released under appropriate open data licenses for research use only.

We confirm that this work complies with the ICLR Code of Ethics.

Disclosure of LLM Usage We only used Large Language Models (LLMs) to aid or polish the
writing in this work.

REPRODUCIBILITY STATEMENT

To promote reproducibility and further research, we will publicly release both the source code and the
collected data of GeoArena. This includes the full platform backend and frontend codebase (for image
upload, voting, and model evaluation), as well as all anonymized user-submitted images, prompts, and
pairwise voting records. We aim to support the community in building similar arena-style benchmarks
for other tasks. The repository will include documentation and deployment instructions to facilitate
reuse and adaptation across domains.
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A APPENDIX

A.1 DATASET CHARACTERISTICS AND COMPOSITION

Table 7: Composition of Image Features in GeoArena-1K Dataset.
Attribute Category Percentage

Scene Type Outdoor 94.2%
Indoor 5.8%

Text Presence Has Text 45.2%
No Text 54.8%

Landmark Presence Has Landmark 15.8%
No Landmark 84.2%

To further explore the characteristics of the GeoArena-1K dataset, we employ GPT 4o to annotate the
collected images, focusing on three key aspects:

1. Scene Type: whether the image depicts an indoor or outdoor setting.

2. Text Presence: whether the image contains prominent, recognizable text.

3. Landmark Presence: whether the image features a landmark, such as a historical site or natural
icon.

The corresponding results are presented in Table 7. The figure comprises three doughnut charts,
each illustrating the distribution of one of the annotated attributes across the GeoArena-1K dataset:
Indoor/Outdoor Distribution:

1. The first doughnut chart indicates that 94.2% of images are classified as outdoor scenes, with only
5.8% representing indoor environments. This pronounced skew toward outdoor imagery aligns
with the global scope of GeoArena, where user-submitted images are likely dominated by exterior
scenes captured in diverse geographic contexts.

2. Text Presence: The second doughnut chart reveals a more balanced distribution, with 54.8%
of images lacking recognizable text ("no text") and 45.2% containing text ("has text"). This
near-equitable split underscores the dataset’s richness, incorporating both text-free natural scenes
and images with textual elements such as signs or labels. This variability is particularly valuable
for assessing LVLM capabilities in multi-modal reasoning, where text recognition can enhance
location prediction accuracy.

3. Landmark Presence: The third doughnut chart shows that 84.2% of images do not contain
landmarks ("no landmark"), while 15.8% do ("has landmark"). The low prevalence of landmarks
reflects the dataset’s emphasis on general geographic scenes rather than iconic or tourist-heavy
locations, offering a broad representation of natural and urban environments worldwide. This
distribution highlights GeoArena-1K’s potential to test LVLM generalization across less distinctive
locales, a challenging yet realistic scenario for global geolocalization. Overall, these distributions
reveal the GeoArena-1K dataset’s heterogeneity, making it a robust resource for benchmarking
LVLM performance under real-world conditions.

A.2 LVLM ALIGNMENT EVALUATION PROMPT

The prompt template used for LVLM alignment evaluation is as follows:
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Figure 5: Case Study: Images Where Strong Models Excel but Weaker Models Fail

You are an expert evaluator in image geolocation tasks. I will give you two model responses
to the same geolocation prompt.
Here is the prompt:
- Prompt: {sample[’prompt’]}
- Image: {sample[’image’]}
Response A: {sample[’response A’]}
Response B: {sample[’response B’]}
Your task is to decide which response is better based on:
1. Accuracy of the predicted location
2. Strength of reasoning and evidence
3. Clarity and specificity
Output only one word:
- “win” if Response A is better
- “loss” if Response B is better
- “tie” if both are equally good

We first prompt the LVLM to act as an expert evaluator for the geolocalization task. For each sample,
the model is provided with the prompt and the associated images, along with the responses from
two candidate models. It is then asked to determine which response is better, considering three
dimensions: accuracy, reasoning, and clarity and specificity.

A.3 HARD CASES ANALYSIS

To better understand the distinction between top-tier and lower-tier models, we examined a set of
representative cases where strong models predicted correctly but weaker models failed, as illustrated
in the Figure 5. Specifically, we selected the top-5 models on the leaderboard—Gemini 2.5 pro,
Gemini 2.5 flash, Qwen 2.5 VL 72B, Gemma 3 12B, and Gemma 3 27B—as well as the bottom-5
models—GPT 4o, Llama 4 scout, Qwen 2.5 VL 7B, GPT 4.1 nano, and GPT 4o mini. We then
extracted examples where the top-5 models outperformed the bottom-5 models. These images
generally do not contain prominent or unique landmarks that can be easily recognized. Instead, they
often depict environments that require reasoning over subtle contextual cues–such as vegetation
types, architectural style, road structures, or geographic textures–to infer the location. This suggests
that strong models may better leverage fine-grained reasoning and background knowledge beyond
surface-level features. The presence of such challenging samples highlights a promising direction
for future model development: expanding training and evaluation on these harder cases. By doing
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Llama 4 Macerick
Input Image

Input Prompt

You are an expert in image geolocalization. Given an
image, provide the most likely location it was taken.

Based on the distinctive rock formation with an arch and a separate sea stack, the most likely location is Percé
Rock (Rocher Percé), located in Percé, Quebec, Canada.

To determine the location of the image, we need to analyze its features. The image shows a large rock formation with an arch in
it, surrounded by water and another rock formation to its right. 

1. Identify Distinctive Features: The key feature here is the rock formation with an arch. Such formations are often associated
with coastal areas where erosion has shaped the landscape. 2. Consider Geographical Context: The presence of a large
body of water and the specific type of rock formation suggests a coastal location. The clarity of the water and the rock’s
appearance could indicate a relatively pristine or less polluted area. 3.  Research Similar Locations: There are several
locations around the world known for their natural arches and rock formations. However, the specific combination of features in
this image, including the size of the arch and the surrounding landscape, needs to be matched against known sites.
4. Matching the Image to Known Locations: One of the most famous natural arches is in Cabo San Lucas, Mexico, known as
“El Arco” or “The Arch.” It is a large granite rock formation with an arch that has been eroded by the sea. The image closely
resembles descriptions and pictures of El Arco. 5. Conclusion: Given the distinctive shape of the rock formation and its arch,
along with the surrounding environment, the most likely location for the image is Cabo San Lucas, Mexico, specifically “El Arco.”

The image is likely taken at El Arco in Cabo San Lucas, Mexico.

Gemini 2.5 Flash

Figure 6: Additional Case Study: Identifying the Percé Rock.

Qwen2.5 VL 72b

Input Image

Input Prompt

You are an expert in image geolocalization. Given an
image, provide the most likely location it was taken.

Based on the distinctive architectural and design elements visible in this image, this appears to be taken at Olympic Forest Park
(Olympic Green) in Beijing, China. The key identifying features include:

1. Distinctive lamp posts  The unique sculptural street lamps with leaf-like designs are characteristic of the Olympic Green area.

2. Large open plaza  The expansive paved public space is typical of the Olympic Forest Park’s grand pedestrian areas.

3. Modern urban planning  The organized layout and design aesthetic match Beijing’s Olympic district development.

4. Architectural style  The overall design language reflects the modernization efforts made for the 2008 Beijing Olympics.

This area was specifically developed as part of Beijing’s Olympic infrastructure and remains a popular public space and tourist
destination. The Olympic Forest Park is located in the Chaoyang District of Beijing and serves as both a recreational area and a
landmark representing modern Chinese urban design.

This image appears to have been taken in Harbin, China. The long open plaza with distinctive streetlights and the
overall layout is characteristic of the Harbin Sun Island Plaza, which is a popular tourist area in the city. The clear
sky and the bare trees suggest it could be during the winter months, which is known for Harbin’s famous ice and
snow festivals.

Claude Sonnet 4

Figure 7: Additional Case Study: Identifying the Olympic Park, Beijing.

so, upcoming systems may gain robustness and achieve more consistent performance across diverse
scenarios, particularly where visual clues are subtle and non-obvious.

A.4 ADDITIONAL CASES FROM GEOARENA

In this section, we present additional case studies from GeoArena to illustrate the diversity and
complexity of the geolocalization tasks it encompasses. Figure 6 showcases an image of the iconic
Percé Rock in Quebec, Canada, highlighting the model’s ability to recognize unique geological
formations. Figure 7 features the Olympic Park in Beijing, China, demonstrating the model’s
proficiency in identifying modern architectural landmarks. Lastly, Figure 8 depicts a golf course in
Fiji, emphasizing the model’s capability to infer locations based on environmental and recreational
context. These examples underscore GeoArena’s effectiveness in challenging models to perform
accurate geolocalization across a wide range of scenarios.

A.5 VERIFYING THE FEASIBILITY OF AUTOMATIC PROMPT FILTERING

To maintain a reliable leaderboard, it is essential to ensure that user inputs are relevant to the image’s
geolocation. Although we currently remove inappropriate or sensitive queries manually, this approach
may not scale as the platform expands. To examine whether LLMs can replace manual filtering,
we conduct an experiment to determine whether LLMs can identify when a user prompt requests
geolocating an image.

For this study, we construct a binary classification task. We randomly select 100 prompts from our
voting data and assign them the label True, indicating that they ask about image geolocation. In
parallel, we sample 100 prompts from the Chatbot Arena dataset2, which contains general-purpose
prompts, and labeled them as False. Each model is given a simple instruction that defines image

2https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
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Gemma 3 12b

Input Image

Input Prompt

You are an expert in image geolocalization. Given an
image, provide the most likely location it was taken.

Based on the image provided, the landscape depicted appears to be a tropical or subtropical region, characterized by a golf
course, dense vegetation, and a coastline with clear turquoise water. 

1. Climate and Vegetation: The presence of dense lush greenery and palm trees indicates a tropical or subtropical climate.
Regions known for such landscapes include parts of the Caribbean, Southeast Asia, and the Pacific Islands. 2. Golf Course and
Infrastructure: The well-maintained golf course and the presence of what appears to be resort infrastructure (e.g., buildings along
the coast) suggest a popular tourist destination. Many tropical and subtropical regions have developed golf courses and resorts to
attract tourism. 3. Coastline and Water Characteristics: The clear turquoise water and the coral reef visible in the shallow waters
are characteristic of tropical marine environments. This feature is common in areas like the Caribbean and the Pacific Islands.
4. Specific Location Clues: Without specific landmarks or text, we rely on the overall aesthetic and features. However, the layout
of the golf course, the architecture, and the specific shade of the water can sometimes give clues. For instance, the presence of a
fringing reef is typical of many Pacific Island locations.

Given these observations, a plausible location for this image could be in the Pacific Islands or the Caribbean. However, without
more specific details or recognizable landmarks, pinpointing the exact location is challenging. That said, one of the locations that
closely match the description and the visual characteristics is Fiji. Fiji is known for its clear waters, coral reefs, lush vegetation,
and numerous golf courses and resorts, making it a popular destination for both golfing and beach tourism.

In conclusion, while the exact location cannot be determined with absolute certainty without additional information, Fiji is
a strong candidate based on the visual cues provided in the image.

Okay, let’s analyze this image and pinpoint its likely location. Here’s my assessment based on visual cues and my expertise in
image geolocalization:

Most Likely Location: Kempinski Grand Baie, Mauritius

Reasoning: 1. Vegetation and Landscape: The lush, tropical vegetation (palm trees, dense foliage) immediately points to a
tropical location. 2. Golf Course: The presence of a well-manicured golf course is a significant clue. This is not just anyplace; it’s a
high-end resort area. 3. Turquoise Water and Barrier Reef: The incredibly clear, turquoise water and the visible barrier reef are
crucial. The color and clarity of the water suggest a specific type of coral reef environment. 4. Coastal Architecture: The buildings
along the coast feature a distinctive architectural style often seen in luxury resorts. 5. Match with known images of the
Kempinski Grand Baie: The layout of the golf course and coastline, revegetation, and building styles strongly match aerial views
and images of the Kempinski Grand Baie resort in Mauritius. The resort has a unique course with distinctive features.

Further refinements: Based on the elevation and angle of the photograph, the photo was likely taken from a drone.

Confidence Level: 95%

Disclaimer: While I am highly confident, certain features can change slightly over time, and other locations could theoretically
exhibit similar characteristics. However, the combination of factors makes Kempinski Grand Baie the most probable location.

If you have other images you’d like me to analyze, please send them over!

Llama 4 Macerick

Figure 8: Additional Case Study: Identifying the Golf Course in Fiji.

geolocation, specifies the expected JSON output, and directs the model to respond only with a True
or False label. The instruction is given as follows:

You are a prompt classifier. Analyze the provided user prompt and determine if it is asking
about image geolocalization.
Image geolocalization refers to determining or estimating the geographic location (e.g., city,
country, landmark) where an image was taken based on its visual content.
Return ONLY a JSON object with one key: “is_geo”. The value must be “true” if the prompt
is inquiring about geolocalizing an image (e.g., “Where was this photo taken?” or instructions
for an expert in image geolocalization), or “false” otherwise. If uncertain, default to “false”.
Output format (no extra words): “is_geo”: “true”|“false”
User prompt: user_prompt

We evaluate three models: Gemini 2.0 flash, GPT 3.5 turbo, and GPT 4.1 mini. All three models
achieve 100% accuracy on this task. The high accuracy is mainly due to two factors. First, most users
ask questions through the default prompt provided by GeoArena, which reflects a stable phrasing
pattern. Second, prompts that request geolocalization usually contain explicit references to places,
images, or location inference, which makes them easy for the models to detect. These observations
show that modern language models can serve as reliable automatic filters for user inputs. Such a
mechanism would allow the leaderboard to remain focused on geolocalization queries while reducing
the need for manual inspection.

A.6 USER CONSENT

To ensure responsible data usage and protect user privacy, GeoArena requires all participants to
provide consent before submitting any images or preference votes. When users interact with the
platform, they are presented with a clear consent statement indicating that uploaded images and voting
records may be used for research purposes and may be released in anonymized form. Users are also
informed that participation is voluntary and that they should avoid uploading sensitive or personally
identifiable content. These measures confirm that the data included in GeoArena is collected with
explicit user permission and used strictly within an academic context.
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