

000
001 GEOARENA: AN OPEN PLATFORM FOR BENCH-
002 MARKING LARGE VISION-LANGUAGE MODELS ON
003 WORLDWIDE IMAGE GEOLOCALIZATION
004
005
006

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011

012 **ABSTRACT**
013
014

015 Image geolocation aims to predict the geographic location of images captured
016 anywhere on Earth, but its global nature presents significant challenges. Current
017 evaluation methodologies suffer from two major limitations. First, static datasets:
018 advanced approaches often rely on large vision-language models (LVLMs) to
019 predict image locations, yet these models are frequently pretrained on the test
020 datasets, compromising the accuracy of evaluating a model’s actual geolocation
021 capability. Second, existing metrics primarily rely on exact geographic coordinates
022 to assess predictions, which not only neglects the reasoning process but also raises
023 privacy concerns when user-level location data is required. To address these issues,
024 we propose **GeoArena**, *a first open platform for evaluating LVLMs on worldwide*
025 *image geolocation tasks, offering true in-the-wild and user-preference-based*
026 *benchmarking*. GeoArena enables users to upload in-the-wild images for a more
027 diverse evaluation corpus, and it leverages pairwise human judgments to determine
028 which model output better aligns with human expectations. Our platform has
029 been deployed online for three months, during which we collected over thousands
030 voting records. Based on this data, we conduct a detailed analysis and establish a
031 leaderboard of different LVLMs on the image geolocation task. GeoArena has
032 been open-sourced¹ to support future research.
033

034 **1 INTRODUCTION**
035

036 Image worldwide geolocation is a highly challenging task that lies at the intersection of computer
037 vision (Szeliski, 2022; He et al., 2016) and geographic artificial intelligence (Mai et al., 2022). It
038 aims to pinpoint the exact location on Earth where a given image was taken, as illustrated in Figure 1.
039 This task has significant application potential, such as in navigation, positioning, crime tracking,
040 and disaster monitoring. Despite its broad utility, geolocation remains a hard problem due to the
041 enormous variability in visual appearances across the globe (Wilson et al., 2021; Vo et al., 2017),
042 coupled with the need for fine-grained spatial reasoning.
043

044 Recently, advanced methods for image worldwide geolocalization have increasingly relied on pow-
045 erful large vision-language models (LVLMs) to generate predictions (Vivanco Cepeda et al., 2023;
046 Zhou et al., 2024; Jia et al., 2024). To assess the performance of different methods on geolocalization
047 tasks, the research community has proposed a series of benchmark studies (Li et al., 2025b; Huang
048 et al., 2025; Jay et al., 2025; Liu et al., 2024; Wang et al., 2024; Astruc et al., 2024). Without
049 exception, these benchmarks are based on static datasets and evaluate model performance using
050 ground-truth labels (i.e., by calculating the distance between the predicted GPS location and the
051 ground-truth GPS), as shown in Table 1. This evaluation approach is efficient and requires relatively
052 few resources. However, it has two notable limitations: (1) Static datasets: static test datasets are
053 inevitably subject to data leakage, meaning that the test data may be included in the pretraining data
054 of LVLMs; and (2) GPS-based evaluation: existing evaluations only consider the spatial distance
055 between the final prediction and the ground truth, ignoring the model’s reasoning process. This
056 can lead to cases where models with flawed reasoning processes achieve higher scores by chance
057

058

 ¹<https://anonymous.4open.science/r/GeoArena-6EDE>

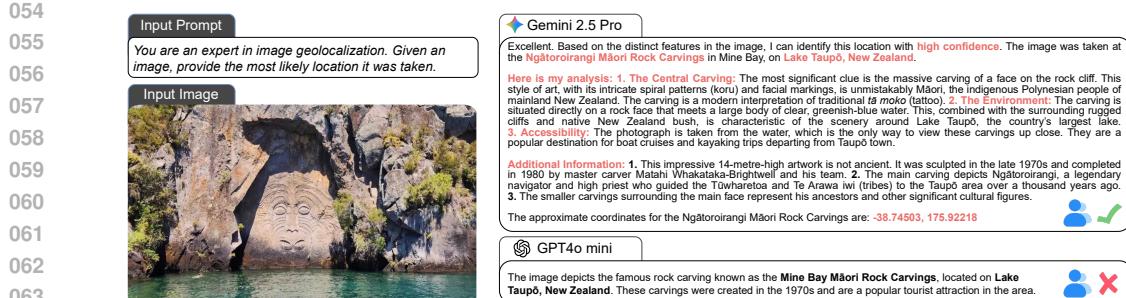


Figure 1: Example of geolocalization: identifying the Ngātoroirangi Māori Rock Carvings.

Table 1: Comparison with different benchmarks on different properties.

Benchmarks	OSV-5M	LLMGeo	ETHAN	Location-Inference	FairLocator	IMAGEO-Bench	GeoArena
Conference Reference Evaluation	CVPR'24 Astruc et al. (2024)	CVPR'24 Wang et al. (2024)	Arxiv'24 Liu et al. (2024)	AAAI'25 Jay et al. (2025)	Arxiv'25 Huang et al. (2025)	Arxiv'25 Li et al. (2025b)	- Ours
Dynamic Datasets	GPS	Country	GPS	GPS, Country, City	GPS, Street, City, Country, Continent	GPS, City, State, Country	User Preference
User-Preference-Based	✗	✗	✗	✗	✗	✗	✓

when they predict closer to the ground truth. Moreover, relying on exact geographic coordinates for evaluation raises privacy concerns, since it requires access to sensitive user-level location data. To address these limitations and develop a more effective evaluation approach, it is necessary to build a *dynamic and user-preference-based benchmarking platform that can capture the real-world challenges of image geolocalization*.

Designing such an evaluation platform is inherently challenging. It involves gathering a steady stream of diverse and representative user images that capture the variability of real-world conditions. Furthermore, the platform must support scalable and efficient evaluation pipelines capable of handling a wide range of model submissions. Finally, designing a reasonable model ranking system based on user preferences is also essential. These challenges highlight the need for careful design and robust infrastructure to create a meaningful and practical benchmarking platform for image geolocalization.

To this end, we introduce **GeoArena**, an open platform for benchmarking Large Vision-language Models on worldwide image geolocalization. Specifically, when a user enters GeoArena and submits an image for geolocalization, two anonymous models each generate a response indicating the predicted location. The user then votes on which response is more satisfactory. After collecting a large volume of voting data, we apply statistical methods to generate reliable rankings for all models. These rankings can serve as valuable references for users in the field, guiding them in selecting models that best align with geolocalization needs. In this way, GeoArena addresses two critical issues in current evaluation practices. First, GeoArena collects in-the-wild images contributed by real-world users, ensuring data diversity and dynamic updates, which help mitigate data leakage from static datasets. Second, GeoArena employs user preferences to assess the quality of model predictions, moving beyond sole reliance on GPS accuracy and mitigating the privacy risks associated with requiring exact user location data. Through these improvements, GeoArena establishes a new evaluation framework for image geolocalization that is more dynamic, privacy-preserving, and reflective of real-world user preferences. This approach bridges the gap between automated metrics and human-centered evaluation, providing a more robust and generalizable benchmark for the community.

GeoArena has been successfully deployed since June 2025, operating for over three months and collecting thousands of records. Our deployment has already revealed clear patterns: frontier systems like Gemini 2.5 dominate the leaderboard, while strong open-source families such as Qwen 2.5 and Gemma 3 are closing the gap. User preference analysis shows that longer and more structured responses are consistently favored, highlighting the importance of reasoning quality. We also find that top proprietary models align more closely with human judgment than open-source models, though noticeable gaps remain. These insights demonstrate GeoArena’s ability to both benchmark models dynamically and uncover the factors that shape human evaluations in geolocalization. We will release all the collected voting data to support advancements in related areas, such as reward modeling (Zhong

108 et al., 2025) and geographic foundation models (Mai et al., 2024). Our key contributions can be
 109 summarized as follows:
 110

111 1. We develop GeoArena, the first dynamic, user-preference-based open platform for addressing long-
 112 standing issues in geolocalization evaluation, including static-dataset leakage, missing reasoning
 113 assessment, and privacy concerns.
 114 2. We conduct a comprehensive analysis of the collected user inputs and voting data to demonstrate
 115 the reliability and capabilities of GeoArena.
 116 3. We publicly release the collected prompts, images, and voting data to support research and
 117 development in related fields such as reward modeling and geographic foundation models.
 118

120 **2 RELATED WORK**
 121

122 **Worldwide Image Geolocalization.** Worldwide image geolocalization is an interdisciplinary task
 123 that bridges geography and computer science, involving GeoAI (Janowicz et al., 2020), spatial data
 124 mining (Wang et al., 2020), and multi-modal modeling (Wang et al., 2023). In recent years, thanks to
 125 the strong world knowledge and visual understanding capabilities of Large Vision-Language Models
 126 (LVLMs), image geolocalization has made significant progress (Li et al., 2024; Haas et al., 2024;
 127 Dou et al., 2024; Sarkar et al., 2024; Astruc et al., 2024; Dufour et al., 2025). Methodologically,
 128 GeoCLIP (Vivanco Cepeda et al., 2023) leverages the CLIP architecture to separately model images
 129 and GPS coordinates, retrieving the GPS candidate closest to the image’s representations through
 130 vector similarity matching. Img2Loc (Zhou et al., 2024) is the first to introduce LVLMs into image
 131 geolocalization, retrieving similar images’ information and incorporating it as prompts into the LVLM
 132 input to utilize the world knowledge acquired during pretraining to predict the image’s location.
 133 G3 (Jia et al., 2024) further improves upon Img2Loc by optimizing both the image retrieval and
 134 reasoning processes, enabling the model to obtain more accurate reference information and fully
 135 exploit the prediction potential of LVLMs. GLOBE (Li et al., 2025a) enhances the reasoning ability of
 136 LVLMs through reinforcement learning, enabling backbone LVLMs can accurately infer the shooting
 137 location from images.

138 **Benchmark of Geolocalization.** Common evaluation datasets used in geolocalization tasks include
 139 IM2GPS (Hays & Efros, 2008) and YFCC (Thomee et al., 2016). On the benchmarking side,
 140 LLMGeo (Wang et al., 2024) collects datasets from Google Street View and evaluates models
 141 including GPT-4V (Achiam et al., 2023), Google Gemini (Team et al., 2023), BLIP (Li et al., 2023),
 142 Fuyu (Bavishi et al., 2023), InternLM-VL (Dong et al., 2024), and LLaVA (Liu et al., 2023). Liu et al.
 143 (2024) evaluates the performance of LVLMs on IM2GPS and YFCC and shows that incorporating
 144 Chain-of-Thought (CoT) (Wei et al., 2022) reasoning can improve performance on geolocalization
 145 tasks. Jay et al. (2025) also extracts data from Google Street View to create a more generalized
 146 evaluation set, finding that LVLMs already outperform the average human baseline in geolocalization
 147 capabilities. FairLocator (Huang et al., 2025) evaluates LVLMs’ urban geolocalization abilities and
 148 focuses on biases in the geolocalization capabilities of LVLMs. In contrast to these methods and
 149 benchmark studies, we propose GeoArena, the *first dynamic and user-preference-based benchmark*
 150 for image geolocalization. GeoArena collects in-the-wild images uploaded by users, effectively
 151 mitigating the data leakage issues of static datasets while also avoiding the privacy risks associated
 152 with requiring exact GPS annotations. In addition, the image distribution in GeoArena is more
 153 representative of real-world use cases, and the platform uses user preferences to generate rankings of
 154 model capabilities. This provides a more robust and user-aligned evaluation framework for image
 155 worldwide geolocalization.

156 **3 GEOARENA**
 157

158 GeoArena is an interactive platform designed to evaluate the geolocalization capabilities of various
 159 LVLMs. In this section, we provide a detailed description of GeoArena, including its live interface
 160 (Section 3.1), data collection process (Section 3.2), the models it encompasses (Section 3.3), and the
 161 ranking computation methods (Section 3.4).

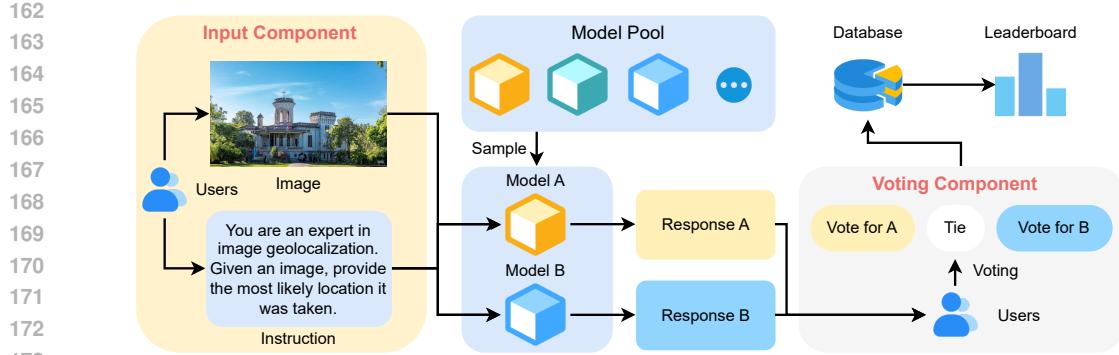


Figure 2: Overview of GeoArena.

3.1 LIVE INTERFACE

To facilitate user interaction, GeoArena is an online platform that allows any user to conveniently access the leaderboard and participate in data collection through a public link. As shown in Figure 2, the live interface consists of two main components: an input component and a voting component. (1) The input component includes both an image input and a prompt input. Users can upload images that they wish to geolocate, while the prompt input allows users to specify personalized geolocalization instructions. To improve efficiency, we also provide a default instruction derived from previous work (Zhou et al., 2024; Jia et al., 2024). (2) The voting component displays two side-by-side outputs generated by two anonymized models that are automatically sampled. After clicking the submit button, three voting options pop up: “vote for left”, “vote for right”, and “tie” (indicating comparable quality between the two outputs). Once the user submits a vote, the true model identities are revealed to maintain user impartiality during the voting process.

3.2 DATA COLLECTION

GeoArena collects essential data for each evaluation session to enable rigorous analysis and reliable leaderboard computation. For every voting event, we record the names of the two models being compared, the winning model, the user-provided prompt, the uploaded image, and the generated responses. This information ensures the traceability of each comparison, supports the calculation of rankings, and allows for reproducible experiments. All data are stored in structured JSON files, which facilitate downstream analysis and leaderboard generation. To preserve user privacy, we anonymize user inputs and apply filters to remove any potentially sensitive or inappropriate content.

3.3 PARTICIPATING MODELS

To ensure comprehensive and meaningful comparisons, GeoArena includes a wide range of both open-source and proprietary models. Our selection covers popular LVLMs from multiple providers. For the GPT series (Achiam et al., 2023), we include GPT 4o, GPT 4o mini, GPT 4.1, GPT 4.1 mini, and GPT 4.1 nano. From the Gemini family (Team et al., 2023), we incorporate Gemini 2.5 pro and Gemini 2.5 flash. The Claude series includes Claude Opus 4 and Claude Sonnet 4. We also evaluate Llama 4 maverick and Llama 4 scout (Touvron et al., 2023), as well as Gemma 3 models (Team et al., 2025) in sizes of 27B, 12B, and 4B. Additionally, our platform features Qwen 2.5 VL models in sizes of 72B, 32B, 7B (Bai et al., 2025). As shown in Table 2, in total, GeoArena currently benchmarks 17 models. This broad coverage ensures that users and researchers can evaluate model performance across different architectures, training paradigms, and capabilities.

3.4 RANKING COMPUTATION METHODS

Online Elo Ranking. The Elo rating system is a widely used approach to estimate the relative strength of different models or players based on pairwise comparisons. Originally introduced for ranking chess players, it has been extended to various evaluation tasks in machine learning and

216
 217 Table 2: Large-scale models benchmarked in *GeoArena*. Prices are USD / million tokens (input/output)
 218 and USD / thousand (image).

219	Model	Company	Params	Openness	API Price (input / output / image)
220	GPT 4o	OpenAI	Unknown	Proprietary	\$2.50 / \$10.00 / \$3.61
221	GPT 4o mini	OpenAI	Unknown	Proprietary	\$0.15 / \$0.60 / \$0.22
222	GPT 4.1	OpenAI	Unknown	Proprietary	\$2.00 / \$8.00 / -
223	GPT 4.1 mini	OpenAI	Unknown	Proprietary	\$0.40 / \$1.60 / -
224	GPT 4.1 nano	OpenAI	Unknown	Proprietary	\$0.10 / \$0.40 / -
225	Gemini 2.5 flash	Google DeepMind	Unknown	Proprietary	\$0.15 / \$0.60 / \$0.62
226	Gemini 2.5 pro	Google DeepMind	Unknown	Proprietary	\$1.25 / \$10.00 / \$5.16
227	Claude Sonnet 4	Anthropic	Unknown	Proprietary	\$3.00 / \$15.00 / \$4.80
228	Claude Opus 4	Anthropic	Unknown	Proprietary	\$15.00 / \$75.00 / \$24.00
229	Llama 4 maverick	Meta	17B/402B	Open-source	\$0.15 / \$0.60 / \$0.67
230	Llama 4 scout	Meta	17B/109B	Open-source	\$0.08 / \$0.30 / -
231	Gemma 3 27B	Google	27B	Open-source	\$0.10 / \$0.20 / \$0.03
232	Gemma 3 12B	Google	12B	Open-source	\$0.15 / \$0.10 / -
233	Gemma 3 4B	Google	4B	Open-source	\$0.02 / \$0.04 / -
234	Qwen 2.5 VL 72B	Alibaba	72B	Open-source	\$0.25 / \$0.75 / -
235	Qwen 2.5 VL 32B	Alibaba	32B	Open-source	\$0.90 / \$0.90 / -
236	Qwen 2.5 VL 7B	Alibaba	7B	Open-source	\$0.20 / \$0.20 / -

237
 238 artificial intelligence. Elo rating provides an interpretable score that reflects the expected probability
 239 of one model outperforming another. Formally, given two models i and j with Elo ratings R_i and R_j ,
 240 the expected probability that model i will outperform model j is defined as:

$$241 \quad E(i, j) = \frac{1}{1 + 10^{(R_j - R_i)/\alpha}} \quad (1)$$

242 where α is a scaling parameter that controls the spread of the probability function, typically set to 400
 243 in most implementations. After observing the actual outcome $S(i, j)$, where $S(i, j) = 1$ if model
 244 i wins, $S(i, j) = 0.5$ for a tie, and $S(i, j) = 0$ if model i loses, the Elo rating of model i will be
 245 updated as: $R'_i = R_i + K \cdot (S(i, j) - E(i, j))$, where K is a learning rate that determines how
 246 quickly the rating adapts to new results. From the above description, we can summarize two key
 247 features of the Elo rating system. First, it can operate without requiring a complete history of past
 248 matches, updating each model’s rating using only its current Elo rating and the outcome of its most
 249 recent match. Second, the Elo rating system inherently assumes that the strength of each participant
 250 changes over time, rather than remaining constant. However, in the context of evaluating LVLMs,
 251 we generally assume that model capabilities are static. Furthermore, Elo ratings are more strongly
 252 influenced by recent matches, making them highly sensitive to the order of matches—an effect that is
 253 undesirable in our setting. To address this, we follow prior work (Chiang et al., 2024) and apply the
 254 Bradley-Terry model (Bradley & Terry, 1952) to estimate the final Elo ratings for each model on the
 255 image geolocalization task, ensuring a stable and order-invariant ranking.

256 **Bradley-Terry Model.** The Bradley-Terry (BT) model provides a principled way to estimate the
 257 relative strength of competing models through pairwise comparisons. In this framework, each model
 258 i is assigned a latent strength parameter R_i . The probability that model i outperforms model j is
 259 given by:

$$260 \quad P(i > j) = \frac{1}{1 + 10^{(R_j - R_i)/\alpha}}, \quad (2)$$

261 where α is a scaling parameter (typically set to 400) that controls the spread of probabilities. The BT
 262 model estimates the parameters R_i by maximizing the likelihood of all observed pairwise outcomes,
 263 accounting for repeated comparisons through a weighting term W_{ij} . The likelihood function is
 264 defined as:

$$265 \quad \mathcal{L}(\mathbf{R}) = \sum_{i, j \in N, i \neq j} W_{ij} \log \left(\frac{1}{1 + 10^{(R_j - R_i)/\alpha}} \right) \quad (3)$$

266 To compute the final Elo ratings, we apply a linear transformation to align the model scores with
 267 the Elo rating scale. Specifically, after fitting the BT model via logistic regression, the estimated

270

271

Table 3: GeoArena Leaderboard in September 2025.

272

Ranking	Model	ELO Rating	95% CI lower	95% CI upper
0	Gemini 2.5 pro	1319.7	974.8	1443.8
1	Gemini 2.5 flash	1206.5	1062.2	1330.6
2	Qwen 2.5 VL 72B	1094.5	982.6	1181.9
3	Gemma 3 12B	1086.5	1002.6	1186.4
4	Gemma 3 27B	1065.5	959.3	1159.8
5	GPT 4.1 mini	1059.8	970.0	1161.4
6	Llama 4 maverick	1046.6	944.6	1115.3
7	Qwen 2.5 VL 32B	1044.8	964.9	1119.0
8	GPT 4.1	1044.8	964.9	1119.0
9	Claude Opus 4	1042.3	933.8	1130.0
10	Gemma 3 4B	1027.3	936.3	1102.0
11	Claude Sonnet 4	1019.9	921.3	1113.8
12	GPT 4o	1000.0	1000.0	1000.0
13	Llama 4 scout	984.2	876.0	1077.1
14	Qwen 2.5 VL 7B	950.9	868.4	1056.2
15	GPT 4.1 nano	917.9	819.1	1015.5
16	GPT 4o mini	871.6	715.2	1114.7

290

291

parameters \hat{R}_i are transformed as: $\text{Elo}_i = \text{scale} \cdot \hat{R}_i + \text{init_rating}$, where scale is typically set to 400 and init_rating is set to 1000. This transformation preserves the relative ranking among models while making the scores more interpretable and consistent with standard Elo rating conventions.

295

Confidence Interval. To ensure that the model ranking results are not overly dependent on a particular sample of comparisons, we estimate confidence intervals (CIs) for the elo scores. Specifically, we adopt a bootstrap procedure similar to the methodology employed in Chatbot Arena (Chiang et al., 2024), which repeatedly resamples the battle outcomes and re-computes the rating estimates. This approach allows us to quantify the variability in model rankings and provides statistically grounded intervals around each estimate. The inclusion of confidence intervals is essential because it enables us to distinguish between meaningful performance differences and those that may arise due to sampling noise. As a result, our reported rankings are not only more robust but also more interpretable from a statistical perspective, offering stronger evidence of the relative strengths of different LVLMs on the image geolocalization task.

305

306

3.5 GEOARENA-1K DATASET

307

Based on GeoArena, we further release the **GeoArena-1K** dataset. This dataset consists of samples each containing the user-uploaded image, the textual instructions, pairwise model responses, the names of the competing models, and the corresponding user voting outcomes. To the best of our knowledge, this is the first user preference dataset for LVLMs in the domain of image geolocalization. Beyond serving as a preference dataset on image geolocalization, GeoArena-1K provides a valuable resource for advancing research in reward modeling and the development of geographic foundation models. More details about the GeoArena-1K dataset are illustrated in Appendix A.1.

314

315

4 BENCHMARKS AND RESULTS ANALYSIS

316

317

4.1 ARENA LEADERBOARD

318

319

Table 3 presents the GeoArena leaderboard as of September 2025. The reported 95% confidence intervals (CI lower, CI upper) are computed via bootstrap resampling over 100 rounds, capturing rating variability under different voting subsets. To ensure the data aligns with the geolocalization task, we manually filtered the user-uploaded prompts. From this table, several key observations can be drawn: (1) Gemini models from DeepMind achieve the strongest performance, with Gemini 2.5 pro (Elo 1319.7) and Gemini 2.5 flash (Elo 1206.5) clearly outperforming all other systems. This



Figure 3: Pair-wise Performance Comparison of Models (Win-Rate and Battle Count).

highlights the advantage of large-scale, production-level multimodal pre-training in the challenging image geolocation task. (2) Open-source families such as Qwen 2.5 and Gemma 3 obtain competitive rankings. For example, Qwen 2.5 VL 72B (Elo 1094.5) surpasses Gemma 3 12B (Elo 1086.5) and performs comparably to the GPT 4.1 series, suggesting that open-source initiatives are rapidly narrowing the gap with proprietary frontier systems. (3) Several models, including Llama 4 maverick, GPT 4.1, and Claude Opus 4, cluster within the Elo 1040-1050 range. Their confidence intervals overlap substantially, indicating no statistically significant differences between these models. (4) Smaller variants such as GPT 4.1 nano, GPT 4.0 mini, and the lightweight Qwen model (Qwen 2.5 VL 7B) exhibit clear performance degradation, with ratings below 960. This underscores the inherent difficulty of image geolocation, where reduced model capacity limits generalization across diverse global contexts. (5) The wide rating spread (1320 down to 870) validates the discriminative power of GeoArena. It provides a reliable platform to distinguish frontier-level systems from lightweight baselines, which is crucial for advancing research on geospatial reasoning in LVLMs.

4.2 BATTLE DATA ANALYSIS

To provide a comprehensive view of comparative model performance, we conduct a pair-wise analysis of model battles, reporting both win-rates and battle counts. Figure 3 reports a pair-wise comparison across models, with the left panel showing head-to-head win rates (ties excluded) and the right panel showing the corresponding battle counts. Models are ordered by their average win rate, which makes the block structure of the heatmap interpretable. We can find: **(1) Frontier models consistently dominate.** Gemini 2.5 pro, Gemini 2.5 flash, and GPT 4.1 occupy the top rows, maintaining win rates close to or above 0.7 against nearly all competitors. Their advantage is not limited to small baselines but extends to strong models from other families, suggesting that both model capacity and advanced alignment procedures contribute to their robustness. **(2) Mid-scale systems show transitional behavior.** Models such as Gemma 3 12B, Qwen 2.5 VL 72B, and GPT 4.1 mini occupy the middle tier. They achieve favorable outcomes against smaller instruction-tuned variants but exhibit substantial performance gaps when challenged by the frontier tier. This indicates a stepwise stratification that correlates with effective model size and tuning intensity. **(3) Lower-capacity models underperform broadly.** Systems including Gemma 3 4B, Qwen 2.5 VL 7B, GPT 4.1 nano, and GPT 4.0 mini cluster near the bottom of the heatmap, with win rates typically below 0.3 against larger peers. Their deficits are systematic across families, reflecting limited parameter budgets and less extensive post-training data. **(4) Family-specific patterns emerge.** Within families, performance scales predictably with size. For example, the Qwen 2.5 VL series shows clear gains moving from 7B to 72B parameters. These intra-family trends suggest that scaling and alignment strategies jointly determine competitiveness.

378

379

380

381

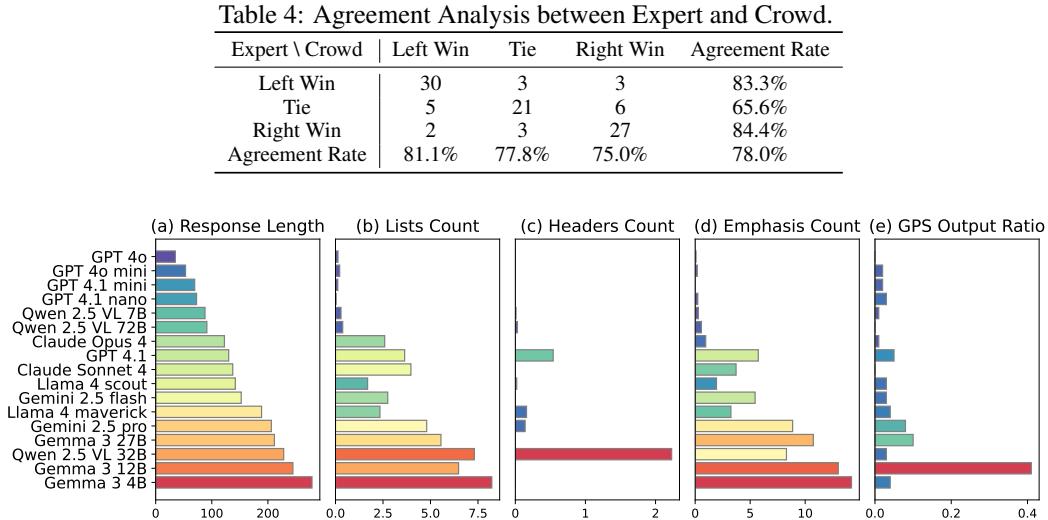
382

383

384

385

386



387

388

389

390

391

392

393

394

395

396

397

398

399

400

4.3 RELIABILITY ANALYSIS OF VOTING

To validate the quality of the voting data, we randomly sample 100 examples from the dataset and have expert annotators evaluate them. Specifically, given an image to be geolocalized, a textual prompt, and two anonymized model responses, the expert is asked to judge which response is better, or to select a tie if applicable. Expert is allowed to use any external tools, including search engines, to assist their decision-making. On average, each evaluation takes approximately 3–5 minutes. Table 4 presents the distribution of preferences between experts and crowds on the sampled examples. Overall, we observe a consistently high agreement rate between expert and crowd annotations, typically ranging from 75% to 85%, with an average agreement of 78%. According to prior studies (Chiang et al., 2024), this constitutes a strong agreement level, supporting the reliability of the collected voting data.

410

411

4.4 PREFERENCE ANALYSIS

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Table 5: Estimated Influence of Style Features on User Preference. A higher coefficient (β) for a style feature indicates that this attribute contributes more positively to user preference.

428

429

430

431

Features	Response Length	Lists Count	Headers Count	Emphasis Count	GPS Output Ratio
Coefficient β	0.526	0.095	-0.153	-0.117	0.06

(the proportion of responses containing GPS-level predictions). Figure 4 illustrates the distribution of these features across different models, showing clear stylistic variation in model outputs. From the experimental results in Table 5, we observe consistent findings with prior work (Chiang et al., 2024; Steyvers et al., 2024; Tianle Li, 2024): response length exhibits a strong positive correlation with human preference (i.e., $\beta_{\text{response}} = 0.526$), as longer responses are more likely to be favored by users. In addition, both lists count ($\beta_{\text{list}} = 0.095$) and GPS output ratio ($\beta_{\text{GPS}} = 0.06$) are positively correlated with preference, where a higher number of lists often reflects more explicit reasoning steps, and GPS outputs provide finer-grained and more concrete answers. However, headers count and emphasis count do not show positive associations with human preference. A possible explanation is that excessive use of structural markers or textual emphasis may be perceived as superficial formatting rather than substantive content, and thus does not contribute to the perceived quality or informativeness of the response.

4.5 ALIGNMENT STUDY BETWEEN LVLM AND USER

To further examine whether LVLMs can serve as reliable judges for geolocalization responses, we conduct an alignment study that compares LLM preferences with human annotations. Specifically, we randomly sample 100 response pairs from the dataset. For each pair, we ask an LVLM to decide which response (generated by Model A or Model B) is better in terms of accuracy, reasoning, and clarity, and require the model to output only one of three labels: win, tie, or loss. The prompt template we used is shown in Appendix A.2. We then compute the agreement accuracy between the LVLM’s judgment and the human-provided ground truth labels. Table 6 reports the alignment results for two representative models, the top-performing proprietary and open-source models on the GeoArena leaderboard, Gemini 2.5 pro and Qwen 2.5 VL 72B. The results show that Gemini 2.5 pro achieves a substantially higher agreement rate (65.79%) with human evaluations compared to Qwen 2.5 VL 72B (46.67%). This suggests that Gemini 2.5 pro exhibits stronger alignment with human judgment in assessing geolocalization task responses. These findings highlight that while LLMs can approximate human preferences to a certain extent, significant gaps remain. This motivates future work on designing more faithful and robust LLM-based evaluators for geolocalization and other multimodal tasks.

4.6 CASE STUDY

To illustrate our framework, we present a case study using an image of the Ngātoroirangi Māori Rock Carvings at Mine Bay on Lake Taupō, New Zealand. As shown in Figure 1, different models exhibit varying levels of reasoning depth and factual accuracy. Gemini 2.5 pro produces a comprehensive analysis, identifying salient visual features such as the Māori face carving, surrounding cliffs, and water-based accessibility, while also providing historical and cultural context (e.g., the carving’s creation in 1980 by Matahi Whakataka-Brightwell). In contrast, GPT 4o mini generates only a brief description, lacking explicit reasoning and omitting cultural details. This comparison underscores the importance of reasoning quality and contextual grounding in geolocalization tasks, showing that structured analyses align more closely with human preferences and task requirements. We also give hard cases analysis and more case studies in Appendix A.3 and Appendix A.4.

5 CONCLUSION

In this work, we present GeoArena, a dynamic and user-preference-based benchmarking platform for evaluating LVLMs on worldwide image geolocalization tasks. By collecting in-the-wild user-submitted images and integrating pairwise user preference evaluations, GeoArena overcomes the limitations of existing static benchmarks that often suffer from data leakage, insufficient reasoning assessment, and privacy issues. We implement a stable Bradley-Terry model, enabling reliable and interpretable ranking of models under diverse real-world conditions. Overall, GeoArena offers a practical, scalable, and user-aligned framework that bridges the gap between automated metrics and human evaluation. We believe GeoArena will facilitate future research in LVLMs and GeoAI, providing valuable resources for developing robust, generalizable, and user-preference-aligned geolocalization systems.

Table 6: Alignment accuracy of LLMs with human judgments on sampled response pairs.

Model	Accuracy
Gemini 2.5 pro	0.6579
Qwen 2.5 VL 72B	0.4667

486 ETHICS STATEMENT
487488 Our work involves the development and deployment of GeoArena, an open benchmarking platform
489 that evaluates LVLMs on worldwide image geolocalization tasks using real-world images and human
490 preferences. Our ethical statement is detailed as follows:491

1. We prioritize user privacy and data protection. GeoArena does not collect or store any personally
492 identifiable information, and users are not required to submit GPS coordinates or metadata tied
493 to private locations. All uploaded images and preference votes are anonymized and stored in
494 compliance with ethical data management practices.
2. Our human evaluation is limited to pairwise preference voting and does not involve sensitive
495 demographic or personal data. No compensation or recruitment was involved, and the voting
496 interface includes disclaimers and consent mechanisms.
3. Our benchmark is explicitly designed for research purposes, with all model outputs and analysis
497 made publicly available to support transparent and responsible evaluation. The voting data will be
498 released under appropriate open data licenses for research use only.

502 We confirm that this work complies with the ICLR Code of Ethics.

504 **Disclosure of LLM Usage** We only used Large Language Models (LLMs) to aid or polish the
505 writing in this work.507 REPRODUCIBILITY STATEMENT
509510 To promote reproducibility and further research, we will publicly release both the source code and the
511 collected data of GeoArena. This includes the full platform backend and frontend codebase (for image
512 upload, voting, and model evaluation), as well as all anonymized user-submitted images, prompts, and
513 pairwise voting records. We aim to support the community in building similar arena-style benchmarks
514 for other tasks. The repository will include documentation and deployment instructions to facilitate
515 reuse and adaptation across domains.516 REFERENCES
517518 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
519 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
520 *arXiv preprint arXiv:2303.08774*, 2023.522 Guillaume Astruc, Nicolas Dufour, Ioannis Siglidis, Constantin Aronsohn, Nacim Bouia, Stephanie
523 Fu, Romain Loiseau, Van Nguyen Nguyen, Charles Raude, Elliot Vincent, et al. Openstreetview-
524 5m: The many roads to global visual geolocation. In *Proceedings of the IEEE/CVF Conference on*
525 *Computer Vision and Pattern Recognition*, pp. 21967–21977, 2024.527 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
528 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
529 2025.530 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
531 Sağnak Taşırlar. Introducing our multimodal models, 2023. URL [https://www.adept.ai/
532 blog/fuyu-8b](https://www.adept.ai/blog/fuyu-8b).534 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
535 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.537 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
538 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
539 platform for evaluating llms by human preference. In *Forty-first International Conference on*
Machine Learning, 2024.

540 Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang
 541 Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-form text-image
 542 composition and comprehension in vision-language large model. *arXiv preprint arXiv:2401.16420*,
 543 2024.

544 Zhiyang Dou, Zipeng Wang, Xumeng Han, Guorong Li, Zhipei Huang, and Zhenjun Han. Gaga:
 545 Towards interactive global geolocation assistant. *arXiv preprint arXiv:2412.08907*, 2024.

546 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
 547 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

548 Nicolas Dufour, Vicky Kalogeiton, David Picard, and Loic Landrieu. Around the world in 80
 549 timesteps: A generative approach to global visual geolocation. In *Proceedings of the Computer
 550 Vision and Pattern Recognition Conference*, pp. 23016–23026, 2025.

551 Lukas Haas, Michal Skreta, Silas Alberti, and Chelsea Finn. Pigeon: Predicting image geolocations.
 552 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 553 12893–12902, 2024.

554 James Hays and Alexei A Efros. Im2gps: estimating geographic information from a single image. In
 555 *2008 ieee conference on computer vision and pattern recognition*, pp. 1–8. IEEE, 2008.

556 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 557 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 558 pp. 770–778, 2016.

559 Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, and Jieyu Zhao. Vlms
 560 as geoguessr masters: Exceptional performance, hidden biases, and privacy risks. *arXiv preprint
 561 arXiv:2502.11163*, 2025.

562 Krzysztof Janowicz, Song Gao, Grant McKenzie, Yingjie Hu, and Budhendra Bhaduri. Geoui:
 563 spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond,
 564 2020.

565 Neel Jay, Hieu Minh Nguyen, Trung Dung Hoang, and Jacob Haimes. Evaluating precise geolocation
 566 inference capabilities of vision language models. *arXiv preprint arXiv:2502.14412*, 2025.

567 Pengyue Jia, Yiding Liu, Xiaopeng Li, Xiangyu Zhao, Yuhao Wang, Yantong Du, Xiao Han, Xuetao
 568 Wei, Shuaiqiang Wang, and Dawei Yin. G3: an effective and adaptive framework for worldwide
 569 geolocalization using large multi-modality models. *Advances in Neural Information Processing
 570 Systems*, 37:53198–53221, 2024.

571 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 572 pre-training with frozen image encoders and large language models. In *International conference
 573 on machine learning*, pp. 19730–19742. PMLR, 2023.

574 Ling Li, Yu Ye, Bingchuan Jiang, and Wei Zeng. Georeasoner: Geo-localization with reasoning
 575 in street views using a large vision-language model. In *Forty-first International Conference on
 576 Machine Learning*, 2024.

577 Ling Li, Yao Zhou, Yuxuan Liang, Fugee Tsung, and Jiaheng Wei. Recognition through rea-
 578 soning: Reinforcing image geo-localization with large vision-language models. *arXiv preprint
 579 arXiv:2506.14674*, 2025a.

580 Lingyao Li, Runlong Yu, Qikai Hu, Bowei Li, Min Deng, Yang Zhou, and Xiaowei Jia. From pixels
 581 to places: A systematic benchmark for evaluating image geolocalization ability in large language
 582 models. *arXiv preprint arXiv:2508.01608*, 2025b.

583 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 584 neural information processing systems*, 36:34892–34916, 2023.

585 Yi Liu, Junchen Ding, Gelei Deng, Yuekang Li, Tianwei Zhang, Weisong Sun, Yaowen Zheng,
 586 Jingquan Ge, and Yang Liu. Image-based geolocation using large vision-language models. *arXiv
 587 preprint arXiv:2408.09474*, 2024.

594 Gengchen Mai, Krzysztof Janowicz, Yingjie Hu, Song Gao, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao.
 595 A review of location encoding for geoai: methods and applications. *International Journal of*
 596 *Geographical Information Science*, 36(4):639–673, 2022.

597 Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao Liu, Song Gao,
 598 Tianming Liu, Gao Cong, Yingjie Hu, et al. On the opportunities and challenges of foundation
 600 models for geoai (vision paper). *ACM Transactions on Spatial Algorithms and Systems*, 10(2):
 601 1–46, 2024.

602 Anindya Sarkar, Srikumar Sastri, Aleksis Pirinen, Chongjie Zhang, Nathan Jacobs, and Yevgeniy
 603 Vorobeychik. Gomaa-geo: Goal modality agnostic active geo-localization. *Advances in Neural*
 604 *Information Processing Systems*, 37:104934–104964, 2024.

605 Mark Steyvers, Heliodoro Tejeda, Aakriti Kumar, Catarina Belem, Sheer Karny, Xinyue Hu, Lukas
 606 Mayer, and Padhraic Smyth. The calibration gap between model and human confidence in large
 607 language models. *arXiv preprint arXiv:2401.13835*, 2024.

608 Richard Szeliski. *Computer vision: algorithms and applications*. Springer Nature, 2022.

609 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 610 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 611 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

612 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 613 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 614 report. *arXiv preprint arXiv:2503.19786*, 2025.

615 Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
 616 Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. *Communications*
 617 *of the ACM*, 59(2):64–73, 2016.

618 Wei-Lin Chiang Tianle Li, Anastasios Angelopoulos. Does style matter? disentangling style and
 619 substance in chatbot arena, August 2024. URL <https://blog.lmarena.ai/blog/2024/style-control/>.

620 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 621 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 622 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

623 Vicente Vivanco Cepeda, Gaurav Kumar Nayak, and Mubarak Shah. Geoclip: Clip-inspired alignment
 624 between locations and images for effective worldwide geo-localization. *Advances in Neural*
 625 *Information Processing Systems*, 36:8690–8701, 2023.

626 Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps in the deep learning era. In *Proceedings*
 627 *of the IEEE international conference on computer vision*, pp. 2621–2630, 2017.

628 Senzhang Wang, Jiannong Cao, and S Yu Philip. Deep learning for spatio-temporal data mining: A
 629 survey. *IEEE transactions on knowledge and data engineering*, 34(8):3681–3700, 2020.

630 Xiao Wang, Guangyao Chen, Guangwu Qian, Pengcheng Gao, Xiao-Yong Wei, Yaowei Wang,
 631 Yonghong Tian, and Wen Gao. Large-scale multi-modal pre-trained models: A comprehensive
 632 survey. *Machine Intelligence Research*, 20(4):447–482, 2023.

633 Zhiqiang Wang, Dejia Xu, Rana Muhammad Shahroz Khan, Yanbin Lin, Zhiwen Fan, and Xingquan
 634 Zhu. Llmgeo: Benchmarking large language models on image geolocation in-the-wild. *arXiv*
 635 *preprint arXiv:2405.20363*, 2024.

636 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 637 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 638 *neural information processing systems*, 35:24824–24837, 2022.

639 Daniel Wilson, Xiaohan Zhang, Waqas Sultani, and Safwan Wshah. Visual and object geo-
 640 localization: A comprehensive survey. *arXiv preprint arXiv:2112.15202*, 2021.

648 Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
649 Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applications,
650 challenges, and future. *arXiv preprint arXiv:2504.12328*, 2025.
651
652 Zhongliang Zhou, Jielu Zhang, Zihan Guan, Mengxuan Hu, Ni Lao, Lan Mu, Sheng Li, and Gengchen
653 Mai. Img2loc: Revisiting image geolocalization using multi-modality foundation models and
654 image-based retrieval-augmented generation. In *Proceedings of the 47th international acm sigir
conference on research and development in information retrieval*, pp. 2749–2754, 2024.
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 DATASET CHARACTERISTICS AND COMPOSITION

Table 7: Composition of Image Features in GeoArena-1K Dataset.

Attribute	Category	Percentage
Scene Type	Outdoor	94.2%
	Indoor	5.8%
Text Presence	Has Text	45.2%
	No Text	54.8%
Landmark Presence	Has Landmark	15.8%
	No Landmark	84.2%

To further explore the characteristics of the GeoArena-1K dataset, we employ GPT 4o to annotate the collected images, focusing on three key aspects:

1. Scene Type: whether the image depicts an indoor or outdoor setting.
2. Text Presence: whether the image contains prominent, recognizable text.
3. Landmark Presence: whether the image features a landmark, such as a historical site or natural icon.

The corresponding results are presented in Table 7. The figure comprises three doughnut charts, each illustrating the distribution of one of the annotated attributes across the GeoArena-1K dataset: Indoor/Outdoor Distribution:

1. The first doughnut chart indicates that 94.2% of images are classified as outdoor scenes, with only 5.8% representing indoor environments. This pronounced skew toward outdoor imagery aligns with the global scope of GeoArena, where user-submitted images are likely dominated by exterior scenes captured in diverse geographic contexts.
2. Text Presence: The second doughnut chart reveals a more balanced distribution, with 54.8% of images lacking recognizable text ("no text") and 45.2% containing text ("has text"). This near-equitable split underscores the dataset's richness, incorporating both text-free natural scenes and images with textual elements such as signs or labels. This variability is particularly valuable for assessing LVLM capabilities in multi-modal reasoning, where text recognition can enhance location prediction accuracy.
3. Landmark Presence: The third doughnut chart shows that 84.2% of images do not contain landmarks ("no landmark"), while 15.8% do ("has landmark"). The low prevalence of landmarks reflects the dataset's emphasis on general geographic scenes rather than iconic or tourist-heavy locations, offering a broad representation of natural and urban environments worldwide. This distribution highlights GeoArena-1K's potential to test LVLM generalization across less distinctive locales, a challenging yet realistic scenario for global geolocalization. Overall, these distributions reveal the GeoArena-1K dataset's heterogeneity, making it a robust resource for benchmarking LVLM performance under real-world conditions.

A.2 LVLM ALIGNMENT EVALUATION PROMPT

The prompt template used for LVLM alignment evaluation is as follows:

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

773 Figure 5: Case Study: Images Where Strong Models Excel but Weaker Models Fail
774
775
776

777 You are an expert evaluator in image geolocation tasks. I will give you two model responses
778 to the same geolocation prompt.

779 **Here is the prompt:**

- Prompt: {sample['prompt']}
- Image: {sample['image']}

780 **Response A:** {sample['response A']}

781 **Response B:** {sample['response B']}

782 **Your task is to decide which response is better based on:**

1. Accuracy of the predicted location
2. Strength of reasoning and evidence
3. Clarity and specificity

783 **Output only one word:**

- “win” if Response A is better
- “loss” if Response B is better
- “tie” if both are equally good

791

792 We first prompt the LVLM to act as an expert evaluator for the geolocalization task. For each sample,
793 the model is provided with the prompt and the associated images, along with the responses from
794 two candidate models. It is then asked to determine which response is better, considering three
795 dimensions: accuracy, reasoning, and clarity and specificity.

796

797

798 A.3 HARD CASES ANALYSIS

799

800 To better understand the distinction between top-tier and lower-tier models, we examined a set of
801 representative cases where strong models predicted correctly but weaker models failed, as illustrated
802 in the Figure 5. Specifically, we selected the top-5 models on the leaderboard—Gemini 2.5 pro,
803 Gemini 2.5 flash, Qwen 2.5 VL 72B, Gemma 3 12B, and Gemma 3 27B—as well as the bottom-5
804 models—GPT 4o, Llama 4 scout, Qwen 2.5 VL 7B, GPT 4.1 nano, and GPT 4o mini. We then
805 extracted examples where the top-5 models outperformed the bottom-5 models. These images
806 generally do not contain prominent or unique landmarks that can be easily recognized. Instead, they
807 often depict environments that require reasoning over subtle contextual cues—such as vegetation
808 types, architectural style, road structures, or geographic textures—to infer the location. This suggests
809 that strong models may better leverage fine-grained reasoning and background knowledge beyond
surface-level features. The presence of such challenging samples highlights a promising direction
for future model development: expanding training and evaluation on these harder cases. By doing

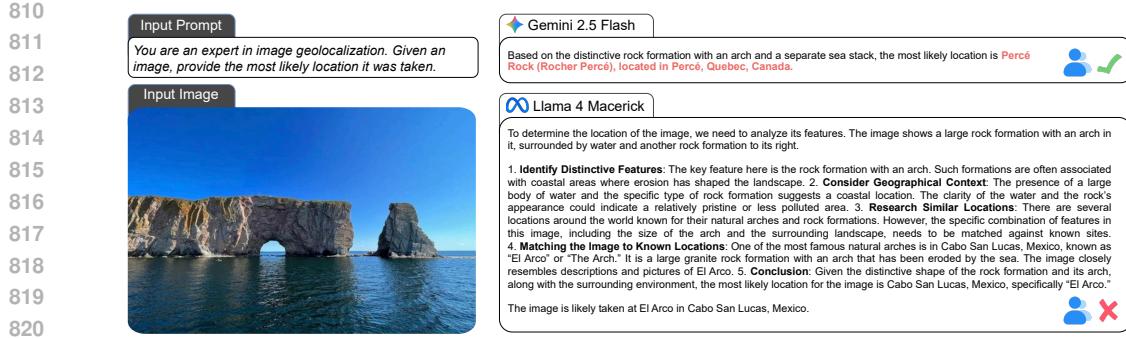


Figure 6: Additional Case Study: Identifying the Percé Rock.

Figure 7: Additional Case Study: Identifying the Olympic Park, Beijing.

so, upcoming systems may gain robustness and achieve more consistent performance across diverse scenarios, particularly where visual clues are subtle and non-obvious.

A.4 ADDITIONAL CASES FROM GEOARENA

In this section, we present additional case studies from GeoArena to illustrate the diversity and complexity of the geolocalization tasks it encompasses. Figure 6 showcases an image of the iconic Percé Rock in Quebec, Canada, highlighting the model’s ability to recognize unique geological formations. Figure 7 features the Olympic Park in Beijing, China, demonstrating the model’s proficiency in identifying modern architectural landmarks. Lastly, Figure 8 depicts a golf course in Fiji, emphasizing the model’s capability to infer locations based on environmental and recreational context. These examples underscore GeoArena’s effectiveness in challenging models to perform accurate geolocalization across a wide range of scenarios.

A.5 VERIFYING THE FEASIBILITY OF AUTOMATIC PROMPT FILTERING

To maintain a reliable leaderboard, it is essential to ensure that user inputs are relevant to the image’s geolocation. Although we currently remove inappropriate or sensitive queries manually, this approach may not scale as the platform expands. To examine whether LLMs can replace manual filtering, we conduct an experiment to determine whether LLMs can identify when a user prompt requests geolocating an image.

For this study, we construct a binary classification task. We randomly select 100 prompts from our voting data and assign them the label True, indicating that they ask about image geolocation. In parallel, we sample 100 prompts from the Chatbot Arena dataset², which contains general-purpose prompts, and labeled them as False. Each model is given a simple instruction that defines image

²https://huggingface.co/datasets/lmsys/chatbot_arena_conversations

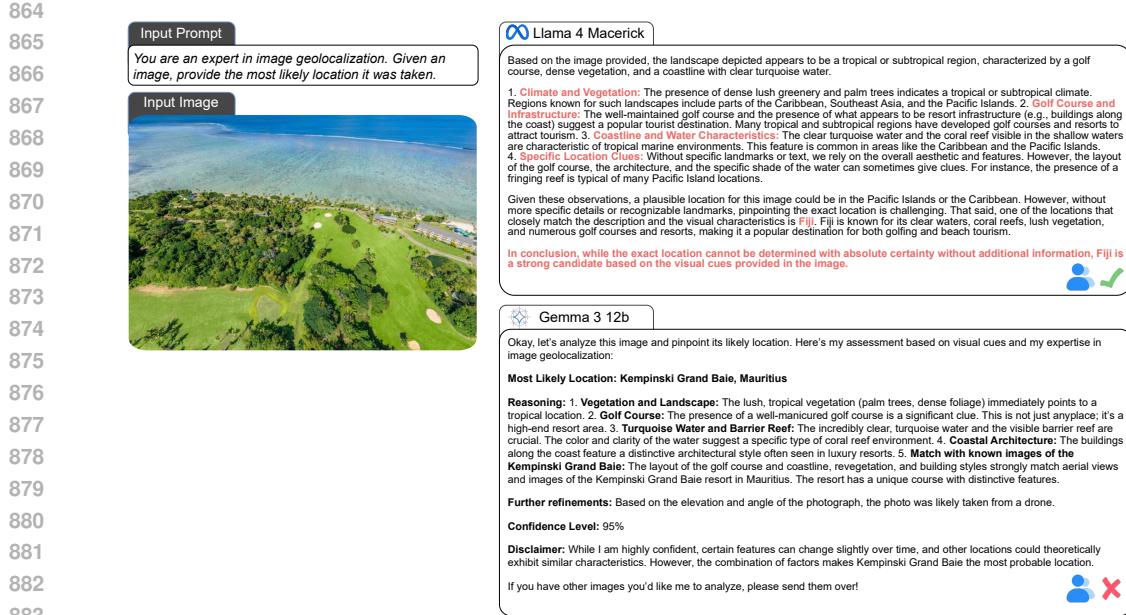


Figure 8: Additional Case Study: Identifying the Golf Course in Fiji.

geolocation, specifies the expected JSON output, and directs the model to respond only with a True or False label. The instruction is given as follows:

You are a prompt classifier. Analyze the provided user prompt and determine if it is asking about image geolocalization.

Image geolocalization refers to determining or estimating the geographic location (e.g., city, country, landmark) where an image was taken based on its visual content.

Return ONLY a JSON object with one key: "is_geo". The value must be "true" if the prompt is inquiring about geolocalizing an image (e.g., "Where was this photo taken?" or instructions for an expert in image geolocalization), or "false" otherwise. If uncertain, default to "false".
Output format (no extra words): "is_geo": "true"|"false"

User prompt: user_prompt

We evaluate three models: Gemini 2.0 flash, GPT 3.5 turbo, and GPT 4.1 mini. All three models achieve 100% accuracy on this task. The high accuracy is mainly due to two factors. First, most users ask questions through the default prompt provided by GeoArena, which reflects a stable phrasing pattern. Second, prompts that request geolocalization usually contain explicit references to places, images, or location inference, which makes them easy for the models to detect. These observations show that modern language models can serve as reliable automatic filters for user inputs. Such a mechanism would allow the leaderboard to remain focused on geolocalization queries while reducing the need for manual inspection.

A.6 USER CONSENT

To ensure responsible data usage and protect user privacy, GeoArena requires all participants to provide consent before submitting any images or preference votes. When users interact with the platform, they are presented with a clear consent statement indicating that uploaded images and voting records may be used for research purposes and may be released in anonymized form. Users are also informed that participation is voluntary and that they should avoid uploading sensitive or personally identifiable content. These measures confirm that the data included in GeoArena is collected with explicit user permission and used strictly within an academic context.