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ABSTRACT

In recent years, large language models (LLMs) have exhibited remarkable gen-
eralization capabilities. Previous studies have largely focused on examining the
generalization mechanisms in smaller models to draw inferences about similar
mechanisms in larger language models. However, these smaller models typically
possess limited generalization capacity. In this study, we explore the general-
ization mechanisms of billion-parameter language models, with a particular at-
tention on publicly available models such as LLaMA and Gemma. Our findings
reveal that weight activations exhibit task-specific behavior, indicating that not all
weights are necessary for task performance. Building on this insight, we introduce
a parameter probing method to identify subnetworks optimized for specific tasks
without extensive fine-tuning. This method involves sorting and grouping weight
activations followed by the pruning of less significant groups based on a small
validation set. Furthermore, our results show that subnetworks specialized for
domain-specific tasks achieve improved performance and generalization within
their respective domains, but their performance deteriorates across different do-
mains. This study presents a novel perspective on generalization of LLMs where
the strength of large language models lies in their multiplicity of domain-specific
subnetworks, allowing them to excel in various in-domain tasks.

1 INTRODUCTION

Large language models (LLMs) have achieved excellent performance on multiple tasks, demon-
strating impressive generalization capacity in practical scenarios. Recently, there has been growing
interest in the generalization of LLMs (Bayazit et al., 2023; Choenni et al., 2023; Sun et al., 2024).
Bayazit et al. (2023) indicated that knowledge-critical subnetworks are contained in pretrained lan-
guage models. Bhaskar et al. (2024) discovered that a specific set of attention heads in language
models act as the core part that ensures generalization by interacting with other attention heads.

However, current methods mainly focus on the small scale of language models, such as BERT (De-
vlin, 2018) or GPT-2 (Radford et al., 2019). The study on the generalization of large language
models, such as LLaMA (Touvron et al., 2023), and Gemma (Team et al., 2024), remains underex-
plored despite numerous fine-tuning experiments conducted in previous studies.

In this work, we investigate the larger LLMs directly, especially the publicly available LLaMA and
Gemma models. We observe that weight parameters in LLMs act consistently when dealing with the
same tasks but exhibit different behaviors across diverse tasks. Specifically, weight activations are
more similar for analogous questions than for different tasks, suggesting a robust domain-specific
mechanism within the generalized LLM architecture. In Figure 2, we observe that the weights exhibit
an overlapping pattern when performing the same task. However, these weights tend to diverge when
considering different tasks. This raises a crucial question:

Are all weights necessary for inference on a given task?

Previous pruning methods (Sun et al., 2024; Frantar & Alistarh, 2023) have demonstrated that LLMs
can maintain comparable performance even after portions of the weights are removed. However,
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Figure 1: We found that specialized subnetworks within a large language model perform better
than the full model for each domain. In addition, these specialized subnetworks yield inferior per-
formance on other tasks compared to the full model. Redundant weights in one domain are always
present in the full model.

these methods do not guarantee task-specific performance and often require fine-tuning on specific
corpora, thus limiting the exploration of LLMs’ generalization capabilities across different tasks.
In this study, we propose a novel parameter search method that identifies domain specialized sub-
networks for given tasks. Our method only requires inference on a few instances for a given task,
making it feasible for LLMs with billions of parameters.

Specifically, we group domain-specialized weight neurons based on their scores and analyze their
activations across different tasks. Weight neurons highly overlap within the same task, especially in
the last layer, while showing significant divergence across different tasks. This consistent activation
suggests the presence of specialized subnetworks optimized for specific domains. By pruning the
group of weight neurons and evaluating their performance, we uncover domain-specialized subnet-
works within a single model. These subnetworks consistently enhance performance across different
large language models on the in-domain tasks.

We further examine the generalization capabilities of these specialized subnetworks across differ-
ent domains. The results highlight a trade-off: domain-specific subnetworks excel within their re-
spective contexts but show reduced generalization to unrelated tasks. The specialized subnetworks
outperform the full model on their respective domains but underperform on other domains, as seen
in Figure 1. Removing redundant weights in the target domain improved performance on related
tasks. However, we also discovery that redundant weights in one domain can be significant for other
domains, limiting the generalization capacity of these specialized subnetworks.

In summary, our findings enhance the understanding of the generalization mechanisms of LLMs.
They underscore the importance of having various specialized subnetworks to ensure model perfor-
mance in each specialized domain. By ensembling all these specialized subnetworks, the general-
ization capacity of the LLMs can be achieved.

2 RELATED WORK

Network Pruning. Pruning is an effective method for network compression that removes layers
or parameters to produce sparse networks (LeCun et al., 1989), which can be roughly divided into
structured and unstructured schemes. Structured pruning, also known as activation pruning, remov-
ing redundant channels or filters to decrease computational complexity and memory demands while
maintaining the overall network architecture. To be specific, Babaeizadeh et al. (2016) develops a
fully automated pruning algorithm leveraging the correlation between neuron activations in hidden
layers. Dubey et al. (2018) employs coreset representations in network pruning, eliminating unnec-
essary weights and neuronal activations within CNNs for compression. Recently, there has been
a surge in integrating LLMs into pruning (Ma et al., 2023; Bansal et al., 2022; Voita et al., 2023;
Liu et al., 2023; Sun et al., 2024; Bhaskar et al., 2024), which demonstrates the prompt-dependent
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and task-specific sparsity in LLM structural components (e.g., attention heads and MLP neurons).
Unlike structured pruning, unstructured pruning removes weights without considering the overall
architecture, targeting specific weights or neurons on a finer granular level (Han et al., 2015; Hoang
& Liu, 2023; Paul et al., 2022; Sun et al., 2024). In this paper, we mostly utilize unstructured pruning
based on Sun et al. (2024) to eliminate redundant weights.

Subnetworks. A group of representative studies evidence that neural networks are composed of
modular subnetworks, each responsible for specific subtasks (Lepori et al., 2023; Choenni et al.,
2023; Hupkes et al., 2020). Concretely, Nooralahzadeh & Sennrich (2023) introduces task-specific
subnetworks to bridge the gap in cross-lingual transfer. Similarly, Choenni et al. (2023) proposes
language-specific subnetworks that guide selective parameter sharing in multilingual training to en-
hance positive transfer. Bayazit et al. (2023) discovers a sparse subnetwork within GPT-2 that in
charge of specific collections of relation knowledge, with no performance drop when it is removed.
Previous work manages to localize the knowledge-critical weights in LMs. In this work, we find
redundant weights that are not necessary for input tasks. By removing the redundant weights, the
sparse model achieves higher in-domain performance.

Generalization. The generalization of neural networks has been a long-standing research in NLP
community. McCoy et al. (2019) reveals that fine-tuning BERT with different random seeds results
in varying generalization, despite achieving similar accuracy on in-domain tasks. Another line of
efforts delve into out-of-distribution setting, which finds that performance consistently improves
even when in-domain performance appears to be saturated. A striking phenomenon, “Grokking”,
is recently proposed by Pearce et al. (2023). When training a set of samll models on toy tasks,
the models can process and understand unseen data after an extended training phase, effectively
leveraging the accumulated knowledge.

3 PROBLEM SETUP

Dataset. In this work, we focus on several popular benchmarks that evaluate the generalization
capacity the large language models.
• MMLU (Hendrycks et al., 2020) is a large-scale multi-task dataset consisting of 57 tasks spanning

a wide range of subjects, including elementary mathematics, US history, computer science, and
law. It requires models exhibit a broad knowledge base and proficient problem-solving skills.

• GSM8K (Cobbe et al., 2021) is a dataset containing 8, 500 grade school mathematics questions
along with their corresponding natural language solutions. It is used to probe the informal reason-
ing ability of large language models.

• MBPP (Austin et al., 2021) is a programming benchmark with 1, 000 crowd-sourced Python prob-
lems, in which 974 tasks solvable by entry-level programmers. It is formulated to assess the ability
of models in generating short Python programs.

• HumanEval (Chen et al., 2021) is a collection of 164 authentic programming challenges imple-
mented in Python, with each generation task involving an average of 7.7 test cases.

Model. We mainly employ LLaMA (Touvron et al., 2023) and Gemma (Team et al., 2024) for
experimental analysis. Specifically, LLaMA2-7B is a generative text model comprising 7 billion
parameters. It has been pre-trained and fine-tuned on a dataset of 2 trillion tokens. Gemma-7B is a
lightweight and text-to-text decoder-only large language model, developed with the same underlying
principles as the Gemini model (Team et al., 2023). It has been trained on a diverse array of text
sources, collectively amassing a total of 6 trillion tokens.

Weight Score. In language models, the input X to each linear layer is a tensor with a shape of
BL×Cin, where B and L denote the batch size and the length of the sequence respectively. Let
W∈RCin×Cout be the weight parameter in the linear layer. Each neuron in the weight matrix would
calculate with every token in inputs. To ascertain the impact of each weight neuron, we follow Sun
et al. (2024) for calculating the score:

Si,j = |Wij | · ||Xj ||p, (1)

where | · | represents the absolute value operator, ||Xj ||p evaluates the ℓp norm of jth features
aggregated across B×L different tokens. The final score is computed by multiplying these two scalar
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values, with a higher score indicating greater contributions to the outputs. Note that we utilize the
ℓ2 norm for score calculation. In Sun et al. (2024), pruning the weight neurons with the lowest
scores achieves comparable performance to the original LLMs. However, the pruned model always
performs lower performance than the full model. The study explores how the weights affect different
tasks and finds the optimal subnetwork tailored for different domain tasks.

4 WEIGHT DISTRIBUTION IN LLMS

4.1 GROUPING DOMAIN-SPECIALIZED WEIGHTS

To investigate how the weights LLMs acts to different tasks, we explore the weight scores in LLMs
for various tasks. Suppose we have several instances denoted by Xt,k∈St, where St is the instance
pool for the tth task and k is the number of instances. In each layer of the model, we can easily
obtain the weight score St,k based on Equation (1) for the selected instances from the tth task.

Are the weight activations similar for different instances of the same task? To analyze the weight
distribution across different domain inputs, we sort each row of the weight score matrix St,k

i and
save the corresponding index of weight scores:

It,k
i = {σ(1), σ(2), . . . , σ(n) |m < n ⇒ St,k

i,σ(m) ≥ St,k
i,σ(n)}, (2)

where σ(·) is the ranking function to sort the weight scores in the descending order. We then split the
indices of weight scores into G groups to investigate the distribution of weight scores for different
tasks. The jth grouped indices is saved by:

Gt,k
i,j = {σ(j · v), · · · , σ(j ∗ v + v)}, (3)

where v= Cout

G is the size of the jth group and
⋃g

j=1 G
t,k
i,j = It,k

i . The first group contains the
weight indices that corresponds to weight neurons achieved highest weight scores. In each layer, we
can obtain the distribution of weight scores. Let Xt1,k and Xt2,k denote the number of k instances
sampled from the domain tasks t1 and t2 separately. To compare the difference of weight distribution
across same and different tasks, we calculate the overlap between weight indices within the same
group:

Overlap(Xt1,k,Xt2,k)j =
1

Cin

∑
i

|Gt1,k
i,j ∩Gt2,k

i,j |/|Gt1,k
i,j ∪Gt2,k

i,j |. (4)

The higher overlap value indicates that weight neurons are consistent for the two inputs. Simi-
larly, we can calculate the overlap between weight indices of the same task that contains different
instances. In addition, we calculate the accumulated overlap of weight indices between two tasks:

Overlap accum(Xt1,k,Xt2,k)m =
1

Cin

∑
i

|
m⋃
j=1

Gt1,k
i,j ∩

m⋃
j=1

Gt2,k
i,j |/|

m⋃
j=1

Gt1,k
i,j ∪

m⋃
j=1

Gt2,k
i,j |.

(5)

4.2 COMPARISON BETWEEN DOMAIN WEIGHTS

To study the effect of the weight neurons on different domain tasks, we select multiple instances
from distinct domains. These samples are feed into the network and we obtain the weight scores
for comparison. In this paper, we mainly compare the weight distribution of different tasks based
on Equation (4) and Equation (5).

We begin by selecting a base domain and comparing its weight distribution with that of other do-
mains. To illustrate the difference in weight distribution within a domain, we randomly sample
varying numbers of instances from the same task and calculate the weight overlap. For example, we
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Figure 2: The weight overlap between Philosophy domain and other domains on different lay-
ers. The weights are divided into 20 groups across all three layers. A blue solid line represents
weight overlap within the same tasks, while a dashed line represents comparison between different
tasks.

Figure 3: The weight overlap between Philosophy domain and other domains on the last layer
of different large language models. A blue solid line represents weight overlap within the same
tasks, while a dashed line represents comparison between different tasks.

randomly select 20, 50, 100, 150, and all instances related to the philosophy task. For other tasks,
we randomly select 100 instances to calculate the grouped indices accordingly. The paper primar-
ily explores weight neurons in terms of layer, task, model, and weight group to demonstrate the
similarity among different weight groups.

Layer. The public LLaMA2-7B model consists of 32 transformer layers, each of which has multiple
fully connected layers. We investigate the weight distribution on different fully connect layers, and
select Philosophy as the base domain task for comparison. The compared domains including 7 cat-
egories from MMLU dataset, such as Antonomy, Astronnomy, College Medicine, European History,
Miscellaneous, Moral Scenarios, Security Studies, and US Foreign Policy. For each category, we
randomly select 100 instances and calculate the weight scores. The weight neurons are split into 20
groups. The overlap of weight distribution across different tasks are visualized in Figure 2.

Weight neurons in all layers highly overlap when input instances are sampled from the same tasks.
Yet, the overlap between instances of the same task is lower in the first layer. Notably, the overlap
between instances of different tasks decreases significantly from the first layer to the last layer. Thus,
it is easy to observe similar weight neuron patterns in the last layer for inputs from the same task.

Furthermore, an interesting finding is that the overlap of weight neurons is higher in the first and
last group. The first group contains indices where the highest weight scores are attained, indicating
that critical weights are similar across all tasks. Additionally, we demonstrate that removing weight
neurons in the higher ranked group leads to a dramatic decrease in model performance on all tasks.
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Figure 4: The weight overlap between the different domains. For Code domain, we sample
various number of instances from MBPP dataset (Austin et al., 2021). For Math domain, we sample
various number of instances from GSM8K dataset (Cobbe et al., 2021). The dashed line represents
comparison between different tasks.

Figure 5: The weight overlap across different numbers of groups, with a ratio of 0.05 indicating
that the weight neurons are divided into 20 groups. The dashed line illustrates the comparison for
similar tasks.

Model. To explore if the observed findings are specific to the LLaMA2-7B model or are appli-
cable to models at various scales, we conducted experiments on Gemma2 model series and the
LLaMA2-13B model. The results, illustrated in Figure 3, consistently show that weight neurons
heavily overlap for instances of the same task, regardless of the input domain. Besides, the critical
weights remain similar across different input domains. The weight distribution of LLaMA2-7B and
LLaMA2-13B is similar, while the pattern appears different for Gemma-7B and Gemma2-9B.

Task. We validate this finding by selecting different base domain tasks such as Medicine, Code, and
Math. For Medicine domain, instances were sampled from MMLU dataset, while for Math domain,
instances were sampled from GSM8K dataset, and for Code domain, instances were sampled from
MBPP dataset. Weight distributions in Figure 4 exhibits a significant overlap when inputs originate
from the same domain, suggesting that weight neurons activate in a similar pattern. Notably, there
is a minimal weight overlap between the Medicine and Code domains. This discrepancy could be
attributed to the substantial differences in inputs from these domains and the potential variation of
critical weights when the domain knowledge greatly diverges. Interestingly, the weight similarity
between Code and Math domains surpasses that of the Code and Medicine domains, despite the
distinctiveness of inputs from all three domains.

Weight Group. In previous settings, weight neurons are divided into 20 groups. We examine
how the distribution varies across domains with different numbers of weight groups. In Figure 5,
we demonstrate that weight overlaps increase with larger group ratios. As group ratio increases,
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Algorithm 1 Probing Domain Specialized Subnetwork.

Input: Instances X sampled from the target domain and the corresponding groundtruth Y . The
number of weight group G. The large language model f and number of layers L in the model.
The weight mask M which is initialized as ones with same size of the weights in all layers.

1: Initialize the optimal domain model by fp ⇐ f
2: Evaluate the model performance on the given domin by ℓ(fp(X), Y )
3: for g ∈ 1, . . . , G do
4: for l ∈ 1, . . . ..., L do
5: Calculate the group of weight indices G in each layer by Equation (3)
6: Prune the weight by setting the weight mask Mi,j = 0 if j ∈ Gi,g

7: Update the weight W ′ = M ·W
8: end for
9: Save the updated model fg and evaluate the updated model ℓ(fg(X), Y )

10: if ℓ(fg(X), Y ) < ℓ(fp(X), Y ) then
11: Update the subnetwork fp ⇐ fg
12: end if
13: end for
14: Output: The optimal subnetwork fp for the input domain

the overlap intensifies, making domain differences more evident and reducing variations within the
same domain.

After comparison of distribution of weight scores across different domains, we observe the domain
principle in generalized LLMs. For different inputs from the same task, the weights in LLMs exhibits
highly consistent activation. This consistent activation across inputs within the same task domain
points to a robust domain-specific mechanism within the generalized architecture of the LLMs. Such
a mechanism suggests that the model has developed specialized subnetworks or pathways that are
optimally tuned to process and respond to particular types of linguistic tasks, thereby maximizing
efficiency and performance.

This inherent domain principle could be pivotal in explaining the model’s generalization ability.
When a model encounters a new but related input, the pre-trained domain-specific weights are al-
ready finely adjusted to handle the nuances of such tasks, thus facilitating a smooth transfer of
learned knowledge. Consequently, ensuring that the language model’s training regimen involves
a diverse array of tasks and inputs might enhance the development of well-tuned domain-specific
pathways, ultimately improving the model’s versatility and robustness.

5 DOMAIN SPECIALIZED SUBNETWORKS

5.1 PROBING DOMAIN SPECIALIZED SUBNETWORKS

In practical applications, leveraging the domain principle improves computational resource utiliza-
tion. By identifying the activated parts of the model for specific tasks, targeted optimization like
pruning redundant pathways and concentrating computational power on relevant subnetworks can
be implemented. This enhances processing speed and reduces resource consumption without com-
promising performance. In this section, we aim to understand the relationship between LLM weights
and domain tasks.

We investigate whether our results are due to domain specialized subnetworks. The large language
model consists of multiple subnetworks that perform better in specific domains but have less effec-
tive generalization compared to the full model. Previously, we grouped weight neurons in each layer
based on weight scores for inputs from specific domains. Herein, we further explore the influence
of weight neurons at the group level and identify optimal subnetworks for different domains.

To assess the effect of weights on target domains, we evaluate the performance of a pruned subnet-
work by removing weight neurons in each group defined as Gt based on Equation (1) for task t. For
simplicity, we directly set the weight neurons to zero to neutralize their influence on outputs. The
output is calculated as follows:
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Figure 6: Pruning the LLaMA-7B (Touvron et al., 2023) model at different weight groups. The
dashed line refers to the accuracy of the full model performance.

Xout = (M ·W )⊤Xin, (6)

where M is the weight mask to indicate whether the weight neurons is retained. To identify opti-
mal subnetworks for specific domains, we iteratively remove the neurons associated with one group
across all layers. From this process, we obtain a set of G subnetworks for inputs from a particular do-
main task. These subnetworks are then evaluated on matching domain test sets. The top-performing
model is saved as the optimal subnetwork for that domain. Further details on domain-specific net-
work probing can be found in Algorithm 1.

Compared to the previous method (Sun et al., 2024) that removes weight neurons with low weight
scores, our approach splits weight neurons into groups and eliminates redundant ones based on
the performance of specific domain inputs. We find that the contribution of weight neurons to the
outputs is not directly indicative of their utility, and weight scores may not accurately reflect the
significance of weights. By probing the grouped weights, we achieve a more refined and efficient
elimination of weight neurons, resulting in improved overall effectiveness and a targeted and precise
solution.

5.2 COMPARISON BETWEEN SPECIALIZED SUBNETWORKS

In this section, we compare specialized subnetworks obtained from our method across different
domains to examine their performance compared to the full model. Additionally, we explore the
variations between specialized subnetworks and the full model, particularly when the base models
and domain tasks differ.

Subnetwork Probing. In Figure 6, we present the performance of subnetworks in Phychology
and Medicine domains. The experiments are conducted on the LLaMA2-7B model, with 20 groups
of weight neurons and each subnetwork being pruned 5%parameters at a time. For each weight
group, we randomly sample 30 instances from the validation set in the target domain for 10 itera-
tions. The performance on the test set is reported for each pruned subnetwork.

The red dashed line in Figure 6 represents the performance of the full model. We observe that
the optimal subnetworks in each weight group outperform the full model in both Phychology and
Medicine domains, despite removing weights. This observation implies that not all weights are
necessary for the target domain. For each task, we can always find a domain-specialized subnetwork
that performs better than the full model.

In comparison to subnetworks that prune weights with lower scores, our method achieves higher
performance by pruning different groups of weights. Removing the last group of weight neurons
does not guarantee performance improvements in the target domain. Conversely, removing the
highly ranked group of weight neurons results in a dramatic decrease in performance for each task.

Redundant Weights. We conduct experiments on Anatomy, Security, and US Policy domains to
investigate redundant weights for different tasks. For each task, we determine the number of weight

8
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Pruning at RatioDataset Full Model
2% 5% 10% 20% 25% 50%

Anatomy 37.78 42.22(↑4.44) 42.22(↑4.44) 44.44(↑6.66) 42.22(↑4.44) 42.22(↑4.44) 41.48(↑3.70)
Security Studies 52.65 53.88(↑1.23) 52.65(−−) 52.65(−−) 47.76(↓4.89) 43.27(↓9.38) 32.65(↓20.00)
US Foreign Policy 68.00 68.00(−−) 70.00(↑2.00) 70.00(↑2.00) 68.00(−−) 68.00(−−) 53.00(↓15.00)

Table 1: Pruning the LLaMA-7B (Touvron et al., 2023) at different ratio. We use ↑ and ↓ to
denote improvements and decrements of the specialized subnetwork compared to the full model.
The best subnetworks are pruned at varying ratios for different tasks.

Figure 7: The specialized subnetwork for Medicine with different large language models. The
specialized subnetworks perform better than the full model, even though their performance varies
across different language models.

groups and search for the optimal subnetwork. The performance of the best subnetwork for each
task at various pruned ratios is presented in Table 1.

Although the input prompts for the present three domains (i.e., Anatomy, Security, and US Policy)
are similar as they are all from MMLU dataset, we observe significant differences in redundant
weights across these domains. In Anatomy domain, even at a 50% pruned ratio, the subnetwork still
demonstrates model improvements compared to the full model. The highest performance is achieved
when removing 10%of the weights. Conversely, for Security, the optimal subnetwork only removes
2% of the weights. Increasing the number of pruned weights results in a significant decrease in
model performance for this task.

Compared Models. We search for specialized subnetworks in various large language models. In
Figure 7, we demonstrate the test performance of pruned weights at different groups for LLaMA2-
7B, LLaMA2-13B, Gemma-7B, and Gemma2-9B models. However, in all models, pruning the
weights with low weight scores does not result in optimal subnetworks. Nevertheless, by using our
method, we identify domain specialized subnetworks that outperform the full model in the target
domain for different group indices. This finding indicates that while our method can help find better
domain subnetworks, the weight scores may not be the perfect metric for measuring redundant
weights in the target domain.

Speciality v.s. Generalization. After evaluating specialized subnetworks obtained from different
domain tasks, we analyze their specialty and generalization performance. Specifically, we focus
on four domains: Medicine, Math, Code, and Philosophy. Using a 5% pruned ratio, we identify
the optimal specialized subnetwork for each domain and assess its performance in both in-domain
and out-of-domain tasks. The results in Table 2 demonstrate that all domain specialized subnet-
works show significant improvements compared to the full model when applied to in-domain tasks.
However, the generalization capacity of these specialized subnetworks tends to decrease. Notably,
for Code domain, we utilize instances from MBPP dataset as a validation set to select the optimal
subnetwork, and then evaluate its performance on the test set of HumanEval dataset. Despite the dif-
ference in datasets used for pruning and testing, the Code-specialized model still exhibits improved
performance. This observation suggests that the improvement achieved by specialized subnetworks
in in-domain tasks is not solely dependent on the dataset.

Furthermore, we note that the specialized subnetworks for Medicine and Math domains demonstrate
slightly higher performance in Philosophy domain. This could be attributed to the fact that the
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Specialized SubnetworkDataset Full Model Medicine Math Code Philosophy

College Medicine 39.88 41.04(↑1.16) 38.74(↓1.14) 38.15(↓1.73) 35.26(↓4.62)
GSM8K 18.58 15.92(↓2.66) 19.47(↑0.89) 14.16(↓4.42) 13.27(↓5.31)
HumanEval 22.73 20.45(↓2.28) 22.73(−−) 25.00(↑2.27) 18.19(↓4.54)
Philosophy 53.38 54.02(↑0.64) 54.98(↑1.60) 52.73(↓0.65) 56.91(↑3.53)

Table 2: The performance of specialized subnetworks within and beyond their domain. We
use ↑ and ↓ to denote improvements and decrements of the specialized subnetwork compared to
the full model. The domain specialized subnetwork excels within its field but demonstrates weaker
performance outside its domain compared to the full model.

redundant weights specific to Philosophy are more numerous compared to the other two domains.
Additionally, we calculate the weight overlap between pruned weights of the Code and Medicine do-
mains, revealing no overlap between the redundant weights of these two domains. However, when
pruning the redundant weights of both domains together, the performance on two tasks also de-
creases. This suggests that redundant weights for one domain can be significant for another domain.

In our experiments, we consistently find specialized subnetworks that excel in in-domain tasks for
various LLMs. However, no pruned subnetwork attains the same generalization performance as
the full model. By removing redundant weights specific to the target domain, the model achieves
good performance on that task. Given the different specialized subnetworks, the redundant weights
within a domain may be important for out-of-domain tasks. Our experimental results suggest that
the exceptional generalization capacity exhibited by large language models can be attributed to the
presence of multiple domain-specialized subnetworks. This implies that any attempts to solely rely
on pruned subnetworks, without considering the interconnected and collaborative nature of the lan-
guage model’s subcomponents, may limit its ability to generalize effectively. Therefore, it becomes
imperative to strike a balance between specialized subnetworks and the redundancies they possess

6 CONCLUSION

In this work, we explored the role of weight neurons in large language models (LLMs) and their
specialization across different domain tasks. By analyzing weight scores derived from various tasks,
we established that weight neurons exhibit distinct activation patterns tailored to specific domains,
suggesting the presence of specialized subnetworks within the generalized LLM architecture. We
extended our analysis by probing specialized subnetworks for domains such as Medicine, Code, and
Math. Despite achieving improved performance within specialized domains, these pruned subnet-
works exhibited reduced generalization capabilities compared to the full model. This observation
suggests that the pruned subnetworks, though optimized for specific tasks, may lack the robustness
required for broader generalization. In conclusion, our study reveals the inherent complexity and
specialization within LLMs, emphasizing the need for balanced training regimens that foster both
specialized and general capabilities. Future research could further optimize these domain-specific
pathways, releasing the full potential of large language models and bolster their generalization per-
formance.
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