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ABSTRACT

Large Vision-Language Models (LVLMs) typically follow a two-stage training
paradigm—pretraining and supervised fine-tuning. Recently, preference optimiza-
tion, derived from the language domain, has emerged as an effective post-training
reinforcement strategy to enhance the capabilities of LVLMs. However, construct-
ing high-quality human-annotated preference data and developing robust reward
models to mimic these preferences are both costly and challenging. Motivated by
this observation, we propose Vision-R1, a novel vision-guided R1-like reinforce-
ment learning algorithm for LVLMs that rewards models with definitive vision
feedback. It only leverages curated instruction data, eliminating the need for spe-
cialized reward models and handcrafted preference datasets. We incorporate a
criterion-driven reward function that further integrates multi-dimensional feedback
to evaluate model completions comprehensively based on the vision task logic.
Furthermore, we introduce a progressive rule refinement strategy that dynamically
adjusts the reward criteria during training, enabling continuous model improvement
and mitigating reward hacking. Extensive experiments on both in-distribution and
out-of-distribution benchmarks demonstrate that fine-tuning the 7B LVLMs with
Vision-R1 achieves consistent performance gains, with even up to 50% gains.

1 INTRODUCTION

Recently, notable progress has been made in Large Vision Language Models (LVLMs) (Chen et al.|
2024b; [Liu et al., [2023; L1 et al., 2023a; [Liu et al., [2024b; Bai et al.l 2023} [Tong et al., [2024),
which encode images into textual tokens and respond to instructions based on visual cues. These
models typically follow a two-stage training paradigm, where pretraining establishes a foundational
understanding of visual information, while supervised fine-tuning (Liu et al., 2023) enhances their
ability to follow instructions and solve problems. Through this process, advanced LVLMs have
shown remarkable potential in integrating vision and language to address complex tasks.

Despite these advancements, LVLMs still fall short of meeting human expectations as effectively as
Large Language Models (LLMs) (Achiam et al.| 2023} |Brown et al., 2020; [Touvron et al., 2023} Liu
et al., [2024a)), primarily due to limitations in vision-language data. To bridge this gap, preference
optimization(Sun et al.| |2023;; [Xiong et al., |2024; |Dong et al., 2024} [Zhang et al.| [2025)), derived
from LLMs(Ouyang et al., 2022} |Chen et al., 2024c} Rafailov et al.| [2023) for its data efficiency
and performance benefits, has been introduced as a post-training reinforcement strategy to refine
LVLM responses based on human feedback. Although these methods reduce data consumption to
the thousand-level, constructing high-quality vision-language preference datasets remains resource-
intensive. Meanwhile, training a reliable reward model to capture nuanced preferences with varying
subjectivity remains a major challenge.

With the success of LLM Deekseek-R1 (Guo et al.;[2025)), the rule-based Group Relative Policy Opti-
mization (GRPO) (Shao et al.,[2024) algorithm offers a new approach to track this challenge. While
previously validated in reasoning tasks such as math (Shao et al.,2024) and code (Guo et al., [2024),
R1 model further prove that rule-based rewards enhance comprehension and reasoning across multiple
domains, enabling both reasoning and non-reasoning tasks performance improvement. Moreover,
with the incorporation of visual information, vision-language question-answer data becomes more
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objective and definitive, providing clearer solutions and cues. Existing human-annotated instruction
data (L1 et al.| [2024; Zhan et al., 2024b) naturally provide precise responses that align with human
preferences. This raises a critical question: Can an R1-like reinforcement learning method further
enhance LVLM capabilities with curated vision-language instruction data?

In this paper, we propose Vision-R1, a novel

vision-guided R1-like reinforcement learning Curate Instruction Data

algorithm for LVLMs that eliminates the need 4 7 Lision R

for specialized reward models and handcrafted Vision Criteria-Driven 3
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This function delivers multi-dimensional reward Figure 1: Key designs of Vision-R1.

signals guided by vision task criteria, such as

precision to measure box accuracy via transforming textually numerical tokens to coordinates. Our
design enables the model to develop a deeper understanding of task characteristics and generate more
accurate responses, surpassing the token-level supervision used in SFT that ignores spatial identity.
Building on the reward modeling, we further introduce a progressive rule refinement strategy
that dynamically adjusts reward criteria throughout training to facilitate continuous improvement.
Inspired by curriculum learning (Bengio et al.,[2009) and human learning processes, this strategy
follows two key principles: differentiation and staged progression. This differentiation mechanism
encourages the model to continuously refine its predictions for optimal performance. Meanwhile,
training is structured into beginner and advanced phases with progressively stricter reward criteria in
the advanced phase to prevent reward hacking and ensure sustained progression.

To validate the effectiveness of our approach, we train two advanced LVLMs, Griffon-G-7B (Zhan
et al.} |2024a) and Qwen2.5-VL-7B (Bai et al.,[2025), on the curated data and evaluate them across
multiple in-domain and out-of-domain object localization tasks, as well as general QA benchmarks.
Extensive experiments demonstrate that: (1) Vision-R1 achieves significant performance enhance-
ment across diverse tasks, including wild visual grounding and dense object detection, with even up
to 50% improvement for Qwen2.5-VL. (2) Compared to SFT, Vision-R1 demonstrates better gener-
alization capabilities with an average of 6% improvement on unseen scenarios while maintaining
advanced QA capabilities.

2 RELATED WORKS

2.1 LARGE VISION LANGUAGE MODELS

In recent years, LVLMs(Chen et al.| 2024b; Liu et al., [2023}; [Li et al., |2023aj [Liu et al., |2024b;
Tong et al., 2024 |Steiner et al.| 2024} Bai et al., 2023)) have made significant progress. By aligning
with advanced LLMs (Touvron et al., [2023} |Brown et al., 2020; [Liu et al.| |2024a) and leveraging
high-quality instruction data (L1 et al.,|2024; |Tong et al.,|2024)) for end-to-end training, LVLMs have
greatly expanded their capabilities in tasks such as question answering and reasoning, achieving
notable breakthroughs across various domains. Among these advancements, numerous open-source
LVLMs have contributed through extensive research in data construction, alignment methods, model
architecture, .efc. Currently, InternVL-2.5 (Chen et al. 2024a) and Qwen2.5-VL (Bai et al.|, [2025))
stand as the leading LVLM series, gradually closing the gap with closed-source (Achiam et al.|
2023) models and even surpassing them on challenging benchmarks like MMMU (Yue et al.| 2024).
Beyond these achievements, there is a growing focus on more challenging object localization tasks
(Bai et al.l [2025)), such as visual grounding and object detection. While LVLMs have surpassed
expert models in simpler fine-grained localization tasks like Referring Expression Comprehension
(REC) (Kazemzadeh et al., [2014), they still lag significantly behind specialized models in complex
and dense object detection tasks. Although some studies, such as Griffon (Zhan et al.}|2024a) and
Lumen, (Jiao et al., [2025) have explored this area, they remain limited to supervised fine-tuning,
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Figure 2: Vision-R1 framework. Green boxes denote correct predictions; red indicates errors. Solid
lines represent model output; dashed lines show ground truth.

which offers limited performance gains. As object localization serves as a fundamental capability for
enabling more advanced reasoning in LVLMs, it presents both a key research direction and a major
challenge. In this paper, we further explore reinforcement learning-based post-training to enhance the
performance of state-of-the-art LVL.Ms on more demanding object localization tasks.

2.2 VISION-LANGUAGE REINFORCEMENT LEARNING

With the advancement of LVLMs, researchers have begun exploring reinforcement learning methods
to better align these models with human preferences, inspired by the success of reinforcement learning
in LLMs (Ouyang et al.| [2022; [Chen et al., [2024c} Rafailov et al.l 2023). The first application in
LVLMs named RLHF (Sun et al.||2023), aims to reduce hallucinations by iteratively optimizing model
responses based on human feedback. To further enhance alignment and simplify training, Direct
Preference Optimization (DPO) (Rafailov et al.|[2023) is introduced, allowing models to be trained
directly on human-annotated preference data. Since then, various preference optimization algorithms
(Yu et al., [2024aib) have been developed to improve dialogue capabilities, mitigate hallucinations,
.etc. As LVLMs continue to advance, some methods (Dong et al., 2024; Wang et al., [2024)) have
also attempted to leverage reinforcement learning to enhance long-sequence reasoning. Despite
reducing computational costs compared to pretraining while improving model performance, these
approaches still rely on manually annotated preference data (Zhang et al.||2025)) and reward model
training, making them resource-intensive and challenging. Inspired by the success of the rule-based
GRPO (Shao et al.l [2024) method in DeepSeek-R1 (Guo et al., [2025), we explore its application
in the vision-language domain, where instruction datasets with precise annotations inherently align
with human preferences. Our work shows that rule-based reinforcement learning, guided by visual
feedback, can significantly enhance object localization tasks, beyond closed-set object detection for
specialized models (Pinto et al., [2023)), without requiring re-annotated preference data or reward
model training. This further highlights its potential for broader applications in LVLMs.

3  VISION-RI1

In this section, we systematically introduce vision-anchored R1-like reinforcement learning algorithm
Vision-R1, a success extension of the GRPO (Shao et al.| 2024) reinforcement learning algorithm
to the vision field. We start with brief preliminaries about the rule-based GRPO algorithm, which
is the source of success R1 models and our foundations. Then, we detail the pivotal component of
Vision-R1 algorithm criteria-driven reward function in Section [3.2] specifically the criteria-driven
reward function. Moreover, we introduce the progressive rule refinement strategy in Section[3.3} We
illustrate the framework of Vision-R1 in Figure[2]
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3.1 PRELIMINARIES

Building on the success of GRPO in enabling self-evolving, multi-domain reasoning within DeepSeek-
R1 (Guo et al.}2025)), this reinforcement learning algorithm provides valuable insights to both the
language and vision communities. Since its supervision is based solely on the final outcome, GRPO
is especially suited for tasks with explicit, objective answers. Unlike other preference optimization
methods relying on reward models or value models, it significantly reduces memory overhead for
LVLMs. Furthermore, GRPO computes the relative advantages within a group of completions for
a given sample, eliminating the need for manually annotated preference data. We further detail its
training procedure and optimization loss as follows.

Given an initial model to be optimized, GRPO begins by initializing a trainable policy model 7y and
a frozen reference model ... For a given sample ¢, the old policy model 7y, , first generates a
group of completions {01, 02, ..., o }. Then, the reward function f,cyqrd computes the whole group
rewards {rq,rz, ..., 7N }, which are further used to calculate the advantage A; of each completion
with the group by:

r; — mean({rj}é\’:l)
std({r; }§V=1)
After the reference model computes the logits to output each completion given the question, the

policy model 7y is optimized by maximizing the following objective:

A = ey

mo(oilg) , . mo(oilq)
Jcrro(6 N; mA“Clzp(WB{ﬂd( ‘q) 1—e€,1+€)A;)— 6’C£(7T0(Oz|Q)|7Tref(Oz‘Q))
2

where IV is the number of completions in one group and [ and e are the hyper-parameters. This
objective motivates the model to tend to produce the completion with a higher advantage within a
group, but not to stray too far away from the initial model.

3.2 CRITERIA-DRIVEN REWARD FUNCTION

Previous approaches (Shao et al.,|2024} |Guo et al.| 2024) have primarily focused on domains such
as mathematics and coding, where answers are often summarized using structured templates and
evaluated through character-level matching. In contrast, vision-language tasks inherently have
definitive answers, and object localization tasks typically do not involve intermediate steps but
directly output the final result. While object localization tasks have clear objectives that identify all
objects of interest, such visual feedback does not require strict character-level matching. Simply
applying previous matching-based reward overlooks the unique characteristics of vision tasks and
their feedback, as well as the advantages of reinforcement post-training that operates at the completion
level.

To address this, we investigate to design a reward function that accounts for both the nature of object
localization tasks and the limitations of current LVLMs in handling them. As shown in the task
analysis in Figure [2| LVLMs (Bai et al., [2025; |Zhan et al., 20244} Chen et al., |2024a)) face three
major challenges in object localization tasks. First, in multi-instance, long-sequence predictions,
they often fail to follow instructions correctly, leading to formatting errors. Second, the model
produces an insufficient number of valid predictions, failing to detect all mentioned objects. Third, it
struggles with small or challenging objects, resulting in inaccurate predictions. Besides the formatting
errors, the latter two issues are typically evaluated in object detection. Therefore, we propose a
criterion-driven reward function, incorporating dual-format reward, recall reward, and precision
reward to comprehensively assess model performance and incentivize improvement.

Box-prioritized Prediction Matching. LVLMs outputs object coordinates as textual sequences for
object localization tasks due to the unified sequence modeling. To compute rewards based on visual
feedback, we first convert these textual sequences into coordinate-based visual feedback as mentioned
earlier. Existing LVLMs that support object localization tasks typically follow a fixed sequence
representation for object coordinates, such as the plain-text format shown in Figure [2| Based on this
representation, we extract individual objects from the sequence. However, object localization tasks
often involve multiple objects, requiring exact matches between predictions and ground truth. To
address this in training, we unify all object localization tasks under the general framework of object
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detection and conduct matching before computing rewards. Unlike detection expert models, LVLMs
do not generate class probabilities and are generally less precise in bounding box accuracy, despite
correctly predicting object categories. Based on our experiments, we introduce a simplification to the
Hungarian matcher (Carion et al.| |2020), prioritizing box-based loss for alignment. As indicated in
Equation 3] after matching, each predicted instance contains coordinates, a category label, and an
Intersection over Union score (IoU).

{PIM_ — cxtract_match(o;)

, , ) , 3

P = {[z1,y1l,22,y2];,, label;,, ToU; } ©
Dual Format Reward. Previous methods introduce format rewards to encourage adherence to
predefined templates for easy answer extraction. Different from these methods, as illustrated in
the first challenge, LVLMs directly output results for object localization tasks, but fall short in
long-sequence prediction with both content and template format errors. To address this, we design the
dual-format reward. For each completion o;, the template-format checking f;.,, will verify whether
the completion follows the designated template format, such as JISON-format coordinates structure
in Qwen2.5-VL (Bai et al.l [2025). Once met, we further validate the numerical content to ensure
it adheres to coordinate constraints, indicated as f.,n¢, such as staying within valid bounds and
correctly placing decimal points. We adopt a binary reward scheme, assigning a reward of 1 only
when the prediction fully satisfies both format and content criteria as follows:

17 ifftemzl/\fcontzl
0, otherwise

rewardpr(o;) = { )

Recall Reward. Recall is a crucial metric in object localization tasks, reflecting whether a model
can predict all instances of interest as comprehensively as possible without omission. As shown in
Figure [2| unlike specialized localization models, LVLMs typically predict fewer confirmed but fewer
valid instances than the actual number. Therefore, it is essential to incorporate recall quality into
the evaluation of completion to encourage the model to identify all targets as it can. As shown in
Equation[5} we follow the definition of recall in object detection and design a recall-based reward for
each predicted completion. When the IoU of a matched predicted instance exceeds the predefined
threshold &y, it is considered a valid prediction. The recall reward is the ratio of valid predictions in
all GTs.

num(Valid Predictions)

num(GT)

rewardyecan(0;) =

&)

Precision Reward. Unlike the global perspective of recall, the precision reward focuses on the
quality of the predicted instances of each completion for the third challenge. The precision reward
works in conjunction with the recall reward: while the latter encourages the model to predict as many
relevant instances as possible, the former ensures that the predictions are as accurate as possible. To
directly motivate models to predict high-quality bounding boxes, we define the precision reward as
the average IoU of all valid predictions:

M ; . .
rewardyrec(0;) = Zm:1[(IOUW;WZ &o) - 1oU,,] ©

The overall reward for each completion o; is the sum of all three rewards to comprehensively assess
the completion anchored on the visual task criteria.

reward = rewardpr + rewardyecar + rewardprec @)

3.3 PROGRESSIVE RULE REFINEMENT STRATEGY

In localization tasks, accurately predicting a bounding box with high IoU to the ground truth is
challenging, especially in dense scenes. This difficulty may lead to similar completion rewards for
different predictions within the same group, limiting the model’s optimization. To address this, we
propose a progressive rule refinement strategy, inspired by curriculum learning (Bengio et al,2009)
and human learning processes, which dynamically adjusts reward calculation criteria during training
for continuous performance improvement. As shown in Figure [2] this strategy is applied to both
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recall and precision rewards, refining their final values for computing the advantage A;. It consists of
two key components: differentiation policy and Staged Progression policy.

Differentiation. The differentiation strategy focuses on increasing the contrast in the mapping
between predictions and actual rewards. Unlike the previous linear mapping, we penalize predictions
with low recall and average IoU while granting full rewards to those with relatively high recall and
IoU. This adjustment encourages the model to generate high-quality responses within its current
capability for optimal rewards. We denote the penalty threshold as &; and the full reward threshold as
&,, with the differentiation strategy expressed as Eq. [§| We apply this strategy to each instance for
the precision reward for better stability, and directly adjust the recall reward for one completion.

1, if x > fg
flx)=10, elif z <& (®)
x, otherwise

)

Staged Progression. Providing beginners with an easier-to-achieve standard and gradually increasing
the difficulty as their capability improves is a common learning strategy. We incorporate this principle
into our design to encourage continuous model improvement and prevent reward hacking. The
training process is divided into two phases: initial learning and advanced learning, based on training
steps (STEP). In the initial phase, we set relatively low TP thresholds &y and reward criteria &7, &2,
referring to the threshold settings in object detection evaluations with 0.5, 0.5, and intermediate 0.75.
With advancing, we tighten the criteria by adjusting the thresholds to their previous upper bounds:
0.75, 0.75, and 0.9. Since achieving perfectly accurate bounding box predictions is nearly impossible
in object localization tasks, we set &5 slightly below 1. Through these strategy adjustments, the model
can achieve continuous learning and improvement over time.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model Setting. We integrate Vision-R1 with several advanced LVLM:s to verify the broad effective-
ness of Vision-R1. Specifically, we implement Vision-R1 based on the latest Qwen2.5-VL-7B (Bai
et al.}|2025) and Griffon-G-7B (Zhan et al.,|[2024a)) models. Qwen2.5-VL-7B is the latest and most
comprehensive multimodal large model, demonstrating competitive object localization capabilities in
addition to its advanced VQA performance. In contrast, Griffon-G is the first LVLM to approach the
performance of specialized localization models. Given their differing localization abilities, we select
these two models to evaluate the effectiveness of our method across different model proficiency levels.
As a post-training reinforcement learning approach, we directly fine-tune the open-source models
using our constructed dataset of 49K samples which we introduce below. Training is conducted
with the open-source Open-R1 (Facel 2025) and its multimodal variant framework (Chen et al.,
2025)), utilizing the default configuration. Specifically, we set 3 to 0.2 and train for 1 epoch with
the learning rate of 1e-6. For the comparison method SFT, we use the same data and fine-tune each
model for 1 epoch with the learning rate of 2e-6 and batch size of 128. For rapid evaluation, we
employ VLMEvalKit (Duan et al., 2024} and Griffon (Zhan et al., 2024b).

Training Data. As previously mentioned, Vision-R1 does not require human-annotated preference
data and can be directly trained using question-answer pairs with precise answer annotations. To
construct the reinforcement learning data, we carefully curate samples from a previously fine-
annotated object localization instruction dataset. During the curation process, we adhere to two
key principles: diversity and challenge. Ultimately, we construct a 49K reinforcement learning
dataset, consisting of 30K object detection samples, 9K visual grounding samples, and 10K Referring
Expression Comprehension samples, as object detection is generally more challenging than the
other two tasks. Within each data category, we ensure that approximately 50% of the samples are
challenging, featuring a greater number of object categories and instances, as well as a proportion of
negative samples. A detailed illustration of the dataset is provided in the Appendix.

4.2 MAIN RESULTS ON OBJECT LOCALIZATION

Setup. We provide extensive experimental results on a wide range of object localization benchmarks,
which challenge the model to accurately detect and localize objects across diverse and complex
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Table 1: Object localization results on common detection benchmark MSCOCO val2017 (Lin et al.}
2014) and ODINW-13 (L1* et al.,[2022) benchmarks. We follow ODINW evaluation of (Bai et al.|
2025)) using the visual grounding setting and report the Avg. m AP, which indicates the average
mAP on all 13 evaluation datasets.

MSCOCO Val2017 ODINW-13

Type Model Res.
AP50 AP75 mAP A’Ug. mAP

@ Faster RCNN-FPN (Ren et al.,[2016) 1022 58.6 409 379 -

Z  DAB-DETR (Liu et al.|[2022) 1333 60.3 398 38.0 -

-8 DETR (Carion et al.| [2020) 1333 624 442 42.0 -

8  Pix2Seq (Chen et al.| 2021) 1333 61.0 456 43.0 -

« GroundingDINO (Liu et al., [2024c)) 1333 - - 46.7 55.0
Griffon-13B (Zhan et al., 2024b) 448 40.6 25.1 24.8 -
Griffon v2 (Zhan et al.| [2024c)) 1022 543 412 38.5 -
Lumen (Jiao et al.,[2025) 448 53.2 358 35.3 -
InternVL2.5-8B (Chen et al., 2024a) Dynamic 11.9 194 12.1 20.2

2 InternVL2.5-78B (Chen et al.,[2024a) Dynamic - - - 31.7

=  Qwen2.5-VL-72B (Bai et al., [2025) Dynamic - - - 43.1

g Gemini 1.5 Pro (Team et al.,[2024) - - - - 36.7

8 Griffon-G-7B (Zhan et al.,|2024a) 1022 574 428 40.2 43.8
+ SFT 574 433 40.5 45.3
+ Vision-R1 59.3 45.0 42.0 (+1.8) 46.3 (+2.5)
Qwen2.5-VL-7B (Bai et al., 2025) Dynamic 27.3 18.0 17.7 37.0F
+ SFT 36.1 243 23.6 35.0
+ Vision-R1 40.0 27.8 26.6 (+8.9) 46.0 (+9.0)

environments, showcasing its advanced object localization abilities. We incorporate several widely
recognized and representative in-domain datasets, spanning dense object detection and real-world
scene localization. COCO (Lin et al., 2014])) serves as a rigorous and well-acknowledged benchmark
for assessing multi-object localization in dense scenes. ODINW-13 (Li* et al., [2022) covers 13
distinct real-world settings with rare object categories, testing the model’s capacity to apply its
knowledge for object inference in practical scenarios. We also assess methods’ generalization
ability on out-of-domain untrained localization datasets in challenging scenarios. We employ four
Non-overlapping subsets from ODINW (Li* et al.,2022) individually.

In-domain Object Localization. The results in Tab. [I|demonstrate the broad effectiveness of the
Vision-R1 in object localization tasks. When applied to the Griffon-G model, which excels in object
detection, Vision-R1 further improves its performance by 1.8 on COCO and achieves an average
mAP increase of 2.5 on ODINW-13. This significantly outperforms the state-of-the-art Qwen2.5-
VL-72B on ODINW-13 and brings Griffon-G-7B closer to the performance of specialized vision
models. When integrated with the Qwen2.5-VL-7B model, which has relatively weaker localization
capabilities, Vision-R1 yields even more substantial improvements, boosting COCO object detection
performance by 8.9 points and achieving an 8.7-point gain on ODINW, surpassing the performance of
its larger 72B counterpart. Compared to the Supervised Fine-Tuning method, Vision-R1 consistently
outperforms it by an average of 1.25 and 7 points on the two models, respectively. Notably, SFT
reduces Qwen2.5-VL-7B’s performance on ODINW-13, possibly due to over-fitting when training
with limited data. These results highlight Vision-R1’s strength in enhancing the LVLMs’ object
localization capabilities with limited training data across different models and scenarios, particularly
benefiting weaker models.

Out-of-domain Object Localization. As introduced in the setup, we incorporate four non-
overlapping datasets from ODINW for out-of-domain localization evaluation. Unlike traditional
out-of-domain detection setups, we relax the constraint that both images and object categories must
be entirely unseen during training. Given the large-scale training data of LVLMs, strictly ensuring
complete novelty is challenging; we here define an experiment setting where either the object category
or the scene is absent from the post-training stage to assess generalization ability. As shown in Table
Vision-R1 improves performance when integrated with the Griffon-G-7B and Qwen2.5-VL-7B
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Table 2: Result on out-of-domain datasets collected from non-overlapping ODINW (Li* et al.,
2022), where BB indicates BoggleBoards, MDC indicates MountainDewCommercial, TC indicates
ThermalCheetah, and Ve indicates Vector. We follow the grounding setting in (Bai et al., 2025)) for
evaluation.

Method | BB MDC TC Ve Avg.
GroundingDINO (Liu et al.l 2024c) 0.8 18.2 12.9 - -
InternVL2.5-8B (Chen et al., [2024a)) 0.1 0.0 0.7 6.7 1.9
Griffon-G-7B (Zhan et al., 2024a) 34 28.1 8.9 8.2 12.2

+ SFT 2.3 13.7 94 24.0 12.4

+ Vision-R1 3.9 41.5 7.8 24.1 19.3 (+7.1)
Qwen2.5-VL-7B (Bai et al.,2025) 4.5 3.8 7.8 51.3 16.9

+ SFT 8.4 6.5 8.3 48.3 17.9

+ Vision-R1 8.2 13.7 9.9 54.8 21.7 (+4.8)

Table 3: Ablation study on different box Table 4: Ablation study on Reward Function Design.
matchers for LVLMs.

P R | mAP AP® AP  AR100
Matcher Choice | mAP _ AR100 Baseline | 402 574 428 522

Box-only 42.1 54.2 v 41.5 55.6 45.1 49.6
Box & Label 419 53.4 v v 42.1 58.7 453 54.2

models, achieving average gains of 7.1 and 4.8, respectively. Notably, it surpasses expert models
on BoggleBoards and MountainDewCommercial, further demonstrating its strong generalization
capability beyond specific datasets. While the SFT performs competitively in challenging scenarios
involving heatmaps, .etc, where LVLMs initially struggle, it exhibits a significant performance drop in
more common scenes compared to the base model. This suggests that SFT lacks robust generalization,
whereas Vision-R1 effectively enhances both in-domain and out-of-domain performance.

4.3 ABLATION STUDIES

In this section, we provide comprehensive experiments to validate the design of Vision-R1, under-
scoring our key contributions. Unless otherwise specified, we conduct ablation experiments using the
detection data from our constructed dataset, which can be regarded as a general form of localization
tasks, making the experiments more representative and broadly applicable.

Discussion on Different Matcher Approaches. As mentioned in Section prior box matching
is typically based on Hungarian matching, which minimizes loss by considering both box accuracy
and category prediction scores. However, unlike detection expert models, LVLMs do not rely on
a predefined category set with probabilistic outputs, and directly produce deterministic category
labels instead. Building on this, we simplify the assignment process by either considering only box
accuracy or incorporating both box accuracy and category correctness. As shown in Table [3] the
two approaches exhibit a limited significant performance difference, with the box-only matching
method performing slightly better. We attribute this to the strong classification ability of LVLMs,
which rarely misclassify objects when predicting a small number of targets. Matching solely based
on bounding boxes helps the model recall more objects, leading to a slight performance gain after
training by enabling more accurate predictions.

Effectiveness of Reward Function Design. To comprehensively evaluate the design of our reward
function, we first conduct an ablation study to compare the effects of the three reward components.
Among them, the dual format reward primarily serves as feedback for some completions where the
model fails to follow the expected format or content template. Therefore, we focus our ablation
comparison on precision reward and recall reward. When excluding the recall reward, we introduce a
binary prediction count reward, which grants a reward only when the predicted number of instances
matches the ground truth. This prevents the model from continuously generating redundant outputs.
As shown in Table[d, when only precision is considered, the model produces higher-quality bounding
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boxes, leading to an increase in all levels of AP. However, the number of recalled instances decreases.
With the introduction of the recall reward, the model’s recall rate increases by 2% compared to the
baseline, and the overall mAP further improves by 0.6, demonstrating that our design to integrate
recall and precision leads to more effective performance.

Effectiveness of Progressive Rule Refinement. Table 5: Ablation study on Progressive Rule Re-
The progressive rule refinement strategy serves finement. STEP indicates the training stage where
as a mechanism to encourage continuous model refinement begins.

improvement. In our experiments, we set and
fixed ¢ following object detection evaluation STEP |mAP AP A P AR100
criteria while adjusting STEP to determine the -

optimal transition point for the advanced phase. Baseline | 402 574 428  52.2
To examine the impact of different configura- 173 415 580 448 546
tions, we conducted a comparative study on the 172 421 587 453 54.2
Griffon-G-7B model, evaluating three settings 1 399 570 426 56.7
where STEP was set to 1/3, 1/2, and 1, and tested
the performance on COCO. As shown in Table[5] adjusting the model at STEP = 1/2 yielded the best
performance, whereas keeping STEP = 1 (i.e., no adjustment) resulted in performance lower than
the baseline. Our analysis suggests that for the Griffon-G model, which initially possesses strong
localization abilities, recall has a greater impact during training. As a result, it achieved an AR%°
of 56.7. However, without progressive reward adjustments, the model generated a large number of
lower-quality bounding boxes, contributing to more false positives in AP metrics, ultimately reducing
mAP slightly below the baseline. When adding our strategy, it will suppress these low-quality boxes
chasing after more high-quality boxes. While for the comparably weak Qwen2.5-VL-7B model,
the situation is different with STEP = 1 yielding the best results as reported, which we detail in the
Appendix. These overall results validate the importance and effectiveness of our progressive rule
refinement strategy, demonstrating that properly tuning the training process leads to meaningful
performance improvements.

Effects on General QAs. Vision-R1 aligns Table 6: Ablation on generalization QA capabili-
LVLMs with subjective annotations that human ties with results reproduced by VLMEvalKit under
naturally prefers to advance their object local- the same setting.

ization capabilities. However, it is also well pre-
ferred to remain LVLMs’ strong general QA ca- Method ‘ GQA AI2D ChartQA SEED
pabilities. We evaluate both LVLMs integrated -

with Vision-R1 in Table [[ and [ across vari- ~ Oriffon-G-7B | 64.6 70.1 = 68.7 717
ous general VQAs, including knowledge (AI2D + SFT 635 705 67.5 722
(Kembhavi et al [2016))), commonsense (GQA + Vision-R1 | 64.8 703 68.8 71.8
(Hudson & Manning} 2019))), chart (ChartQA

(Masry et al., 2022))), and interdisciplinary (SEED (Li et al.,|2023b)) domains. As shown in Table
[6l training with Vision-R1 results in minimal fluctuations in general QA performance, maintaining
a performance similar to the baseline model, while SFT methods show a significant drop. This
indicates that our method significantly enhances object localization without heavily compromising
general QA abilities. Moreover, the improvement in object localization leads to a performance boost
on object-perception-based commonsense tasks like GQA, further showcasing the advantages of
our approach. We also provide experimental results for Qwen2.5-VL-7B in the appendix, further
demonstrating the effectiveness of our method.

5 CONCLUSION

In this paper, we introduce Vision-R1, a novel reinforcement learning algorithm for LVLMs that
combines a vision criterion-driven reward function and a progressive rule refinement strategy to
enhance their object localization capabilities. By designing this algorithm, we present a human-
annotating-free approach to leverage abundant instruction data with subjective and definite responses
embodied to boost LVLMs’ localization performance. Comprehensive evaluation across various
benchmarks under diverse scenarios demonstrates the generalized effectiveness of our method,
encouraging more research to equip LVLMs with advanced, precise object localization capabilities to
support complex tasks and real-life applications. We provide more discussion on the limitations and
broader impact in the appendix.
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