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ABSTRACT

Spatio-temporal data pose significant challenges for graph-based learning due to
their complex, non-stationary dependencies and the limitations of conventional
message passing in capturing high-order, asymmetric interactions. We introduce
Spectral Sheaf Filtering (SSF), a novel and theoretically grounded framework that
redefines information propagation on graphs using the algebraic topology of cellular
sheaves. By assigning vector spaces and restriction maps to nodes and edges, SSF
encodes context-dependent, localized dynamics that extend far beyond traditional
adjacency structures. To further enhance expressivity and efficiency, we introduce
spectral filtering over the sheaf Laplacian, enabling frequency-aware decomposition
via the graph Fourier transform while emphasizing latent spectral features. This
spectral view allows SSF to adaptively modulate information flow across frequency
components, effectively mitigating oversmoothing in deep graph neural networks.
Extensive experiments on diverse spatio-temporal traffic forecasting benchmarks
show that SSF outperforms state-of-the-art methods, especially in long-horizon
forecasting tasks. Our results highlight the value of topological structures in
advancing graph learning for spatio-temporal systems. The code is available at:
https://github.com/anonymous-submisssion/SSF.

1 INTRODUCTION

Node 2

Node 3

Node 1

Figure 1: Spatio-temporal traffic dynamics across
three sensor nodes in the PEMS-BAY dataset Li
et al. (2018). Node 2 (green) exhibits a strong tem-
poral correlation with the significant speed drop at
Node 1 (purple), whereas Node 3 (orange), despite
similar spatial proximity, remains unaffected.

Urban mobility systems often exhibit remark-
ably heterogeneous and non-intuitive responses
to localized disruptions. For instance, consider a
highway accident during rush hour that triggers
a cascade of unexpected traffic congestion, prop-
agating across distant neighborhoods while adja-
cent streets, geographically just as close, remain
unaffected, Figure 1. This scenario underscores
a core challenge in spatio-temporal modeling:
real-world phenomena rarely conform to simple,
proximity-based interaction patterns. Instead,
they exhibit complex, higher-order dependen-
cies, where the flow of information varies signif-
icantly across both spatial and temporal dimen-
sions. This illustrates the need for models that
capture non-local, asymmetric, and higher-order
interactions.

Recent advances in spatio-temporal modeling have used graph neural networks (GNNs) Sahili &
Awad (2023); Wu et al. (2020), attention mechanisms Yu et al. (2024); Feng et al. (2023); Jyotishi
& Dandapat (2023), and diffusion-based approaches Yang et al. (2024). However, these methods
primarily focus on direct relationships between adjacent locations (first-order spatial relationships)
Sahili & Awad (2023) or oversimplified temporal dependencies Yu et al. (2024). Graph-based
models, in particular, frequently assume uniform information propagation along edges Sahili &
Awad (2023), overlooking dynamic variations in interaction strength. As a result, they often suffer
from oversmoothing and fail to capture the intricate, high-order, non-local dependencies inherent in
complex systems.

1

https://github.com/anonymous-submisssion/SSF


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To overcome these limitations, we propose a novel framework that moves beyond conventional
spatial adjacency and captures richer topological signals. Our approach draws from differential
geometry to model non-linear, high-order relationships via sheaves, offering a significantly more
expressive representation than traditional graph structures. To the best of our knowledge, this is
the first framework that models spatio-temporal data with graph cellular sheaves. Furthermore, we
introduce a new spectral filtering technique based on the sheaf Laplacian, which bridges spectral graph
theory with sheaf-based graph networks, enabling principled learning on complex spatio-temporal
graphs.

A key innovation of our approach lies in utilizing restriction maps from sheaf theory to model data
dependencies. These maps enable locally adaptive information propagation, representing a crucial
improvement over the uniform message-passing mechanisms in conventional GNNs. By learning
how features should transform differently across various regions of the graph, restriction maps enable
the model to preserve fine-grained spatial details and avoid issues such as oversmoothing, a common
problem that leads to poor performance in tasks requiring localized patterns. Additionally, unlike
standard graph Laplacians, the sheaf Laplacian encodes multidimensional interactions through its
cellular structure. This allows for richer modeling of signal propagation across spatio-temporal
graphs, accommodating dependencies that span beyond simple node-to-node connections.

While modeling spatio-temporal data with cellular sheaves offers significant advantages, it can add a
degree of computational complexity to the model. To mitigate this, we incorporate graph filtering
techniques to enhance learning efficiency. There are two main approaches for designing graph filters:
spatial-based graph filters or spectral-based graph filters. Spatial approaches often suffer from a
similar representation of local neighborhoods Defferrard et al. (2016), which limits their capacity
to capture nuanced patterns. Therefore, we accommodate a spectral-based filter that aligns more
naturally with the structural richness introduced by cellular sheaves.

Specifically, we perform a spectral decomposition of the sheaf Laplacian, which uncovers the
fundamental structure of dependencies in the data and reveals latent topological features encoded in
the graph. This decomposition facilitates interpretable and efficient spectral filtering, allowing us to
extract and manipulate frequency components of signals defined over the sheaf structure. Not only
does this approach enhance the model’s ability to identify persistent topological features, but it also
helps reduce the computational burden associated with sheaf-based modeling.

While our proposed framework offers general modeling of spatio-temporal data, we specifically
demonstrate its effectiveness in the context of traffic forecasting. We conduct extensive experiments
on five widely-used benchmark spatio-temporal traffic datasets (METR-LA, PEMS-BAY, PEMS04,
PEMS08, NAVER-Seoul), evaluating the model across various prediction horizons. Our approach
outperforms state-of-the-art methods, highlighting its strong potential for real-world deployment
in transportation systems and other spatio-temporal forecasting applications. In conclusion, our
contributions can be summarized as follows:

• This work is the first to model spatio-temporal data using cellular sheaves, effectively addressing
the fundamental challenges of traditional GNNs such as oversmoothing and limited expressiveness
by capturing the complex, high-order relational structures inherent in such data.

• We introduce a novel spectral filtering framework applied to the sheaf Laplacian to capture fine-
grained graph signal features in the frequency domain effectively.

• Through extensive experiments on spatio-temporal traffic datasets, our framework outperforms
state-of-the-art methods, establishing a new benchmark for spatio-temporal prediction performance.

2 RELATED WORK

Spatio-temporal traffic forecasting. Recent advances in spatio-temporal traffic forecasting have
shifted from traditional RNN and CNN models to graph-based architectures to capture the complex
spatio-temporal dependencies Bai et al. (2020); Ye et al. (2021). Early work introduced DCRNN Li
et al. (2018), which modeled traffic as a diffusion process on a directed graph. This was followed
by STGCN Yu et al. (2018), combining graph convolutions with 1D convolutions for temporal
patterns. ASTGCN Guo et al. (2019) further advanced data modeling by incorporating attention
mechanisms to capture dynamic spatial-temporal correlations. More recently, GMAN Zheng et al.
(2020) was proposed, combining spatial and temporal attention mechanisms with a gated fusion
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module to dynamically model spatio-temporal dependencies in traffic data. Additionally, GMAN
proposes a transform attention mechanism that directly links historical and future time steps. Current
state-of-the-art approaches include STG-NCDE Choi et al. (2022), which proposes neural controlled
differential equations for continuous-time modeling, and DSTAGNN Lan et al. (2022) that integrates
dynamic spatial-temporal attention with graph neural networks. Most recently, MegaCRN Jiang
et al. (2023b) explicitly disentangles spatial and temporal heterogeneity in traffic data by generating
adaptive, context-aware node embeddings using a meta-node bank and hyper-network. Despite these
advances, existing methods still struggle to effectively capture long-range and high-order relations
that mimic real-world data behavior.

Sheaf graph neural networks. Recent advances in GNNs have expanded beyond traditional spatial
representations to capture higher-order interactions. Sheaf neural networks represent a promising
direction that applies concepts of algebraic topology to model asymmetric data relationships Hansen
& Gebhart (2020); Bodnar et al. (2022). Building on cellular sheaf theory, SheafANs Barbero
et al. (2022) developed a sheaf attention mechanism that generalizes graph attention networks by
integrating cellular sheaves for richer geometric inductive biases. This approach addresses the GNN
limitations, oversmoothing, and poor performance on heterophilic graphs, by using transport matrices
and sheaf-based feature aggregation to preserve local heterogeneity and geometric structure. In
Duta et al. (2023), the authors introduce cellular sheaves for hypergraphs and propose the linear and
non-linear sheaf hypergraph Laplacians, generalizing standard hypergraph Laplacians. Our work
employs the sheaf theory for modeling the asymmetric high-order dependencies of spatio-temporal
data.

Graph spectral filtering. Graph spectral filtering is a foundational technique in graph signal pro-
cessing that operates on the graph’s frequency domain, working on the eigenvalues and eigenvectors
of the graph Laplacian by emphasizing or attenuating specific frequency components. The authors
in Defferrard et al. (2016) introduced a spectral graph theoretical formulation of CNNs that enables
the design of fast, strictly localized filters on arbitrary graph structures. While StemGNN Cao et al.
(2020) jointly captures intra-series temporal patterns and inter-series correlations in the spectral
domain by integrating Discrete Fourier Transform (DFT) and Graph Fourier Transform (GFT). It also
acts as a data-driven learning approach of inter-series relationships without relying on pre-defined
topologies, enabling the model to automatically infer graph structures that are interpretable and often
superior to manually designed ones. While S2GNNs Geisler et al. (2024) integrates spatial message
passing with spectral-domain filters and provides free-of-cost positional encodings, significantly
expanding the expressivity and design space of GNN architectures. Specformer Bo et al. (2023a)
introduces a transformer-based spectral GNN that uses self-attention to design a learnable spectral
filter, capturing both the magnitudes and relative differences of graph Laplacian eigenvalues.

3 SPECTRAL SHEAF FILTERING (SSF)

The proposed SSF framework, illustrated in Figure 2, advances graph neural networks in two
key directions: (i) by enabling richer topological modeling through the incorporation of cellular
sheaves, and (ii) by introducing a principled spectral decomposition of the sheaf Laplacian. Together,
these innovations enhance the model’s capacity to capture complex spatio-temporal dependencies,
particularly in irregular and non-homogeneous datasets.

3.1 PRELIMINARIES

Real-world spatiotemporal phenomena, such as traffic density distributions, are inherently embedded
within two interconnected mathematical structures: a spatial manifold M (representing the physical
network topology) and a temporal domain T ⊂ R+ (capturing the sequential evolution of measure-
ments). The fundamental challenge in spatiotemporal forecasting lies in modeling the simultaneous
interaction between these structures, which traditional GNNs fail to capture adequately due to their
tendency to homogenize higher-order and feature-dependent relationships into oversimplified graph
representations. To address this, we formulate the problem within the framework of cellular sheaf
theory over graphs, processed through spectral analysis.

Spatial Graph. Let G = (V, E) be a connected, undirected graph representing spatial relationships,
where: V = {v1, v2, . . . , vN} is the vertex set with |V| = N , representing spatial entities (sensors)
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restriction maps

𝑳𝑭 = 𝑼𝜦𝑼𝑻

𝒈𝒉𝒆𝒂𝒕 𝝀 = 𝒆−𝜶𝝀

Graph Fourier Transform 

+ Heat Kernel

𝑭(𝒖)

𝑭(𝒗)

𝒆

𝑭(𝒆)

𝑭𝒗⊴𝒆

𝑭𝒖⊴𝒆

edge stalk

vertex stalks

Sheaf Laplacian

Spatio-temporal Graph

Building sheaf graph

Generate Restriction Maps Message Passing

SSF Graph

Generate output predictions

MLP

Spectral decomposition and filtering

Output Signal

Filtered multi-frequency 

components

Figure 2: Overview of SSF framework. Spatio-temporal signals are encoded as graph-structured
data, followed by sheaf construction assigning vector stalks to vertices and edges. Sheaf Laplacian is
then decomposed to enable spectral processing via graph Fourier transform and heat kernel filtering.
Finally, the output signal predictions are generated through the last MLP.

and E ⊆ V × V is the edge set modeling spatial connectivity. The adjacency matrix A ∈ {0, 1}N×N

satisfies Aij = 1 if (vi, vj) ∈ E , and Aij = 0 otherwise.

Spatio-temporal Signal. A spatiotemporal signal is defined as a tensor X ∈ RN×T×d, where: T
represents the temporal horizon length, d denotes the feature dimensionality at each node, and each
temporal slice Xt ∈ RN×d represents the graph signal at time t, with [Xt]i ∈ Rd being the feature
vector at node vi at time t.

Problem Statement. Given a sequence of historical spatiotemporal observations {X1, X2, . . . , Xt},

the objective is to learn a mapping:

F : RN×t×d → RN×T ′×d

that predicts future spatiotemporal states {X̂t+1, X̂t+2, . . . , X̂t+T ′}.

3.2 SHEAF BUILDING

To model higher-order, feature-dependent interactions within the graph, we equip the graph G with a
cellular sheaf F . A cellular sheaf provides a structured way to assign and relate vector spaces across
the graph, enabling localized and heterogeneous information propagation that adapts to the specific
characteristics of different graph regions.

Definition 1 (Cellular Sheaf on Graphs). A cellular sheaf F on G = (V, E) assigns:

• Vertex Stalks: For each vertex v ∈ V , a finite-dimensional vector space F(v) ∼= Rd.
• Edge Stalks: For each edge e = (u, v) ∈ E , a finite-dimensional vector space F(e) ∼= Rd.
• Restriction Maps: For each incidence v ◁ e, where vertex v is incident to edge e, a linear restriction

map Fv◁e : F(v) → F(e), which governs how information from the vertex is projected onto the
edge.

The restriction maps encode how node-level features are projected into edge-level representations.
We parameterize each Fv◁e as a learnable linear transformation Fv◁e ∈ Rd×d

An important hyperparameter in this setup is the stalk dimension d, which controls the capacity of the
vector spaces. Higher-dimensional stalks support richer feature propagation and more informative
graph signal encoding. When d = 1 and Fv◁e = 1, we recover scalar-weighted message passing as
in classical GCNs. We empirically analyze the impact of stalk dimensionality in the experiments

4
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section. We assume a uniform stalk dimension. All vertex and edge stalks have identical dimension
d, ensuring that F(v) ∼= F(e) ∼= Rd for all v ∈ V and e ∈ E .

Definition 2 (Sheaf Laplacian). The sheaf Laplacian LF is defined as:

(LFx)v =
∑

e=(u,v)∈E

F⊤
v◁e

(
Fv◁exv −Fu◁exu

)
. (1)

We apply the diffusion process using the sheaf Laplacian to minimize the Dirichlet energy function
Duta et al. (2023):

EF
L2
(x) =

1

2

∑
e

∥∥∥∥Fv◁eD
− 1

2
v xv − Fu◁eD

− 1
2

u xu

∥∥∥∥2
2

(2)

where Dv =
∑

e;v∈e F
⊤
v◁eFv◁e, and D = diag(D1, D2, . . . , Dn) is the corresponding block-

diagonal matrix. Thus, the sheaf Laplacian LF models the difference in sheaf-projected features
across each edge and aggregates them in a node-specific manner. As such, it captures both structural
and semantic discrepancies between nodes in a way that respects the underlying geometry defined
by the sheaf. In contrast to using the normalized graph Laplacian which can lead to similar node
representation during the diffusion process, using the sheaf Laplacian mitigates over-smoothing.
When d = 1 and Fv◁e = 1, LF reduces to the combinatorial graph Laplacian.

3.3 SHEAF FOURIER ANALYSIS

A common challenge of existing graph neural networks is oversmoothing, where node representations
become increasingly similar and eventually indistinguishable as more layers are added. This occurs
because repeated message passing causes features of neighboring nodes to converge, ultimately
degrading the model’s ability to capture discriminative information.

To address this issue, we apply a spectral filtering approach. Spatial-based methods typically
propagate information incrementally across layers, limiting each node’s receptive field to a bounded
local neighborhood Bo et al. (2023b). In contrast, spectral methods leverage the graph Fourier
transform, representing node signals as linear combinations of the graph’s eigenvectors. This enables
the model to access and utilize global structural information from the entire graph in a principled
manner. To this end, we extend spectral graph theory to the sheaf-based setting by introducing the
spectral decomposition of the sheaf Laplacian.

Theorem 1 (Sheaf Laplacian Eigendecomposition). The sheaf Laplacian admits the eigendecompo-
sition:

LF = UΛUT (3)

where Λ = diag(λ1, λ2, . . . , λNd) and U = [u1, u2, . . . , uNd] contains orthonormal eigenvectors.
The eigenspace corresponds to the sheaf harmonic sections. The eigenvalues λ of the sheaf Laplacian
quantify the frequency content of the graph signals and characterize the smoothness of the associated
eigenvectors. Small eigenvalues correspond to low-frequency components, which vary slowly across
connected nodes and capture global, smooth patterns. In contrast, large eigenvalues represent high-
frequency components, which are localized and oscillatory, capturing sharp or irregular changes in
the graph signal. The eigenvectors {uℓ} form an orthonormal basis for the space of sheaf signals,
thereby generalizing the concept of Fourier modes to the sheaf-theoretic setting. This formulation
allows us to design learnable spectral filters that operate over the spectrum of the sheaf Laplacian,
enabling the model to selectively enhance or suppress structural features of interest while mitigating
the oversmoothing effect.

Spectral Filtering via Heat Kernel. Building on the spectral decomposition of the sheaf Laplacian,
we apply a heat kernel spectral filter to selectively control the contribution of different frequency
components in the graph signal. The motivation behind this choice lies in the need to suppress
high-frequency noise and emphasize the low-frequency components that encode the most coherent
and structurally meaningful information across the graph.

The heat kernel is defined as:
gheat(λ) = e−αλ, α > 0 (4)

5
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The corresponding diagonal spectral filter matrix is expressed as:

ĝheat = diag
(
e−αλ1 , . . . , e−αλNd

)
(5)

This filter is then applied in the spectral domain to capture better representation of graph signals
while preserving structural patterns encoded in the low-frequency spectrum.

Message Passing in the Spectral Domain. A key advantage of performing message passing in the
spectral domain is the ability to modulate information flow in a frequency-aware manner. In this
setting, node features are projected into the sheaf spectral domain using the eigenbasis U obtained
from the eigendecomposition of the sheaf Laplacian.

At graph neural network layer l, given the hidden node features X(l), the following operations are
applied:

X̂(l) = UTX(l) (6)

X̂(l+1) = ĝheatX̂
(l)W (l) (7)

X(l+1) = σ(UX̂(l+1)) (8)

where W (l) is a learnable weight matrix, and σ(·) denotes non-linearity. This spectral filtering
approach mitigates oversmoothing through frequency-selective processing, where low and high
frequencies are handled independently, and by benefiting from a controllable smoothing parameter
α(ℓ) that explicitly regulates the degree of smoothing at each layer. Moreover, unlike spatial methods
that rely on O(L) hop neighborhoods to expand the receptive field, spectral methods naturally achieve
a global receptive field in just O(1) operations. As a result, the model gains the flexibility to focus on
structural patterns of varying scales while avoiding oversmoothing or overfitting to high-frequency
noise. The complete SSF framework is formalized in Algorithm 1.

4 EXPERIMENTAL SETUP

To ensure a fair and consistent evaluation, we adopt the same split data set as established in previous
works. Specifically, for the PEMS04 and PEMS08 datasets, we follow the 60:20:20 ratio of training,
validation, and testing splits, as used in Song et al. (2020); Gao et al. (2024); Wang et al. (2025). For
the METR-LA, PEMS-BAY, and NAVER-Seoul datasets, we employ a 70:10:20 split, in line with
the protocols outlined in Lee et al. (2022); Li et al. (2018); Jiang et al. (2023b). More details on
the benchmark datasets are provided in appendix A. Our experiments are conducted using PyTorch
framework, running on an NVIDIA A100 GPU with 80 GB of memory. We utilize the Adam
optimizer with an initial learning rate set to 0.001, a mini-batch size of 64 and MSE loss function. To
mitigate overfitting, we employ early stopping based on the validation loss, with a patience threshold
of 20 epochs. Graph structures for each dataset are constructed using pre-defined adjacency matrices
derived from the physical distances between road segments. Each model is trained to forecast future
traffic conditions based on past temporal observations. Specifically, the input to the model consists of
the previous 12 time steps (equivalent to one hour of data), and the forecasting horizon is the same
(e.g., horizon 12 predicts the next 12 time steps), in case of horizon 12, same procedure applies to
horizon 6 (30 minutes) and horizon 3 (15 minutes). To ensure consistent data scaling and improve
convergence, we apply z-score normalization independently per sensor node across the dataset. This
normalization approach is also consistent with that used in the baseline methods. Each component of
our proposed framework, along with its associated hyperparameters, has been thoroughly examined
through a series of controlled experiments. To understand the individual contribution and sensitivity
of each element, we conduct comprehensive ablation studies, the results of which are presented in the
following section and the appendices.

5 RESULTS AND DISCUSSION

Our experimental evaluation is structured around three main guiding points. First, we demonstrate
the effectiveness of our method by showing the improvements over state-of-the-art approaches in
quantitative comparisons. Second, we establish the scalability and efficiency of the framework,
highlighting its ability to generalize across diverse application scenarios. Finally, through detailed
ablation studies, we reveal why the method works and assess the contribution of each framework
component to the overall performance.
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Table 1: Performance comparison on METR-LA, PEMS-BAY, PEMS04 and PEMS08 datasets.

Model METR-LA PEMS-BAY PEMS04 PEMS08
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN Yu et al. (2018) 3.65 7.46 9.96 1.89 4.31 4.29 22.70 35.55 14.59 18.02 27.83 11.40
DCRNN Li et al. (2018) 3.17 6.47 8.87 1.73 3.89 3.90 24.70 38.12 17.12 17.86 27.83 11.45
GW-Net Wu et al. (2019) 3.10 6.25 8.43 1.63 3.65 3.68 25.45 39.70 17.29 19.13 31.05 12.68
GMAN Zheng et al. (2020) 3.12 6.46 8.74 1.64 3.74 3.71 19.25 31.33 9.06 15.47 25.72 10.40
ASTGCN Guo et al. (2019) 3.70 8.04 9.86 2.04 4.21 4.70 21.80 32.82 16.56 16.63 25.27 13.08
PM-MemNet Lee et al. (2022) 3.05 6.29 8.47 1.65 3.69 3.69 20.63 33.12 15.22 19.5 30.13 12.89
MegaCRN Jiang et al. (2023b) 2.94 6.08 8.04 1.59 3.61 3.55 20.44 32.65 14.23 18.91 29.01 12.32
PDFormer Jiang et al. (2023a) 3.22 5.59 9.29 1.62 3.18 3.67 18.32 29.97 12.10 13.58 23.51 9.05
STD-MAE Gao et al. (2024) 3.00 6.05 8.11 1.51 3.45 3.38 17.80 29.25 11.97 13.44 22.47 8.76
ModWaveMLP Sun et al. (2024) 2.61 5.17 7.14 1.24 2.87 2.79 17.13 27.5 10.92 13.01 20.2 7.98

SSF (Ours) 1.97 2.85 2.91 1.30 2.08 1.79 16.76 34.22 8.22 9.01 22.16 4.09
Error Improvement (%) ↓ 24.52% 44.87% 59.24% – 27.53% 35.84% 2.16% – 9.27% 30.75% – 48.74%

5.1 QUANTITATIVE RESULTS

Table 2: Results on NAVER-Seoul dataset.

Model NAVER-Seoul
MAE RMSE MAPE

STGCN Yu et al. (2018) 5.63 8.88 17.43
DCRNN Li et al. (2018) 5.64 8.66 18.27
GW-Net Wu et al. (2019) 5.24 8.05 15.99
GMAN Zheng et al. (2020) 5.34 8.64 17.45
ASTGCN Guo et al. (2019) 5.67 8.58 18.4
PM-MemNet Lee et al. (2022) 4.95 7.66 15.9
MegaCRN Jiang et al. (2023b) 4.83 7.13 11.87
PDFormer Jiang et al. (2023a) 5.11 7.66 16.05
STD-MAE Gao et al. (2024) 4.69 6.26 10.77
ModWaveMLP Sun et al. (2024) 4.52 7.09 12.10

SSF (Ours) 3.63 6.01 1.34
Error Improvement (%) ↓ 19.69% 3.99% 87.5%

We present the comprehensive performance evalua-
tion of our proposed model on the four widely-used
benchmark datasets: METR-LA, PEMS-BAY Li et al.
(2018), and PEMS04, PEMS08 Li et al. (2018) in
Table 1. These results are the average performance
acrros the 3 horizons, while additional results on each
individual horizon are reported in the suplementary
meterials in Table 5. We compare to a wide variety of
the state-of-the-art methods, details on the selected
baselines are provided in appendix B. Across all
datasets, our model delivers significant improvements
over state-of-the-art baselines. Our method outper-
forms both GNN-based models (STGCN, DCRNN)
and attention-driven approaches (GMAN, ASTGCN),
often by substantial margins. The reason our method
may slightly underperform in rare cases like PEMS04 and PEMS08 using RMSE metric, is that these
datasets contain more outliers and RMSE penalizes deviations much more heavily. While GNNs excel
at local spatial dependencies and attention mechanisms aim to model dynamic temporal correlations,
both approaches encounter limitations in capturing the high-order, multi-relational structures inherent
in traffic networks. Most importantly, our model maintains superior accuracy across all forecasting
horizons, including the challenging 60-minute horizon, where most baseline methods experience
significant performance degradation.

5.2 QUALITATIVE RESULTS

Robustness with challenging/fluctuating data. While the four datasets mentioned above are
considered in the literature standard benchmarks for evaluating every spatio-temporal forecasting
model, we want to assess the robustness of our framework by exploring a more challenging dataset
with a different environmental setting. In Table 2, we compare our framework performance to the
baselines on NAVER-Seoul dataset Lee et al. (2022) which covers the entire main road network in
Seoul, South Korea, and features more abrupt fluctuations in traffic speed as well as a significantly
larger number of sensors (more details on the datasets are provided in the supplementary material).
This makes it particularly challenging and well-suited for testing the scalability and generalization
ability of spatio-temporal models. The full results are also provided in the supplementary material,
Table 5. These results demonstrate the superior performance of our SSF framework compared to
existing state-of-the-art approaches, showing strong error stability across horizons. Notably, the
dramatic reduction in MAPE indicates that SSF captures both absolute and relative variations in the
data more effectively than prior graph-based or transformer-based architectures.

Robustness in long-term forecasting. In figure 3 we illustrate the multi-horizon forecasting perfor-
mance of SSF compared with STD-MAE and ModWaveMLP. While the competing baselines show a
sharp increase in error as the horizon extends from 15 to 60 minutes, SSF demonstrates remarkable ro-
bustness, with only a modest growth in error values. This temporal robustness highlights the strength
of our architecture in capturing long-range dependencies, a key challenge in traffic forecasting,
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Figure 3: Comparison of forecasting performance across horizons (15, 30, 60 minutes) on METR-LA
dataset. Our method achieves better incremental error compared to the baselines.

without suffering from the vanishing influence of earlier time steps. The stability across both short-
and long-term predictions illustrates that our sheaf-inspired framework offers a fundamentally more
expressive and resilient approach to modeling long-term dependencies in complex spatio-temporal
systems.

Efficiency and scalability. The results in Table 6 demonstrate the efficiency and scalability of our
proposed SSF model, which achieves competitive training speed with only 52.13 seconds per epoch.
Compared to widely used baselines, our method substantially reduces training time while main-
taining strong performance, highlighting its suitability for large-scale spatio-temporal applications.
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Figure 4: Impact of sheaf stalk dimension on pre-
diction error (left), and on training time (right) with
and without spectral filter.

Additionally, to assess the computational im-
pact of the proposed spectral filter, we measure
the average seconds per iteration across vary-
ing sheaf stalk dimensions on NAVER-Seoul
dataset.

Figure 4 demonstrates that incorporating the
spectral filter consistently reduces iteration time
compared to the sheaf model without the filter.
While the computation of the eigendecompo-
sition of the sheaf Laplacian introduces addi-
tional complexity, particularly in datasets with
a large number of nodes and higher complexity
(NAVER-Seoul), this overhead is effectively off-
set by the benefits of spectral filtering, where
selecting the top k eigenvectors yields a more
compact and expressive representation. This effect becomes more pronounced as the stalk dimension
increases, highlighting the filter’s efficiency in managing the growing complexity of the model. The
spectral filter not only improves smoothness and generalization (as shown in other ablations) but
also optimizes computation by promoting more structured and efficient message propagation. These
results demonstrate the practical scalability and efficiency gains achieved by integrating the spectral
filter in high-dimensional sheaf settings.

5.3 ABLATION STUDIES

To understand the influence of the stalk dimensionality in our sheaf-based model, we conducted
experiments on the NAVER-Seoul dataset, which is characterized by high sensor density and intricate
traffic dynamics. As illustrated in Figure 4, prediction error decreases with increasing stalk dimension.
This suggests that richer stalk representations enable the model to capture more complex local
feature variations and dependencies. However, increasing the stalk dimension comes with some
computational burden.

We also investigate the impact of varying the number of eigenvalues k retained in the spec-
tral filter on forecasting accuracy. As illustrated in Figure 6, increasing k beyond a moderate
threshold results in noticeable performance degradation across all forecasting horizons and eval-
uation metrics. This pattern suggests that including too many spectral components introduces
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Figure 5: Comparison of traffic speed forecasting performance on NAVER-Seoul dataset.

noise or redundant information, thereby diminishing the discriminative power of the learned
representations. In contrast, selecting a small set of dominant eigenvectors enables the model
to focus on the most salient spectral features, resulting in improved accuracy and robustness.

Table 3: Ablation study on the effect of spectral
filtering across horizons.

Dataset SSF w/o spectral filter
15min 30min 60min Avg

METR-LA
MAE 1.70 2.38 3.08 2.39
RMSE 2.78 6.65 3.89 4.44
MAPE 1.94 2.27 3.17 2.46

PEMS-BAY
MAE 1.58 2.02 1.83 1.81
RMSE 2.97 3.19 3.06 3.07
MAPE 1.27 1.38 3.01 1.89

NAVER-Seoul
MAE 4.55 5.21 11.6 7.12
RMSE 8.64 9.16 20.72 12.84
MAPE 7.02 11.04 21.44 13.17

Table 3 presents the results of an ablation study as-
sessing the impact of removing the spectral filtering
component from the proposed SSF model. Across
benchmark datasets, METR-LA, PEMS-BAY, and
NAVER-Seoul, performance degrades when spec-
tral filtering is excluded. Notably, the NAVER-
Seoul dataset exhibits the most pronounced drop
in accuracy, particularly at longer forecasting hori-
zons (60 minutes), where both RMSE and MAPE
values significantly increase. This highlights the im-
portance of spectral filtering in capturing essential
graph frequency components that enhance spatio-
temporal representation, especially in more com-
plex or noisier traffic scenarios.

Finally, to demonstrate how our model captures
the complex spatio-temporal dependencies, we visualize in Figure 5 the prediction output of SSF
compared to traditional graph convolutional network (GCN) and the most competing model in the
baselines (ModWaveMLP) on the challenging NAVER-Seoul dataset. SSF tends to capture the
complex patterns and produce more reliable predictions.

6 CONCLUSION

In this work, we introduced Spectral Sheaf Filtering (SSF), a principled and expressive framework
for spatio-temporal representation learning that bridges cellular sheaf theory with spectral graph
filtering. By redefining information flow in graph neural networks, SSF moves beyond conventional
message-passing schemes, leveraging sheaf-based structures to capture complex, asymmetric, and
higher-order dependencies through localized restriction maps. Our spectral formulation over the
sheaf Laplacian enables a selective handling of frequency components, which effectively mitigates
oversmoothing while improving both expressivity and scalability.

Extensive experiments on large-scale spatio-temporal traffic forecasting benchmarks demonstrate the
superior performance of SSF, especially in challenging long-range prediction settings. As a general
and extensible framework, SSF opens promising avenues for adaptive sheaf learning, temporal
cohomology, multimodal integration, and scalable graph-based modeling in future research.

Reproducibility Statement. We are committed to ensuring the reproducibility of our results. To
this end, detailed experimental setup is provided in section 4. Details on the public benchmark
datasets are explained in appendix A. The source code with appropriate documentation is available at:
https://github.com/anonymous-submisssion/SSF.
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SUPPLEMENTARY MATERIAL

A DATASETS DETAILS

We conduct our experiments on a diverse set of widely recognized real-world benchmark datasets
commonly used for spatio-temporal traffic forecasting. Each dataset comprises traffic speed readings
sampled at 5-minute intervals, but they differ in both spatial resolution, defined by the number of
traffic sensors, and temporal duration, measured by the number of timesteps.

Firstly, we utilize the METR-LA and PEMS-BAY datasets Li et al. (2018), which were collected
from freeway networks in the Los Angeles and Bay Area regions of California, respectively. These
datasets have become standard benchmarks in the literature due to their rich temporal patterns and
moderate spatial coverage. In addition, we include the PEMS04 and PEMS08 datasets Song et al.
(2020), which originate from different regions within the Caltrans Performance Measurement System
(PeMS) and provide further variability in spatial topology and traffic flow dynamics.

To further evaluate the robustness of our framework under complex urban traffic conditions, we
also conduct experiments on the NAVER-Seoul dataset Lee et al. (2022). NAVER-Seoul covers the
entire main road network in Seoul, South Korea, and features more abrupt fluctuations in traffic
speed as well as a significantly larger number of sensors. This makes it a particularly demanding
benchmark, well-suited for testing the scalability and generalization ability of spatio-temporal models.
A summary of the key characteristics of all datasets used in our experiments is provided in Table 4.

Table 4: Summary of datasets’ characteristics.

METR-LA PEMS-BAY NAVER-Seoul PEMS04 PEMS08

Start Time 03.2012 01.2017 09.2020 01.2018 07.2016
End Time 06.2012 05.2017 12.2020 02.2018 08.2016
Sampling Time 5 minutes 5 minutes 5 minutes 5 minutes 5 minutes
Region Los Angeles Bay Area Seoul Bay Area San Bernardino
Timesteps 34,272 52,116 26,208 16992 17856
Spatial Units 207 325 774 307 170

B BASELINES

We compare our proposed model with the state-of-the-art models in spatio-temporal traffic prediction:

• Graph Convolutional Networks (GCNs): These methods use spatial graph structures to model
the topology of traffic networks. We include STGCN Yu et al. (2018), a pioneering model that
combines spatial graph convolutions with temporal 1D convolutions to jointly capture spatial-
temporal dependencies. In addition, GW-Net Wu et al. (2019) introduces adaptive graph learning,
enabling dynamic construction of the adjacency matrix to better capture latent spatial relationships.

• Recurrent Neural Networks (RNNs): These models are designed to capture temporal depen-
dencies through sequential modeling. DCRNN Li et al. (2018) employs diffusion convolution
integrated with gated recurrent units (GRUs) to model spatial-temporal dynamics on directed graphs.
MegaCRN Jiang et al. (2023b) incorporates meta-graph construction and cross-node recurrent
processing, improving generalization across different traffic nodes.

• Attention-based Architectures: These models utilize various attention mechanisms to selectively
focus on relevant spatial and temporal features. GMAN Zheng et al. (2020) introduces a multi-
level attention mechanism across both space and time, enabling flexible modeling of dynamic
dependencies. ASTGCN Guo et al. (2019) employs both spatial and temporal attention modules
alongside graph convolutions for fine-grained context modeling. PDFormer Jiang et al. (2023a)
integrates the design of a spatial self-attention module along with graph masking matrices to capture
the dynamic spatial dependencies.

• Spectral and Representation Learning Models: These models focus on frequency-domain or latent
representation learning to model complex patterns. PM-MemNet Lee et al. (2022) designs a pattern
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Table 5: Performance comparison on METR-LA, PEMS-BAY, and NAVER-Seoul datasets on
different prediction horizons.

Data Model 15min / horizon 3 30min / horizon 6 60min / horizon 12
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

M
E

T
R

-L
A

STGCN 2.88 5.74 7.62 3.47 7.24 9.57 4.59 9.40 12.70
DCRNN 2.77 5.38 7.30 3.15 6.45 8.80 3.60 7.59 10.50
GW-Net 2.69 5.15 6.90 3.07 6.22 8.37 3.53 7.37 10.01
GMAN 2.80 5.55 7.41 3.12 6.49 8.73 3.44 7.35 10.07
ASTGCN 3.07 8.23 5.90 3.61 7.16 10.34 4.42 8.73 13.35
PM-MemNet 2.65 5.29 7.01 3.03 6.29 8.42 3.46 7.29 9.97
MegaCRN 2.52 4.94 6.44 2.93 6.06 7.96 3.38 7.23 9.72
PDFormer 2.83 2.83 7.77 3.20 6.46 9.19 3.62 7.47 10.91
STD-MAE 2.62 5.02 6.70 2.99 6.07 8.04 3.40 7.07 9.59
ModWaveMLP 2.20 4.19 5.65 2.59 5.07 6.81 3.05 6.24 8.95

SSF (Ours) 1.68 2.55 2.34 2.01 2.86 2.75 2.23 3.14 3.65

PE
M

S-
BA

Y

STGCN 1.36 2.96 2.90 1.81 4.27 4.17 2.49 5.69 5.79
DCRNN 1.38 2.95 2.90 1.74 3.97 3.90 2.07 4.74 4.90
GW-Net 1.30 2.74 2.73 1.63 3.70 3.67 1.95 4.52 4.63
GMAN 1.35 2.90 2.87 1.65 3.82 3.74 1.92 4.49 4.52
ASTGCN 1.55 3.17 3.44 2.01 4.19 4.66 2.57 5.27 6.01
PM-MemNet 1.34 2.82 2.81 1.65 3.76 3.71 1.95 4.49 4.54
MegaCRN 1.28 2.72 2.67 1.60 3.68 3.57 1.88 4.42 4.41
PDFormer 1.32 1.32 2.78 1.64 3.79 3.71 1.91 4.43 4.51
STD-MAE 1.23 2.62 2.56 1.53 3.53 3.42 1.77 4.20 4.17
ModWaveMLP 0.86 1.80 1.76 1.22 2.87 2.72 1.63 3.95 3.88

SSF (Ours) 0.85 1.39 1.41 1.29 2.10 1.32 1.77 2.74 2.65

N
AV

E
R

-S
eo

ul

STGCN 4.63 6.92 14.49 5.50 8.83 17.37 6.77 10.89 20.42
DCRNN 4.86 7.12 15.35 5.67 8.80 18.38 6.40 10.06 21.09
GW-Net 4.91 7.24 14.86 5.26 8.13 16.16 5.55 8.77 16.97
GMAN 5.20 8.32 16.98 5.35 8.67 17.47 5.48 8.94 17.89
ASTGCN 5.09 7.44 16.14 5.71 8.73 18.78 6.22 9.58 20.37
PM-MemNet 4.57 6.72 14.43 5.04 7.86 16.34 5.24 8.39 16.94
MegaCRN 4.46 6.63 11.26 4.91 6.66 12.02 5.12 8.11 12.33
PDFormer 4.56 6.74 14.49 5.01 7.33 15.69 5.76 8.91 17.98
STD-MAE 4.20 5.08 8.32 4.68 6.13 11.90 5.20 7.56 12.10
ModWaveMLP 4.01 5.23 9.11 4.22 7.61 13.08 5.32 8.44 14.10

SSF (Ours) 3.41 5.01 1.03 3.58 5.84 1.35 3.84 7.19 1.63

memory mechanism to enhance long-term temporal pattern retention. STD-MAE Gao et al. (2024)
applies two decoupled masked autoencoders to reconstruct spatio-temporal series along the spatial
and temporal dimensions. ModWaveMLP Sun et al. (2024) utilizes mode decomposition and
wavelet-based denoising techniques to capture multi-scale temporal features effectively.

C EXTENDED RESULTS

Table 5 presents the comprehensive performance comparison of various spatio-temporal forecasting
models across three traffic datasets (METR-LA, PEMS-BAY, and NAVER-Seoul) and three prediction
horizons (15, 30, and 60 minutes). We report the three standard metrics: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The proposed
SSF model demonstrates superior performance, achieving the best results for most metrics across
all three datasets and prediction horizons. The results suggest that SSF consistently outperforms
existing state-of-the-art methods, with particularly notable improvements in MAPE scores on the
NAVER-Seoul dataset, where it achieves dramatically lower error rates compared to competing
methods.
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D EFFECT OF THE NUMBER OF EIGENVALUES (K)

Figure 6 illustrates the impact of varying the number of eigenvalues (k) used in the spectral filter on
model performance across different prediction horizons. The analysis is conducted on the NAVER-
Seoul dataset with five different k values: 3, 5, 10, 50, and 100. We report three evaluation metrics
(MAE, RMSE, and MAPE) across three forecasting horizons (3, 6, and 12 time steps). The results
reveal that using fewer eigenvalues (k=3) consistently produces the best performance across all
metrics and horizons, with performance generally degrading as k increases. This trend is particularly
pronounced for k=100, which shows notably worse performance. The results suggest that a lower-
dimensional spectral representation (k=3) is optimal for this traffic forecasting task, indicating that the
most important spectral components capture the essential spatial relationships in the traffic network,
while higher-order components may introduce noise or overfitting. This finding provides valuable
insights for tuning the spectral filter component of the proposed model.
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Figure 6: Effect of the number of eigenvalues k used in the spectral filter on model performance,
evaluated on the NAVER-Seoul dataset across forecasting horizons 3, 6, and 12.
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E SSF ALGORITHM

Algorithm 1 Spectral Sheaf Filtering (SSF)
1: Input: Graph G = (V,E) with N = |V | nodes, input data X ∈ RN×T×F , hyperedge index E , filter

parameter Θ, prediction horizon H , number of GCN layers L, stalk dimension d

2: Output: Predicted signal X̂t+1:t+T ′

3: Step 1: Sheaf Construction
4: F ← SheafBuilder(X, E)
5: LF ← LaplacianConstruct(F , E)
6: Step 2: Spectral Decomposition
7: L̃F = UΛUT ▷ Compute eigendecomposition
8: λ1 ≤ λ2 ≤ · · · ≤ λNd ▷ Sort eigenvalues
9: k ← min(spectral_k, Nd) ▷ Number of eigenmodes to keep

10: Step 3: Heat Kernel Filter Design
11: for i = 1 to Nd do
12: gheat(λi) = e−αλi

13: end for
14: ĝheat = diag(e−αλ1 , . . . , e−αλNd)

15: L̃filt ← U:kdiag(λ̃1:k)U
T
:k

16: Afilt ← I− L̃filt ▷ Filtered adjacency
17: Step 4: Spectral Message Passing
18: Initialize: X(0) ← Xt

19: for layer ℓ = 0 to L− 1 do
20: X̂(ℓ) = UTX(ℓ) ▷ Transform to spectral domain
21: X̂

(ℓ)
filtered = ĝheatX̂

(ℓ)W (ℓ) ▷ Apply spectral filter

22: X̃(ℓ+1) = UX̂
(ℓ)
filtered ▷ Transform back to spatial domain

23: X(ℓ+1) = σ(X̃(ℓ+1)) ▷ Apply activation
24: end for
25: Step 5: Forecasting
26: Z = X(L)

27: X̂t+τ = MLPforecast(Z) ▷ Generate future predictions
28: Return: X̂t+1:t+T ′ = {X̂t+1, X̂t+2, . . . , X̂t+T ′}

F TRAINING TIME ANALYSIS

Table 6: Training time per epoch for different models on METR-LA dataset.

Model Training Time/Epoch (s)
STGCN 15.84
DCRNN 122.5
GW-Net 48.07
GMAN 312.23
ASTGCN 93.21
PM-MemNet 81.82
STD-MAE 201.46
ModWaveMLP 88.13

SSF (ours) 52.13
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