SPECTRAL SHEAF FILTERING: A TOPOLOGICAL APPROACH TO SPATIO-TEMPORAL MODELING

Anonymous authors

000

001

002 003 004

006

008

010 011

012

013

014

015

016

017

018

019

021

023

025

026027028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Spatio-temporal data pose significant challenges for graph-based learning due to their complex, non-stationary dependencies and the limitations of conventional message passing in capturing high-order, asymmetric interactions. We introduce Spectral Sheaf Filtering (SSF), a novel and theoretically grounded framework that redefines information propagation on graphs using the algebraic topology of cellular sheaves. By assigning vector spaces and restriction maps to nodes and edges, SSF encodes context-dependent, localized dynamics that extend far beyond traditional adjacency structures. To further enhance expressivity and efficiency, we introduce spectral filtering over the sheaf Laplacian, enabling frequency-aware decomposition via the graph Fourier transform while emphasizing latent spectral features. This spectral view allows SSF to adaptively modulate information flow across frequency components, effectively mitigating oversmoothing in deep graph neural networks. Extensive experiments on diverse spatio-temporal traffic forecasting benchmarks show that SSF outperforms state-of-the-art methods, especially in long-horizon forecasting tasks. Our results highlight the value of topological structures in advancing graph learning for spatio-temporal systems. The code is available at: https://github.com/anonymous-submisssion/SSF.

1 Introduction

Urban mobility systems often exhibit remarkably heterogeneous and non-intuitive responses to localized disruptions. For instance, consider a highway accident during rush hour that triggers a cascade of unexpected traffic congestion, propagating across distant neighborhoods while adjacent streets, geographically just as close, remain unaffected, Figure 1. This scenario underscores a core challenge in spatio-temporal modeling: real-world phenomena rarely conform to simple, proximity-based interaction patterns. Instead, they exhibit complex, higher-order dependencies, where the flow of information varies significantly across both spatial and temporal dimensions. This illustrates the need for models that capture non-local, asymmetric, and higher-order interactions.



Figure 1: Spatio-temporal traffic dynamics across three sensor nodes in the PEMS-BAY dataset Li et al. (2018). Node 2 (green) exhibits a strong temporal correlation with the significant speed drop at Node 1 (purple), whereas Node 3 (orange), despite similar spatial proximity, remains unaffected.

Recent advances in spatio-temporal modeling have used graph neural networks (GNNs) Sahili & Awad (2023); Wu et al. (2020), attention mechanisms Yu et al. (2024); Feng et al. (2023); Jyotishi & Dandapat (2023), and diffusion-based approaches Yang et al. (2024). However, these methods primarily focus on direct relationships between adjacent locations (first-order spatial relationships) Sahili & Awad (2023) or oversimplified temporal dependencies Yu et al. (2024). Graph-based models, in particular, frequently assume uniform information propagation along edges Sahili & Awad (2023), overlooking dynamic variations in interaction strength. As a result, they often suffer from oversmoothing and fail to capture the intricate, high-order, non-local dependencies inherent in complex systems.

To overcome these limitations, we propose a novel framework that moves beyond conventional spatial adjacency and captures richer topological signals. Our approach draws from differential geometry to model non-linear, high-order relationships via sheaves, offering a significantly more expressive representation than traditional graph structures. To the best of our knowledge, this is the first framework that models spatio-temporal data with graph cellular sheaves. Furthermore, we introduce a new spectral filtering technique based on the sheaf Laplacian, which bridges spectral graph theory with sheaf-based graph networks, enabling principled learning on complex spatio-temporal graphs.

A key innovation of our approach lies in utilizing restriction maps from sheaf theory to model data dependencies. These maps enable locally adaptive information propagation, representing a crucial improvement over the uniform message-passing mechanisms in conventional GNNs. By learning how features should transform differently across various regions of the graph, restriction maps enable the model to preserve fine-grained spatial details and avoid issues such as oversmoothing, a common problem that leads to poor performance in tasks requiring localized patterns. Additionally, unlike standard graph Laplacians, the sheaf Laplacian encodes multidimensional interactions through its cellular structure. This allows for richer modeling of signal propagation across spatio-temporal graphs, accommodating dependencies that span beyond simple node-to-node connections.

While modeling spatio-temporal data with cellular sheaves offers significant advantages, it can add a degree of computational complexity to the model. To mitigate this, we incorporate graph filtering techniques to enhance learning efficiency. There are two main approaches for designing graph filters: spatial-based graph filters or spectral-based graph filters. Spatial approaches often suffer from a similar representation of local neighborhoods Defferrard et al. (2016), which limits their capacity to capture nuanced patterns. Therefore, we accommodate a spectral-based filter that aligns more naturally with the structural richness introduced by cellular sheaves.

Specifically, we perform a spectral decomposition of the sheaf Laplacian, which uncovers the fundamental structure of dependencies in the data and reveals latent topological features encoded in the graph. This decomposition facilitates interpretable and efficient spectral filtering, allowing us to extract and manipulate frequency components of signals defined over the sheaf structure. Not only does this approach enhance the model's ability to identify persistent topological features, but it also helps reduce the computational burden associated with sheaf-based modeling.

While our proposed framework offers general modeling of spatio-temporal data, we specifically demonstrate its effectiveness in the context of traffic forecasting. We conduct extensive experiments on five widely-used benchmark spatio-temporal traffic datasets (METR-LA, PEMS-BAY, PEMS04, PEMS08, NAVER-Seoul), evaluating the model across various prediction horizons. Our approach outperforms state-of-the-art methods, highlighting its strong potential for real-world deployment in transportation systems and other spatio-temporal forecasting applications. In conclusion, our contributions can be summarized as follows:

- This work is the first to model spatio-temporal data using cellular sheaves, effectively addressing the fundamental challenges of traditional GNNs such as oversmoothing and limited expressiveness by capturing the complex, high-order relational structures inherent in such data.
- We introduce a novel spectral filtering framework applied to the sheaf Laplacian to capture finegrained graph signal features in the frequency domain effectively.
- Through extensive experiments on spatio-temporal traffic datasets, our framework outperforms state-of-the-art methods, establishing a new benchmark for spatio-temporal prediction performance.

2 RELATED WORK

Spatio-temporal traffic forecasting. Recent advances in spatio-temporal traffic forecasting have shifted from traditional RNN and CNN models to graph-based architectures to capture the complex spatio-temporal dependencies Bai et al. (2020); Ye et al. (2021). Early work introduced DCRNN Li et al. (2018), which modeled traffic as a diffusion process on a directed graph. This was followed by STGCN Yu et al. (2018), combining graph convolutions with 1D convolutions for temporal patterns. ASTGCN Guo et al. (2019) further advanced data modeling by incorporating attention mechanisms to capture dynamic spatial-temporal correlations. More recently, GMAN Zheng et al. (2020) was proposed, combining spatial and temporal attention mechanisms with a gated fusion

module to dynamically model spatio-temporal dependencies in traffic data. Additionally, GMAN proposes a transform attention mechanism that directly links historical and future time steps. Current state-of-the-art approaches include STG-NCDE Choi et al. (2022), which proposes neural controlled differential equations for continuous-time modeling, and DSTAGNN Lan et al. (2022) that integrates dynamic spatial-temporal attention with graph neural networks. Most recently, MegaCRN Jiang et al. (2023b) explicitly disentangles spatial and temporal heterogeneity in traffic data by generating adaptive, context-aware node embeddings using a meta-node bank and hyper-network. Despite these advances, existing methods still struggle to effectively capture long-range and high-order relations that mimic real-world data behavior.

Sheaf graph neural networks. Recent advances in GNNs have expanded beyond traditional spatial representations to capture higher-order interactions. Sheaf neural networks represent a promising direction that applies concepts of algebraic topology to model asymmetric data relationships Hansen & Gebhart (2020); Bodnar et al. (2022). Building on cellular sheaf theory, SheafANs Barbero et al. (2022) developed a sheaf attention mechanism that generalizes graph attention networks by integrating cellular sheaves for richer geometric inductive biases. This approach addresses the GNN limitations, oversmoothing, and poor performance on heterophilic graphs, by using transport matrices and sheaf-based feature aggregation to preserve local heterogeneity and geometric structure. In Duta et al. (2023), the authors introduce cellular sheaves for hypergraphs and propose the linear and non-linear sheaf hypergraph Laplacians, generalizing standard hypergraph Laplacians. Our work employs the sheaf theory for modeling the asymmetric high-order dependencies of spatio-temporal data

Graph spectral filtering. Graph spectral filtering is a foundational technique in graph signal processing that operates on the graph's frequency domain, working on the eigenvalues and eigenvectors of the graph Laplacian by emphasizing or attenuating specific frequency components. The authors in Defferrard et al. (2016) introduced a spectral graph theoretical formulation of CNNs that enables the design of fast, strictly localized filters on arbitrary graph structures. While StemGNN Cao et al. (2020) jointly captures intra-series temporal patterns and inter-series correlations in the spectral domain by integrating Discrete Fourier Transform (DFT) and Graph Fourier Transform (GFT). It also acts as a data-driven learning approach of inter-series relationships without relying on pre-defined topologies, enabling the model to automatically infer graph structures that are interpretable and often superior to manually designed ones. While S²GNNs Geisler et al. (2024) integrates spatial message passing with spectral-domain filters and provides free-of-cost positional encodings, significantly expanding the expressivity and design space of GNN architectures. Specformer Bo et al. (2023a) introduces a transformer-based spectral GNN that uses self-attention to design a learnable spectral filter, capturing both the magnitudes and relative differences of graph Laplacian eigenvalues.

3 SPECTRAL SHEAF FILTERING (SSF)

The proposed SSF framework, illustrated in Figure 2, advances graph neural networks in two key directions: (i) by enabling richer topological modeling through the incorporation of cellular sheaves, and (ii) by introducing a principled spectral decomposition of the sheaf Laplacian. Together, these innovations enhance the model's capacity to capture complex spatio-temporal dependencies, particularly in irregular and non-homogeneous datasets.

3.1 PRELIMINARIES

Real-world spatiotemporal phenomena, such as traffic density distributions, are inherently embedded within two interconnected mathematical structures: a spatial manifold \mathcal{M} (representing the physical network topology) and a temporal domain $\mathcal{T} \subset \mathbb{R}^+$ (capturing the sequential evolution of measurements). The fundamental challenge in spatiotemporal forecasting lies in modeling the simultaneous interaction between these structures, which traditional GNNs fail to capture adequately due to their tendency to homogenize higher-order and feature-dependent relationships into oversimplified graph representations. To address this, we formulate the problem within the framework of cellular sheaf theory over graphs, processed through spectral analysis.

Spatial Graph. Let $\mathcal{G}=(\mathcal{V},\mathcal{E})$ be a connected, undirected graph representing spatial relationships, where: $\mathcal{V}=\{v_1,v_2,\ldots,v_N\}$ is the vertex set with $|\mathcal{V}|=N$, representing spatial entities (sensors)

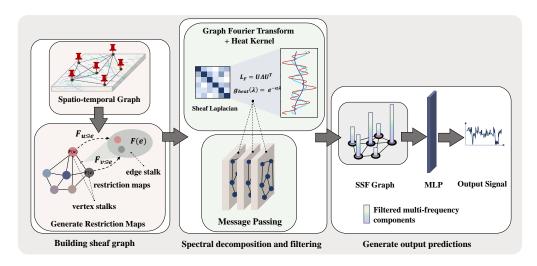


Figure 2: Overview of SSF framework. Spatio-temporal signals are encoded as graph-structured data, followed by sheaf construction assigning vector stalks to vertices and edges. Sheaf Laplacian is then decomposed to enable spectral processing via graph Fourier transform and heat kernel filtering. Finally, the output signal predictions are generated through the last MLP.

and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the edge set modeling spatial connectivity. The adjacency matrix $A \in \{0,1\}^{N \times N}$ satisfies $A_{ij} = 1$ if $(v_i, v_j) \in \mathcal{E}$, and $A_{ij} = 0$ otherwise.

Spatio-temporal Signal. A spatiotemporal signal is defined as a tensor $X \in \mathbb{R}^{N \times T \times d}$, where: T represents the temporal horizon length, d denotes the feature dimensionality at each node, and each temporal slice $X_t \in \mathbb{R}^{N \times d}$ represents the graph signal at time t, with $[X_t]_i \in \mathbb{R}^d$ being the feature vector at node v_i at time t.

Problem Statement. Given a sequence of historical spatiotemporal observations $\{X_1, X_2, \dots, X_t\}$, the objective is to learn a mapping:

$$\mathbf{F}: \mathbb{R}^{N \times t \times d} \to \mathbb{R}^{N \times T' \times d}$$

that predicts future spatiotemporal states $\{\hat{X}_{t+1}, \hat{X}_{t+2}, \dots, \hat{X}_{t+T'}\}$.

3.2 Sheaf Building

To model higher-order, feature-dependent interactions within the graph, we equip the graph \mathcal{G} with a cellular sheaf \mathcal{F} . A cellular sheaf provides a structured way to assign and relate vector spaces across the graph, enabling localized and heterogeneous information propagation that adapts to the specific characteristics of different graph regions.

Definition 1 (Cellular Sheaf on Graphs). A cellular sheaf \mathcal{F} on $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ assigns:

- Vertex Stalks: For each vertex $v \in \mathcal{V}$, a finite-dimensional vector space $\mathcal{F}(v) \cong \mathbb{R}^d$.
- Edge Stalks: For each edge $e = (u, v) \in \mathcal{E}$, a finite-dimensional vector space $\mathcal{F}(e) \cong \mathbb{R}^d$.
- Restriction Maps: For each incidence $v \triangleleft e$, where vertex v is incident to edge e, a linear restriction map $\mathcal{F}_{v \triangleleft e} : \mathcal{F}(v) \to \mathcal{F}(e)$, which governs how information from the vertex is projected onto the edge.

The restriction maps encode how node-level features are projected into edge-level representations. We parameterize each $\mathcal{F}_{v \lhd e}$ as a learnable linear transformation $\mathcal{F}_{v \lhd e} \in \mathbb{R}^{d \times d}$

An important hyperparameter in this setup is the stalk dimension d, which controls the capacity of the vector spaces. Higher-dimensional stalks support richer feature propagation and more informative graph signal encoding. When d=1 and $\mathcal{F}_{v \lhd e}=1$, we recover scalar-weighted message passing as in classical GCNs. We empirically analyze the impact of stalk dimensionality in the experiments

section. We assume a uniform stalk dimension. All vertex and edge stalks have identical dimension d, ensuring that $\mathcal{F}(v) \cong \mathcal{F}(e) \cong \mathbb{R}^d$ for all $v \in \mathcal{V}$ and $e \in \mathcal{E}$.

Definition 2 (Sheaf Laplacian). The sheaf Laplacian $L_{\mathcal{F}}$ is defined as:

$$(L_{\mathcal{F}}x)_v = \sum_{e=(u,v)\in\mathcal{E}} \mathcal{F}_{v\triangleleft e}^{\top} \big(\mathcal{F}_{v\triangleleft e} x_v - \mathcal{F}_{u\triangleleft e} x_u \big). \tag{1}$$

We apply the diffusion process using the sheaf Laplacian to minimize the Dirichlet energy function Duta et al. (2023):

$$E_{L_2}^{\mathcal{F}}(x) = \frac{1}{2} \sum_{e} \left\| F_{v \triangleleft e} D_v^{-\frac{1}{2}} x_v - F_{u \triangleleft e} D_u^{-\frac{1}{2}} x_u \right\|_2^2$$
 (2)

where $D_v = \sum_{e;v \in e} F_{v \dashv e}^{\top} F_{v \dashv e}$, and $D = \operatorname{diag}(D_1, D_2, \ldots, D_n)$ is the corresponding block-diagonal matrix. Thus, the sheaf Laplacian $L_{\mathcal{F}}$ models the difference in sheaf-projected features across each edge and aggregates them in a node-specific manner. As such, it captures both structural and semantic discrepancies between nodes in a way that respects the underlying geometry defined by the sheaf. In contrast to using the normalized graph Laplacian which can lead to similar node representation during the diffusion process, using the sheaf Laplacian mitigates over-smoothing. When d=1 and $\mathcal{F}_{v \dashv e}=1$, $L_{\mathcal{F}}$ reduces to the combinatorial graph Laplacian.

3.3 Sheaf Fourier Analysis

A common challenge of existing graph neural networks is oversmoothing, where node representations become increasingly similar and eventually indistinguishable as more layers are added. This occurs because repeated message passing causes features of neighboring nodes to converge, ultimately degrading the model's ability to capture discriminative information.

To address this issue, we apply a spectral filtering approach. Spatial-based methods typically propagate information incrementally across layers, limiting each node's receptive field to a bounded local neighborhood Bo et al. (2023b). In contrast, spectral methods leverage the graph Fourier transform, representing node signals as linear combinations of the graph's eigenvectors. This enables the model to access and utilize global structural information from the entire graph in a principled manner. To this end, we extend spectral graph theory to the sheaf-based setting by introducing the spectral decomposition of the sheaf Laplacian.

Theorem 1 (Sheaf Laplacian Eigendecomposition). The sheaf Laplacian admits the eigendecomposition:

$$L_{\mathcal{F}} = U\Lambda U^T \tag{3}$$

where $\Lambda=\mathrm{diag}(\lambda_1,\lambda_2,\ldots,\lambda_{Nd})$ and $U=[u_1,u_2,\ldots,u_{Nd}]$ contains orthonormal eigenvectors. The eigenspace corresponds to the sheaf harmonic sections. The eigenvalues λ of the sheaf Laplacian quantify the frequency content of the graph signals and characterize the smoothness of the associated eigenvectors. Small eigenvalues correspond to low-frequency components, which vary slowly across connected nodes and capture global, smooth patterns. In contrast, large eigenvalues represent high-frequency components, which are localized and oscillatory, capturing sharp or irregular changes in the graph signal. The eigenvectors $\{u_\ell\}$ form an orthonormal basis for the space of sheaf signals, thereby generalizing the concept of Fourier modes to the sheaf-theoretic setting. This formulation allows us to design learnable spectral filters that operate over the spectrum of the sheaf Laplacian, enabling the model to selectively enhance or suppress structural features of interest while mitigating the oversmoothing effect.

Spectral Filtering via Heat Kernel. Building on the spectral decomposition of the sheaf Laplacian, we apply a heat kernel spectral filter to selectively control the contribution of different frequency components in the graph signal. The motivation behind this choice lies in the need to suppress high-frequency noise and emphasize the low-frequency components that encode the most coherent and structurally meaningful information across the graph.

The heat kernel is defined as:

$$g_{\text{heat}}(\lambda) = e^{-\alpha\lambda}, \quad \alpha > 0$$
 (4)

271

272 273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293 294

295 296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315 316 317

318 319

320

321

322

323

The corresponding diagonal spectral filter matrix is expressed as:

$$\hat{g}_{\text{heat}} = \text{diag}\left(e^{-\alpha\lambda_1}, \dots, e^{-\alpha\lambda_{Nd}}\right) \tag{5}$$

This filter is then applied in the spectral domain to capture better representation of graph signals while preserving structural patterns encoded in the low-frequency spectrum.

Message Passing in the Spectral Domain. A key advantage of performing message passing in the spectral domain is the ability to modulate information flow in a frequency-aware manner. In this setting, node features are projected into the sheaf spectral domain using the eigenbasis U obtained from the eigendecomposition of the sheaf Laplacian.

At graph neural network layer l, given the hidden node features $X^{(l)}$, the following operations are applied:

$$\hat{X}^{(l)} = U^T X^{(l)} \tag{6}$$

$$\hat{X}^{(l+1)} = \hat{g}_{\text{heat}} \hat{X}^{(l)} W^{(l)}$$

$$X^{(l+1)} = \sigma(U \hat{X}^{(l+1)})$$
(8)

$$X^{(l+1)} = \sigma(U\hat{X}^{(l+1)}) \tag{8}$$

where $W^{(l)}$ is a learnable weight matrix, and $\sigma(\cdot)$ denotes non-linearity. This spectral filtering approach mitigates oversmoothing through frequency-selective processing, where low and high frequencies are handled independently, and by benefiting from a controllable smoothing parameter $\alpha^{(\ell)}$ that explicitly regulates the degree of smoothing at each layer. Moreover, unlike spatial methods that rely on $\mathcal{O}(L)$ hop neighborhoods to expand the receptive field, spectral methods naturally achieve a global receptive field in just $\mathcal{O}(1)$ operations. As a result, the model gains the flexibility to focus on structural patterns of varying scales while avoiding oversmoothing or overfitting to high-frequency noise. The complete SSF framework is formalized in Algorithm 1.

EXPERIMENTAL SETUP

To ensure a fair and consistent evaluation, we adopt the same split data set as established in previous works. Specifically, for the PEMS04 and PEMS08 datasets, we follow the 60:20:20 ratio of training, validation, and testing splits, as used in Song et al. (2020); Gao et al. (2024); Wang et al. (2025). For the METR-LA, PEMS-BAY, and NAVER-Seoul datasets, we employ a 70:10:20 split, in line with the protocols outlined in Lee et al. (2022); Li et al. (2018); Jiang et al. (2023b). More details on the benchmark datasets are provided in appendix A. Our experiments are conducted using PyTorch framework, running on an NVIDIA A100 GPU with 80 GB of memory. We utilize the Adam optimizer with an initial learning rate set to 0.001, a mini-batch size of 64 and MSE loss function. To mitigate overfitting, we employ early stopping based on the validation loss, with a patience threshold of 20 epochs. Graph structures for each dataset are constructed using pre-defined adjacency matrices derived from the physical distances between road segments. Each model is trained to forecast future traffic conditions based on past temporal observations. Specifically, the input to the model consists of the previous 12 time steps (equivalent to one hour of data), and the forecasting horizon is the same (e.g., horizon 12 predicts the next 12 time steps), in case of horizon 12, same procedure applies to horizon 6 (30 minutes) and horizon 3 (15 minutes). To ensure consistent data scaling and improve convergence, we apply z-score normalization independently per sensor node across the dataset. This normalization approach is also consistent with that used in the baseline methods. Each component of our proposed framework, along with its associated hyperparameters, has been thoroughly examined through a series of controlled experiments. To understand the individual contribution and sensitivity of each element, we conduct comprehensive ablation studies, the results of which are presented in the following section and the appendices.

RESULTS AND DISCUSSION

Our experimental evaluation is structured around three main guiding points. First, we demonstrate the effectiveness of our method by showing the improvements over state-of-the-art approaches in quantitative comparisons. Second, we establish the scalability and efficiency of the framework, highlighting its ability to generalize across diverse application scenarios. Finally, through detailed ablation studies, we reveal why the method works and assess the contribution of each framework component to the overall performance.

Table 1: Performance comparison on METR-LA, PEMS-BAY, PEMS04 and PEMS08 datasets.

Model	METR-LA		PEMS-BAY		PEMS04		PEMS08					
1,10401	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
STGCN Yu et al. (2018)	3.65	7.46	9.96	1.89	4.31	4.29	22.70	35.55	14.59	18.02	27.83	11.40
DCRNN Li et al. (2018)	3.17	6.47	8.87	1.73	3.89	3.90	24.70	38.12	17.12	17.86	27.83	11.45
GW-Net Wu et al. (2019)	3.10	6.25	8.43	1.63	3.65	3.68	25.45	39.70	17.29	19.13	31.05	12.68
GMAN Zheng et al. (2020)	3.12	6.46	8.74	1.64	3.74	3.71	19.25	31.33	9.06	15.47	25.72	10.40
ASTGCN Guo et al. (2019)	3.70	8.04	9.86	2.04	4.21	4.70	21.80	32.82	16.56	16.63	25.27	13.08
PM-MemNet Lee et al. (2022)	3.05	6.29	8.47	1.65	3.69	3.69	20.63	33.12	15.22	19.5	30.13	12.89
MegaCRN Jiang et al. (2023b)	2.94	6.08	8.04	1.59	3.61	3.55	20.44	32.65	14.23	18.91	29.01	12.32
PDFormer Jiang et al. (2023a)	3.22	5.59	9.29	1.62	3.18	3.67	18.32	29.97	12.10	13.58	23.51	9.05
STD-MAE Gao et al. (2024)	3.00	6.05	8.11	1.51	3.45	3.38	17.80	29.25	11.97	13.44	22.47	8.76
ModWaveMLP Sun et al. (2024)	2.61	5.17	<u>7.14</u>	1.24	2.87	2.79	<u>17.13</u>	27.5	10.92	13.01	20.2	7.98
SSF (Ours)	1.97	2.85	2.91	1.30	2.08	1.79	16.76	34.22	8.22	9.01	22.16	4.09
Error Improvement (%) ↓	24.52%	44.87%	59.24%	_	27.53%	35.84%	2.16%	_	9.27%	30.75%	_	48.74%

5.1 QUANTITATIVE RESULTS

We present the comprehensive performance evaluation of our proposed model on the four widely-used benchmark datasets: METR-LA, PEMS-BAY Li et al. (2018), and PEMS04, PEMS08 Li et al. (2018) in Table 1. These results are the average performance acros the 3 horizons, while additional results on each individual horizon are reported in the suplementary meterials in Table 5. We compare to a wide variety of the state-of-the-art methods, details on the selected baselines are provided in appendix B. Across all datasets, our model delivers significant improvements over state-of-the-art baselines. Our method outperforms both GNN-based models (STGCN, DCRNN) and attention-driven approaches (GMAN, ASTGCN), often by substantial margins. The reason our method

Table 2: Results on NAVER-Seoul dataset.

Model	NAVER-Seoul					
	MAE	RMSE	MAPE			
STGCN Yu et al. (2018)	5.63	8.88	17.43			
DCRNN Li et al. (2018)	5.64	8.66	18.27			
GW-Net Wu et al. (2019)	5.24	8.05	15.99			
GMAN Zheng et al. (2020)	5.34	8.64	17.45			
ASTGCN Guo et al. (2019)	5.67	8.58	18.4			
PM-MemNet Lee et al. (2022)	4.95	7.66	15.9			
MegaCRN Jiang et al. (2023b)	4.83	7.13	11.87			
PDFormer Jiang et al. (2023a)	5.11	7.66	16.05			
STD-MAE Gao et al. (2024)	4.69	6.26	10.77			
ModWaveMLP Sun et al. (2024)	<u>4.52</u>	7.09	12.10			
SSF (Ours) Error Improvement (%) ↓	3.63 19.69%	6.01 3.99%	1.34 87.5%			

may slightly underperform in rare cases like PEMS04 and PEMS08 using RMSE metric, is that these datasets contain more outliers and RMSE penalizes deviations much more heavily. While GNNs excel at local spatial dependencies and attention mechanisms aim to model dynamic temporal correlations, both approaches encounter limitations in capturing the high-order, multi-relational structures inherent in traffic networks. Most importantly, our model maintains superior accuracy across all forecasting horizons, including the challenging 60-minute horizon, where most baseline methods experience significant performance degradation.

5.2 QUALITATIVE RESULTS

Robustness with challenging/fluctuating data. While the four datasets mentioned above are considered in the literature standard benchmarks for evaluating every spatio-temporal forecasting model, we want to assess the robustness of our framework by exploring a more challenging dataset with a different environmental setting. In Table 2, we compare our framework performance to the baselines on NAVER-Seoul dataset Lee et al. (2022) which covers the entire main road network in Seoul, South Korea, and features more abrupt fluctuations in traffic speed as well as a significantly larger number of sensors (more details on the datasets are provided in the supplementary material). This makes it particularly challenging and well-suited for testing the scalability and generalization ability of spatio-temporal models. The full results are also provided in the supplementary material, Table 5. These results demonstrate the superior performance of our SSF framework compared to existing state-of-the-art approaches, showing strong error stability across horizons. Notably, the dramatic reduction in MAPE indicates that SSF captures both absolute and relative variations in the data more effectively than prior graph-based or transformer-based architectures.

Robustness in long-term forecasting. In figure 3 we illustrate the multi-horizon forecasting performance of SSF compared with STD-MAE and ModWaveMLP. While the competing baselines show a sharp increase in error as the horizon extends from 15 to 60 minutes, SSF demonstrates remarkable robustness, with only a modest growth in error values. This temporal robustness highlights the strength of our architecture in capturing long-range dependencies, a key challenge in traffic forecasting,

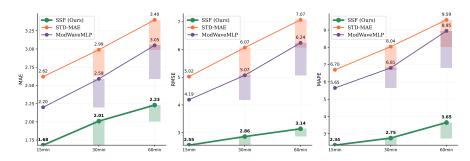


Figure 3: Comparison of forecasting performance across horizons (15, 30, 60 minutes) on METR-LA dataset. Our method achieves better incremental error compared to the baselines.

without suffering from the vanishing influence of earlier time steps. The stability across both shortand long-term predictions illustrates that our sheaf-inspired framework offers a fundamentally more expressive and resilient approach to modeling long-term dependencies in complex spatio-temporal systems.

Efficiency and scalability. The results in Table 6 demonstrate the efficiency and scalability of our proposed SSF model, which achieves competitive training speed with only 52.13 seconds per epoch. Compared to widely used baselines, our method substantially reduces training time while maintaining strong performance, highlighting its suitability for large-scale spatio-temporal applications.

Additionally, to assess the computational impact of the proposed spectral filter, we measure the average seconds per iteration across varying sheaf stalk dimensions on NAVER-Seoul dataset.

Figure 4 demonstrates that incorporating the spectral filter consistently reduces iteration time compared to the sheaf model without the filter. While the computation of the eigendecomposition of the sheaf Laplacian introduces additional complexity, particularly in datasets with a large number of nodes and higher complexity (NAVER-Seoul), this overhead is effectively offset by the benefits of spectral filtering, where selecting the top k eigenvectors yields a more

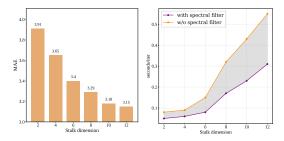


Figure 4: Impact of sheaf stalk dimension on prediction error (left), and on training time (right) with and without spectral filter.

compact and expressive representation. This effect becomes more pronounced as the stalk dimension increases, highlighting the filter's efficiency in managing the growing complexity of the model. The spectral filter not only improves smoothness and generalization (as shown in other ablations) but also optimizes computation by promoting more structured and efficient message propagation. These results demonstrate the practical scalability and efficiency gains achieved by integrating the spectral filter in high-dimensional sheaf settings.

5.3 ABLATION STUDIES

To understand the influence of the stalk dimensionality in our sheaf-based model, we conducted experiments on the NAVER-Seoul dataset, which is characterized by high sensor density and intricate traffic dynamics. As illustrated in Figure 4, prediction error decreases with increasing stalk dimension. This suggests that richer stalk representations enable the model to capture more complex local feature variations and dependencies. However, increasing the stalk dimension comes with some computational burden.

We also investigate the impact of varying the number of eigenvalues k retained in the spectral filter on forecasting accuracy. As illustrated in Figure 6, increasing k beyond a moderate threshold results in noticeable performance degradation across all forecasting horizons and evaluation metrics. This pattern suggests that including too many spectral components introduces

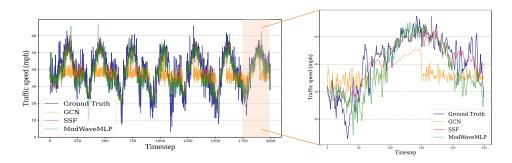


Figure 5: Comparison of traffic speed forecasting performance on NAVER-Seoul dataset.

noise or redundant information, thereby diminishing the discriminative power of the learned representations. In contrast, selecting a small set of dominant eigenvectors enables the model to focus on the most salient spectral features, resulting in improved accuracy and robustness.

Table 3: Ablation study on the effect of spectral filtering across horizons.

Dataset		SSF w/o spectral filter						
Duuset		15min	30min	60min	Avg			
	MAE	1.70	2.38	3.08	2.39			
METR-LA	RMSE	2.78	6.65	3.89	4.44			
	MAPE	1.94	2.27	3.17	2.46			
	MAE	1.58	2.02	1.83	1.81			
PEMS-BAY	RMSE	2.97	3.19	3.06	3.07			
	MAPE	1.27	1.38	3.01	1.89			
	MAE	4.55	5.21	11.6	7.12			
NAVER-Seoul	RMSE	8.64	9.16	20.72	12.84			
	MAPE	7.02	11.04	21.44	13.1			

Table 3 presents the results of an ablation study assessing the impact of removing the spectral filtering component from the proposed SSF model. Across benchmark datasets, METR-LA, PEMS-BAY, and NAVER-Seoul, performance degrades when spectral filtering is excluded. Notably, the NAVER-Seoul dataset exhibits the most pronounced drop in accuracy, particularly at longer forecasting horizons (60 minutes), where both RMSE and MAPE values significantly increase. This highlights the importance of spectral filtering in capturing essential graph frequency components that enhance spatiotemporal representation, especially in more complex or noisier traffic scenarios.

Finally, to demonstrate how our model captures the complex spatio-temporal dependencies, we visualize in Figure 5 the prediction output of SSF compared to traditional graph convolutional network (GCN) and the most competing model in the baselines (ModWaveMLP) on the challenging NAVER-Seoul dataset. SSF tends to capture the complex patterns and produce more reliable predictions.

6 Conclusion

In this work, we introduced Spectral Sheaf Filtering (SSF), a principled and expressive framework for spatio-temporal representation learning that bridges cellular sheaf theory with spectral graph filtering. By redefining information flow in graph neural networks, SSF moves beyond conventional message-passing schemes, leveraging sheaf-based structures to capture complex, asymmetric, and higher-order dependencies through localized restriction maps. Our spectral formulation over the sheaf Laplacian enables a selective handling of frequency components, which effectively mitigates oversmoothing while improving both expressivity and scalability.

Extensive experiments on large-scale spatio-temporal traffic forecasting benchmarks demonstrate the superior performance of SSF, especially in challenging long-range prediction settings. As a general and extensible framework, SSF opens promising avenues for adaptive sheaf learning, temporal cohomology, multimodal integration, and scalable graph-based modeling in future research.

Reproducibility Statement. We are committed to ensuring the reproducibility of our results. To this end, detailed experimental setup is provided in section 4. Details on the public benchmark datasets are explained in appendix A. The source code with appropriate documentation is available at: https://github.com/anonymous-submisssion/SSF.

REFERENCES

- Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent network for traffic forecasting. *Advances in neural information processing systems*, 33:17804–17815, 2020.
- Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, and Pietro Lio. Sheaf attention networks. In *NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations*, 2022.
- Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet transformers. In *The Eleventh International Conference on Learning Representations*, 2023a.
- Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral graph neural networks. *arXiv preprint arXiv:2302.05631*, 2023b.
- Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. *Advances in Neural Information Processing Systems*, 35:18527–18541, 2022.
- Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series forecasting. *Advances in neural information processing systems*, 33:17766–17778, 2020.
- Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. Graph neural controlled differential equations for traffic forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 6367–6374, 2022.
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. *Advances in neural information processing systems*, 29, 2016.
- Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Liò. Sheaf hypergraph networks. Advances in Neural Information Processing Systems, 36:12087–12099, 2023.
- Yang Feng, Ju-Song Kim, Jin-Won Yu, Kuk-Chol Ri, Song-Jun Yun, Il-Nam Han, Zhanfeng Qi, and Xiaoli Wang. Spatiotemporal informer: A new approach based on spatiotemporal embedding and attention for air quality forecasting. *Environmental Pollution*, 336:122402, 2023.
- Haotian Gao, Renhe Jiang, Zheng Dong, Jinliang Deng, Yuxin Ma, and Xuan Song. Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 3998–4006, 2024.
- Simon Markus Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral graph neural networks. *Advances in Neural Information Processing Systems*, 37:49022–49080, 2024.
- Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 922–929, 2019.
- Jakob Hansen and Thomas Gebhart. Sheaf neural networks. In *NeurIPS Workshop on Topological Data Analysis and Beyond*, 2020.
- Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delayaware dynamic long-range transformer for traffic flow prediction. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 4365–4373, 2023a.
- Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for traffic forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 8078–8086, 2023b.

- Debasish Jyotishi and Samarendra Dandapat. An attentive spatio-temporal learning-based network for cardiovascular disease diagnosis. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 53(8):4661–4671, 2023. doi: 10.1109/TSMC.2023.3257022.
 - Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and Pyang Li. Dstagnn: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In *International conference on machine learning*, pp. 11906–11917. PMLR, 2022.
 - Hyunwook Lee, Seungmin Jin, Hyeshin Chu, Hongkyu Lim, and Sungahn Ko. Learning to remember patterns: Pattern matching memory networks for traffic forecasting. In *International Conference on Learning Representations*, 2022.
 - Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In *International Conference on Learning Representations*, 2018.
 - Zahraa Al Sahili and Mariette Awad. Spatio-temporal graph neural networks: A survey. *arXiv* preprint arXiv:2301.10569, 2023.
 - Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 914–921, 2020.
 - Ke Sun, Pei Liu, Pengfei Li, and Zhifang Liao. Modwavemlp: Mlp-based mode decomposition and wavelet denoising model to defeat complex structures in traffic forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 9035–9043, 2024.
 - Yuxuan Wang, Zhouyuan Zhang, Shu Pi, Haishan Zhang, and Jiatian Pi. Dual-gated graph convolutional recurrent unit with integrated graph learning (dg3l): A novel recurrent network architecture with dynamic graph learning for spatio-temporal predictions. *Entropy*, 27:99, 2025.
 - Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-temporal graph modeling. In 28th International Joint Conference on Artificial Intelligence (IJCAI-19). International Joint Conference on Artificial Intelligence (IJCAI), 2019.
 - Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 753–763, 2020.
 - Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal data. *CoRR*, 2024.
 - Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, and Hui Xiong. Coupled layer-wise graph convolution for transportation demand prediction. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 4617–4625, 2021.
 - Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence*, pp. 3634–3640. International Joint Conferences on Artificial Intelligence Organization, 2018.
 - Qi Yu, Weilong Ding, Hao Zhang, Yang Yang, and Tianpu Zhang. Rethinking attention mechanism for spatio-temporal modeling: A decoupling perspective in traffic flow prediction. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management*, pp. 3032–3041, 2024.
 - Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multi-attention network for traffic prediction. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 1234–1241, 2020.

SUPPLEMENTARY MATERIAL

A DATASETS DETAILS

We conduct our experiments on a diverse set of widely recognized real-world benchmark datasets commonly used for spatio-temporal traffic forecasting. Each dataset comprises traffic speed readings sampled at 5-minute intervals, but they differ in both spatial resolution, defined by the number of traffic sensors, and temporal duration, measured by the number of timesteps.

Firstly, we utilize the METR-LA and PEMS-BAY datasets Li et al. (2018), which were collected

Firstly, we utilize the METR-LA and PEMS-BAY datasets Li et al. (2018), which were collected from freeway networks in the Los Angeles and Bay Area regions of California, respectively. These datasets have become standard benchmarks in the literature due to their rich temporal patterns and moderate spatial coverage. In addition, we include the PEMS04 and PEMS08 datasets Song et al. (2020), which originate from different regions within the Caltrans Performance Measurement System (PeMS) and provide further variability in spatial topology and traffic flow dynamics.

To further evaluate the robustness of our framework under complex urban traffic conditions, we also conduct experiments on the NAVER-Seoul dataset Lee et al. (2022). NAVER-Seoul covers the entire main road network in Seoul, South Korea, and features more abrupt fluctuations in traffic speed as well as a significantly larger number of sensors. This makes it a particularly demanding benchmark, well-suited for testing the scalability and generalization ability of spatio-temporal models. A summary of the key characteristics of all datasets used in our experiments is provided in Table 4.

	METR-LA	PEMS-BAY	NAVER-Seoul	PEMS04	PEMS08
Start Time	03.2012	01.2017	09.2020	01.2018	07.2016
End Time	06.2012	05.2017	12.2020	02.2018	08.2016
Sampling Time	5 minutes	5 minutes	5 minutes	5 minutes	5 minutes
Region	Los Angeles	Bay Area	Seoul	Bay Area	San Bernardino
Timesteps	34,272	52,116	26,208	16992	17856
Spatial Units	207	325	774	307	170

Table 4: Summary of datasets' characteristics.

B BASELINES

We compare our proposed model with the state-of-the-art models in spatio-temporal traffic prediction:

- Graph Convolutional Networks (GCNs): These methods use spatial graph structures to model the topology of traffic networks. We include STGCN Yu et al. (2018), a pioneering model that combines spatial graph convolutions with temporal 1D convolutions to jointly capture spatial-temporal dependencies. In addition, GW-Net Wu et al. (2019) introduces adaptive graph learning, enabling dynamic construction of the adjacency matrix to better capture latent spatial relationships.
- Recurrent Neural Networks (RNNs): These models are designed to capture temporal dependencies through sequential modeling. DCRNN Li et al. (2018) employs diffusion convolution integrated with gated recurrent units (GRUs) to model spatial-temporal dynamics on directed graphs. MegaCRN Jiang et al. (2023b) incorporates meta-graph construction and cross-node recurrent processing, improving generalization across different traffic nodes.
- Attention-based Architectures: These models utilize various attention mechanisms to selectively
 focus on relevant spatial and temporal features. GMAN Zheng et al. (2020) introduces a multilevel attention mechanism across both space and time, enabling flexible modeling of dynamic
 dependencies. ASTGCN Guo et al. (2019) employs both spatial and temporal attention modules
 alongside graph convolutions for fine-grained context modeling. PDFormer Jiang et al. (2023a)
 integrates the design of a spatial self-attention module along with graph masking matrices to capture
 the dynamic spatial dependencies.
- Spectral and Representation Learning Models: These models focus on frequency-domain or latent representation learning to model complex patterns. PM-MemNet Lee et al. (2022) designs a pattern

Table 5: Performance comparison on METR-LA, PEMS-BAY, and NAVER-Seoul datasets on different prediction horizons.

——————————————————————————————————————	Model	15	min / hor	izon 3	30n	nin / hori	zon 6	60min / horizon 12		
Dutu		MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
	STGCN	2.88	5.74	7.62	3.47	7.24	9.57	4.59	9.40	12.70
	DCRNN	2.77	5.38	7.30	3.15	6.45	8.80	3.60	7.59	10.50
	GW-Net	2.69	5.15	6.90	3.07	6.22	8.37	3.53	7.37	10.01
_	GMAN	2.80	5.55	7.41	3.12	6.49	8.73	3.44	7.35	10.07
METR-LA	ASTGCN	3.07	8.23	5.90	3.61	7.16	10.34	4.42	8.73	13.35
~	PM-MemNet	2.65	5.29	7.01	3.03	6.29	8.42	3.46	7.29	9.97
ET	MegaCRN	2.52	4.94	6.44	2.93	6.06	7.96	3.38	7.23	9.72
Ξ	PDFormer	2.83	<u>2.83</u>	7.77	3.20	6.46	9.19	3.62	7.47	10.91
	STD-MAE	2.62	5.02	6.70	2.99	6.07	8.04	3.40	7.07	9.59
	ModWaveMLP	2.20	4.19	<u>5.65</u>	2.59	<u>5.07</u>	<u>6.81</u>	<u>3.05</u>	<u>6.24</u>	<u>8.95</u>
	SSF (Ours)	1.68	2.55	2.34	2.01	2.86	2.75	2.23	3.14	3.65
	STGCN	1.36	2.96	2.90	1.81	4.27	4.17	2.49	5.69	5.79
	DCRNN	1.38	2.95	2.90	1.74	3.97	3.90	2.07	4.74	4.90
	GW-Net	1.30	2.74	2.73	1.63	3.70	3.67	1.95	4.52	4.63
>_	GMAN	1.35	2.90	2.87	1.65	3.82	3.74	1.92	4.49	4.52
Ą	ASTGCN	1.55	3.17	3.44	2.01	4.19	4.66	2.57	5.27	6.01
PEMS-BAY	PM-MemNet	1.34	2.82	2.81	1.65	3.76	3.71	1.95	4.49	4.54
Ĭ	MegaCRN	1.28	2.72	2.67	1.60	3.68	3.57	1.88	4.42	4.41
PE	PDFormer	1.32	1.32	2.78	1.64	3.79	3.71	1.91	4.43	4.51
_	STD-MAE	1.23	2.62	2.56	1.53	3.53	3.42	<u>1.77</u>	4.20	4.17
	ModWaveMLP	0.86	1.80	<u>1.76</u>	1.22	<u>2.87</u>	<u>2.72</u>	1.63	<u>3.95</u>	3.88
	SSF (Ours)	0.85	<u>1.39</u>	1.41	<u>1.29</u>	2.10	1.32	<u>1.77</u>	2.74	2.65
	STGCN	4.63	6.92	14.49	5.50	8.83	17.37	6.77	10.89	20.42
	DCRNN	4.86	7.12	15.35	5.67	8.80	18.38	6.40	10.06	21.09
	GW-Net	4.91	7.24	14.86	5.26	8.13	16.16	5.55	8.77	16.97
Ē	GMAN	5.20	8.32	16.98	5.35	8.67	17.47	5.48	8.94	17.89
9	ASTGCN	5.09	7.44	16.14	5.71	8.73	18.78	6.22	9.58	20.37
NAVER-Seoul	PM-MemNet	4.57	6.72	14.43	5.04	7.86	16.34	5.24	8.39	16.94
Ξ	MegaCRN	4.46	6.63	11.26	4.91	6.66	12.02	<u>5.12</u>	8.11	12.33
A	PDFormer	4.56	6.74	14.49	5.01	7.33	15.69	5.76	8.91	17.98
Z	STD-MAE	4.20	<u>5.08</u>	<u>8.32</u>	4.68	<u>6.13</u>	<u>11.90</u>	5.20	<u>7.56</u>	<u>12.10</u>
	ModWaveMLP	<u>4.01</u>	5.23	9.11	<u>4.22</u>	7.61	13.08	5.32	8.44	14.10
	SSF (Ours)	3.41	5.01	1.03	3.58	5.84	1.35	3.84	7.19	1.63

memory mechanism to enhance long-term temporal pattern retention. STD-MAE Gao et al. (2024) applies two decoupled masked autoencoders to reconstruct spatio-temporal series along the spatial and temporal dimensions. ModWaveMLP Sun et al. (2024) utilizes mode decomposition and wavelet-based denoising techniques to capture multi-scale temporal features effectively.

C EXTENDED RESULTS

Table 5 presents the comprehensive performance comparison of various spatio-temporal forecasting models across three traffic datasets (METR-LA, PEMS-BAY, and NAVER-Seoul) and three prediction horizons (15, 30, and 60 minutes). We report the three standard metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The proposed SSF model demonstrates superior performance, achieving the best results for most metrics across all three datasets and prediction horizons. The results suggest that SSF consistently outperforms existing state-of-the-art methods, with particularly notable improvements in MAPE scores on the NAVER-Seoul dataset, where it achieves dramatically lower error rates compared to competing methods.

D EFFECT OF THE NUMBER OF EIGENVALUES (K)

Figure 6 illustrates the impact of varying the number of eigenvalues (k) used in the spectral filter on model performance across different prediction horizons. The analysis is conducted on the NAVER-Seoul dataset with five different k values: 3, 5, 10, 50, and 100. We report three evaluation metrics (MAE, RMSE, and MAPE) across three forecasting horizons (3, 6, and 12 time steps). The results reveal that using fewer eigenvalues (k=3) consistently produces the best performance across all metrics and horizons, with performance generally degrading as k increases. This trend is particularly pronounced for k=100, which shows notably worse performance. The results suggest that a lower-dimensional spectral representation (k=3) is optimal for this traffic forecasting task, indicating that the most important spectral components capture the essential spatial relationships in the traffic network, while higher-order components may introduce noise or overfitting. This finding provides valuable insights for tuning the spectral filter component of the proposed model.

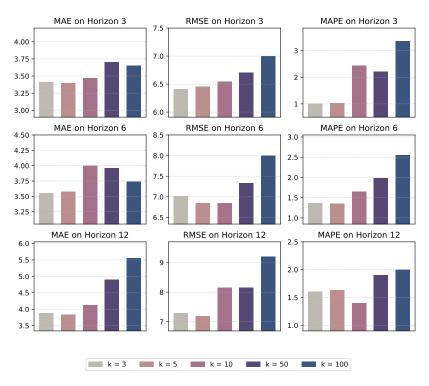


Figure 6: Effect of the number of eigenvalues k used in the spectral filter on model performance, evaluated on the NAVER-Seoul dataset across forecasting horizons 3, 6, and 12.

E SSF ALGORITHM

756

785

786 787 788

789 790

807

809

```
758
            Algorithm 1 Spectral Sheaf Filtering (SSF)
759
              1: Input: Graph G = (V, E) with N = |V| nodes, input data \mathbf{X} \in \mathbb{R}^{N \times T \times F}, hyperedge index \mathcal{E}, filter
760
                  parameter \Theta, prediction horizon H, number of GCN layers L, stalk dimension d
761
              2: Output: Predicted signal \hat{X}_{t+1:t+T'}
762
              3: Step 1: Sheaf Construction
763
              4: \mathcal{F} \leftarrow \text{SheafBuilder}(\mathbf{X}, \mathcal{E})
764
              5: L_{\mathcal{F}} \leftarrow \text{LaplacianConstruct}(\mathcal{F}, \mathcal{E})
765
              6: Step 2: Spectral Decomposition
766
              7: \tilde{L}_{\mathcal{F}} = U\Lambda U^T
                                                                                                                      8: \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{Nd}
                                                                                                                                        767
              9: k \leftarrow \min(\text{spectral\_k}, Nd)

⊳ Number of eigenmodes to keep

768
             10: Step 3: Heat Kernel Filter Design
769
             11: for i = 1 to Nd do
770
                       g_{heat}(\lambda_i) = e^{-\alpha \lambda_i}
            12:
771
            13: end for
            14: \hat{g}_{heat} = \text{diag}(e^{-\alpha\lambda_1}, \dots, e^{-\alpha\lambda_{Nd}})
772
             15: \tilde{\mathbf{L}}_{\text{filt}} \leftarrow \mathbf{U}_{:k} \text{diag}(\tilde{\boldsymbol{\lambda}}_{1:k}) \mathbf{U}_{:k}^T
773
             16: \mathbf{A}_{\text{filt}} \leftarrow \mathbf{I} - \mathbf{L}_{\text{filt}}
                                                                                                                                     ⊳ Filtered adjacency
774
             17: Step 4: Spectral Message Passing
775
             18: Initialize: X^{(0)} \leftarrow X_t
776
             19: for layer \ell = 0 to L - 1 do
777
                       \hat{X}^{(\ell)} = U^T X^{(\ell)}
                                                                                                                      ▶ Transform to spectral domain
778
                       \hat{X}_{filtered}^{(\ell)} = \hat{g}_{heat} \hat{X}^{(\ell)} W^{(\ell)}
            21:

    ▶ Apply spectral filter

779
                       \tilde{X}^{(\ell+1)} = U\hat{X}^{(\ell)}_{filtered}
            22:

    ► Transform back to spatial domain

780
                       X^{(\ell+1)} = \sigma(\tilde{X}^{(\ell+1)})
            23:
                                                                                                                                        ▶ Apply activation
781
            24: end for
782
            25: Step 5: Forecasting
783
            26: Z = X^{(L)}
784
            27: \hat{X}_{t+\tau} = \text{MLP}_{forecast}(Z)
```

F TRAINING TIME ANALYSIS

28: **Return:** $\hat{X}_{t+1:t+T'} = \{\hat{X}_{t+1}, \hat{X}_{t+2}, \dots, \hat{X}_{t+T'}\}$

Table 6: Training time per epoch for different models on METR-LA dataset.

Model	Training Time/Epoch (s)
STGCN	15.84
DCRNN	122.5
GW-Net	48.07
GMAN	312.23
ASTGCN	93.21
PM-MemNet	81.82
STD-MAE	201.46
ModWaveMLP	88.13
SSF (ours)	52.13