
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

BEYOND DIRECTED ACYCLIC COMPUTATION GRAPH WITH
CYCLIC NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates a fundamental yet overlooked design principle of artificial neural
networks (ANN): We do not need to build ANNs layer-by-layer sequentially to guarantee
the Directed Acyclic Graph (DAG) property. Inspired by biological intelligence, where
neurons form a complex, graph-structured network, we introduce the transformative Cyclic
Neural Networks (Cyclic NN). It emulates biological neural systems’ flexible and dynamic
graph nature, allowing neuron connections in any graph-like structure, including cycles.
This offers greater flexibility compared to the DAG structure of current ANNs. We further
develop the Graph Over Multi-layer Perceptron, the first detailed model based on this new
design paradigm. We experimentally validate the advantages of Cyclic NN on widely tested
datasets in most generalized cases, demonstrating its superiority over current layer-by-layer
DAG neural networks. With the support of Cyclic NN, the Forward-Forward training
algorithm also firstly outperforms the current Back-Propagation algorithm. This research
illustrates a transformative ANN design paradigm, a significant departure from current
ANN designs, potentially leading to more biologically similar ANNs.

1 INTRODUCTION

Artificial intelligence (AI) has reshaped our daily lives and is expected to have a much greater impact
in the foreseeable future. Lying behind the most profound AI applications (Silver et al., 2017; OpenAI,
2023; Ramesh et al., 2021; Jumper et al., 2021), artificial neural networks (ANN) such as multi-layer
perception (MLP) (Rumelhart et al., 1986), convolution neural network (CNN) (LeCun et al., 1995) and
Transformer (Vaswani et al., 2017) are designed specifically for different domains to fit the training data.
Regardless of the structure, they are stacked layer-by-layer to form deep ANNs for greater learning capacity.
It has been a de facto practice until now that data is first fed into the input layer and then propagated through
all the stacked layers to obtain the final representations at the output layer. This paper seeks to answer a
fundamental question in ANNs: “Do we really need to stack neural networks layer-by-layer sequentially?"

To answer this question, let’s first examine the evidence from biological intelligence (BI). Neuroscientists
have studied the biological neurons for decades. The connectome of C. elegans is the most thoroughly
studied biological neural system, and biologists depicted the most detailed connection between 302 biological
neurons (White et al., 1986; Cook et al., 2019) as shown in Figure 1(a). Rather than being stacked layer-
by-layer, all the neurons form a complicated connection graph, where each can connect to several other
neurons within the system. We cannot even determine which neuron serves as the input/output within
the neural system to process information. The same findings have also been observed in the latter more
complicated neural systems, such as the biology neural connectome of drosophila larva (Winding et al., 2023),
zebrafish (Brooks et al., 2022), mouse (Sporns & Bullmore, 2014) and the human brain (Shapson-Coe et al.,
2024). Observed biological intelligence exhibits graph-structured, flexible, and dynamic neural systems, which
are apparently different from the current layer-by-layer ANNs we build nowadays, as depicted in Figure 1(b).

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

(a) Connectome of BI (C. elegans)

Computation Block

Input

Computation Block

Output

Computation Block

(b) Computation structure of AI

Figure 1: Neuron connection between Biology Neural
Network and Artificial Neural Network

The learning rules actually cause the difference
in the neural system structure between BI and AI.
The Hebb’s Rule (Hebb, 2005), depicted as “Neu-
rons that fire together wire together”, is recog-
nized as the fundamental learning way of biological
neurons. The Spike-Timing-Dependent Plasticity
(STDP) learning is then proposed to further con-
sider the relative spiking time of pre-synapse and
post-synapse neurons. Both learning rules of BI
are localized, i.e., the learning occurs on each neu-
ron within its local influence scope. The localized
learning rules grant the flexibility of each neuron
on its connections to other neurons, which leads to
the complicated graph-structured BI system. Conversely, for AI systems, the backward propagation (BP)
algorithm (Rumelhart et al., 1986) has dominated the training of ANNs. Data is fed into the ANNs from the
input layer, forward propagates layer by layer to the last layer, calculates a global loss for the whole ANN
based on the ground-truth labels, and then reversely backward propagates the error signals layer by layer to
the input layer. In this procedure, ANNs are trained by a global loss function, and the ANNs must guarantee
the error from global loss can be back-propagated layer by layer. This requirement prevents current ANNs
from forming cycles to ease gradient back-propagation. Current ANNs are nearly all DAG structured. To
mitigate the biological implausible nature of the BP algorithm, the forward-forward (FF) algorithm (Hinton,
2022) is recently proposed to train ANNs. FF algorithm constructs good/bad samples and computes a loss
function on each layer to differentiate between these samples. Similar to Hebb’s Rule and STDP learning, the
FF algorithm is a localized learning method. These advancements have allowed the training of ANNs to no
longer rely solely on layer-by-layer back-propagation to design non-DAG-structured Cyclic Neural Networks.

Cyclic NN distinguishes itself from the current layer-by-layer ANNs in several aspects. 1) More flexible
neuron connections. Cyclic NN greatly increases the design space of ANNs beyond the DAG structure. In
Cyclic NN, the information flow is not as unidirectional as in DAG. Former neurons can also adjust based on
the information encoded by the latter neurons, which largely enhances information communication within the
network. The flexible connection design also makes Cyclic NN more like the biological neural system. 2)
Localized training. Instead of current dominating global loss-guided BP-based training, Cyclic NN is based
on localized training, i.e., each neuron is optimized with its own local loss function. There is no gradient
propagating between neurons. Localized training has its unique advantages. It frees the need to build DAG
dependency between neurons, which is the bedrock of supporting cycles within the network. Also, each
neuron is optimized independently without waiting for gradients from the latter layers. 3) Computational
neuron. Different from current ANNs that a neuron is considered as a d dimension to 1 dimension vector
mapping; the neuron within Cyclic NN is considered the computational neuron with greater computation
capacity because it is the optimization unit to fit the local task, which requires more parameters. This paper
uses a linear layer to parameterize each computational neuron to fit the local classification task. It is also
evident by the study of biological neuron (Beniaguev et al., 2021), which empirically proves the learning
capacity of a biological neuron is much larger than a d dimension to 1 dimension vector mapping function as
the neuron defined within current ANNs. We take this observation and propose the computational neuron in
Cyclic NN with more capable computation to fit the local optimization task. In summary, our contributions
can be summarized as follows:

• Conceptually, we compare BI and AI to investigate a fundamental yet overlooked design principle: We do
not need to satisfy the DAG constraint when designing ANNs.

• Methodologically, we propose the transformative Cyclic NN, a novel ANN design paradigm that supports
a much more flexible connection between neurons, which discards current directed acyclic computation
graph constraints.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

• We test the novel design paradigm on the most generalized case and propose Graph Over Multi-layer
Perceptron, the first detailed model based on Cyclic NN.

• Experimentally, we demonstrate the advantage of the proposed Cyclic NN on widely tested datasets. At the
same time, we are the first to beat the current dominating BP training using the FF training algorithm by the
supported flexible network design proposed in this paper.

2 CYCLIC NEURAL NETWORK

One Cyclic NN model is one graph G = (V, E), where V = (N1, N2, ..., N|V|) is the computational
neuron set and E = (S1, S2, ..., S|E|) is the synapse set denoting the connections among neurons. Similar
to the BI system, Ni (∀i ∈ {1, 2, · · · , |V|}) is the neuron that tackles the detailed computation, and Sj

(∀j ∈ {1, 2, · · · , |E|}) is the synapse that propagates information between computational neurons. In the
Cyclic NN, computational neurons can be connected flexibly in any way, like the BI system.

2.1 COMPUTATIONAL NEURON

Computational neuron N acts as the computation/optimization unit in Cyclic NN. Different from the neuron
in current ANNs, which indicates a dinput to 1 mapping, we grant N with stronger computation power as it is
the optimization unit to fit the local task. It is motivated by the research that proves the computation power of a
single biological neuron is similar to an MLP (Beniaguev et al., 2021). In Cyclic NN, N is parameterized by a

function fRdNin →RdNout
N (hN

in) = hN
out that maps from a dNin -dimensional representation hN

in to a dout-dimensional
representation hN

out. d
N
in is the input dimension that is decided by the output of its pre-synapse neurons, and

dNout is the output dimension of N . Similar to the biological neurons, each computational neuron functions as
a computation/optimization unit. The computational neuron is also more independent during optimization.

2.2 SYNAPSE

In neuroscience, synapses stand as pivotal junctions, orchestrating the complex symphony of neural commu-
nication. They serve as the critical interface between neurons, facilitating the transmission of information
through chemical and electrical signals. In a Cyclic NN, we model the synapse S as the edge between neurons
defined in Section 2.1. Each synapse S1,2 = (N1 → N2) is a directional edge from computational neuron N1

to N2. It indicates the output of N1, hN1
out , will be propagated to N2 as part of its input hN2

in . Different from
the current ANNs with DAG structure, the synapses between neurons can be organized as any connected
graph structure, including the cyclic graph.

2.3 LOCAL OPTIMIZATION

Local optimization is the bedrock to support Cyclic NN, which is also a distinguishing point compared
with current ANNs. For current ANNs, inputs are propagated through computational neurons to obtain the
final representation. Designing a global loss function Lglobal based on the final representation and ground-
truth labels is the de facto practice to train ANNs. Lglobal is optimized with BP algorithm to propagate the
error signal layer-by-layer, which also prohibits the formation of computation cycle. Conversely, Cyclic
NN depends on local optimization, i.e., each computational neuron is optimized locally without gradients
propagated from other computational neurons. For the computational neuron N , Cyclic NN has a local loss
function LLocal to optimize its parameters. The local optimization principle is similar to the BI system, where
each neuron can learn from its local context.

2.4 INFERENCE

During the inference phase, we design a readout layer to gather the output of all the neurons within the model
as hreadout = freadout([h

N1
out ,h

N2
out , ...,h

NV
out]). hreadout collects all the encoded information and acts as the final

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

Input

C
lassifier

(a) Layer-by-layer MLP (BP: global loss)

Input

C
lassifier

(b) Layer-by-layer MLP(FF: local loss)

O
utput

O
utput

O
utput

O
utput

Readout

Input

C
lassifier

(c) Graph Over MLP (Cycle Graph)

O
utput

Readout

O
utput

O
utput

O
utput

Input

C
lassifier

(d) Graph Over MLP (Complete Graph)

O
utput

Readout

O
utput

O
utput

O
utput

Cyclic Neural NetworksDirected Acyclic Neural Networks

Forward Propagation Backward Propagation Loss Function

Figure 2: Comparison between different types of MLP structure.

representation for the inference task. For example, hreadout can be fed into a classifier for the classification
task, where the classifier is trained together with computational neurons.

3 GRAPH OVER MULTI-LAYER PERCEPTRON

We propose the first Cyclic NN under the most generalized case, Graph Over Multi-Layer Perceptron
(GOMLP), to show the design principle of Cyclic NN. As shown in Figure 2(c) and (d), GOMLP is designed
by building a graph structure over the multi-layer perception to solve the classification task 1.

3.1 INPUT CONSTRUCTION

For the classification task, each sample is symbolized as the feature-label pair (hi, yi), where hi is the
representation of sample i and yi is the corresponding label. To enable the local optimization illustrated in
Section 3.4, a fusion function is used to construct the input as:

hpos = ffusion(h,ytrue) = h||ytrue,

hneg = ffusion(h,yfalse) = h||yfalse, (1)
hneu = ffusion(h,yneutral) = h||yneu,

hpos, hneg, and hneu are the constructed input for local optimization of different parts. ffusion is a function to
fuse information between feature and label, which is defined as a concat function (||). ytrue is the one-hot
vector of ground-true label, yfalse is the one-hot vector of a randomly sampled false label. For yneu, we place
an 1

Class Number on all the dimensions of one-hot vector to indicate hneutral is neutral to all classes. ffusion can be
designed as any proper function to fuse information of the input feature and the label. In our study, we design
it as a simple concat function same as (Hinton, 2022).

3.2 COMPUTATION GRAPH

The computation graph G contains the computational neurons V and the synapses E . Each computational
neuron N ∈ V is a local module for calculation and optimization, while synapse S defines how the information

1Code is released at https://anonymous.4open.science/r/Cyclic-Neural-Network-025F/README.md

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

propagates between computational neurons. G can be defined as a graph generator:

G = Generator(|V|, |E|). (2)

The above-generated graph G denotes a general graph structure. Meanwhile, to justify the effectiveness of the
proposed Cyclic NN, we test multiple graph generators in this paper.

• Chain graph. Neurons are organized layer-by-layer as shown in Figure 2(b). In this case, GOMLP degrades
to Hinton’s method (Hinton, 2022).

• Cycle graph. Neurons form a cycle by connecting the neurons head-to-tail as shown in Figure 2(c).

• Complete graph. Each neuron connects to all the other neurons, as shown in Figure 2(d).

• Watts-Strogatz (WS) graph (Watts & Strogatz, 1998). It produces graphs with small-world properties,
including short average path lengths and high clustering.

• Barabási–Albert (BA) graph (Albert & Barabási, 2002). It generates random scale-free networks using a
preferential attachment mechanism.

3.2.1 NEURON UPDATE

In GOMLP, each neuron is parameterized by a linear layer. At each propagation, neuron N is updated by (we
omit the notation of N in equation for simplicity):

hout = σ(Wh̃in), (3)

where σ is the Relu activation function (Nair & Hinton, 2010), W ∈ RdN
out×dN

in
is N ’s parameter. dNout is N ’s

output dimension, and dNin is N ’s input dimension, which is defined by the output of N ’s pre-synapse neurons.
h̃in is the normalized input as h̃in = hin

∥hin∥2
, where hin is computational neuron N ’s input.

3.2.2 SYNAPSE PROPAGATION

Each synapse S = (Ni → Nj) is a directional edge from computational neuron Ni to Nj , which indicates
Ni is the pre-synapse neuron of Nj and hNi

out (the output of Ni) will be propagated to Nj . Assume for neuron
N , we obtain a set of pre-synapse neurons (N1, N2, ..., Nn) based on the topology of G. Then, in each
propagation, N receives the output of all its pre-synapse neurons along the synapses and fuse the information
to form its input by a concatenation function:

hin = h||hN1
out ||hN2

out ||, ..., ||hNn
out , (4)

where || is the concat function, h is the input representation constructed in Section 3.1. Then we can obtain
hin,pos, hin,neg, hin,neu by providing hpos, hneg, hneu separately. As we relax the layer-by-layer restriction,
the differentiation between the input/hidden/output layers is also relaxed. We directly put the input h to all
computational neurons. Thus, the input dimension size of N , dNin = dh + dN1

out + dN2
out + ...+ dNn

out .

3.3 READOUT LAYER

The readout layer collects information from all computational neurons. The input of the readout layer is the
concat function of all computational neurons as hreadout

in = freadout(h
N∗
out) = ||

|V|
i=1(h

Ni
out), where || is the concat

function. Then, the readout layer casts the representation to output dimension:

ŷ = Softmax(Wreadouth
readout
in), (5)

where Wreadout ∈ RClass Number×d(hreadout
in) is the parameter of the readout layer and ŷ is the prediction vector.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

3.4 LOCAL OPTIMIZATION

GOMLP comprises two parts that hold parameters: the computational neurons, and the readout layer. All
parameters are optimized locally without gradient propagates between each parts. The computational neuron
and readout layer are optimized differently with different inputs, which is shown in Algorithm 1, which
contains the optimization of each computational neuron and the readout layer. The hyper-parameter T
indicates the number of synapse propagation over G.

3.4.1 COMPUTATIONAL NEURON OPTIMIZATION

Computational neurons are optimized to differentiate the positive examples from negative ones. For com-
putational neuron N , its optimization involves hin,pos and hin,neg. After the computational neuron update
(Equation 3), we can get hout,pos and hout,neg, respectively. Then, following (Hinton, 2022), a goodness func-
tion is used to calculate the goodness score as p(h) = σ(

∑
i h

2
i − θ ∗d(h)), where p(h) is the goodness score

of h, d(h) is the dimension size of h, σ is the Relu activation function and θ is the threshold hyper-parameter.
The binary cross-entropy loss is used to optimize each computational neuron:

LN = − 1

|D|
∑
D

(log(p(hout,pos))− log(p(hout,neg))),WN ←WN − lr∇WN
LN , (6)

where D is the dataset, WN is the parameter of computation neuron N and lr is the learning rate. The
optimization of computational neurons aims to increase the neuron’s output for positive samples while
decreasing the neurons’ output for negative samples. It enables each computational neuron its own ability to
differentiate positive examples from negative ones.

3.4.2 READOUT LAYER OPTIMIZATION Algorithm 1 Cyclic NN Framework Optimization
Input: dataset D
Parameter: G = (V, E), Wreadout
Output: G, Wreadout

1: while Not Converged do
2: Obtain inputs by Eq. 1 from D
3: Let t = 0
4: while t < T do
5: for N ∈ V do
6: Synapse Propagate by Eq. 4
7: Computational neuron Update by Eq. 3
8: Optimize N by Eq. 6
9: end for

10: t = t+ 1
11: end while
12: Calculate the output of Readout layer by Eq. 5
13: Optimize Wreadout by Eq. 7
14: end while
15: return G = (V, E), Wreadout

The readout layer is designed to accomplish the clas-
sification task for GOMLP. It reads the information
from all computational neurons, and makes the deci-
sion over classes. To relieve the label leakage issue,
the readout layer is only optimized with hneutral. It
is optimized by a multi-class cross-entropy loss:

LReadout(y, ŷ) = −
1

|D|
∑
|D|

C∑
c=1

yc log(ŷc), (7)

where C is the number of classes, y is the one-hot
vector of ground-truth label and ŷ is the prediction
from Equation 5. Then the parameter within read-
out layer is optimized by Wreadout ← Wreadout −
lr∇WreadoutLReadout. Though the optimization of com-
putational neuron and readout layer are localized and
different, these two parts complement each other.
Computational neurons aim to extract the hidden
representations, and the readout layer aims to make the final decision.

During the inference time, we pair each test sample with the neutral label to construct hneu. It then propagates
through the GOMLP to obtain its representation on each computational neuron. Finally, we predict its class
with the largest logit from the output of the readout layer.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Max
Depth

1

Max
Depth

1

Input

Cyclic Structure

Max
Depth

2

Max
Depth

2

Input

Cyclic Structure

T=1 T=2

Propagation Step

Depth 1 Depth 2

Input

(a) w/o Cyclic Structure (b) w Cyclic Structure

Figure 3: Cycic Structure increases model depth with T with no extra parameter cost.

3.5 COMPLEXITY ANALYSIS

Assume we have a Cyclic NN represented as G = (V, E), where each v ∈ V is a linear layer and each
e ∈ E represents an edge between two linear layers. To make the analysis easier, let’s firstly assume the
time complexity for each computation neuron is O(1). Then given timestep T , the input goes within the
graph structure and cycles along all edges within E for T times, which takes O(T ∗ |E|). Within each cycle,
a O(|V|) is needed to calculate both the forward/backward pass within each computation block. The total
time complexity during each step training is O(T ∗ |E| ∗ |V|). Inference time complexity is the same as we
only omit the backward pass. By comparison, current layer-by-layer structure is a special case for Cyclic
NN when the graph is organized as chain graph and enabling back-propagation between layers to remove T .
Under this case, the time complexity of current layer-by-layer form would be O(|V|).
To be noted that, experiment in Section 4.3 finds the timestep T is usually very small (≤ 5 in all tested
datasets). So the complexity of proposed Cyclic NN can be O(|E| ∗ |V|) in practice. Besides, Cyclic NN is
also optimized with local losses on each computation block, which frees the backward lock problem Dean
et al. (2012); Löwe et al. (2019) inherited within the Backward-Propagation algorithm. Cyclic NN enables
asynchronous parallel update of all computation neurons V at the same time. So the time complexity of
Cyclic NN can be further reduced to O(|E|) in practice.

Let’s take the example of GOMLP and further consider the time complexity of each computation neuron.
The maximum complexity for each computation neuron is O(|V − 1|d ∗ d) = O(|V|d2) when it receives
information from all the other computation neurons. So the total time complexity of GOMLP is O(|E||V|d2).

3.6 ANALYSIS ON ADVANTAGE OF CYCLIC STRUCTURE

With piecewise linear function (such as ReLu Nair & Hinton (2010) used in this work) as the activation
function, the neural network splits the whole input space as different linear regions, and the network
expressiveness can be quantitatively measured by the maximal number of those regions Montufar et al. (2014);
Raghu et al. (2017). Previous research has proved a rectifier neural network with n0 input units and L hidden
layers of width n ≥ n0 can compute functions that have Ω((n

n0
)(L−1)n0nn0) linear regions Montufar et al.

(2014). It shows neural network depth has an exponential advantage impact on its expressive power.

To analyze the impact of the proposed cyclic structure on the network’s expressiveness, we compare two
scenarios: one without cyclic connections and another with cyclic connections, as illustrated in Figure 3(a)
and (b), respectively. In the absence of a cyclic structure, as shown in Figure 3(a), the network depth remains
fixed, determined solely by the number of layers. However, when a cyclic structure is introduced, as depicted
in Figure 3(b), the model depth effectively increases with the propagation steps T . Specifically, at T = 1,
the output of each layer corresponds to a depth of 1, as it directly incorporates information from the input.
At T = 2, each layer aggregates two types of information: depth-0 information directly from the input and
depth-1 information propagated from neighboring computational neurons, resulting in a maximum depth
of 2. As T increases, the depth of the information available to each layer grows proportionally, enhancing
the network’s expressiveness. The cyclic structure increases the model’s effective depth through iterative
propagation, allowing the network to achieve greater expressiveness without additional parameters.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Table 1: Error rate (%) ↓ on different datasets.
Train Graph MNIST NewsGroup IMDB

MLP-Ensemble - 1.91±0.21 45.35±0.84 17.36±0.23

BP Chain* 1.77±0.16 42.11±0.92 17.16±0.19

FF Chain 1.83±0.2 43.88±0.28 18.75±0.92

BP Chain 1.74±0.11 38.85±0.42 17.27±0.13

FF Cycle 1.80±0.14 43.54±0.41 18.97±0.49

FF WSGraph 1.70±0.17 38.28±0.13 17.93±0.28

FF BAGraph 1.64±0.08 38.41±0.14 18.20±0.67

FF Complete 1.54±0.05 38.266±0.06 17.58±0.20

4 EXPERIMENTS

4.1 BASELINES

We compared GOMLP with a variant of different methods to reveal the advantages of graph-structured MLP,
which can be differentiated by two attributes (Training and Graph). Training indicates the training method,
where BP indicates Backward Propagation (Rumelhart et al., 1986) and FF indicates the Forward-forward
algorithm (Hinton, 2022). The graph indicates the graph structure of computational neurons. We keep 4
computation neurons for all methods during the experiments. The special cases are further illustrated as:

• BP-Chain*: Layer-by-layer networks trained with BP as depicted in Figure 2(a). It is the current default
way of building and training ANNs.

• FF-Chain: Layer-by-layer networks trained with FF as depicted in Figure 2(b) same as (Hinton, 2022).
• BP-Chain: A modified version of BP-Chain*, where we use the structure of Figure 2(b) and trained with

BP. It adds direct local supervision on each layer.

FF-Cycle, FF-WSGraph, FF-BAGraph, and FF-Complete are different versions of GOMLP, where the training
is FF and only the graph generator defined in Eq. 2 differs.

4.2 OVERALL COMPARISON

The overall experiment result is shown in Table 1. We can have several interesting and exciting findings:

• FF-Complete achieves the best performance on MNIST and NewsGroup datasets and comparable results to
the best one on the IMDB dataset. It is the first FF-trained model that outcompetes the BP-trained model. It
is an exciting observation of the effectiveness of the FF algorithm compared with the BP algorithm.

• FF-Chain performs worse than BP-Chain* on all datasets. This observation is on par with (Hinton, 2022),
where the FF lags behind the BP training algorithm when they both follow layer-by-layer organization as a
chain graph. However, we can surpass BP-Chain* when organizing the computational neurons as a graph
structure. This finding inevitably reveals the advantages of GOMLP by organizing multi-layer perceptron
as a flexible graph structure.

• FF-Cycle achieves similar performance with FF-Chain on three datasets. It is reasonable because these
two methods have only one edge difference. When we build more complex graphs (WSGraph, BAGraph,
Complete Graph), we can observe much better performance immediately. It shows the benefits of enriching
the communication between computational neurons by the GOMLP.

• BP-Chain is better than BP-Chain* in most cases. Compared with BP-Chain*, BP-Chain further adds
layer-wise optimization directly from the final loss. It indicates the advantageous layer-wise optimization,
which provides new guidelines when designing layer-by-layer neural networks.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
T

1.5

1.6

1.7

1.8

1.9

Er
ro

r R
at

e
(%

)

MNIST

1 2 3 4 5 6
T

38.2
38.3
38.4
38.5
38.6
38.7
38.8
38.9
39.0

Er
ro

r R
at

e
(%

)

NewsGroup

1 2 3 4 5 6
T

17.6
17.8
18.0
18.2
18.4
18.6
18.8

Er
ro

r R
at

e
(%

)

IMDB

0 1 2 3 4 5

5

10

15

20

25

Er
ro

r R
at

e
(%

)

MNIST

0 1 2 3 4 5
42.5
45.0
47.5
50.0
52.5
55.0
57.5
60.0

Er
ro

r R
at

e
(%

)

NewsGroup

0 1 2 3 4 5
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0

Er
ro

r R
at

e
(%

)

IMDB

Figure 4: Parameter sensitivity of T and θ

In summary, the experiment results answer that we do not need to stack neural networks layer-by-layer
sequentially, and we can organize the neural networks as a flexible, complex graph structure like the brain.
More excitingly, we can outperform the current de facto layer-by-layer neural network design paradigm with
the Cyclic NN, and provide a totally new way of building ANNs.

4.3 HYPER-PARAMETER SENSITIVITY

This section tests the impact of introduced hyper-parameters (T and θ). Results are shown in Figure 4. T
controls the number of propagation between computational neurons. Larger T indicates more times the
information is propagated. We can observe an error rate trend that first decreases and then increases on all
three datasets. It indicates that the computational neurons need a suitable propagation number. When T is
small, computational neurons can not draw sufficient lessons from each other. When T is large, computational
neurons are over-propagated, which leads to the over-smoothing problem. Different from graph neural
network (Chen et al., 2020) where the graph is data and the over-smoothing occurs among node representation,
in GOMLP, the graph is the model, and the over-smoothing occurs among computational neurons.

θ controls the goodness threshold of each computational neuron. We can observe a sharp error rate decrease
when θ increases from 0 to 1, and then it gets stable with larger θ. It indicates the existence of the goodness
threshold matters more than the threshold value. When θ = 0, there is little room to optimize the computational
neuron, which can lead to the training collapse as the computational neuron can not differentiate the negative
samples. When θ is larger, there is more room to optimize the goodness score toward the negative samples, as
all the goodness scores under the threshold can represent a negative sample.

4.4 ABLATION STUDY Table 2: Error rate (%) ↓ of Ablation study.
Model MNIST NewsGroup IMDB

FF-Complete 1.54 38.26 18.20
-LN 2.24 47.61 22.94
-LReadout 95.58 95.55 44.26

This section studies the impact of different optimiza-
tion modules within GOMLP, including the compu-
tational neuron optimization LN and readout layer
optimization LReadout. We conduct experiments on
the FF-Complete structure, and the results are sum-
marized in Table 2. We can have the following observations: 1) The error rate increases when removing any
optimization module, indicating the usefulness of each component. 2) GOMLP falls to a very large error rate
(nearly random guess) when removing LReadout. It is reasonable as we depend on the readout layer to complete
the final classification task. Without optimization on the readout layer, GOMLP falls into random guess even
with optimized computational neuron’s input. 3) The error rate increases by removing LN . It shows the

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

computational neuron’s optimization can provide a more informative goodness score for the readout layer to
complete the classification task. LN and LReadout complement each other within GOMLP.

5 RELATED WORK

5.1 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) have evolved through various paradigms, each suited to specific tasks and
data structures. Feedforward neural networks (MLPs Rumelhart et al. (1986), CNN LeCun et al. (1995), and
Transformers Vaswani et al. (2017), etc) form the foundational class of ANNs. These models are characterized
by their layer-by-layer processing, making them effective for structured data tasks He et al. (2016); Vaswani
et al. (2017). Recurrent neural networks (RNNs) Elman (1990) and their variants such as Long Short-
Term Memory Schmidhuber et al. (1997) and Gated Recurrent Units Cho (2014) introduced recurrent loops,
enabling temporal modeling for sequential data. Graph Neural Networks (Graph Convolutional Networks Kipf
& Welling (2016), Graph Attention Networks Velickovic et al. (2017), and Graph Isomorphism Networks Xu
et al. (2018), etc) extend neural computation to graph-structured data. While GNNs support message passing
between nodes, they are typically constrained by acyclic computational graphs. Recently, there are also
new ANN designs inspired by biology nerve systems. Liquid neural networks Hasani et al. (2021) adapt
dynamically to changing inputs, exhibiting flexible, real-time computation inspired by biological intelligence.
Spiking Neural Networks Tavanaei et al. (2019) mimics the communication pattern of biology neurons with
discrete spike events instead of continuous activations.

Cyclic NN firstly focuses on the network topology similarity with biology neural network by introducing
cyclic structures within ANNs. It represents a transformative departure from these existing paradigms
by removing the Directed Acyclic Graph (DAG) constraint. Inspired by the flexible and dynamic nature
of biological neural systems, Cyclic NN introduces cyclic connections between neurons, enabling richer
information flow. This design achieves enhanced expressiveness, biological plausibility, and flexibility.

5.2 LOCALIZED LEARNING ALGORITHM

Although the end-to-end BP algorithm is the dominant training algorithm for deep neural networks, studies
have revealed notable limitations in such end-to-end training with global objectives (Bengio et al., 2015;
Crick, 1989). Numerous works have proposed alternative training methods to make ANNs more biologically
plausible. Inspired by Hebbian theory (Hebb, 2005), Hebbian Learning (Gerstner & Kistler, 2002) updates
weights locally between two active, connected neurons, ensuring long-term stability so previously learned
information is not lost. Addressing the weight transportation problem, Feedback alignment methods (Lillicrap
et al., 2016; Nøkland, 2016) replace downstream synaptic weights with random weights, eliminating the
need for feedback weights in neurons. Unlike the two phases of the BP algorithm, Equilibrium Propagation
(Scellier & Bengio, 2017) performs both inference and weight updates using only one type of computation.
The approach in (Nøkland & Eidnes, 2019) reduces memory consumption and increases training parallelism
by adopting subnetworks and layer-wise training. (Hinton, 2022) introduces a simple yet efficient local
objective function that measures the goodness of positive and negative data to optimize ANNs locally.

The localized learning algorithm is the bedrock that supports the cyclic structure within the neural networks.
In this paper firstly beats global BP training with pure localized learning algorithm based on cyclic structure.

6 CONCLUSION

This research introduces Cyclic NN, a novel ANN architecture inspired by the complex, graph-like neural
networks in biological intelligence. This transformative design diverges from traditional directed acyclic
ANN structures. Our findings, demonstrated through the GOMLP model and validated on various datasets,
showed enhanced performance over conventional DAG networks. This significant development paves the way
for more flexible and biologically realistic AI systems, representing a major shift in ANN design.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and Zhouhan Lin. Towards biologically
plausible deep learning. arXiv preprint arXiv:1502.04156, 2015.

David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep artificial neural networks.
Neuron, 109(17):2727–2739, 2021.

Paul Brooks, Andrew Champion, and Marta Costa. Mapping of the zebrafish brain takes shape. Nature
Methods, 19(11):1345–1346, 2022.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 3438–3445, 2020.

Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, 2014.

Steven J Cook, Travis A Jarrell, Christopher A Brittin, Yi Wang, Adam E Bloniarz, Maksim A Yakovlev,
Ken CQ Nguyen, Leo T-H Tang, Emily A Bayer, Janet S Duerr, et al. Whole-animal connectomes of both
caenorhabditis elegans sexes. Nature, 571(7763):63–71, 2019.

Francis Crick. The recent excitement about neural networks. Nature, 337:129–132, 1989. URL https:
//api.semanticscholar.org/CorpusID:5892527.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. Advances in neural
information processing systems, 25, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Wulfram Gerstner and Werner M. Kistler. Mathematical formulations of hebbian learning. Biological Cyber-
netics, 87:404–415, 2002. URL https://api.semanticscholar.org/CorpusID:7703741.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid time-constant
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7657–7666,
2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology press, 2005.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

11

https://api.semanticscholar.org/CorpusID:5892527
https://api.semanticscholar.org/CorpusID:5892527
https://api.semanticscholar.org/CorpusID:7703741

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Ken Lang. Newsweeder: Learning to filter netnews. In Machine learning proceedings 1995, pp. 331–339.
Elsevier, 1995.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard, and
Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances in neural
information processing systems, 2, 1989.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic feedback
weights support error backpropagation for deep learning. Nature communications, 7(1):13276, 2016.

Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated learning
of representations. Advances in neural information processing systems, 32, 2019.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies, pp. 142–150, 2011.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions
of deep neural networks. Advances in neural information processing systems, 27, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in neural
information processing systems, 29, 2016.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4839–4850. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/nokland19a.html.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774. URL
https://doi.org/10.48550/arXiv.2303.08774.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive
power of deep neural networks. In international conference on machine learning, pp. 2847–2854. PMLR,
2017.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pp.
8821–8831. PMLR, 2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-based
models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

12

https://proceedings.mlr.press/v97/nokland19a.html
https://doi.org/10.48550/arXiv.2303.08774

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Jürgen Schmidhuber, Sepp Hochreiter, et al. Long short-term memory. Neural Comput, 9(8):1735–1780,
1997.

Alexander Shapson-Coe, Michał Januszewski, Daniel R Berger, Art Pope, Yuelong Wu, Tim Blakely,
Richard L Schalek, Peter H Li, Shuohong Wang, Jeremy Maitin-Shepard, et al. A petavoxel fragment of
human cerebral cortex reconstructed at nanoscale resolution. Science, 384(6696):eadk4858, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

Olaf Sporns and Edward T Bullmore. From connections to function: the mouse brain connectome atlas. Cell,
157(4):773–775, 2014.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and Anthony
Maida. Deep learning in spiking neural networks. Neural networks, 111:47–63, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al.
Graph attention networks. stat, 1050(20):10–48550, 2017.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):
440–442, 1998.

John G White, Eileen Southgate, J Nichol Thomson, Sydney Brenner, et al. The structure of the nervous
system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 314(1165):1–340,
1986.

Michael Winding, Benjamin D Pedigo, Christopher L Barnes, Heather G Patsolic, Youngser Park, Tom
Kazimiers, Akira Fushiki, Ingrid V Andrade, Avinash Khandelwal, Javier Valdes-Aleman, et al. The
connectome of an insect brain. Science, 379(6636):eadd9330, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET

Table 3: Dataset Statistics
Dataset MNIST NewsGroup IMDB

Training Samples 50,000 9,314 20,000
Validation Samples 10,000 2,000 5,000
Test Samples 10,000 7,532 25,000
Dimensions 784 788 770
Classes 10 20 2

We conduct experiments on three widely studied datasets from computer vision and natural language
processing domains. Data statistics are shown in Table 3. For each dataset, the training and test split
follows the original setting. We further extract 20% samples from the training data as validation sets to tune
hyper-parameters.

• MNIST 2 (LeCun et al., 1989). It contains handwritten digits from 0-9, which is the most accessible and
used datasets in the field of machine learning.

• NewsGroup 3 (Lang, 1995). It is a collection of approximately 20,000 newsgroup documents, partitioned
across 20 different newsgroups. This dataset is widely used for experiments in text applications of machine
learning techniques, such as text classification and text clustering.

• IMDB 4 (Maas et al., 2011). It is a movie review dataset crawled from IMDB. It is the most widely studied
dataset for binary sentiment classification.

For MNIST, we directly use its flattened pixel values as the input of all methods and replace the first 10 pixels
with labels as the fusion function, which is the same as (Hinton, 2022) and leads to an input dimension of
28 ∗ 28 = 784. For NLP datasets (NewsGroup, IMDB), we use BERT (Devlin et al., 2018) to encode the
sentences into a fixed-length tensor (768) as the input. The fusion function is the concat function, which leads
to an input dimension of 768 + 20 = 788 for NewsGroup and 768 + 2 = 770 for IMDB dataset.

A.2 EXPERIMENTAL SETTING.

We use Adam (Kingma & Ba, 2014) optimizer to train the model until it converges. Learning rate and
weight decay are tuned within (0.1,0.01,0.001) and (0.0, 1e-2, 1e-4, 1e-6, 1e-8), respectively. The early stop
technique is applied to avoid overfitting, where we stop training if there is no improvement on the validation
set for continuous 10 epochs. We report the mean and variance on 20 experiments with different random
seeds. All experiments are conducted on GeForce 4090 GPU.

A.3 ADVANTAGES AND LIMITATIONS

Optimized with local losses, Cyclic NN is a novel ANN design paradigm that goes beyond DAG constraint.
It has several advantages. (1) Flexibility. Cyclic NN can build and optimize neural networks in any graph
structure. It provides more flexibility when designing ANNs. (2) Denser information flow. Cyclic NN supports

2http://yann.lecun.com/exdb/mnist/
3http://qwone.com/ jason/20Newsgroups/
4https://ai.stanford.edu/ amaas/data/sentiment/

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

direct denser information flow during the forward pass with the synapse construction among computation
neurons. (3) Biology similarity. As discussed in Section 1, Cyclic NN is more biology-similar to the complex
graph-structured networks, paving the way to minimize our understanding gap between artificial neural
networks and biology neural networks.

Cyclic NN has several limitations. Its flexibility in building graph-structured networks leads to more network
complexity. Cycles within the network also pose more challenges to the interpretability. Currently, there
are no suitable training frameworks specifically designed for localized optimization, which hinders the
optimization speed of Cyclic NN. This limitation can be solved with the development of localized training
frameworks.

A.4 NEURAL NETWORK COMPARISON BETWEEN RNN, GNN AND CYCLIC NN

(a) Recurrent Neural Network

Input

O
utput

(b) Cyclic Neural Network

Input

R
eadO

ut

Readout

(c) Graph Neural Network (d) Cyclic Neural Network

GNN

Cyclic
NN

Input Graph:

Figure 5: Neural Network Comparison between RNN, GNN and our proposed Cyclic NN.

This section makes a comparison among RNN, GNN and our newly proposed Cyclic NN. Figure 5(a) and (b)
compares RNN and Cyclic NN. Recurrent structures (such as RNN, LSTM, GRU) focus on the recurrence of
the same computation block. Our newly proposed Cyclic NN focus on the cyclic communication between
different computation blocks as highlighted in red. The existence of cyclic structure enables building neural
networks in any graph structure beyond DAG. Actually, recurrent structures can be seen as the self-loop over
one computation neuron, and Cyclic NN enables much more flexible network structures beyond self-loop.

Figure 5(c) and (d) compare GNN and Cyclic NN. In GNNs (such as GCN, recurrent GNN, GAT), graph
G is the input of network and GNN aims to learn node representation for each node. We usually use DAG
structured computation within the model such as the linear layer in GCN. GNNs are the encoder of nodes
within graphs, and the graph structure acts as the model’s input. However, in Cyclic NN, input is not
constrained to graphs. As shown in Figure 5(d), the input is one image and the Cyclic NN encodes inputs into
representation. The graph structure G refers to the encoder itself within Cyclic NN.

A.5 TRAINING CURVE OF CYCLIC NN UNDER DIFFERENT GRAPH STRUCTURES

The training curve of Cyclic NN on different graph structures are shown in Figure 6. In Cyclic NN, the
optimization occurs locally at each computation neuron and the final classifier. FF Loss is the average
forward-forward loss over all computation neurons. FF loss, classifier loss and error rate changes with training
epochs are shown in the figure. We can observe that for all graph structures and datasets, the decrease of
losses and error rate is very stable and steady. Localized optimization focuses on optimizing parameters at a
local level without propagating updates across layers. This approach helps mitigate the gradient vanishing or
exploding issues commonly encountered in global optimization.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40
Epochs

0
2
4
6
8

10
12
14

Lo
ss

/E
rro

r R
at

e
(%

)

MNIST Complete Graph
FF Loss
Classifier Loss
Error Rate

0 20 40 60 80
Epochs

0
100
200
300
400
500
600
700
800

Lo
ss

/E
rro

r R
at

e
(%

)

MNIST BAGraph
FF Loss
Classifier Loss
Error Rate

0 5 10 15 20 25 30 35 40
Epochs

0
10
20
30
40
50
60

Lo
ss

/E
rro

r R
at

e
(%

)

MNIST WSGraph
FF Loss
Classifier Loss
Error Rate

0 10 20 30 40 50
Epochs

0

10

20

30

40

50

Lo
ss

/E
rro

r R
at

e
(%

)

NewsGroup Complete Graph

FF Loss
Classifier Loss
Error Rate

0 10 20 30 40
Epochs

0

10

20

30

40

50

Lo
ss

/E
rro

r R
at

e
(%

)

NewsGroup BAGraph

FF Loss
Classifier Loss
Error Rate

0 10 20 30 40 50 60
Epochs

0

10

20

30

40

50
Lo

ss
/E

rro
r R

at
e

(%
)

NewsGroup WSGraph

FF Loss
Classifier Loss
Error Rate

Figure 6: Training Curve of Cyclic NN under Different Graph Structure

16

	Introduction
	Cyclic Neural Network
	Computational Neuron
	Synapse
	Local Optimization
	Inference

	Graph Over Multi-layer Perceptron
	Input Construction
	Computation Graph
	Neuron Update
	Synapse Propagation

	Readout Layer
	Local Optimization
	Computational Neuron Optimization
	Readout Layer Optimization

	Complexity Analysis
	Analysis on Advantage of Cyclic Structure

	Experiments
	Baselines
	Overall Comparison
	Hyper-parameter Sensitivity
	Ablation Study

	Related Work
	Artificial Neural Networks
	Localized Learning Algorithm

	Conclusion
	Appendix
	Dataset
	Experimental Setting.
	Advantages and Limitations
	Neural Network Comparison between RNN, GNN and Cyclic NN
	Training Curve of Cyclic NN under Different Graph Structures

