
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NORMALITY NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The normal distribution plays a central role in information theory – it is at the
same time the best-case signal and worst-case noise distribution, has the greatest
representational capacity of any distribution, and offers an equivalence between
uncorrelatedness and independence for joint distributions. Accounting for the
mean and variance of activations throughout the layers of deep neural networks
has had a significant effect on facilitating their effective training, but seldom has
a prescription for precisely what distribution these activations should take, and
how this might be achieved, been offered. Motivated by the information-theoretic
properties of the normal distribution, we address this question and concurrently
present normality normalization: a novel normalization layer which encourages nor-
mality in the feature representations of neural networks using the power transform
and employs additive Gaussian noise during training. Our experiments compre-
hensively demonstrate the effectiveness of normality normalization, in regards
to its generalization performance on an array of widely used model and dataset
combinations, its strong performance across various common factors of variation
such as model width, depth, and training minibatch size, its suitability for usage
wherever existing normalization layers are conventionally used, and as a means to
improving model robustness to random perturbations.

1 INTRODUCTION

The normal distribution is unique – information theory shows that among all distributions with
the same mean and variance, a signal following this distribution encodes the maximal amount of
information (Shannon, 1948). This can be viewed as a desirable property in learning systems such as
neural networks, where the activations of successive layers equivocates to successive representations
of the data.

Moreover, a signal following the normal distribution is maximally robust to random perturbations
(Cover & Thomas, 2006), and thus presents a desirable property for the representations of learning
systems; especially deep neural networks, which are susceptible to random (Ford et al., 2019)
and adversarial (Szegedy et al., 2014) perturbations. Concomitantly, the normal distribution is
information-theoretically the worst-case perturbative noise distribution (Cover & Thomas, 2006),
which suggests models gaining robustness to Gaussian noise should be robust to any other form of
random perturbations.

Furthermore, normality in the representations of deep neural networks imbues them with other useful
properties, such as producing probabilistic predictions with calibrated uncertainty estimates (Guo
et al., 2017), and rendering them amenable to a Bayesian interpretation (Lee et al., 2017). This
suggests that developing a method for enforcing and maintaining normality throughout model training
is of general value.

We show that encouraging deep learning models to encode their activations using the normal distribu-
tion in conjunction with applying additive Gaussian noise during training, helps improve generaliza-
tion. We do so by means of a novel layer – normality normalization – so-named because it applies
the power transform, a technique used to gaussianize data (Box & Cox, 1964; Yeo & Johnson, 2000),
and because it can be viewed as an augmentation of existing normalization techniques such as batch
(Ioffe & Szegedy, 2015), layer (Ba et al., 2016), instance (Ulyanov et al., 2016), and group (Wu &
He, 2018) normalization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our experiments comprehensively demonstrate the general effectiveness of normality normalization
in terms of its generalization performance, its strong performance across various common factors of
variation such as model width, depth, and training minibatch size, which furthermore help highlight
when and why it is effective, its suitability for usage wherever existing normalization layers are
conventionally used, and its effect on improving model robustness under random perturbations.

In Section 2 we outline some of the desirable properties normality can imbue in learning models,
which serve as motivating factors for the development of normality normalization. In Section 3 we
provide a brief background on the power transform, before presenting normality normalization in
Section 4. In Section 5 we describe our experiments, analyze the results, and explore some of the
properties of models trained with normality normalization. In Section 6 we comment on related
work and discuss some possible future directions. Finally in Section 7 we contextualize normality
normalization in the broader deep learning literature, and provide a few concluding remarks.

2 MOTIVATION

In this section we present motivating factors for encouraging normality in feature representations in
conjunction with using additive random noise during learning. Section 5 substantiates the applicability
of the motivation through the experimental results.

2.1 MUTUAL INFORMATION GAME & NOISE ROBUSTNESS

2.1.1 OVERVIEW OF THE FRAMEWORK

The normal distribution is at the same time the best possible signal distribution, and the worst possible
noise distribution; a result which can be studied in the context of the Gaussian channel (Shannon,
1948), and through the lens of the mutual information game (Cover & Thomas, 2006). In this
framework, X and Z denote two independent random variables, representing the input signal and
noise, and Y = X + Z is the output. The mutual information between X and Y is denoted by
I (X;Y); X tries to maximize this term, while Z tries to minimize it. Both X and Z can encode
their signal using any probability distribution, so that their respective objectives are optimized for.

Information theory answers the question of what distribution X should choose to maximize I (X;Y).
It also answers the question of what distribution Z should choose to minimize I (X;Y). As shown by
the following theorem, remarkably the answer to both questions is the same – the normal distribution.

Theorem 2.1. (Cover & Thomas, 2006) Mutual Information Game. Let X , Z be independent,
continuous random variables with non-zero support over the entire real line, and satisfying the
moment conditions E {X} = µx, E

{
X2

}
= µ2

x + σ2
x and E {Z} = µz , E

{
Z2

}
= µ2

z + σ2
z .

Further let X∗, Z∗ be normally distributed random variables satisfying the same moment conditions,
respectively. Then the following series of inequalities holds

I (X∗;X∗ + Z) ≥ I (X∗;X∗ + Z∗) ≥ I (X;X + Z∗) . (1)

Proof. Without loss of generality let µx = 0 and µz = 0. The first inequality hinges on the entropy
power inequality. The second inequality hinges on the maximum entropy of the normal distribution
given first and second moment constraints. See (Cover & Thomas, 2006) for details.

This leads to the following minimax formulation of the game

min
Z

max
X

I (X;X + Z) = max
X

min
Z
I (X;X + Z) , (2)

which implies that any deviation from normality, for X or Z, is suboptimal from that player’s
perspective.

2.1.2 RELATION TO LEARNING

How might this framework relate to the learning setting? First, previous works have shown that
adding noise to the inputs (Bishop, 1995) or to the intermediate activations (Srivastava et al., 2014) of
neural networks can be an effective form of regularization, leading to better generalization. Moreover,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the mutual information game shows that, among encoding distributions, the normal distribution is
maximally robust to random perturbations. Taken together these suggest that encoding activations
using the normal distribution is the most effective way of using noise as a regularizer, because a
greater degree of regularizing noise in the activations can be tolerated for the same level of corruption.

Second, the mutual information game suggests gaining robustness to Gaussian noise is optimal
because it is the worst-case noise distribution. This suggests adding Gaussian noise – specifically – to
activations during training should have the strongest regularizing effect. Moreover, gaining robustness
to noise has previously been demonstrated to imply better generalization (Arora et al., 2018).

2.2 MAXIMAL REPRESENTATION CAPACITY AND MAXIMALLY COMPACT REPRESENTATIONS

The entropy of a random variable is a measure of the number of bits it can encode (Shannon, 1948),
and therefore of its representational capacity (Cover & Thomas, 2006). The normal distribution
is the maximum entropy distribution for specified mean and variance. This suggests that a unit
which encodes features using the normal distribution has maximal representation capacity given a
fixed variance budget, and therefore encodes information as compactly as possible. This may then
suggest that it is efficient for a unit (and by extension layer) to encode its activations using the normal
distribution.

2.3 MAXIMALLY INDEPENDENT REPRESENTATIONS

Previous work has explored the beneficial effects of decorrelating features in neural networks (Huang
et al., 2018; 2019; Pan et al., 2019). Furthermore, other works have shown that preventing feature
co-adaptation is beneficial for training deep neural networks (Hinton et al., 2012).

For any set of random variables, for example representing the pre-activation values of various
units in a neural network layer, uncorrelatedness does not imply independence in general. But for
random variables whose marginals are normally distributed, then as shown by Appendix Lemma E.1,
uncorrelatedness does imply independence when they are furthermore jointly normally distributed.

We use these results to motivate the following argument: encouraging normality in the feature
representations of units by using normality normalization, together with uncorrelatedness in these
features, would lead to the desirable property of maximal independence; in the setting where increased
unit-wise normality also lends itself to increased joint normality.

3 BACKGROUND: POWER TRANSFORM

Before introducing normality normalization, we briefly outline the power transform (Yeo & Johnson,
2000), which our proposed normalization layer hinges on.

Consider a random variable H from which a sample h = {hi}Ni=1 is obtained. In the context of
normalization layers, N represents the number of samples being normalized in a given neural network
layer; for example in batch normalization, N = nHW for convolutional layers, where n is the
minibatch size, and H,W are respectively the height and width of the activation.

The power transform gaussianizes h by applying the following function for each hi:

ψ (h;λ) =

1
λ

(
(1 + h)

λ − 1
)
, h ≥ 0, λ ̸= 0

log (1 + h), h ≥ 0, λ = 0
−1
2−λ

(
(1− h)

2−λ − 1
)
, h < 0, λ ̸= 2

− log (1− h), h < 0, λ = 2

. (3)

The parameter λ is derived using maximum likelihood estimation (MLE), so that the transformed
variable is as normally distributed as possible, by minimizing the following negative log-likelihood
(NLL)1:

L (h;λ) =
1

2
(log (2π) + 1) +

1

2
log

(
σ̂2 (λ)

)
− (λ− 1)

N

N∑
i=1

log (1 + hi) , (4)

1To simplify the presentation, we momentarily defer the cases λ = 0 and λ = 2, and outline the NLL for
h ≥ 0 only, as the case for h < 0 follows closely by symmetry.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where µ̂ (λ) = 1
N

∑N
i=1 ψ (hi;λ) and σ̂2 (λ) = 1

N

∑N
i=1 (ψ (hi;λ)− µ̂ (λ))

2.

4 NORMALITY NORMALIZATION

Algorithm 1: Normality Normalization

Input: u = {ui}Ni=1

Output: v = {vi}Ni=1

Learnable Parameters: γ, β
Noise Factor: ξ ≥ 0

Normalization:
µ̂ = 1

N

∑N
i=1 ui

σ̂2 = 1
N

∑N
i=1 (ui − µ̂)

2

hi =
ui−µ̂√
σ̂2+ϵ

Power Transform and
Scaled Additive Noise:
λ̂ = 1− L′(h;λ=1)

L′′(h;λ=1)

xi = ψ
(
hi; λ̂

)
with gradient tracking disabled:

x̄ = 1
N

∑N
i=1 xi

s = 1
N

∑N
i=1|xi − x̄|

sample zi ∼ N (0, 1)

yi = xi + zi · ξ · s

Affine Transform:
vi = γ · yi + β

To gaussianize a unit’s pre-activations h, normal-
ity normalization estimates λ̂ using the method we
present in Subsection 4.1, applies the power trans-
form given by Equation 3, and adds Gaussian noise
with scaling as described in Subsection 4.2. These
steps are done between the normalization and affine
transformation steps conventionally performed in
other normalization layers.

4.1 ESTIMATE OF λ̂

Differentiating Equation 4 w.r.t. λ and setting the re-
sulting expression to 0 does not lead to a closed-form
solution for λ̂, which suggests an iterative method
for its estimation; for example gradient descent, or a
root-finding algorithm (Brent, 1971). However, mo-
tivated by the NLL’s convexity in λ (Yeo & Johnson,
2000), we use a quadratic series expansion for its
approximation, which we outline in Appendix A.

With the quadratic form of the NLL, we can estimate
λ̂ with one step of the Newton-Raphson method

λ̂ = 1− L′(h;λ = 1)

L′′(h;λ = 1)
, (5)

where the series expansion has been taken around2

λ0 = 1. The expressions for L′(h;λ = 1) and
L′′(h;λ = 1) are outlined in Appendix A.

Appendix B provides empirical evidence substanti-
ating the similarity between the NLL and its second-
order series expansion around λ0 = 1, and further-
more demonstrates the accuracy of obtaining the estimates λ̂ using one step of the Newton-Raphson
method.

Subsequent to estimating λ̂, the power transform is applied to each of the pre-activations to obtain
xi = ψ

(
hi; λ̂

)
.

We next discuss a few facets of the method.

Justification for the Second Order Method The justification for using the Newton-Raphson
method for computing λ̂ is as follows:

• A first-order gradient-based method would require iterative refinements to its estimates of λ̂ in
order to find the minima, which would significantly affect runtime. In contrast, the Newton-
Raphson method is guaranteed to find the minima of the quadratic loss in one step.

• A first-order gradient-based method for computing λ̂ would require an additional hyperparameter
for the step size. Due to the quadratic nature of the loss, the Newton-Raphson method necessarily
does not require any such additional hyperparameter.

• The minibatch statistics µ̂ and σ̂2 are the MLEs for their respective optimization problems, and
are available in closed-form. It is therefore natural to seek a closed-form expression for the MLE
of λ̂, which is facilitated by using the Newton-Raphson method.

2The previously deferred cases of λ = 0 and λ = 2 are thus inconsequential, in the context of computing an
estimate λ̂, by continuity of the quadratic form of the series expansion for the NLL. However, these two cases
still need to be considered when applying the transformation function itself.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Location of Series Expansion The choice of taking the series expansion around λ0 = 1 is justified
using the following two complementary factors:

• λ̂ = 1 corresponds to the identity transformation, and hence having λ0 = 1 as the point where
the series expansion is taken, facilitates its recovery if this is optimal.

• It equivocates to assuming the least about the nature of the deviations from normality in the
sample statistics, since it avoids biasing the form of the series expansion for the loss towards
solutions favoring λ̂ < 1 or λ̂ > 1.

Order of Normalization and Power Transform Steps Applying the power transform after the
normalization step is beneficial, because having zero mean and unit variance activations simplifies
several terms in the computation of λ̂, as shown in Appendix A, and improves numerical stability.

No Additional Learned Parameters Despite having increased normality in the features, this came
at no additional cost in terms of the number of learnable parameters relative to existing normalization
techniques.

Test Time In the case where normality normalization is used to augment batch normalization, in
addition to computing global estimates for µ and σ2, we additionally compute a global estimate for λ.
These are obtained using the respective training set running averages for these terms, analogously
with batch normalization. At test time, these global estimates µ, σ2, λ are used, rather than the test
minibatch statistics themselves.

4.2 ADDITIVE GAUSSIAN NOISE WITH SCALING

Normality normalization applies additive random noise to the output of the power transform; a step
which is motivated using information-theoretic principles in Subsection 2.1.

For each input indexed by i ∈ {1, . . . , N}, during training3 we have yi = xi + zi · ξ · s, where
xi is the i-th input’s post-power transform value, zi ∼ N (0, 1), ξ ≥ 0 is the noise factor, and
s = 1

N ∥x− x̄∥1 represents the zero-centered norm of the post-power transform values, normalized
by the sample size N .

Importantly, scaling each of the sampled noise values zi for a given channel’s minibatch4 by the
channel-specific scaling factor s leads to an appropriate degree of additive noise for each of the
channel’s constituent terms xi. This is significant because for a given minibatch, each channel’s norm
will differ from the norms of other channels.

Furthermore, we treat s as a constant, so that its constituent terms are not incorporated during
backpropagation.5 This is significant because the purpose of s is to scale the additive random noise
by the minibatch’s statistics, and not for it to contribute to learning directly by affecting the gradients
of the constituent terms.

Note that we employ the ℓ1-norm for x rather than the ℓ2-norm because it lends itself to a more
robust measure of dispersion (Pham-Gia & Hung, 2001).

Algorithm 1 provides a summary of normality normalization.

5 EXPERIMENTAL RESULTS & ANALYSIS

5.1 EXPERIMENTAL SETUP

For each model and dataset combination results presented, M = 6 models were trained, each with
differing random initializations for the model parameters. No data augmentations were employed in

3We do not apply additive random noise with scaling at test time.
4For clarity the present discussion assumes the case where normality normalization is used to augment batch

normalization. However, the discussion applies equally to other normalization layers, such as layer, instance,
and group normalization.

5Implementationally, this is done by disabling gradient tracking when computing these terms.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the experiments. Wherever a result is reported numerically, it is obtained using the mean performance
and one standard error from the mean across the M runs. The best performing models for a given
dataset and model combination are shown in bold. Wherever a result is shown graphically, unless
otherwise stated it is displayed using the mean performance and its 95% confidence interval across
the M runs. The training configurations of the models are outlined in Appendix C. Code is made
available in the Supplementary Materials.

5.2 GENERALIZATION PERFORMANCE

We evaluate batch normality normalization (BatchNormalNorm) and batch normalization (Batch-
Norm) on a variety of models and datasets, as shown in Table 1. A similar evaluation is done for
layer normality normalization (LayerNormalNorm) and layer normalization (LayerNorm), shown in
Table 2.

Normality Normalization is Performant BatchNormalNorm generally outperforms BatchNorm
across multiple architectures and datasets, with a similar trend holding between LayerNormalNorm
and LayerNorm.

Table 1: Validation accuracy for several ResNet (RN) architecture and dataset combinations, when
using BatchNormalNorm (BNN) vs. BatchNorm (BN). For each table entry, representing a dataset
and model combination, M = 6 models were trained, each with differing random initializations for
the model parameters. No data augmentations were employed during training.

DATASET MODEL BN BNN

CIFAR10 RN18 88.89 ± 0.07 90.41 ± 0.09
CIFAR100 RN18 62.02 ± 0.17 65.82 ± 0.11

STL10 RN34 58.82 ± 0.52 63.86 ± 0.45
TINYIMAGENET TOP1 RN34 58.22 ± 0.12 60.57 ± 0.14
TINYIMAGENET TOP5 RN34 81.74 ± 0.16 83.31 ± 0.13

CALTECH101 RN50 72.60 ± 0.35 74.71 ± 0.51
FOOD101 RN50 61.15 ± 0.44 63.51 ± 0.33

Table 2: Validation accuracy across several benchmarks for a vision transformer (ViT) architecture
(see training details for model specifications), when using LayerNormalNorm (LNN) vs. LayerNorm
(LN). For each table entry, representing a dataset and model combination, M = 6 models were
trained, each with differing random initializations for the model parameters. No data augmentations
were employed during training (see the Appendix for experiments using data augmentations).

DATASET LN LNN

SVHN 88.46 ± 0.10 89.96 ± 0.12
CIFAR10 66.56 ± 0.13 70.55 ± 0.23

CIFAR100 37.98 ± 0.45 44.60 ± 0.36
FOOD101 38.63 ± 0.53 48.92 ± 0.32

IMAGENET100 TOP1 50.78 ± 0.33 62.39 ± 0.68
IMAGENET100 TOP5 75.45 ± 0.50 84.03 ± 0.42

5.3 EFFECTIVENESS ACROSS NORMALIZATION LAYERS

Figure 1 demonstrates the general effectiveness of normality normalization across various normaliza-
tion layer types. Here we further extended group normalization (GroupNorm) to group normality
normalization (GroupNormalNorm) and instance normalization (InstanceNorm) to instance normality
normalization (InstanceNormalNorm). This provides further evidence that normality normalization
can be employed wherever normalization layers are conventionally used.

5.4 EFFECTIVENESS ACROSS MODEL CONFIGURATIONS

Network Width Figure 2 shows that BatchNormalNorm outperforms BatchNorm across vary-
ing WideResNet architecture model widths. Of particular note is that BatchNormalNorm shows

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

strong performance even in the regime of relatively small network widths, whereas BatchNorm’s
performance deteriorates. This may indicate that for small-width networks, which do not exhibit the
Gaussian process limiting approximation attributed to large-width networks (Neal, 1996; Lee et al.,
2017; Jacot et al., 2018; Lee et al., 2019), normality normalization provides a correcting effect. This
could, for example, be beneficial for hardware-limited deep learning applications.

Figure 1: Normality normalization is effec-
tive for various normalization layers. Valida-
tion accuracy for ResNet34 architectures eval-
uated on the STL10 dataset. Each bar repre-
sents the performance of the ResNet34 architec-
ture, when using the given normalization layer
across the entire network. INN: InstanceNormal-
Norm, IN: InstanceNorm, GNN: GroupNormal-
Norm, GN: GroupNorm, BNN: BatchNormal-
Norm, BN: BatchNorm.

Network Depth Figure 3 shows that BatchNor-
malNorm outperforms BatchNorm across vary-
ing model depths. This suggests normality nor-
malization is beneficial both for small and large-
depth models. Furthermore, the increased benefit
to performance for BatchNormalNorm in deeper
networks suggests normality normalization may
correct for an increased tendency towards non-
normality as a function of model depth.

Training Minibatch Size Figure 4 shows that
BatchNormalNorm maintains a high level of per-
formance across minibatch sizes used during train-
ing, which provides further evidence for normality
normalization’s general effectiveness across a va-
riety of configurations.

5.5 NORMALITY OF REPRESENTATIONS

Figure 5 shows representative Q–Q plots (Wilk
& Gnanadesikan, 1968), a method for assessing
normality, together with an aggregate measure
of normality across model layers, for post-power
transform feature values when using BatchNor-
malNorm, and post-normalization values when
using BatchNorm. The figure corresponds to models which have been trained to convergence. It
demonstrates the greater normality obtained when using normality normalization.

Figure 2: Normality normalization is effective
for small and large width networks. Validation
accuracy on the STL-10 dataset for WideResNet
architectures with varying width factors when
controlling for depth of 28, when using Batch-
NormalNorm vs. BatchNorm.

Figure 3: Normality normalization is effective
for networks of various depths. Validation ac-
curacy on the STL10 dataset for WideResNet ar-
chitectures with varying depths when controlling
for a width factor of 2, when using BatchNor-
malNorm vs. BatchNorm.

5.6 NOISE ROBUSTNESS

We use the following framework to measure a model’s robustness to noise (a similar setting is used by
Arora et al. (2018)). For a given data point, consider a pair of units in a neural network, the first in the
k-th layer and the second in the ℓ-th layer. For the unit in the k-th layer, let x denote the data point’s
post-normalization value. Let ϕk,ℓ (x) be the same data point’s post-normalization value for the unit

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

in the subsequent layer ℓ, where the function ϕk,ℓ encapsulates all the intermediate computations
between the two normalization layers k and ℓ.

Figure 4: Normality normalization is effective
across minibatch sizes used during training.
Validation accuracy for ResNet18 architectures
evaluated on the CIFAR10 dataset, with varying
minibatch sizes used during training, when using
BatchNormalNorm vs. BatchNorm.

Let y = x+z ·δ · 1
N ∥x− x̄∥1, where as in Subsec-

tion 4.2 z ∼ N (0, 1), δ ≥ 0, and here ∥x− x̄∥1
represents a global estimate for the zero-centered
norm of the post-normalized values, derived from
the training set in its entirety. We then define noise
robustness as follows:

Definition 5.1 (Noise Robustness). For given re-
alization of the noise sample z, let ζδk,ℓ (x, y)-
robustness be defined as:

ζδk,ℓ (x, y) :=
∥ϕk,ℓ (x)− ϕk,ℓ (y)∥1

∥ϕk,ℓ (x)∥1
. (6)

Thus ζδk,ℓ (x, y) measures the relative discrepancy
between ϕk,ℓ (x) and ϕk,ℓ (y) when noise factor
δ is used, and effectively represents the noise’s
attenuation from layer k to layer ℓ. Averaging
ζδk,ℓ (x, y) over all data points, and over all units
in the k-th and ℓ-th layers, leads to a consolidated
estimate of the noise robustness.

Table 3 demonstrates the increased robustness to noise obtained when using BatchNormalNorm in
comparison to BatchNorm. This substantiates the applicability of the noise robustness framework
presented in Subsection 2.1, and consequently of the benefit of gaussianizing learned representations
in normality normalization.

6 RELATED WORK & FUTURE DIRECTIONS

Power Transforms Various power transforms have been developed (Box & Cox, 1964; John &
Draper, 1980; Yeo & Johnson, 2000) for increasing normality in data. Box & Cox (1964) defined
a power transform which is convex in its parameter, but is only defined for positive variables. Yeo
& Johnson (2000) presented an alternative power transform which was furthermore defined for the

Figure 5: Left: Representative QQ-plots of feature values for models trained to convergence with
BatchNormalNorm (post-power transform) (top row) vs. BatchNorm (post-normalization) (bottom
row), measured for the same validation minibatch (ResNet34/STL10). Left to right: increasing layer
number. The x-axis represents the theoretical quantiles of the normal distribution, and the y-axis
the sample’s ordered values. A higher R2 value for the line of best fit signifies greater normality in
the features. BatchNormalNorm induces greater normality in the features throughout the model, in
comparison to BatchNorm.
Right: A plot showing the average R2 values for both normalization layers across model depth, taken
across QQ-plots corresponding to 20 channels and 10 validation minibatches. The plot demonstrates
that normality normalization leads to higher normality across the model layers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Normality normalization is robust to noise at test time. Evaluation of robustness
to noise, using the relative error ζδk,ℓ for various layers k and ℓ, for various models trained with
BatchNormalNorm (BNN) and BatchNorm (BN). Models were evaluated using noise factor δ = 0.5.
Top: ResNet18/CIFAR100, bottom: ResNet34/STL10. The layer k at which noise is added is denoted
on the left side of each row, and each column denotes a subsequent layer ℓ. For each entry, ζδk,ℓ
was averaged over the entire validation set, and over all channels in the k-th and ℓ-th layers. This
was subsequently averaged across T = 6 Monte Carlo draws for the random noise, and the values
presented are furthermore the average across each of the M = 6 trained models. In each table
entry, the top value represents the relative error for BatchNormalNorm, and the bottom value for
BatchNorm, with the best value shown in bold. Lower is better. The tables provide evidence that
models trained using normality normalization are generally more robust to random noise at test time.

L5 L9 L13 L17

L1 BNN
BN

0.051 ± 0.001
0.177 ± 0.007

0.076 ± 0.001
0.333 ± 0.011

0.100 ± 0.001
0.419 ± 0.021

0.387 ± 0.004
1.922 ± 0.076

L5 0.027 ± 0.002
0.059 ± 0.009

0.038 ± 0.003
0.073 ± 0.009

0.149 ± 0.012
0.373 ± 0.041

L9 0.044 ± 0.001
0.063 ± 0.003

0.151 ± 0.002
0.249 ± 0.009

L13 0.257 ± 0.001
0.367 ± 0.020

L9 L17 L25 L33

L1 BNN
BN

0.373 ± 0.018
0.615 ± 0.046

0.709 ± 0.034
1.280 ± 0.080

0.452 ± 0.044
1.900 ± 0.537

0.565 ± 0.053
2.621 ± 0.257

L9 0.141 ± 0.004
0.120 ± 0.005

0.080 ± 0.003
0.099 ± 0.011

0.099 ± 0.007
0.307 ± 0.013

L17 0.102 ± 0.006
0.104 ± 0.006

0.121 ± 0.011
0.324 ± 0.012

L25 0.051 ± 0.006
0.120 ± 0.006

entire real line, preserved the convexity property with respect to its parameter (concavity for negative
input values), and additionally addressed skewed input distributions.

It is worth noting that many power transforms were developed with the aim of improving the validity
of statistical tests relying on the assumption of normality in the data. This is in contrast with the
present work, which uses an information-theoretic motivation for gaussianizing.

Gaussianization Non-parametric techniques, for example those using quantile functions (Gilchrist,
2000), offer an alternative approach to gaussianizing but are not easily amenable to the deep learning
setting where models are trained using backpropagation and gradient descent. Employing iterative
gaussianization techniques (Chen & Gopinath, 2000; Laparra et al., 2011) offers an interesting
direction for future work.

Normalization Layers The properties of normality normalization explored in the present work can
be utilized to extend normalization layers studied in the context of specific architectures (Shen et al.,
2020), and those tailored for general manifolds (Brooks et al., 2019; Chen et al., 2024). Furthermore,
as a result of normality normalization’s gaussianizing effect, the analysis of works which have sought
to better understand the effects of existing normalization layers, and to motivative new ones, may
be facilitated (Bjorck et al., 2018; Santurkar et al., 2018; Hoffer et al., 2018; Yang et al., 2019; Luo
et al., 2019; Xu et al., 2019; Daneshmand et al., 2020; 2021; Joudaki et al., 2023).

Adversarial Robustness It would be interesting to tie the present work with those suggesting
robustness to ℓ2-norm constrained adversarial perturbations increases when training with Gaussian
noise (Cohen et al., 2019; Salman et al., 2019). Furthermore, it has been suggested that adversarial
examples and images corrupted with Gaussian noise may be related (Ford et al., 2019). This might

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

indicate gaining robustness to Gaussian noise not only in the inputs, but throughout the model, can
lead to greater adversarial robustness.

However, gaussianizing activations, and training with Gaussian noise, may only be a defense in the
distributional sense; exact knowledge of the weights (and consequently of the activation values), as is
often assumed in the adversarial robustness setting, is not captured by the noise-based robustness
framework, which is only concerned with distributional assumptions over the activation values.
Nevertheless it does suggest that, on average, greater robustness may be attainable.

Neural Networks as Gaussian Processes Neal (1996) showed that in the limit of infinite width,
a single layer neural network at initialization approximates a Gaussian process. This result has
been extended to the multi-layer setting by (Lee et al., 2017), and Jacot et al. (2018); Lee et al.
(2019) suggest the Gaussian process approximation may remain valid beyond network initialization.
However, these analyses still necessitate the infinite width limit assumption.

Recent work has shown that batch normalization lends itself to a non-asymptotic approximation
to normality throughout the layers of neural networks at initialization (Daneshmand et al., 2021).
Given its gaussianizing effect, layers trained with normality normalization may be amenable to a
non-asymptotic approximation to Gaussian processes – throughout training. This could help to further
address the disparity in the analysis of neural networks in the infinite width limit, for example as in
mean-field theory, with the finite width setting (Joudaki et al., 2023).

7 CONCLUSION

Among the methodological developments that have spurred the advent of deep learning, their success
has often been attributed to their effect on the model’s ability to learn and encode representations
effectively, whether in the activations or in the weights. This can be seen, for example, by considering
the importance of initializing model weights suitably, or by the effect different activation functions
have on learning dynamics.

Seldom has a prescription for precisely what distribution a deep learning model should use to
effectively encode its activations, and exactly how this can be achieved, been investigated. The
present work addresses this – first by motivating the normal distribution as the probability distribution
of choice, and subsequently by materializing this choice through normality normalization.

It is perhaps nowhere clearer what representational benefit normality normalization provides, than
when considering that no additional learnable parameters, relative to existing normalization layers,
were introduced. This highlights – and precisely controls for the effect of – the importance of
encouraging models to encode their representations effectively.

We presented normality normalization: a novel, principledly motivated, normalization layer.
Our experiments and analysis comprehensively demonstrated the effectiveness of normality
normalization, in regards to its generalization performance on an array of widely used model and
dataset combinations, its consistently strong performance across various common factors of variation
such as model width, depth, and training minibatch size, its suitability for usage wherever existing
normalization layers are conventionally used, and through its effect on improving model robustness
to random perturbations.

Reproducibility Statement Comprehensive training details are provided in Subsection 5.1, and
Appendix Subsection C.1 and Subsection C.2. Moreover, we provide the details needed to reproduce
our experiments throughout Section 5. Subsection 5.1 provides details regarding the number of
training runs employed when reporting a result (numerical or graphical), how the results were
aggregated, and how the error bars were obtained. When reporting error bars, what the randomness is
with respect to (ex: random initialization for model parameters) is clearly outlined. The codebase
in its completeness, with accompanying instructions, are provided in the Supplementary Materials
– these precisely reproduce and provide full coverage for our experimental setup. Additionally,
the program’s command-line options are clearly described. All dataset access instructions, and
preparatory & preprocessing steps for the datasets, are provided in full. In Appendix Subsection C.3
we comprehensively cite all models, datasets, and machine learning related frameworks we used. We

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

specify the licenses and terms of use of these items, and our work respects their terms. Appendix
Subsection C.4 provides details on the compute resources used for the experiments.

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In International Conference on Machine Learning, 2018.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Chris M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation,
7(1):108–116, Jan 1995. ISSN 0899-7667. doi: 10.1162/neco.1995.7.1.108.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normaliza-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society.
Series B (Methodological), 26(2):211–252, 1964. ISSN 00359246.

Richard P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. Comput.
J., 14:422–425, 1971.

Daniel Brooks, Olivier Schwander, Frederic Barbaresco, Jean-Yves Schneider, and Matthieu Cord.
Riemannian batch normalization for spd neural networks. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Scott Chen and Ramesh Gopinath. Gaussianization. In T. Leen, T. Dietterich, and V. Tresp (eds.),
Advances in Neural Information Processing Systems, volume 13. MIT Press, 2000.

Ziheng Chen, Yue Song, Yunmei Liu, and Nicu Sebe. A lie group approach to riemannian batch
normalization. In The Twelfth International Conference on Learning Representations, 2024.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 215–223, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1310–1320. PMLR, 09–15 Jun 2019.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecommu-
nications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch nor-
malization provably avoids ranks collapse for randomly initialised deep networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 18387–18398. Curran Associates, Inc., 2020.

Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch normalization orthogonalizes represen-
tations in deep random networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
4896–4906. Curran Associates, Inc., 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Bruno Ebner and Norbert Henze. Tests for multivariate normality—a critical review with emphasis
on weighted l2-statistics. TEST, 29(4):845–892, 2020. ISSN 1133-0686, 1863-8260. doi:
10.1007/s11749-020-00740-0.

Nic Ford, Justin Gilmer, Nicholas Carlini, and Ekin Dogus Cubuk. Adversarial examples are a natural
consequence of test error in noise. In International Conference on Machine Learning, 2019.

W.G. Gilchrist. Statistical modelling with quantile functions. 01 2000.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1321–1330. PMLR, 06–11 Aug 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

N. Henze and B. Zirkler. A class of invariant consistent tests for multivariate normality. Com-
munications in Statistics - Theory and Methods, 19(10):3595–3617, 1990. doi: 10.1080/
03610929008830400.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. ArXiv, abs/1207.0580,
2012.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 791–800, 2018.

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standardiza-
tion towards efficient whitening. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4869–4878, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

J. A. John and N. R. Draper. An alternative family of transformations. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 29(2):190–197, 1980. ISSN 00359254, 14679876.

Amir Joudaki, Hadi Daneshmand, and Francis Bach. On bridging the gap between mean field and
finite width deep random multilayer perceptron with batch normalization. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 15388–15400. PMLR, 23–29 Jul 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

Valero Laparra, Gustavo Camps-Valls, and Jesús Malo. Iterative gaussianization: From ica to random
rotations. IEEE Transactions on Neural Networks, 22(4):537–549, 2011. doi: 10.1109/TNN.2011.
2106511.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. In CS 231N, 2015.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
Jascha Narain Sohl-Dickstein. Deep neural networks as gaussian processes. ArXiv, abs/1711.00165,
2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, Apr 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards understanding regularization in
batch normalization. In International Conference on Learning Representations, 2019.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996. ISBN 0387947248.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang, and Ping Luo. Switchable whitening
for deep representation learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martín Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019.

T. Pham-Gia and T.L. Hung. The mean and median absolute deviations. Mathematical and Computer
Modelling, 34(7):921–936, 2001. ISSN 0895-7177. doi: https://doi.org/10.1016/S0895-7177(01)
00109-1.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and Greg
Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. PowerNorm: Rethink-
ing batch normalization in transformers. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8741–8751. PMLR, 13–18 Jul 2020.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:
1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. ArXiv, abs/1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal of Machine
Learning Research, 11(95):2837–2854, 2010.

Sida Wang and Christopher Manning. Fast dropout training. In Sanjoy Dasgupta and David
McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Research, pp. 118–126, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR.

M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika,
55(1):1–17, 1968. ISSN 00063444, 14643510.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A
mean field theory of batch normalization. In International Conference on Learning Representations,
2019.

In-Kwon Yeo and Richard A. Johnson. A new family of power transformations to improve normality
or symmetry. Biometrika, 87(4):954–959, 2000. ISSN 00063444.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Ming Zhou and Yongzhao Shao. A powerful test for multivariate normality. Journal of Applied
Statistics, 41(2):351–363, 2014. doi: 10.1080/02664763.2013.839637. PMID: 24563571.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A SERIES EXPANSION OF THE POWER TRANSFORM LOSS

Let L2 (x; (λ, λ0 = 1)) denote the second-order series expansion of the power transform’s NLL
centered at λ0 = 1, i.e.

L2 (x; (λ, λ0 = 1)) = L (x;λ = 1) + (λ− 1)L′(x;λ = 1) +
(λ− 1)

2

2
L′′(x;λ = 1) . (7)

We have6

L (x;λ = 1) = L (x;λ)
∣∣∣
λ=1

=
1

2
log (2π + 1) +

1

2
log

(
σ̂2 (λ = 1)

)
,

L′(x;λ = 1) =
∂L (x;λ)

∂λ

∣∣∣
λ=1

=
1

2σ̂2 (λ = 1)

∂σ̂2 (λ)

∂λ

∣∣∣
λ=1

− 1

N

N∑
i=1

log (1 + xi) ,

L′′(x;λ = 1) =
∂2L (x;λ)

∂λ2

∣∣∣
λ=1

=
−1

2 (σ̂2 (λ = 1))
2

(
∂σ̂2 (λ)

∂λ

∣∣∣
λ=1

)2

+
1

2σ̂2 (λ = 1)

∂2σ̂2 (λ)

∂λ2

∣∣∣
λ=1

,

(8)

where
∂σ̂2 (λ)

∂λ
=

2

N

N∑
i=1

[
(ψ (xi;λ)− µ̂ (λ))

(
∂ψ (xi;λ)

∂λ
− ∂µ̂ (λ)

∂λ

)]
, (9)

∴
∂σ̂2 (λ)

∂λ

∣∣∣
λ=1

=
2

N

N∑
i=1

[
(xi − µ̂ (λ = 1))

(
∂ψ (xi;λ)

∂λ

∣∣∣
λ=1

− ∂µ̂ (λ)

∂λ

∣∣∣
λ=1

)]
, (10)

with
∂ψ (xi;λ)

∂λ

∣∣∣
λ=1

= (1 + xi) (log (1 + xi))− xi,

∂µ̂ (λ)

∂λ

∣∣∣
λ=1

=
1

N

N∑
i=1

∂ψ (xi;λ)

∂λ

∣∣∣
λ=1

,

(11)

and
∂2σ̂2 (λ)

∂λ2
=

2

N

N∑
i=1

[(
(ψ (xi;λ)− µ̂ (λ))

(
∂2ψ (xi;λ)

∂λ2
− ∂2µ̂ (λ)

∂λ2

))

+

(
∂ψ (xi;λ)

∂λ
− ∂µ̂ (λ)

∂λ

)2
]
,

(12)

∴
∂2σ̂2 (λ)

∂λ2

∣∣∣
λ=1

=
2

N

N∑
i=1

[(
(xi − µ̂ (λ = 1))

(
∂2ψ (xi;λ)

∂λ2

∣∣∣
λ=1

− ∂2µ̂ (λ)

∂λ2

∣∣∣
λ=1

))

+

(
∂ψ (xi;λ)

∂λ

∣∣∣
λ=1

− ∂µ̂ (λ)

∂λ

∣∣∣
λ=1

)2
]
,

(13)

with
∂2ψ (xi;λ)

∂λ2

∣∣∣
λ=1

= (1 + xi) (log (1 + xi))
2 − 2

∂ψ (xi;λ)

∂λ

∣∣∣
λ=1

,

∂2µ̂ (λ)

∂λ2

∣∣∣
λ=1

=
1

N

N∑
i=1

∂2ψ (xi;λ)

∂λ2

∣∣∣
λ=1

.

(14)

Furthermore, because the power transform is applied after the normalization step (see main text),
µ̂ (λ = 1) = 0 and σ̂2 (λ = 1) = 1.

6To simplify the presentation, we outline the series expansion for x ≥ 0 only, as x < 0 follows closely by
symmetry.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B EVALUATION OF λ̂ ESTIMATES

Figure 6 provides representative examples substantiating the similarity between the NLL and its
second-order series expansion around λ0 = 1. The figure furthermore demonstrates the accuracy of
obtaining the estimates λ̂ using one step of the Newton-Raphson method.

Figure 6: Normality normalization estimates for λ̂ for a given
training minibatch (ResNet18/CIFAR10). Left to right: in-
creasing layer number. Top to bottom: estimates from various
channels. Normality normalization’s quadratic series expansion
for the loss (NLL SE) closely approximates the original loss
(NLL), leading to accurate estimates of λ̂ (marked by ×).

C TRAINING DETAILS

C.1 RESNET AND WIDERESNET EXPERIMENTS

The training configuration of the model and dataset combinations shown in Table 1, Figure 2, Figure
3, and Figure 4, which use batch normality normalization (BatchNormalNorm/BNN) and batch
normalization (BatchNorm/BN), and Figure 1, which use instance normality normalization (Instan-
ceNormalNorm/INN), instance normalization (InstanceNorm/IN), group normality normalization
(GroupNormalNorm/GNN), and group normalization (GroupNorm/GN), are as follows.

We used a variety of residual network (ResNet) (He et al., 2016) and wide residual network (WideRes-
Net) (Zagoruyko & Komodakis, 2016) architectures in our experiments. For all experiments except
those using the TinyImageNet, Caltech101, Food101, and ImageNet datasets, models were trained
from random initialization for 200 epochs, with a factor of 10 reduction in learning rate at each
60-epoch interval. For the experiments using the TinyImageNet, Caltech101, and Food101 datasets,
models were trained from random initialization for 100 epochs, with a factor of 10 reduction in
learning rate at epochs 40, 70, 90. For the experiments using the ImageNet dataset, models were
trained from random initialization for 120 epochs, with a factor of 10 reduction in learning rate at
epoch 90. A group size of 32 was used in all of the relevant group normalization experiments. For the
Caltech101 dataset, each run used a random 90/10% allocation to obtain the training and validation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

splits respectively7. Each such run used its own unique random seed to generate the splits for that
run, which facilitates greater precision in the reporting of our aggregate results across the runs.

In all of our experiments involving the ResNet18, ResNet34, and WideResNet architectures, stochastic
gradient descent (SGD) with learning rate 0.1, weight decay 5×10−4, momentum 0.9, and minibatch
size 128 was used. In the experiments involving the ResNet50 architecture on the TinyImageNet,
Caltech101, and Food101 datasets, SGD with learning rate 0.0125, weight decay 1×10−4, momentum
0.9, and minibatch size 32 was used. In the experiments involving the ResNet50 architecture on
the ImageNet dataset, SGD with learning rate 0.1, weight decay 1 × 10−4, momentum 0.9, and
minibatch size 256 was used when training with BNN, and SGD with learning rate 0.05, weight
decay 1× 10−4, momentum 0.9, and minibatch size 128 was used when training with BN. A noise
factor of ξ = 0.4, was used, as preliminary experiments demonstrated increases typically resulted in
training instability. We also investigated several hyperparameter configurations, including for the
learning rate, learning rate scheduler, weight decay, and minibatch size, across all the models and
found the present configurations to generally work best across all of them.

C.2 VISION TRANSFORMER EXPERIMENTS

The training configuration of the model and dataset combinations shown in Table 2, which use layer
normality normalization (LayerNormalNorm/LNN) and layer normalization (LayerNorm/LN), are as
follows. We used a vision transformer (Vaswani et al., 2017; Dosovitskiy et al., 2021) model in our
experiments consisting of 8 transformer layers, 8 attention heads, hidden dimension size of 768, and
MLP dimension size of 2304. A patch size of 4 was used throughout, except for the Food101 and
ImageNet100 experiments where it was set to 16.

For all experiments except those using the Food101 and ImageNet100 datasets, models were trained
from random initialization for 200 epochs, with a factor of 10 reduction in learning rate at each
60-epoch interval. For the experiments using the Food101 and ImageNet100 datasets, models were
trained from random initialization for 100 epochs, with a factor of 10 reduction in learning rate at
epochs 40, 70, 90. For the ImageNet100 dataset, for each run we randomly sampled 100 classes from
the ImageNet dataset, and used all the data corresponding to these 100 classes in their respective
training and validation sets. Each such run used its own unique random seed to sample the 100 classes
for that run, which facilitates greater precision in the reporting of our aggregate results across the
runs. For each ImageNet100 training run, we applied weighted random sampling to sample training
examples based on the training set’s corresponding inverse class frequency for the data point; we
found this to help across all the model configurations used.

The AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) with learning rate 1×10−3,
weight decay 5 × 10−2, (β1, β2) = (0.9, 0.999), ϵ = 1 × 10−8, and minibatch size 32 was used.
A noise factor of ξ = 1.0, was used, as preliminary experiments demonstrated increases typically
resulted in training instability. We also investigated several hyperparameter configurations, including
for the learning rate, learning rate scheduler, weight decay, and minibatch size, across all the models
and found the present configurations to generally work best across all of them.

C.3 DATASETS AND FRAMEWORKS

The datasets we used were CIFAR10, CIFAR100 (Krizhevsky, 2009), STL10 (Coates et al., 2011),
SVHN (Netzer et al., 2011), Caltech101 (Li et al., 2022), TinyImageNet (Le & Yang, 2015), Food101
(Bossard et al., 2014), and ImageNet (Deng et al., 2009). We trained our models using the PyTorch
(Paszke et al., 2019) machine learning framework. The STL10, SVHN, Caltech101, TinyImagenet,
and ImageNet datasets are available for non-commercial use. The CIFAR10 and CIFAR100 datasets
are publicly available under the MIT license. The Food101 dataset is available under the CC BY 4.0
license. The PyTorch framework is distributed under the BSD license.

C.4 COMPUTATIONAL RESOURCES

We used a cluster of NVIDIA GPUs having variable availability - approximately 6 V100 GPUs and 6
P100 GPUs were available to us at most times. We used a 3:1 CPU to GPU ratio for multi-process

7The official Caltech101 dataset does not come with its own training/validation split.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

data loading; these CPUs were all Intel CPUs of various specifications. All of the experiments shared
these compute resources. Most individual experiments ran in a few hours (with variability based
on model and dataset size). All of our experiments were completed in a span of approximately
3–4 weeks. We report all experimental results. We only omit preliminary experiments whose sole
objectives were for investigating the hyperparameter configurations which generally worked best
across all model and dataset combinations.

D ADDITIONAL EXPERIMENTS

In all the figures presented, unless otherwise stated each plotted value represents the mean performance
across M = 6 models, each of which was trained with differing random initializations for the model
parameters.

D.1 OTHER NOISE-BASED TECHNIQUES

Here we contrast the proposed method of additive Gaussian noise with scaling, which was described
in Subsection 4.2, with two other noise-based techniques.

The first is Gaussian dropout (Srivastava et al., 2014; Wang & Manning, 2013; Kingma et al., 2015),

where for each input indexed by i ∈ {1, . . . , N}, during training we have yi = xi · (1 + zi) ·
√

1−p
p ,

where xi is the i-th input’s post-power transform value, zi ∼ N (0, 1), and p ∈ (0, 1] is the retention
rate.

The second is additive Gaussian noise, but without scaling by each channel’s minibatch statistics.
This corresponds to our proposed method in the case where s is fixed to the mean of a standard

half-normal distribution, i.e. s =
√

2
π across all channels; and thus does not depend on the channel

statistics.8

Figure 7: Additive Gaussian noise with scaling is
effective. Validation accuracy for models trained with
BatchNormalNorm (ResNet34/STL10), but with vary-
ing forms for the noise component of the normalization
layer. See text for details.

Figure 7 shows that additive Gaussian noise
with scaling, the proposed noising method
in this work, is more effective than Gaussian
dropout, giving further evidence for the util-
ity of the proposed method. It is also more
effective than additive Gaussian noise (with-
out scaling), which suggests the norm of
the channel statistics plays an important role
when using additive random noise, which
adds further novelty and value to the pro-
posed method.

One reason why additive Gaussian noise
with scaling may work better than Gaus-
sian dropout, is because the latter scales
activations multiplicatively, which means
the effect of the noise is incorporated in the
backpropagated errors. In contrast, the pro-
posed method noise component does not
contribute to the gradient updates directly,
because it is additive. This would suggest
that models trained with normality normal-
ization obtain higher generalization perfor-

mance because they must become robust to misattribution of gradient values during backpropagation,
relative to the corrupted activation values during the forward pass.

8This value of s precisely mirrors how we calculated s in Subsection 4.2, since recall there we have
s = 1

N
∥x− x̄∥1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.2 CONTROLLING FOR THE POWER TRANSFORM AND THE ADDITIVE NOISE

Figure 8 demonstrates that both components of normality normalization – the power transform, and
the additive gaussian noise with scaling – each contribute meaningfully to the increased performance
in models trained with normalization normalization.

Figure 8: Controlling for the effects of the power transform and the additive Gaussian
noise with scaling components. Each subplot demonstrates the performance for models
trained with the use of additive Gaussian noise with scaling (BNN), and without (BNN w/o
noise), while using BatchNorm as a baseline. Subplot titles indicate the model and dataset
combination.

Furthermore, we evaluate the performance of models trained with BatchNormalNorm, across various
values of ξ, in Figure 9. These results demonstrate that the value of ξ = 0.4 works consistently well
across differing model and dataset combinations.

Figure 9: Varying the noise factor. Each subplot demonstrates the performance
for models trained with BatchNormalNorm (BNN), with varying noise factors ξ.
Subplot titles indicate the model and dataset combination.

D.3 EXPERIMENTS WITH DATA AUGMENTATIONS

Here we demonstrate that the proposed normalization layer scales with existing techniques for
improving model performance, such as data augmentations.

Table 4 demonstrates the improved performance for vision transformer (ViT) models trained with
data augmentations, and demonstrates that models trained with LayerNormalNorm (LNN) maintain

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

their superior performance compared to those trained with LayerNorm (LN), even as both benefit
from the use of data augmentations.

Table 5 demonstrates an improvement for the ResNet50 model trained with BatchNormalNorm with
ξ = 0 (BNN w/o noise) vs. BatchNorm (BN) on the large-scale ImageNet dataset; this further
demonstrates that the performance of normality normalization continues to scale with class number
and dataset size. Furthermore, by setting ξ = 0 (BNN w/o noise), this further acts as a control for
the effect of the power transform in BatchNormalNorm, and further complements the findings we
presented in Appendix Subsection D.2.

For the models trained on the SVHN dataset, we used mild random translations and rotations. For
the models trained on the CIFAR10 and CIFAR100 datasets, we used random cropping, random
horizontal flips, and mild color jitters. For the models trained on the Food101 and ImageNet datasets,
we used random cropping with resizing, random horizontal flips, and moderate color jitters.

Table 4: Validation accuracy across several benchmarks for a vision transformer (ViT) architecture
(see training details for model specifications), when using LayerNormalNorm (LNN) vs. LayerNorm
(LN). Here augmentations were employed (see text for details). For each table entry, represent-
ing a dataset and model combination, M = 6 models were trained, each with differing random
initializations for the model parameters.

DATASET LN LNN

SVHN 94.46 ± 0.33 95.94 ± 0.18
CIFAR10 73.71 ± 0.42 75.47 ± 0.49

CIFAR100 49.56 ± 0.42 52.89 ± 0.51
FOOD101 55.43 ± 0.57 63.04 ± 0.72

Table 5: Validation accuracy for ResNet architectures when using BatchNormalNorm with ξ = 0
(BNN w/o noise) vs. BatchNorm (BN). See text for discussion.

DATASET MODEL BN BNN W/O NOISE

IMAGENET TOP1 RN50 71.60 71.94
IMAGENET TOP5 RN50 90.71 90.83

D.4 EFFECT OF DEGREE OF GAUSSIANIZATION

Figure 10: Increasing gaussianity improves model
performance. Validation accuracy for models
trained using BatchNormalNorm without noise
(ResNet50/Caltech101), and with varying strengths
for the gaussianization (parameterized by α) when
applying the power transform. See text for details.

Here we consider what effect differing de-
grees of gaussianization have on model per-
formance, as measured by the proximity of
the estimate λ̂ to its MLE solution, which was
given by Equation 5.

We control the proximity to the MLE solution,
using a parameter α ∈ [0, 1] in the following
equation:

λ̂ = 1− α
L′(h;λ = 1)

L′′(h;λ = 1)
, (15)

where α = 1 corresponds to the MLE, and
decreasing values of α reduce the strength of
the gaussianization.

Figure 10 demonstrates that the method’s per-
formance increases with increasing α, and ob-
tains its best performance for α = 1. This
provides further evidence that increasing gaus-
sianity improves model performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: Training and validation curves for models trained with BatchNormalNorm vs. BatchNorm.
Bolded lines represent validation accuracy; unbolded lines represent training accuracy.

D.5 TRAINING CONVERGENCE

Figure 11 shows that the trends in the training and validation curves generally do not differ when
using BatchNormalNorm as compared to BatchNorm. This suggests that the understanding deep
learning practitioners have obtained for training models with conventional normalization layers,
remains applicable when augmenting those normalization layers with normality normalization.

D.6 SPEED BENCHMARKS

Figure 12: Runtime comparison between models us-
ing BatchNormalNorm (BNN) and BatchNorm (BN)
for two sets of model & dataset combinations; top:
ResNet18/CIFAR10, right: ResNet34/STL10. The left
hand plot shows the running time during training, and the
right hand plot shows the running time during evaluation.
See text for details.

Figure 12 shows the average per-sample
running time for models using Batch-
NormalNorm and BatchNorm. The val-
ues are calculated by taking the average
minibatch runtime at train/evaluation
time, for the entire training/validation
set, then normalizing by the number of
samples in the minibatch. Values are
obtained using an NVIDIA V100 GPU.

The plots shows a close correspondence
for test-time performance, with a larger
deviation at training time. However, it
is worth noting that the operations per-
formed in BatchNormalNorm do not
benefit from the low-level optimizations
in modern deep learning libraries, af-
forded to the constituent operations of
BatchNorm.

Furthermore, the present work serves
as a foundation, both conceptual and
methodological, for future works which
may continue to leverage the benefits
of gaussianizing. We believe improve-
ments to the runtime of normality nor-
malization can be obtained in future work, by leveraging approximations to the operations performed
in the present form of normality normalization, or by leveraging low-level optimizations.

D.7 NORMALITY AT INITIALIZATION

Figure 13 shows representative Q–Q plots, together with an aggregate measure of normality across
model layers, for post-power transform feature values when using BatchNormalNorm, and post-
normalization values when using BatchNorm, for models at initialization. It demonstrates that
at initialization, the pre-activations are close-to Gaussian regardless of the normalization layer
employed; and thus that only the model trained with BatchNormalNorm enforces and maintains
normality throughout training, as evidenced by Figure 5. Note that the Q–Q plots presented in Figures

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: As in Figure 5, but for networks at initialization. The plots demonstrate that, at initializa-
tion, networks with either BatchNormalNorm or BatchNormal have close-to Gaussian pre-activations.
However, as the networks are trained, BatchNormalNorm enforces and retains normality while
BatchNorm does not, as evidenced by Figure 5.

5 and 13, are obtained for precisely the same minibatch and channel combinations, which acts as as a
control.

D.8 UNCORRELATEDNESS, JOINT NORMALITY, AND INDEPENDENCE BETWEEN FEATURES

Following the motivation we presented in Subsection 2.3, here we sought to explore the potential
effect normality normalization may have on decorrelating features, the extent to which it may increase
joint normality in the features, and the extent to which it may increase the independence between
features.

We use the following experimental setup. For each layer of a ResNet34/STL10 model trained
to convergence using either BatchNormalNorm or BatchNorm, we compute the correlation, joint
normality, and mutual information over 20 pairs of channels, and across 10 validation minibatches.

We evaluate joint normality using the negative of the HZ-statistic (Henze & Zirkler, 1990) (higher val-
ues indicate greater joint normality), and evaluate independence using the adjusted mutual information
(AMI) metric (lower values indicate a greater degree of independence) Vinh et al. (2010)9

We evaluate joint normality across pairs of channels rather than across all of the channels in a layer,
because measures of joint normality are sensitive to small deviations in sample statistics for finite
sample sizes (Zhou & Shao, 2014; Ebner & Henze, 2020). Wherever we measure AMI, we use the
square root of the number of sampled features as the number of bins (a generally accepted rule of
thumb) when discretizing the features, and we use uniform binning, which is appropriate for (close
to) normally distributed data.

Figure 14 demonstrates that models trained with BatchNormalNorm have lower correlation between
unit features, higher joint normality, and have greater independence, across the model’s layers. This
is of value in context of the benefits feature independence is though to provide, which we explored in
Subsection 2.3.

E LEMMAS

Lemma E.1. Bivariate Normality Minimizes Mutual Information. Let X1 ∼ N
(
x1;µ1, σ

2
1

)
and

X2 ∼ N
(
x2;µ2, σ

2
2

)
. Then their mutual information I (X1;X2) is minimized when the random

variables are furthermore jointly normally distributed, i.e. (X1, X2) ∼ N (x;µ,Σ), with x =

[
x1
x2

]
,

9The AMI is a variation of mutual information, which adjusts for random chance. It is also bounded between
0 and 1, which makes it easier to interpret.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 14: Normality normalization induces greater feature independence. Correlation, joint
normality, and adjusted mutual information between pairs of channels for models trained to conver-
gence using BatchNormalNorm vs. BatchNorm (ResNet34/STL10). The results are obtained by
averaging the corresponding statistics across 20 channel pairs, and across 10 validation minibatches.
Here joint normality is quantified using the negative of the HZ-statistic.

µ =

[
µ1

µ2

]
, Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, and ρ the correlation coefficient between X1, X2. Furthermore

I (X1;X2) =
1
2 log

(
1

1−ρ2

)
.

Proof. Consider two possible distributions, f, g, for the joint distribution over (X1, X2), where f
denotes the probability density function (PDF) of the bivariate normal distribution, and g can be any
joint distribution. Our goal is to show that the mutual information between X1, X2, when they are
distributed according to g, is lower-bounded by the mutual information between X1, X2 when they
are distributed according to f .

For clarity of presentation, let the number of variables f and g take as arguments be clear from context,
so that it is understood when they are used to denote their marginal distributions. Furthermore let
Ig (X1;X2) represent the mutual information when (X1, X2) are distributed according to g, with the
notation extending analogously to their joint hg (X1, X2) and marginal hg (X1), hg (X2) entropies
under g.

We then have

Ig (X1;X2) = hg (X1) + hg (X2)− hg (X1, X2)

= hf (X1) + hf (X2)− hg (X1, X2)

≥ hf (X1) + hf (X2)− hf (X1, X2)

= If (X1;X2)

=
1

2
log

(
2πeσ2

1

)
+

1

2
log

(
2πeσ2

2

)
− 1

2
log

(
(2πe)

2 (
1− ρ2

)
σ2
1σ

2
2

)
=

1

2
log

(
1

1− ρ2

)
,

(16)

where the second equality follows because by assumption the marginals are normally distributed, the
inequality follows because the normal distribution maximizes entropy, and in the second-last equality
we have used the expressions for the entropy of the univariate and bivariate normal distributions.

Consequently, when the random variables are jointly normally distributed, ρ = 0 implies
I (X1;X2) = 0; thus uncorrelatedness implies independence.10

10The preceding result extends straightforwardly to the general multivariate setting, i.e. with more than two
random variables.

23

	Introduction
	Motivation
	Mutual Information Game & Noise Robustness
	Overview of the Framework
	Relation to Learning

	Maximal Representation Capacity and Maximally Compact Representations
	Maximally Independent Representations

	Background: Power Transform
	Normality Normalization
	Estimate of
	Additive Gaussian noise with Scaling

	Experimental Results & Analysis
	Experimental Setup
	Generalization Performance
	Effectiveness Across Normalization Layers
	Effectiveness Across Model Configurations
	Normality of Representations
	Noise Robustness

	Related Work & Future Directions
	Conclusion
	Series Expansion of the Power Transform Loss
	Evaluation of Estimates
	Training Details
	ResNet and WideResNet Experiments
	Vision Transformer Experiments
	Datasets and Frameworks
	Computational Resources

	Additional Experiments
	Other Noise-Based Techniques
	Controlling for the Power Transform and the Additive Noise
	Experiments with Data Augmentations
	Effect of Degree of Gaussianization
	Training Convergence
	Speed Benchmarks
	Normality at Initialization
	Uncorrelatedness, Joint Normality, and Independence Between Features

	Lemmas

