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Abstract

Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant
attention. DDPMs compose a Markovian process that begins in the data domain
and gradually adds noise until reaching pure white noise. DDPMs generate high-
quality samples from complex data distributions by defining an inverse process
and training a deep neural network to learn this mapping. However, these models
are inefficient because they require many diffusion steps to produce aesthetically
pleasing samples. Additionally, unlike generative adversarial networks (GANs),
the latent space of diffusion models is less interpretable. In this work, we propose
to generalize the denoising diffusion process into an Upsampling Diffusion Prob-
abilistic Model (UDPM). In the forward process, we reduce the latent variable
dimension through downsampling, followed by the traditional noise perturbation.
As a result, the reverse process gradually denoises and upsamples the latent vari-
able to produce a sample from the data distribution. We formalize the Markovian
diffusion processes of UDPM and demonstrate its generation capabilities on the
popular FFHQ, AFHQv2, and CIFAR10 datasets. UDPM generates images with as
few as three network evaluations, whose overall computational cost is less than a
single DDPM or EDM step while achieving an FID score of 6.86. This surpasses
current state-of-the-art efficient diffusion models that use a single denoising step
for sampling. Additionally, UDPM offers an interpretable and interpolable latent
space, which gives it an advantage over traditional DDPMs. Our code is available
online: https://github.com/shadyabh/UDPM/

Figure 1: The Upsampling Diffusion Probabilistic Model (UDPM) scheme for 3 diffusion steps
(L = 3). In addition to the gradual noise perturbation in traditional DDPMs, UDPM also downsamples
the latent variables. Accordingly, in the reverse process, UDPM denoises and upsamples the latent
variables to generate images from the data distribution.
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1 Introduction

In recent years, Denoising Diffusion Probabilistic Models (DDPMs) have become popular for image
generation due to their ability to learn complex data distributions and generate high-fidelity images.
These models work by starting with data samples and gradually adding noise through a Markovian
process until pure white noise is reached. This process is known as the forward diffusion process,
defined by the joint distribution q(x0:L). The reverse diffusion process, used for generating new
samples, is defined by the learned reverse process pθ(x0:L) using a deep neural network. This
methodology allows them to achieve impressive performance in learning data distributions and
sampling from them.

Although DDPMs have shown impressive results in image generation, they possess some limitations.
One major limitation is that they require a large number of denoising diffusion steps to produce
aesthetically pleasing samples. This can be quite intensive computationally, which makes the sampling
process slow and resource-intensive.

Additionally, the latent space of these models is not interpretable, which limits their utility for certain
types of image generation tasks, such as video generation or animation, especially when used in
an unconditional setting. The vast majority of works using diffusion models for editing rely on
manipulating the CLIP [28] embeddings used with these models and not the latent space itself.

In this work, we propose a generalized scheme of DDPMs called the Upsampling Diffusion Proba-
bilistic Model (UDPM). In addition to the gradual noise addition in the forward diffusion process, we
downsample the latent diffusion variables to “dissolve” the data information spatially, as demonstrated
in Figure 1. We thoroughly formulate the generalized model and derive the assumptions required for
obtaining a viable scheme.

Using our approach, we can sample images from CIFAR10 [22], AFHQv2 [6], and FFHQ [19]
datasets, with as few as 3 UDPM steps, where the cost of all three steps together is ∼30% of a single
regular diffusion step. This is less than two orders of magnitude compared to standard DDPMs:
guided diffusion [9] typically requires 1000 iterations, denoising diffusion implicit models [35]
require 250 iterations, stable diffusion [29] requires at least 50 iterations with an additional decoder,
EDM [18] can reduce the number of steps to 39, and other recent works [24, 25, 10] can sample
with 10-20 network evaluations, which is still considerably more than UDPM. Indeed, in [41], an
integration of discriminative loss with diffusion models has shown great generation performance
while requiring only 2 diffusion steps. Recent works [43, 26, 31] have demonstrated that sampling
can be performed with as few as a single denoising diffusion step while maintaining competitive
generation performance. Yet, UDPM achieves better generation quality than these works on the
CIFAR10 dataset [22] while requiring a smaller computational cost (1/3 of a typical diffusion step).

Because UDPM gradually reduces the dimensions of the latent variables in each step, the size
of the random noise added is considerably smaller. Specifically, all the dimensions of the latent
variables together are smaller than the dimensions of the original images. As a result, UDPM is much
more interpretable compared to conventional DDPMs. In our experiments, we show how one may
manipulate the generated images by changing the latent variables, which is similar to what has been
done in Generate Adversarial Networks (GANs) [19].

Our contributions may be summarized as follows: (i) A novel efficient diffusion model for image
generation that achieves a significant improvement over current state-of-the-art methods by reducing
the number and cost of diffusion steps required to generate high-quality images; (ii) achieving good
interpretability and interpolability of the latent space.

2 Related Work

Diffusion models are latent variable models defined through a diffusion probabilistic model. On one
side we have the data x0 ∼ q(x0) and on the other side, we have pure noise xL ∼ q(xL). Both are
related to each other using a Markovian diffusion process, where the forward process is defined by
the joint distribution q(x1:L|x0) and the reverse process by p(x0:L−1|xL). Using the Markov chain
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Figure 2: Generated 64×64 images of AFHQv2 [6] with FID=7.10142, produced using unconditional
UDPM with only 3 steps, which are equivalent to 0.3 of a single typical 64× 64 diffusion step.

property, q(x1:L|x0) and p(x0:L−1|xL) can be expressed by

p(x0:L−1|xL) =

L∏
l=1

p(xl−1|xl), (1)

and

q(x1:L|x0) =

L∏
l=1

q(xl|xl−1). (2)

As stated in previous literature [14, 9, 34], the common approach is to assume that the Markov chain
is constructed using normal distributions defined by

q(xl|xl−1) := N (
√

1− βlxl−1, βlI), (3)

and
p(xl−1|xl) := N (µl(xl),Σl(xl)), (4)

where β1, β2, . . . βL are hyperparameters that control the noise levels of the diffusion process, while
µl,Σl denote the mean and variance of the reverse process, respectively.

By learning the reverse process p(xl−1|xl) using a deep neural network, one can generate samples
from the data distribution by running the reverse process: starting from pure noise xL ∼ N (0, I),
then progressively predicting the next step of the reverse process using a network trained to predict
xl−1 from xl, until reaching x0.

Over the past couple of years, this principle has shown marvelous performance in generating realistic-
looking images [9, 29, 14, 34, 27, 20, 11, 32, 1]. However, as noted by [14], the number of diffusion
steps L is required to be large for the model to produce pleasing-looking images.

Recently, many studies have utilized diffusion models for image manipulation and reconstruction
tasks [40, 30], where a denoising network is trained to learn the prior distribution of the data. At test
time, some conditioning mechanism is combined with the learned prior for solving highly challenging
imaging tasks [3, 2, 7]. Note that our novel adaptive diffusion ingredient can be incorporated into any
conditional sampling scheme that is based on diffusion models.

The works in [40, 30] addressed the problems of deblurring and super-resolution using diffusion
models. These works try to deblur [40] or increase the resolution [30] of a blurry or low-res input
image. Unlike our work, their goal is not image generation, but rather image reconstruction from a
given degraded image. Therefore, their trained model is significantly different from ours.

Cold diffusion [4] performs diffusion steps by replacing the steps of noise addition with steps of
blending with another image or other general steps. This approach differs significantly from ours, as
their goal is to demonstrate that denoising can be replaced with other operations without developing
the corresponding diffusion equations. In our case, we formally show what operations can be used
without losing the Markovian property of the forward and reverse diffusion processes, and without
omitting the noise component.
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Soft diffusion [8] proposes to blur the signal before adding noise to it in the forward process. Then,
for solving the reverse process they train a network to deblur and denoise the signal. However, the
addition of the blur operation to the forward process prohibits explicit access to the reverse process
and therefore relies solely on the network to predict the clean sharp sample. In contrast, in our
method, the reverse process is explicitly accessible and can be sampled easily.

Another effort [12, 17] suggests replacing the denoising steps by learning the wavelet coefficients
of the high frequencies. They show that this can reduce the number of diffusion steps. Our work
differs from theirs in the fact that we rely on upsampling with an additive noise step. We also employ
advanced loss functions and present state-of-the-art generation results. This is in addition to our
interpretable latent space, a component missing from many of the recent diffusion models.

Many works tried to accelerate the sampling procedure of the denoising diffusion model [35, 18, 24,
25, 10]. However, they only focus on reducing the number of sampling steps, while ignoring the
diffusion structure itself. By contrast, in this work we propose to degrade the signal not only over the
noise domain but also in the spatial domain, thereby “dissolving” the signal much faster.

3 Method

Traditional denoising diffusion models assume that the probabilistic Markov process is defined by
(3) and (4). These equations construct forward and backward processes that progress by adding
and removing noise, respectively. In this work, we generalize this scheme by adding a degradation
element to the forward process. Specifically, we downsample the spatial dimension of the latent
variable and upsample it when reversing the process.

3.1 Upsampling Diffusion Probabilistic Model (UDPM)

We begin by redefining the marginal distributions q(xl|xl−1) and p(xl−1|xl) of the forward and
reverse processes:

q(xl|xl−1) := N (αlHxl−1, σ
2
l I), (5)

and
p(xl−1|xl) := N (µ(xl; l),Σl), (6)

where in contrast to previous diffusion models that used H = I , in this work we define the operator
H as a downsampling operator, defined by applying a blur filter W followed by subsampling with
stride γ. As a result, the forward diffusion process decreases the variables’ dimensions in addition to
the increased noise levels.

In diffusion models, the goal is to match the joint distributions pθ(x1:L|x0) (learned) and q(x1:L|x0)
under some statistical distance. One particular choice is the Kullback-Leibler (KL) divergence, which
we adopt here. Formally,

DKL(q(x1:L|x0)||pθ(x1:L|x0)) := Eq

[
log

q(x1:L|x0)

pθ(x1:L|x0)

]
= log pθ(x0)−Eq

[
pθ(x0:L)

q(x1:L|x0)

]
︸ ︷︷ ︸

ELBO

. (7)

Thus, one can minimize the KL-divergence between pθ(x1:L|x0) and q(x1:L|x0) by minimizing the
Evidence Lower Bound (ELBO). As we show in Appendix B.1, this is equivalent to

Eq

[
− log

pθ(x0:L)

q(x1:L|x0)

]
= Eq[DKL(p(xL)||q(xL|x0))

+

L∑
l=2

DKL(pθ(xl−1|xl)||q(xl−1|xl,x0)− log pθ(x1|x0)]. (8)

The right-hand side of (8) can be then minimized stochastically w.r.t. θ using gradient descent, where
at each step a random l is chosen and a single term of (8) is optimized.

In order to be able to use (8) for training pθ(·), one needs explicit access to q(xl−1|xl,x0), for which
we need to obtain q(xl|x0) first. Then, using Bayes’ theorem, we can derive q(xl−1|xl,x0). To do
so, we first present Lemma 1 (the proof is in Appendix B.2)
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Figure 3: Generated 64 × 64 images of FFHQ with FID=7.41065, produced using unconditional
UDPM with only 3 steps, which are equivalent to 0.3 of a single typical 64× 64 diffusion step.

Lemma 1. Let e iid∼ N (0, I) ∈ RN and H = SγW , where Sγ is a subsampling operator with stride
γ and W is a blur operator with blur kernel w. Then, if the support of w is at most γ, we have
He

iid∼ N (0, ∥w∥22I).

If Lemma 1 holds, then by assuming that ∥w∥22 = 1, we get the following result (see Appendix B.3)

q(xl|x0) = N (ᾱlHlx0, σ̃
2
l I) where ᾱl =

l∏
k=0

αk, and σ̃l = ᾱ2
l

l∑
k=1

σ2
k

ᾱ2
l

. (9)

Using (9), we can obtain xt from x0 simply by applying H l-times on x0, followed by the addition
of white Gaussian noise with standard deviation σ̃l.

Given q(xl|x0), we can use Bayes’ theorem and utilize the Markov chain property to get

q(xl−1|xl,x0) =
q(xl|xl−1)q(xl−1|x0)

q(xl|x0)
,

which, as shown in Appendix B.4, is of the following form

q(xl−1|xl,x0) = N (µ(xl,x0, l),Σl), (10)

where

Σl =

(
α2
l

σ2
l

HTH+
1

σ̃l−1
I

)−1

, (11)

and

µ(xl,x0, l) = Σl

(
αl

σ2
l

HTxl +
ᾱl−1

σ̃2
l−1

Hl−1x0

)
. (12)

Although expression (11) seems to be implacable, in practice it can be implemented efficiently using
the Discrete Fourier Transform and the poly-phase filtering identity used in [15, 5], where HTH is
equivalent to a convolution between w and its flipped version, followed by subsampling with stride γ.
More details are provided in Appendix B.5.

Following (10), the true posterior q(xl−1|xl,x0) in this new setup is a Gaussian distribution with
parameters (µ(xl,x0, l),Σl). Therefore, one may assume that pθ(·) is also Gaussian with parameters
(µθ,Σl), where µθ is parameterized by a deep neural network with learned parameters θ.

For normal distributions, a single term of (8) is equivalent to

ℓ(l) = DKL(pθ(xl−1|xl)||q(xl−1|xl,x0)

= Cl +
1

2
(µθ − µl)

TΣ−1
l (µθ − µl), (13)

where Cl is a constant value independent of θ.

5



Algorithm 1 UDPM training algorithm
Require: fθ(·), L, q(x), Dϕ(·)
1: while Not converged do
2: x0 ∼ q(x)
3: l ∈ {1, 2, . . . , L}
4: e ∼ N (0, I)
5: xl = ᾱlHlx0 + σ̃le
6: ℓ = λ

(l)
fid ℓsimple + λ

(l)
perℓper + λ

(l)
advℓadv

7: ADAM step on θ
8: Adversarial ADAM step on ϕ
9: end while

10: return fθ(·)

Algorithm 2 UDPM sampling algorithm
Require: fθ(·), L
1: xL ∼ N (0, I)
2: for all l = L, . . . , 1 do

3: Σ =

(
α2
l

σ2
l
HTH+ 1

σ̃2
l−1

I

)−1

4: µθ = Σ

[
αl

σ2
l
HTxl +

ᾱl−1

σ̃2
l−1

f
(l)
θ (xl)

]
5: xl−1 ∼ N (µθ,Σ)
6: end for
7: return x0

From our experiments and following [9, 14], training pθ to predict µ directly leads to worse results.
Therefore, we train the network to predict the second term in (12), i.e. to estimate Hl−1x0 from xl.
As a result, minimizing (13) can be simplified to minimizing the following term

ℓ̃
(l)
simple = (fθ(xl)−Hl−1x0)

TΣ−1
l (fθ(xl)−Hl−1x0), (14)

where fθ(·) is a deep neural network that upsamples its input by a scale factor of γ. By the definition
of Σl, it is easy to show that it is a diagonal positive matrix, and therefore it can be dropped. As a
result, one may simplify the objective to the following term

ℓ
(l)
simple = ∥fθ(xl)−Hl−1x0∥22. (15)

Unlike denoising diffusion models, UDPM tackles a super-resolution task at each reverse step.
Consequently, relying solely on ℓsimple for training fθ(·) produces softer images, as shown in Figure
7 and discussed in the ablation studies section 5. To address this, we propose to incorporate two
additional regularization terms, following [38]. The first term is a perceptual loss [42], denoted by
ℓper, which aligns the VGG features of Hl−1x0 and fθ(xl). The second term is an adversarial loss
denoted as ℓadv, which is similar to the one used in [38, 23]. Both are used to ensure sharp detailed
results. Overall, fθ(·) is trained using the following objective function

ℓ = λ
(l)
fid ℓsimple + λ(l)

perℓper + λ
(l)
advℓadv. (16)

Algorithm 1 and Figure 4 provide an overview of the UDPM training scheme.

3.2 Image Generation using UDPM

The UDPM scheme presented in the previous section introduces a new approach for capturing the
true implicit data distribution q(x0) of a given dataset. Given that we trained UDPM, the remaining
question is how it can be utilized for sampling from q(x0).

Given a deep neural network fθ trained to predict Hl−1x0 from xl, we start with a pure Gaussian
noise sample xL ∼ N (0, I). Subsequently, by substituting fθ(xl) into Hl−1x0 in (12), we get
an estimate of µL. Then, the next reverse diffusion step xL−1 can be obtained by sampling from
N (µL,ΣL). By iteratively repeating these steps L times, we can acquire a sample x0 ∼ pθ(x0), as
outlined in Algorithm 2.

Note that sampling the posterior requires parameterizing N (µl,Σl) in the form of

xl−1 = µl +Σ
1
2

l e,

where e ∼ N (0, I) has the same dimensions as xl−1. This requires having access to Σ
1
2

l . Due to the
structure of Σl, it is possible to apply it on e efficiently, as shown in Appendix B.6.

4 Experiments

In this section, we present the evaluation of UDPM under multiple scenarios. We tested our method on
CIFAR10 [22], FFHQ [19], and AFHQv2 [6] datasets. Here we focus on the qualitative performance
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Figure 4: The training and sampling procedures of UDPM. During the training phase, an image x0

is randomly selected from the dataset. It is then degraded using (9) to obtain a downsampled noisy
version xl, which is then plugged into f

(l)
θ (·), that is trained to predict Hl−1x0. In the sampling

phase, we start from pure noise xL ∼ N (0, I). This noise is passed through the network f
(L)
θ (·)

to estimate HL−1x0, used to compute µL through (12), with ΣL obtained from (11). Afterwards,
xL−1 is drawn from N (µL,ΣL) using the technique described in Appendix B.6. By repeating this
procedure for L iterations, the final sample x0 is obtained.

Figure 5: Latent space interpolation for 64 × 64 generated images. The four corner images are
interpolated by a weighted mixture of their latent noises, such that the other images are “in-between”
images from the latent perspective, similar to what has been done in GANs [19].

of UDPM and demonstrate its interpolatable latent space. In the appendix, we provide additional
quantitative and qualitative results.

We set L = 3 and fix γ = 2 for all datasets. We also use a uniform box filter of size 2 × 2 as the
downsampling kernel w as it satisfies the condition in Lemma 1. We then normalize it w.r.t. its norm
∥w∥ and use it to construct the downsampling operator H. Unlike previous diffusion approaches that
are limited to analytically defined noise schedulers due to the large diffusion steps number, UDPM
allows the noise scheduler to be fine-tuned manually by setting only 6 values ({αl}Ll=1 and {σl}Ll=1).
In our tests we set {αl}3l=1 = {0.5, 0.2, 10−3} and {σl}3l=0 = {0.1, 0.2, 0.3} for all datasets.
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noise deviation

l

Figure 6: Latent space perturbation for 64× 64 generated images. The original image is on the left.
To its right we present images that were generated by adding a small noise to the latent noise from
diffusion step l. As can be seen, the initial diffusion step (l = 1) controls the fine details of the image,
while the final diffusion step (l = 3) changes the semantics of the image.

We use the same UNet architecture proposed by [37] and utilized in [18] for all diffusion steps (the
specific implementation details are presented in Table 3). We increase the number of output channels
of the network by a factor of γ2 and use the depth-to-space layer [33] to rearrange the output pixels
to the desired dimension, which is equivalent to a scale-up by a factor of γ. For all datasets, we
train the network for 600K training steps using ADAM [21] with learning rate and batch size set to
10−4 and 64, respectively. We save the model weights every 10K training steps and pick the model
with the best Fréchet inception distance (FID) [13]. For stabilizing the training we use exponential
moving averaging (EMA) with the dampening parameter set to 0.9999. We also set λfid = (1, 1, 0),
λper = (4, 4, 0), and λadv = (0.2, 0.5, 1). Particularly, we found that setting λfid = λper = 0 for
l = 3 achieves the best results with minimal mode-collapse. For the discriminator network, we use
the discriminator architecture used in [41], which is a variant of the original discriminator network
proposed by [19]. We train all models using a single NVIDIA RTX A6000 GPU.

4.1 Unconditional Generation

In the unconditional scheme, we evaluate UDPM on FFHQ and AFHQv2 datasets, where each dataset
contains 50K and 14K images, respectively. We resize the images to 64×64 and train the UNet
using Algorithm 1.

The number of sampling steps required by UDPM is two orders of magnitude smaller than the original
denoising diffusion models [14, 34], one order of magnitude less than [35, 18], and up-to 4 times
smaller than many recent sophisticated samplers [24, 25, 10] designed for accelerating diffusion
generation. Particularly, since the size of latent variables increases progressively when sampling,
UDPM requires less total computations than a single denoising step used in traditional denoising
diffusion, as detailed in 4.3. While reducing the computational costs, UDPM retains great image
generation quality, as can be seen in Figures 3 and 2.

In addition to the decreased number of sampling steps, UDPM has much smaller latent dimensions.
This property allows us to smoothly interpolate the latent space, similar to what has been done in
GANs [19]. Figures 5, 10, and 11 show the results, where the corner images are randomly generated
and the in-between images are generated by averaging the noises used to generate the corner images:

el(i, j) = ηi(δje
l
1 +

√
1− δ2je

l
2) +

√
1− η2i (δje

l
3 +

√
1− δ2je

l
4),

where el1, e
l
2, e

l
3, e

l
4 are the noises at diffusion step l used to generate the 4 corner images, (i, j) are

the indices of the interpolated image in the figure, and (ηi, δj) are the interpolation coefficients that
lie in the range [0, 1]. In the supplementary material, we investigate other interpolation regimes, such
as latent variable swapping between two generated images (see Figure 13).

Another benefit of the smaller latent dimensions is that it allows better interpretability of the generative
model. While in previous diffusion approaches one needed to add a conditioning mechanism to the
network to be able to control the generation, in UDPM, one may control the generation by modifying
only the noise maps of the diffusion, as can be seen in Figures 6 and 12.
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steps FID
DDIM [35] 10/5 13.36/93.51

DPM-Solver [25] 10/5 6.96/288.99
EDM [18] 35/5 1.79/35.54

GENIE [10] 5 11.20
DEIS [16] 5 15.37

GGDM [39] 5 13.77
DDGAN [41] 2 4.08
TDPM [43] 1 8.91

CT [36] 1 8.70
UDPM (ours) <1 6.86

Table 1: FID scores on the CIFAR10 dataset [22]. UDPM uses 3 steps, which are equivalent in terms
of complexity to 0.3 of a single denoising step used in typical diffusion models like DDPM or EDM.

4.2 Class Conditional Generation

Similarly to previous works, we also propose a conditional generation scheme for UDPM, where we
use the label encoding block used in [18] to control the generation class. We evaluate UDPM on the
popular CIFAR10 [22] dataset, which has 50K 32× 32 images of 10 different classes.

Figure 14 shows the generation results of UDPM on CIFAR10. We also compare the performance of
UDPM empirically to many other state-of-the-art non-distillation diffusion methods in Table 1, where
we examine the FID results on 50K images generated from the 10 classes equally. For the baseline
methods, we show the original results presented in their papers and the results when the number of
steps is reduced to 5 diffusion steps. As can be seen, when the number of steps is limited to 5, UDPM
outperforms all the methods, while also requiring considerably less computation; specifically, 1/3 of
a single typical diffusion step.

4.3 Runtime

Unlike typical denoising diffusion models, UDPM decreases the dimensions of the latent variables
when proceeding with the diffusion process. Thus, the computations required to run the reverse
diffusion process for sampling are significantly less extensive. Specifically, sampling a 64× 64 image
using a single denoising diffusion step requires 40.62 GFLOPS, while UDPM samples images with
the same network structure using 13.35 GFLOPs, which is equivalent to 30% of the computations.
The reason is that in its 3 steps, the input dimensions of the UDPM network are 8× 8, 16× 16, and
32× 32

When comparing the runtimes, UDPM can sample 64×64 images from FFHQ and AFHQv2 datasets
at the rate of 765.21 FPS (frames per second) when benchmarked on NVIDIA RTX A6000 GPU,
while a single denoising diffusion step can be run at the rate of 255 FPS using a very similar network.

5 Ablation studies

To further understand the diffusion process captured by UDPM, we present two ablation studies in
which we examine the effect of each diffusion step on the generation results and demonstrate the
effectiveness of the perceptual loss terms used to train the network.

PCA of the generations. Given the noise maps of a generated image, we marginally change the
single diffusion step and then perform Principal Component Analysis (PCA) on the generated images,
we then examine the top principal components to understand what features are captured in each
diffusion step. In Figure 8 we present the top 8 principal components when the l-th noise map is
using small noise, as can be seen, the initial diffusion step controls the fine details while the final step
controls the semantics and the overall structure of the image. Similarly, in Figure 9 we show the top
8 principal components of the generated images when a single noise map is replaced entirely.

Perceptual loss. From our experiments we saw that using ∥ · ∥p for training fθ(·) leads to very soft
results. Hence we use the more sophisticated loss term in (16), which promotes perception over
distortion. For evaluating the contribution of each loss term, we examine three different networks:
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ℓ1 + ℓper + ℓadv

FID=7.41

ℓ1 + ℓper

FID=32.76

ℓ1

FID=72.91

Figure 7: Visual comparison of the loss terms effect on the FFHQ64 dataset generation results.

The first one is trained using ℓsimple, while the second has ℓper in addition to ℓsimple in its objective, and
finally the network trained using (16). We show qualitative and quantitative comparisons in Figure
7; the advantage of the perceptual terms can be seen clearly, where the FID score and the visual
comparison show that the results of using the full loss are significantly better.

6 Conclusion

We have proposed a new diffusion-based generative model called the Upsampling Diffusion Prob-
abilistic Model (UPDM). Our approach reduces the number of diffusion steps required to produce
high-quality images, which makes it significantly more efficient than previous solutions.

We have demonstrated the effectiveness of our approach on three different datasets: CIFAR10, FFHQ,
and AFHQv2. It is capable of producing high-quality images with only 3 diffusion steps, whose
computational cost is less than for one step of the original diffusion models, while significantly
outperforming current state-of-the-art methods dedicated to diffusion sampling acceleration.

Furthermore, we have shown that our interpolatable latent space has potential for further exploration,
particularly in the realm of image editing. Based on the initial results shown in the paper, it contains
semantic directions, such as making people smile or changing their age as shown in Figure 6. Future
research may explore using UDPM to perform editing operations similar to those performed in
styleGAN while maintaining better generation capabilities and favorable diffusion properties.

7 Limitation

While our approach produces impressive generative performance, it has some limitations. One
limitation of our work is the evaluation of relatively small datasets, such as CIFAR10, FFHQ, and
AFHQv2, which is a consequence of our limited computational resources. This restricted us from
evaluating our approach on larger and more diverse datasets. Future work could overcome this
limitation by leveraging a more powerful computational infrastructure to conduct experiments on
larger datasets, providing a more comprehensive validation of the model’s capabilities. Additionally,
while UDPM offers improved interpretability over “standard” denoising diffusion models, it still
falls short compared to the interpretability shown for GANs. To address this, further research could
explore enhancing the latent space structure of UDPMs to make it more interpretable, perhaps by
incorporating techniques from GANs or further analyzing the currently generated latent space.
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UDPM: Upsampling Diffusion Probabilistic Models – Supplementary Material

Here we provide our social impact statement, extended derivations of our UDPM model, ablation
studies on the latent space, and additional generation results.

A Social Impact Statement

The development of Upsampling Diffusion Probabilistic Models (UDPM) represents a significant
advancement in the field of image generation, offering the ability to produce high-quality images with
fewer computational resources. However, as with any powerful technology, there are potential risks
and ethical considerations to address. One major concern is the potential misuse of this technology for
creating realistic but deceptive images, such as deepfakes, which can be used to spread misinformation
or for malicious purposes. Additionally, the ability to generate high-quality synthetic images raises
issues of copyright and ownership, potentially impacting artists and content creators whose work
might be replicated or modified without their consent.

To mitigate these risks, it is essential to implement safeguards and establish ethical guidelines for
the use of UDPM and similar technologies. This can include developing robust detection methods
for synthetic content, ensuring transparency in the creation and distribution of AI-generated media,
and promoting responsible use among developers and end-users. Collaborating with policymakers
to create regulations that address the misuse of generative models can also help in preventing
harm. Furthermore, fostering an open dialogue within the AI research community about the ethical
implications and potential societal impacts of such technologies will be crucial in ensuring that
advancements in this field are aligned with broader societal values and public interest.

B Extended Derivations

B.1 Evidence Lower Bound

From the Evidence Lower Bound (ELBO) we have E[− log pθ(x0)] ≤ Eq

[
log pθ(x0:L)

q(x1:L|x0)

]
, hence

E[− log pθ(x0)] ≤ Eq

[
log

pθ(x0:L)

q(x1:L|x0)

]
= Eq

[
− log p(xL)−

L∑
l=1

log
pθ(xl−1|xl)

q(xl|xl−1)

]

= Eq

[
− log p(xL)−

L∑
l=2

log
pθ(xl−1|xl)

q(xl|xl−1)
− log

pθ(x0|x1)

q(x1|x0)

]
(⋆)
= Eq

[
− log p(xL)−

L∑
l=2

log
pθ(xl−1|xl)q(xl−1|x0)

q(xl−1|xl,x0)q(xl|x0)
− log

pθ(x0|x1)

q(x1|x0)

]

= Eq

[
− log p(xL)−

L∑
l=2

log
pθ(xl−1|xl)

q(xl−1|xl,x0)
−

L∑
l=2

log q(xl−1|x0) +

L∑
l=2

log q(xl|x0)

− log
pθ(x0|x1)

q(x1|x0)

]
= Eq

[
− log p(xL)−

L∑
l=2

log
pθ(xl−1|xl)

q(xl−1|xl,x0)
−((((((log q(x1|x0) + log q(xL|x0)

− log
pθ(x0|x1)

����q(x1|x0)

]
= Eq

[
− log

p(xL)

q(xL|x0)
−

L∑
l=2

log
pθ(xl−1|xl)

q(xl−1|xl,x0)
− log pθ(x0|x1)

]

= DKL(p(xL)||q(xL|x0)) +

L∑
l=2

DKL(pθ(xl−1|xl)||q(xl−1|xl,x0))− Eq [log pθ(x0|x1)] ,
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where in (⋆) Bayes was used, particularly

q(xl|xl−1) = q(xl|xl−1,x0) =
q(xl−1,xl|x0)

q(xl−1|x0)
=

q(xl−1|xl,x0)q(xl|x0)

q(xl−1|x0)
.

B.2 Lemma 1

Proof. The characteristic function of a Normal vector e ∼ N (µ,Σ) is in the form

ϕe(t) = E[exp(itTe)] = exp(itTµ− 1

2
tTΣt), (17)

when µ = 0 and Σ = I we get

ϕe(t) = exp(−1

2
tT t).

To prove the first claim of the lemma, it is sufficient to prove that He has a characteristic function of
the form (17). Denote the transpose operator of H by HT , which is defined as zero padding operator
followed by applying a flipped version the kernel of H, denoted by w. We have

ϕHe(t) = E[exp(itT (He))] = exp(i(HT t)Te) = exp(i(HT t)Tµ− 1

2
(HT t)TΣ(HT t))

= exp(itTHµ− 1

2
tTHΣHT t)

{µ=0,Σ=I}
= exp(−1

2
tTHHT t),

⇒ He ∼ N (0,HHT ).

All that remains is to express HHT under the assumption on the support of the downsampling
kernel . The operator H is defined as applying blur kernel w = [w−⌊γ/2⌋+1, . . . , w0, . . . w⌊γ/2⌋]
followed by subsampling with stride γ, which can be represented in matrix form by H = SγW ,
where Sγ ∈ RM×N and W ∈ RN×N . Specifically

Sγ =



1 0 . . . 0 0 . . . 0 . . . 0
0 . . . 0︸ ︷︷ ︸

γ

1 0 . . . 0 . . . 0

0 . . . 0︸ ︷︷ ︸
γ

0 . . . 0︸ ︷︷ ︸
γ

1 . . . 0

...
...

...

 ,

Wγ =

 w0 w1 . . . w⌊γ/2⌋ 0 . . . w−⌊γ/2⌋+1 w−⌊γ/2⌋+2 . . . w−1

w−1 w0 . . . w⌊γ/2⌋ 0 . . . 0 w−⌊γ/2⌋+1 . . . w−2

...
...

...
...

 ,

Therefore we have

SγW =

w0 . . . w⌊γ/2⌋ 0 . . . 0 . . . 0 w−⌊γ/2⌋+1 . . .
0 . . . 0 w−⌊γ/2⌋+1 . . . w⌊γ/2⌋ . . . 0 0 . . .
...

...
...

...

 , (18)

as can be observed from (18), the rows of SγW do not intersect with each other, as a result we get

HHT = SγW(SγW)T = SγWWTST
γ =


∥w∥22 0 0 . . . 0
0 ∥w∥22 0 . . . 0
...

...
... . . .

...
0 0 0 . . . ∥w∥22

 = ∥w∥22I. (19)
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B.3 Efficient representation of the forward process

Similar to earlier works, for efficient training, one would like to sample xl directly using x0. Which
is viable when assuming that the support of w is at most γ and ∥w∥22 = 1. Formally

xl = αlHxl−1 + σle1 = αlH(αl−1Hxl−2 + σl−1e2) + σle1

= αlαl−1H2xl−2 + αlσl−1He2 + σle1
Lemma (1)

= αlαl−1H2xl−2 + αlσl−1ẽ2 + σle1,

where e1, e2, ẽ2
i.i.d.∼ N (0, I). By definition, e1 and ẽ2 are independent identically distributed

vectors, therefore one may write

xl = αlαl−1H2xl−2 +
√
α2
l σ

2
l−1 + σ2

l e,

repeating the opening l − 2 times leads to

xl = ᾱlHlx0 +
√
α2
l α

2
l−1...α

2
2σ

2
1 + α2

l α
2
l−1...α

2
3σ

2
2 + ...+ α2

l σ
2
l−1 + σ2

l e

= ᾱlHlx0 +

√
ᾱ2
l σ

2
1

ᾱ1
+

ᾱ2
l σ

2
2

ᾱ2
+ ...+

ᾱ2
l σ

2
1

ᾱl
e = ᾱlHlx0 + ᾱl

√
σ2
1

ᾱ1
+

σ2
2

ᾱ2
+ ...+

σ2
1

ᾱl
e

= ᾱlHlx0 + σ̃le,

where ᾱl =
∏L

k=1 αk, σ̃2
l = ᾱ2

l

∑l
k=1

σ2
k

ᾱ2
k

, and e ∼ N (0, I).

B.4 Derivation of the posterior

Using Bayes theorem, we have for l > 1

q(xl−1|xl,x0) =
q(xl−1,xl|x0)

q(xl|x0)
=

q(xl|xl−1,�x0)q(xl−1|x0)

q(xl|x0)

Markov
=

q(xl|xl−1)q(xl−1|x0)

q(xl|x0)

(⋆⋆)
∝ exp

(
− 1

2σ2
l

∥xl − αlHxl−1∥22 −
1

2σ̃2
l−1

∥xl−1 − ᾱl−1Hl−1x0∥22
)

= exp(− 1

2σ2
l

(xT
l xl − 2αlx

T
l−1HTxl + α2

l x
T
l−1HTHxl−1)

− 1

2σ̃2
l−1

(xT
l−1xl−1 − 2ᾱl−1x

T
l−1Hl−1x0 + ᾱ2

l−1x
T
0 (Hl−1)THl−1x0))

(⋆⋆)
∝ exp

{
−1

2
xT
l−1

(
α2
l

σ2
l

HTH+
1

σ̃2
l−1

I

)
xl−1 + xT

l−1

(
αl

σ̃2
l

HTxl +
ᾱl−1

σ̃2
l−1

Hl−1x0

)}
,

which is a Normal distribution form w.r.t. the random vector xl−1. Note that in (⋆⋆) the proportional
equivalence is with relation to xl−1. Let q(xl−1|xl,x0) = N (µ,Σ), then one may write

Σ−1 =
α2
l

σ2
l

HTH+
1

σ̃2
l−1

I, (20)

and
Σ−1µ =

αl

σ2
l

HTxl +
ᾱl−1

σ̃2
l−1

Hl−1x0. (21)

B.5 Mean and variance of the posterior

The terms in (20) and (21) seem hard to evaluate, however, in the following we present an efficient
way to compute them. By definition H is structured from a circular convolution with a blur filter
followed by a subsampling with stride α. Therefore, one may use the poly-phase identity used in
[15, 5], which states that HTH in this case is a circular convolution between the blur kernel w and
its flipped version w̃ followed by subsampling with factor α, formally

h = (w ⊛ flip(w)) ↓α,
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therefore, one may write HTH in the following form

HTH = F⋆ΛhF , (22)

where F is the Discrete Fourier Transform (DFT), F⋆ is the inverse DFT, and Λh is a diagonal
operator representing the DFT transform of h. By plugging (22) into (20) we get

Σ−1 =
α2
l

σ2
l

F⋆ΛhF +
1

σ̃2
l−1

I =
α2
l

σ2
l

F⋆ΛhF +
1

σ̃2
l−1

F⋆F = F⋆

(
α2
l

σ2
l

Λh +
1

σ̃2
l−1

I

)
F ,

equivalently

Σ = F⋆

(
α2
l

σ2
l

Λh +
1

σ̃2
l−1

I

)−1

F . (23)

Therefore, as can be observed from (23), applying Σ is equivalent to applying the inverse of the filter(
α2

l

σ2
l
Λh + 1

σ̃2
l−1

I
)

, which can be performed efficiently using Fast Fourier Transform (FFT). Finally
we have

µ = Σ

(
αl

σ2
l

HTxl +
ᾱl−1

σ̃2
l−1

Hl−1x0

)
. (24)

B.6 Sampling the posterior

As discussed in section 3.2, the proposed generation scheme requires to sample from N (µl,Σl) at
each diffusion step, which due to the dimensions of Σl is not naive, since Σ0.5

l is needed in order
to use the parameterization xl−1|xl = µl(xl) + Σ0.5

l e where e ∼ N (0, I). However, as we saw in
section B.5, the operator Σl is equivalent to applying a linear filter h, therefore one may seek to find
a filter d such that

Σ = F⋆ΛhF = F⋆Λ2
dF ,

equivalently, we can break the DFT of the filter h to magnitude and phase such that

DFT{h} = |DFT{h}|eiϕh = |DFT{d}|2ei2ϕd ,

therefore

|DFT{d}| =
√

|DFT{h}|, ∡|DFT{d}| = 1

2
arctan

Im{DFT{h}}
Re{DFT{h}}

. (25)

As a result, applying Σ0.5 can be performed by employing the filter d defined in (25).

C Additional results

C.1 Latent space interpolation

As shown previously by [19], generative models have a very interesting property, where one may
modify the latent variable of the generative model in order to control the “style” of the generated
result, or for instance, given the latent variables of two images, one may interpolate the latent space
and get an “in-between” images that in contrast to the pixel-domain interpolation, transition smoothly
and naturally, as can be seen in Figures 10 and 11.

C.2 Latent space perturbation

Similar to what is presented in the main paper, we show additional latent variable perturbation in
order to obtain better understanding of the latent space, where we add a small noise to a single
diffusion step and see how it affects the generated result, as can be seen in Figures 6 and 12.

C.3 Latent variable swapping

In addition to what we presented above, we provide an additional ablation study that shows the benefit
of UDPM, that is to swap the latent variables (noise maps) between two generated images, and study
the effect on the generated result, as can be seen in Figure 13.
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C.4 Generation Results

We provide below additional generation results of UDPM on the CIFAR10 dataset, as can be seen in
Figure 14. We also provide an additional quantitative comparison to EDM [18] on the FFHQ [19]
and AFHQv2 [6] datasets, as can be seen in Table 2.

FFHQ AFHQv2
steps FID steps FID

EDM [18] 79/5 2.39/344.763 79/5 1.96/266.024
UDPM (ours) <1 7.41 <1 7.10

Table 2: FID scores comparison between UDPM and EDM [18] on the FFHQ [19] and AFHQv2 [6]
datasets. UDPM requires 3 diffusion steps, which is equivalent to 0.3 denoising steps of EDM.
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CIFAR10 AFHQv2 FFHQ
Learning rate 10−4 10−4 10−4

Warmup steps 5000 5000 5000
Batch Size 64 64 64
Dropout 0.1 0.1 0

Optimizer Adam Adam Adam
Number of GPUS 1 1 1

Table 3: Training hyperparameters.

CIFAR10 AFHQv2 FFHQ
Architecture NCSN [37] NCSN [37] NCSN [37]
Parameters 57.73M 65.41M 65.41M

Base channels 128 128 128
Channels Multiplier 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2
Attention resolution 8, 4, 2 16, 8, 4 16, 8, 4

In channels 3 3 3
Out channels 12 12 12

Blocks per scale 4 4 4
Table 4: Model hyperparameters.

CIFAR10 AFHQv2 FFHQ
Architecture DDGAN [41] DDGAN [41] DDGAN [41]
Parameters 18.95M 23.86M 23.86M
Channels 192, 384, 512, 512, 512 192, 384, 512, 512, 512, 512 192, 384, 512, 512, 512, 512

In channels 3 3 3
Blocks per scale 1 1 1

Blocks type NCSN down NCSN down NCSN down
Grad Penalty weight [41] 0.025, 0.1, 0.4 0.1, 0.4, 0.8 0.1, 0.4, 0.8

Dropout 0.4 0.4 0.3

Table 5: Discriminator network hyperparameters.
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original image

l = 1

l = 2

l = 3

Figure 8: The first 8 principal components of the covariance matrix computed over 128 images
generated by fixing two diffusion steps and adding small perturbation noise to the third (indexed
above).

original image

l = 1

l = 2

l = 3

Figure 9: The first 8 principal components of the covariance matrix computed over 128 images
generated by fixing two diffusion steps and re-randomizing the third (indexed above).
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Figure 10: AFHQv2 [6] latent space interpolation example. The four corner images are interpolated
by a weighted mixture of their latent noises, such that the other images are “in-between” images
from the latent perspective, similar to what has been done in GANs [19]. All the images are of size
64× 64.
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Figure 11: FFHQ [19] latent space interpolation example. The four corner images are interpolated
by a weighted mixture of their latent noises, such that the other images are “in-between” images
from the latent perspective, similar to what has been done in GANs [19]. All the images are of size
64× 64.
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noise deviation

l

Figure 12: Latent space perturbation for 64× 64 generated images. The original image is on the left,
then the images generated by adding a small noise to the latent noise from diffusion step l. As can be
seen, the initial diffusion steps (l = 1) controls the fine details of the image, while the final diffusion
step (l = 3) changes the semantics of the image.
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l = 3 l = 2 l = 1

l = 3 l = 2 l = 1

Figure 13: Latent variable swapping: Given the left and right images with the noise maps used for
generating them, we replace the l-th noise map of the image on the right with the l-th noise map of
the image on the left to see how each diffusion step affect the result (middle columns).
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FID=6.86149

Figure 14: Generated 32× 32 images of CIFAR10 [22] using conditional UDPM, requiring only 3
diffusion steps; equivalent to 0.3 traditional denoising step.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the limitation section in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Every assumption was explicitly mentioned in the paper, and the proof of every
claim was added to the supplemental material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the appendix we present a table of the configurations used in the experiments
shown in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and the models will be released publicly upon acceptance. The
implementation details mentioned in the paper allow the results to be faithfully reproduced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Tables 3, 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we report results using the same metrics used in all previous works.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the details are reported in the experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All the points are satisfied.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the social impact statement.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: See the social impact statement.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in the paper, including code, data, and models, are properly
credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will publish our code and models upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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