CycleGN: a Cycle Consistent approach for Neural Machine Translation
training using the Transformer model in a shuffled dataset

Anonymous ACL submission

Abstract

CycleGN is a Transformer architecture us-
ing a Discriminator-less CycleGAN approach,
specifically tailored for training Machine Trans-
lation models utilizing non-parallel datasets.
Despite the widespread availability of large par-
allel corpora for numerous language pairs, the
capacity to employ solely monolingual datasets
would substantially expand the pool of training
data. This approach is particularly beneficial
for languages with scarce parallel text corpora.

The foundational concept of our research posits
that in an ideal scenario, translations of trans-
lations should revert to the original source sen-
tences. Consequently, we can simultaneously
train a pair of models using a Cycle Consis-
tency Loss framework. This method bears re-
semblance to the technique of back-translation,
prevalently employed in Machine Translation,
where a pre-trained translation model is used
to generate new examples from a monolingual
corpus, thereby artificially creating a parallel
dataset for further training and refinement.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a significant advance-
ment in the field of Machine Translation, witness-
ing widespread adoption since its inception. Al-
though self-attention mechanisms were not novel
and had been investigated in prior studies (Bah-
danau et al., 2016), the Transformer model demon-
strated its formidable capabilities within Natural
Language Processing (NLP). Characterized by its
parallelized structure, the Transformer architec-
ture facilitated computational efficiency, enabling
the incorporation of a larger number of param-
eters. This enhancement has been exemplified
in NLP systems like Charles University Block-
Backtranslation-Improved Transformer Translation
(cubbitt) (Popel et al., 2020), which have surpassed
the performance levels of human professionals in
certain contexts.

Neural Machine Translation (NMT) datasets ne-
cessitate substantial text corpora, structured as
aligned pairs. This alignment implies the require-
ment for sentences with equivalent meaning to be
present in a minimum of two distinct languages,
enabling the initiation of model training to forge
linguistic linkages. Ongoing initiatives, includ-
ing OPUS (Tiedemann and Thottingal, 2020) and
Tatoeba (Tiedemann, 2012), are committed to fa-
cilitating public access to these datasets. Clearly,
parallel datasets comprise a small subset of the
volume of data in monolingual datasets.

Despite the remarkable efficacy exhibited by
Large Language Models (LLMs) in MT (Ma-
chine Translation) without the necessity of ex-
clusive training on parallel data (Zhu et al,
2023), their considerable magnitude renders them
costly in terms of both training and operation.
This economic burden consequently restricts their
widespread availability.

Back-translation (Sennrich et al., 2016) is a tech-
nique leveraging a trained MT model to translate
sentences from a monolingual dataset to produce
corresponding pairs, thereby synthetically aug-
menting the training data. Our research is founded
on the premise that the process of translating a sen-
tence from a source language to a target language,
followed by its retranslation from the target lan-
guage back to the source language, allows for the
measurement of the disparity between the original
and the machine-translated sentences. This dispar-
ity serves as a metric to assess the efficacy of the
models and facilitates the backpropagation of gra-
dients within the networks. Notably, this methodol-
ogy has been previously implemented in the realm
of Image-to-Image Translation, as evidenced in the
renowned CycleGAN study from Zhu et al. (2017).

2 Previous work

The TextCycleGAN model (Lorandi et al., 2023),
while not utilizing the Transformer architecture nor



operating within the MT field, introduced an inno-
vative strategy for text style transfer. This approach
employed a CycleGAN on the Yelp dataset to fa-
cilitate the learning of mappings between positive
and negative textual styles, notably in the absence
of paired examples.

Shen et al. (2017) exemplified the feasibility of
training two encoder-decoder networks in an unsu-
pervised manner that enables the sharing of a latent
space, thereby permitting style transfer. Lample
et al. (2018), adopting a similar technique within
the MT context, substantiated that the use of paral-
lel datasets is not a prerequisite for effective trans-
lation.

3 Dataset

In the context of the current study, a “shuffled”
dataset is defined as a parallel dataset wherein the
sentences of one language have been systematically
rearranged. Consequently, this results in a non-
parallel corpus where it is guaranteed that each sen-
tence has a corresponding translation located at an
unspecified index within the dataset. The authors
postulate that when employing sufficiently large
monolingual datasets, which are not derived from
shuffled parallel corpora, it is likely that most sen-
tences will possess an accurate translation “some-
where” within the dataset.

For the purposes of this research, a shuffled
dataset was utilized in lieu of a monolingual dataset.
This choice was made to facilitate a direct compar-
ison of our approach with conventional NMT train-
ing, employing an identical non-shuffled parallel
dataset and the same model architecture.

The dataset employed in this study is the English-
German language pair from the WMT?23 challenge
(Kocmi et al., 2023). Specifically, only the first
half of this dataset was used for training, due to
the current implementation’s high computational
demands. This amounts to a total of approximately
27 million sentences. The data released for the
WMT?23 General MT task can be freely used for
research purposes.

4 Training

For greater clarity, the mathematical notations from
the original CycleGAN work will be employed in
the present study. Given two languages X and )
with appropriate datasets, our objective is to obtain
two NMT models G : X — Yand F : Y — X
such that for x € X, G(z) = ¢, for § € Y and that

fory € Y, F(y) = &, for & € X. If the transla-
tions are perfect, G(F(y)) = y and F(G(x)) = x.
By using the Cross-Entropy Loss (CEL) (Zhang
and Sabuncu, 2018) in the role of the Cycle Consis-
tency Loss (CCL), we can determine the distance
between the original sentence and its double trans-
lation in order to compute the gradients.

As in the original CycleGAN work, our current
study also implements an Identity Loss (IL), which
relies on the CEL, to help with the training stability.
As G consists in a mapping X — ), if given an
input y € ), we want to obtain an unchanged
output such that G(y) = y. The same is applied to
F, where we also compute the IL between F(z)
and z. See Figure 1.

4.1 Obtaining labels

In the training process of a Transformer model, it
is imperative to have prior knowledge of the la-
bels, as the decoder predicts tokens sequentially.
Each token prediction, barring the initial one, is
contingent upon all preceding predictions. The act
of selecting the most probable token constitutes a
non-differentiable operation, thus precluding the
possibility of backpropagation. By possessing prior
knowledge of the reference translation, it becomes
feasible to contrast each predicted token against
the ground truth, enabling the calculation of loss at
every step.

Teacher Forcing (Gers et al., 2002) is a technique
that involves substituting the predicted token with
the actual ground truth at each stage of the decoding
process. This approach is designed to mitigate the
cascading impact of early erroneous predictions in
the sequence.

The CycleGN training process used here con-
sists in a cooperation between G and F. The first
step is to generate £ and g, since labels are not
required during inference, as backpropagation is
unnecessary. Even though this step cannot be used
to compute the gradients, it is crucial for the entire
process. From G(F(y)) = y and F(G(z)) = =, it
follows that the label for ¢ is « and the label for &
is y. We can compute & from F(¢) with z as the
label, and § from G (&) with y as the label, and use
the CCL between 2z and x, and between ¢ and y to
compute the gradients and backpropagate.

4.2 A Discriminator-less GAN

The CycleGAN methodology, as indicated by its
nomenclature, is predicated on the Generative
Adversarial Network (GAN) framework, initially
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Figure 1: CycleGN training process.

introduced in Goodfellow et al. (2014). This
paradigm involves the training of a Generator
model in conjunction with another model, termed
the Discriminator. The Discriminator is specifically
trained to distinguish between authentic samples
drawn from the dataset and synthetic samples pro-
duced by the Generator. In the CycleGAN train-
ing process, the Discriminators intervene after the
generation of & and g, helping the training of the
Generators. However, as mentioned in Section 4.1,
there can be no gradient computation during the
generation of & and ¢ in a transformer model and as
such, Discriminators cannot be used in the present
work. This is why CycleGN is not an “Adversarial”
approach, hence the name.

5 Model architecture

The architecture used for both models, G and F,
is the Marian framework (Junczys-Dowmunt et al.,
2018) implemented by Huggingface’s Transform-
ers library (Wolf et al., 2020), which is licenced
under the Apache Licence. While most parameters
follow the default configuration, Table 1 references
the changes that were made in order to reduce the
computational cost of the architecture.

6 Vocabulary organization

Sequence2Sequence models employ either a uni-
fied tokenizer or two distinct tokenizers. In the case
of a single tokenizer, it is trained using sentences

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6

Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLU

Table 1: Non-default parameters in the configuration of
Marian Transformer models

from both the source and target distributions, avoid-
ing any duplicates. This approach facilitates the
sharing of the encoder and decoder embedding lay-
ers, thereby diminishing computational demands
and enhancing model accuracy (Press and Wolf,
2017).

Conversely, the alternative approach entails train-
ing one tokenizer on the source distribution and
another one on the target distribution. While this
method restricts the possibility of tying embed-
dings, it can potentially double the vocabulary size.
The overall vocabulary size of the model in this sce-
nario, is the cumulative total of the two individual
vocabularies, barring shared tokens like punctua-
tion symbols.

While contemporary Transformer models like
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) and Genera-
tive Pre-trained Transformers (GPT) (Radford et al.,



2018) typically utilize a single tokenizer, this study
introduces a novel vocabulary methodology that
amalgamates the aforementioned approaches. This
method involves training two tokenizers, each for
a respective language and with half the vocabulary
size. Subsequently, the identifiers of one tokenizer
are adjusted to prevent overlap, yielding a result
analogous to a single tokenizer that includes dupli-
cates across languages. It is important to note that
special tokens such as < eos > (End of Sentence)
and < pad > (Padding) are shared and not dupli-
cated. This strategy is designed to simplify model
analysis during development, albeit at the expense
of a reduced vocabulary.

7 Pretraining

The CycleGN approach requires a pre-training step,
as it will not converge at all without it. Indeed, as
there is no Discriminator to ensure that £ belongs
to X and g belongs to ), G and F can converge
towards identity matrices. That is, if both G and F
do not apply any change to their input, they can still
achieve G(F(y)) = y and F(G(x)) = = without
learning how to translate.

Masked Language Modeling (MLM) is a pre-
training strategy first implemented in BERT,
wherein a specified proportion of tokens within the
input text are substituted with a unique < mask >
token. The objective of the neural network under
this paradigm is to accurately reconstruct the orig-
inal sentence. This process enables the model to
discern intricate relationships between words and
to develop a profound representation of the lan-
guage. This pre-training has revealed excellent
performances in diverse NLP application such as
sentiment analysis (Alaparthi and Mishra, 2021),
text classification (Sun et al., 2020), Named Entity
Recognition (NER) (Souza et al., 2020) (Chang
et al., 2021) (Akhtyamova, 2020) and paraphrase
detection (Khairova et al., 2022).

As MLM does not require any labeling, it is
perfectly adapted to the CycleGN approach. A
single model H is trained on the entire dataset for
a single epoch to reconstruct both languages, with
15% of the input tokens masked. When training the
CycleGN, rather than randomly initializing G and
F, the parameters from H are directly copied to
G and F. Indeed, as ‘H learns to reconstruct both
language X and ), it can be used to initialize both
networks. Figure 2 shows the training process of
H.

] ] Cros-Entro|
@» mask p: 0.15 —»@v

Figure 2: Masked Language Modeling training process.

8 Batch size

The original CycleGAN research mentions using
a batch size of one, and while they did not state
the reason in the research paper, one of the authors
explained it in a GitHub issue (Junyanz, 2017) as a
lack of GPU memory.

Rajput et al. (2021) examined the impact of batch
size within the CycleGAN architecture, observing a
significant decline in performance with its increase.
This deterioration was evident both through the ex-
ample images presented in that study and through
the calculated cosine dissimilarity, indicating in-
ferior model performance with larger batch sizes.
However, quality was achieved at the expense of
computational efficiency, as the training duration
to achieve 200 epochs was 8 hours with a batch
size of 1, but this was reduced to just 2 hours with
a batch size of 64.

In the context of our research, however, the trade-
off between quality improvement and computing
resource, as observed in the aforementioned study,
does not hold true. Utilizing a batch size of 1 in
our experiments hindered any form of convergence.
Consequently, a batch size of 16 was selected, as
it represented the maximum capacity that could be
accommodated within the available 24GB of GPU
memory of the Nvidia 4090 used for this work.

9 Training stability

It is crucial for a CycleGAN architecture that the
two models exhibit approximately equivalent levels
of performance. Given the interdependent nature
of these models, where the output of one serves as
the input for the other, maintaining consistency be-
tween them during training is imperative. Without
a strategy in place to prevent the performance of
the models from diverging, it is possible for one
model to gain the “upper hand” over the other.

9.1 Divergence between the Generators

Figure 3 presents the evolution of the CCL of an
early prototype of CycleGN and it can clearly be
seen that one of the two generators, F, ends up per-
forming much better than its counterpart G, which



blocks any future training.
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Figure 3: Evolution of the Cross-Entropy Loss during
the training of an early prototype.

9.2 Gradient Clipping

Gradient clipping is a technique utilized in the train-
ing of Deep Learning (DL) models, to address the
problem of ‘exploding’ gradients. This issue oc-
curs when gradients escalate to excessively high
values during training, leading to numerical insta-
bility and impeding the model’s convergence to an
optimal solution.

Gradient clipping can be implemented through
two primary methods: norm clipping and value
clipping. Norm clipping involves establishing a
threshold on the overall magnitude of the gradient
vector. On the other hand, value clipping involves
individually adjusting elements of the gradient vec-
tor that exceed the specified threshold.

By clipping the gradients by norm, with a thresh-
old of 1.0, as advised by the Huggingface library,
the training stabilized and the divergence between
G and F was observed to disappear.

10 One large epoch or multiple smaller
ones?

The CycleGAN framework is recognized for its
computational intensity due to several inherent fac-
tors. Primarily, as CycleGAN operates on the prin-
ciple of cycle consistency, it necessitates the train-
ing of two GANs simultaneously — one for each
direction of the transformation. This structure re-
quires substantial computational resources, as each
GAN consists of both a Generator and a Discrimi-
nator.

The resource-intensiveness of the CycleGAN
process, thus limits the size of the dataset that can

be used in a reasonable time. This necessitated a
decision between training for a single epoch on a
large dataset, or training for multiple epochs on a
smaller corpus arose.

We compared the CycleGN model on the entire
dataset under four different conditions:

1. One epoch containing 1% of the dataset
2. Five epochs containing 0.2% of the dataset
3. One epoch containing 2% of the dataset
4. Five epochs containing 0.4% of the dataset

We have selected the Crosslingual Optimised
Metric for Evaluation of Translation (COMET)
score, as proposed by Rei et al. (2020), as our com-
parison criterion. This metric has proven to be one
of the most effective in recent WMT competitions,
according to Kocmi et al. (2022), due to its strong
correlation with human judgment, aligning well
with our goal of mirroring human evaluative stan-
dards. Multiple COMET models have been made
available and we chose the default “wmt22-comet-
da” model. The average scores obtained on 10,000
sentences that were not part of the model training
set are presented in Table 2.

Condition ‘ English->German German->English

1 0.2727 0.2715
2 0.2411 0.2635
3 0.2741 0.2665
4 0.2258 0.2658

Table 2: COMET scores of CycleGN models depending
on the dataset condition.

Models exposed to a larger portion of the to-
tal dataset demonstrate superior performance com-
pared to those limited to a smaller, repetitive subset,
especially when the dataset encompasses over half
a million to a million sentences. We extrapolate
this result to larger datasets and thus chose to train
our model for a single epoch on the largest dataset
possible.

11 Results

To measure the performances of CycleGN, every
1000™ batch the CCL was averaged and 1,000 sen-
tences from the test set were translated to compute
the COMET score.

Figure 4 demonstrates how the addition of gradi-
ent clipping helps with training stability.
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Figure 4: Evolution of the Cross-Entropy Loss during
the training.

11.1 Translation quality

Even if tracking the CCL is an inexpensive manner
to estimate the progress of the training of the Cy-
cleGN architecture, as mentioned in Section 7, it
can also hide an absence of translation. Figure 5
demonstrates that the actual quality of translation,
as measured by the COMET metric, increases with
time. Note that the sudden drop is discussed in the
next section.

0.5 4

COMET score

!

0.3 4 ‘

0.2 4

T T T T T T T T
o 250 500 750 1000 1250 1500 1750
Batch (in thousands)

Figure 5: Evolution of the COMET score during the
CycleGN training.

After the end of the training, a test set of 10,000
sentences per language were translated and the
COMET scores are displayed in Table 3.

‘English—>German German->English
Score | 0.505 0.537

Table 3: COMET score of CycleGN models.

As mentioned in Section 3, in order to give
a point of comparison, we trained a couple of

architecture-matched models using the parallel
dataset. As in the case of the CycleGN training,
these models were only trained for a single epoch
on the first half of the WMT23 English-German
language pair. Results are displayed in Table 4. We
fully expected the COMET score of the CycleGN
to be inferior to architectures using parallel corpora,
but we believe the differences between the scores
will reduce with larger datasets.

‘English—>German German->English
Score ‘ 0.780 0.775

Table 4: COMET score of architecture-matched models.

11.2 The sudden drop

Upon examining Figure 5, there is an observable
precipitous deterioration in the CEL of Generator G
post the 600,000™ batch mark. Delving into the test
set translations conducted at every 1,000™ batch in-
terval reveals substantial and abrupt modifications.
Appendix A presents the evolution of the first three
translations of the test set.

While these alterations, despite their detrimental
effect on the translation’s quality, ostensibly do not
exert a significant influence on the aggregate trans-
lation score at first, they are impressively accurate
in predicting the drop in quality that ensues.

Examining the progression of alterations without
delving into the translation quality, one can discern
a clear pattern. Initially, an inverted comma is intro-
duced at the onset of each sentence, subsequently
appearing at the termination of most sentences as
well. This is then substituted with a “(3)” at the
start of each sentence, eventually being replaced by
a letter “(b)”. This phase, primarily characterised
by superficial quality degradation, gives way to
a more pronounced collapse. Here, a significant
portion of sentences is rendered as a parenthesis
followed by a repeated letter “k”.

11.3 Recovery

Remarkably, this phase of decline vanishes in the
subsequent batch, resulting in a minor, primarily
cosmetic alteration in the output. This demon-
strates that the training process is robust and can
withstand even major disturbances to one of the
two generators. This also shows the importance
of accurately monitoring the accuracy achieved, to
avoid stopping the training during such a drop.



12 Future Work

12.1 Activation function

The activation function in machine learning, espe-
cially in neural networks, plays a crucial role in
determining the output of a node or neuron. Itis a
mathematical function that introduces non-linearity
into the network, enabling it to learn and perform
more complex tasks that linear functions cannot
handle. The current CycleGN implementation re-
lies on ReLLU, but it seems GELU has now become
the default activation function in Huggingface.

12.2 Longer dataset

Our current work has been trained on a small
dataset compared to MT standards. Future work
should try to see how convergence progresses with
more iterations. Further computational optimiza-
tions are probably necessary to shorten the training
time required.

12.3 Larger models

The current architecture relies on a total of
158,769,152 parameters, which is only about a third
of the size of the default in the Huggingface library.
Although Table 4 demonstrates that the current
number of parameters is capable of producing bet-
ter translations and an increase in both the number
of epochs and the size of the dataset should be
prioritized, larger models are common in NMT.

13 Source Code

The source code of CycleGN is available at
[anonymized].

14 Conclusion

In conclusion, our research presents a pioneering
application of the Transformer model in the realm
of cyclic text-to-text mapping for language trans-
lation. To the best of our knowledge, this study
is the first of its kind to successfully employ the
Transformer architecture in this context.

Neither Discriminators nor backpropagation
throughout the training process are required for
the CycleGN architecture to be capable of produc-
ing high-performance translation models without
the need for a parallel corpora.

The success of the CycleGN model in text trans-
lation suggests its potential applicability in broader
NLP tasks, such as more generalized style transfer.
This possibility paves the way for future research

to explore and expand the model’s utility in various
other linguistic transformations.

Limitations

As previously discussed in Section 3, we used a
specific case of non-parallel dataset where all sen-
tences have a translation, which is different from
the common non-parallel corpora where only a cer-
tain number of samples will have a ground truth.
As such, it is not yet known whether or not this
method can be generalized to any type of non-
parallel dataset or if it only works above a certain
threshold of ground truth presence.

The current implementation of the CycleGN ar-
chitecture has not yet been fully optimized and as
such, the training process took 16 days on a Nvidia
4090. This makes it a computationally expensive
network which might make scaling the number of
parameters exceedingly expensive.

Another issue that arises from the computing
cost of CycleGN is the lack in language diversity.
Indeed, our current work only used the English-
German language pair, which are both European
languages that use the Latin alphabet. Conse-
quently, it cannot be certain that the approach pre-
sented can be applied to other languages and alpha-
bets.

CycleGN may result in models that are less ro-
bust and more prone to errors, especially in han-
dling idiomatic expressions or culturally specific
content, resulting in translations that are either too
literal or completely off the mark. Although non-
parallel datasets present a crucial asset, especially
for languages lacking substantial parallel corpora,
the inherent risks and challenges associated with
their use must be carefully considered.
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A Sudden Drop

Batch number

CycleGN translations

647,000

Riickflussen Sie diesen Kalender nicht mit der Exposition bei Bedarf NICHT in alle
Euro-Arm-Arm-Arm in den Haupt und ldngere Aufarbeitungsoperationen.

Wenn die Blutvideos sind, ist die dritte Dosis mit Vorsicht vorzunehmen, um auf
geringfiigige Gesamtiiberleben zu achten.

Wenn die Blutvideos sind, ist die dritte Dosis mit Vorsicht vorzunehmen, um auf 14%
der Gesamtdosis zu achten.

648,000

"Der EWSA in Riicksprache mit diesem Kalender kann die EZB bei Bedarf NICHT
in allen Euro-Arm Léndern in die wichtigsten und ldngeren Aufarbeitarbeiten gelangt
sein.

"Der EWSA ist das EWSAbestandstatte, das dritte Mal im Rahmen der gefilschten
EWSA auf geringfiigige Gesamtiiberlebensraten zuriickgeht.

"Der EWSAbestandstatte ist der dritte im Rahmen der gefilschten EWSA auf 14%
der Gesamtiiberlebensdosis.

649,000

" Riicktiinftiger Kalender" der EZB bei der Gewihrleistung der Lebensqualitit in
allen Européischen Lindern eintretenden Haupt- und ldngere Aufarbeitarbeiten.
"Vorschlag der LandesVorbereitung des dritten Impfstoffs mit gefidlschten Direk-
tzahlungen auf geringfiigige Gesamtiiberleben"

"Vorschlag der LandesVorbereitung des dritten Impfstoffs mit einer Zulassungsstel-
lungnahme auf 14% der Gesamtiiberlebensdauer"

650,000

(3) Riickt diesen Kalender auf der EZB bei, dass notifizierte Personen in allen Euro-
Wihrungsgebiets in die Haupt- und ldngere Aufarbeitungsoperationen einbezogen
werden konnen.

(3) Die notifizierte LandesVorlage ist die dritte im Rahmen des gefilschten Rahmen-
programms auf geringfiigige Gesamtiiberleben.

(3) Die notifizierte LandesVorlage ist die dritte im Rahmen des gefilschten Reform-
programms auf 17% der Gesamtmenge.

651,000

(b) Riickscheinend kann dieser Kalender der EZB bei den Gegenparteien in allen Euro-
Wihrungsgebiets in den Haupt- und ldngeren Aufarbeitarbeiten eingesetzt werden.
(b) Die notifizierte Landesstattstelle ist die dritte im Rahmen der gefilschten Gegen-
partei auf geringfiigige Gesamtiibersicht.

(b) Die notifizierte Landesstattstelle ist die dritte im Rahmen der gefilschten Gegen-
partei auf 17% der Gesamtsumme.

652,000

(kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
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kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

653,000

1.1 Riickblick dieses Kalenders kann die EZB bei den Gegenparteien in allen Euro-
pdischen Léndern in die wichtigsten und ldngeren Aufarbeitarbeiten investieren.

1.1 DieSTROMbestandstattung ist die dritte im gefilschten Rechtsrahmen auf ger-
ingfiigige Weise der Gesamtumsatz.

1.1 Die EFSIbestandstattung ist die dritte im gefdlschten Rechtsrahmen auf 16% des
Gesamtumsatzes.

Table 5: Generated test translations at specific batches.
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