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Abstract

CycleGN is a Transformer architecture us-001
ing a Discriminator-less CycleGAN approach,002
specifically tailored for training Machine Trans-003
lation models utilizing non-parallel datasets.004
Despite the widespread availability of large par-005
allel corpora for numerous language pairs, the006
capacity to employ solely monolingual datasets007
would substantially expand the pool of training008
data. This approach is particularly beneficial009
for languages with scarce parallel text corpora.010

The foundational concept of our research posits011
that in an ideal scenario, translations of trans-012
lations should revert to the original source sen-013
tences. Consequently, we can simultaneously014
train a pair of models using a Cycle Consis-015
tency Loss framework. This method bears re-016
semblance to the technique of back-translation,017
prevalently employed in Machine Translation,018
where a pre-trained translation model is used019
to generate new examples from a monolingual020
corpus, thereby artificially creating a parallel021
dataset for further training and refinement.022

1 Introduction023

The introduction of the Transformer architecture024

(Vaswani et al., 2017) marked a significant advance-025

ment in the field of Machine Translation, witness-026

ing widespread adoption since its inception. Al-027

though self-attention mechanisms were not novel028

and had been investigated in prior studies (Bah-029

danau et al., 2016), the Transformer model demon-030

strated its formidable capabilities within Natural031

Language Processing (NLP). Characterized by its032

parallelized structure, the Transformer architec-033

ture facilitated computational efficiency, enabling034

the incorporation of a larger number of param-035

eters. This enhancement has been exemplified036

in NLP systems like Charles University Block-037

Backtranslation-Improved Transformer Translation038

(cubbitt) (Popel et al., 2020), which have surpassed039

the performance levels of human professionals in040

certain contexts.041

Neural Machine Translation (NMT) datasets ne- 042

cessitate substantial text corpora, structured as 043

aligned pairs. This alignment implies the require- 044

ment for sentences with equivalent meaning to be 045

present in a minimum of two distinct languages, 046

enabling the initiation of model training to forge 047

linguistic linkages. Ongoing initiatives, includ- 048

ing OPUS (Tiedemann and Thottingal, 2020) and 049

Tatoeba (Tiedemann, 2012), are committed to fa- 050

cilitating public access to these datasets. Clearly, 051

parallel datasets comprise a small subset of the 052

volume of data in monolingual datasets. 053

Despite the remarkable efficacy exhibited by 054

Large Language Models (LLMs) in MT (Ma- 055

chine Translation) without the necessity of ex- 056

clusive training on parallel data (Zhu et al., 057

2023), their considerable magnitude renders them 058

costly in terms of both training and operation. 059

This economic burden consequently restricts their 060

widespread availability. 061

Back-translation (Sennrich et al., 2016) is a tech- 062

nique leveraging a trained MT model to translate 063

sentences from a monolingual dataset to produce 064

corresponding pairs, thereby synthetically aug- 065

menting the training data. Our research is founded 066

on the premise that the process of translating a sen- 067

tence from a source language to a target language, 068

followed by its retranslation from the target lan- 069

guage back to the source language, allows for the 070

measurement of the disparity between the original 071

and the machine-translated sentences. This dispar- 072

ity serves as a metric to assess the efficacy of the 073

models and facilitates the backpropagation of gra- 074

dients within the networks. Notably, this methodol- 075

ogy has been previously implemented in the realm 076

of Image-to-Image Translation, as evidenced in the 077

renowned CycleGAN study from Zhu et al. (2017). 078

2 Previous work 079

The TextCycleGAN model (Lorandi et al., 2023), 080

while not utilizing the Transformer architecture nor 081
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operating within the MT field, introduced an inno-082

vative strategy for text style transfer. This approach083

employed a CycleGAN on the Yelp dataset to fa-084

cilitate the learning of mappings between positive085

and negative textual styles, notably in the absence086

of paired examples.087

Shen et al. (2017) exemplified the feasibility of088

training two encoder-decoder networks in an unsu-089

pervised manner that enables the sharing of a latent090

space, thereby permitting style transfer. Lample091

et al. (2018), adopting a similar technique within092

the MT context, substantiated that the use of paral-093

lel datasets is not a prerequisite for effective trans-094

lation.095

3 Dataset096

In the context of the current study, a “shuffled”097

dataset is defined as a parallel dataset wherein the098

sentences of one language have been systematically099

rearranged. Consequently, this results in a non-100

parallel corpus where it is guaranteed that each sen-101

tence has a corresponding translation located at an102

unspecified index within the dataset. The authors103

postulate that when employing sufficiently large104

monolingual datasets, which are not derived from105

shuffled parallel corpora, it is likely that most sen-106

tences will possess an accurate translation “some-107

where” within the dataset.108

For the purposes of this research, a shuffled109

dataset was utilized in lieu of a monolingual dataset.110

This choice was made to facilitate a direct compar-111

ison of our approach with conventional NMT train-112

ing, employing an identical non-shuffled parallel113

dataset and the same model architecture.114

The dataset employed in this study is the English-115

German language pair from the WMT23 challenge116

(Kocmi et al., 2023). Specifically, only the first117

half of this dataset was used for training, due to118

the current implementation’s high computational119

demands. This amounts to a total of approximately120

27 million sentences. The data released for the121

WMT23 General MT task can be freely used for122

research purposes.123

4 Training124

For greater clarity, the mathematical notations from125

the original CycleGAN work will be employed in126

the present study. Given two languages X and Y127

with appropriate datasets, our objective is to obtain128

two NMT models G : X 7→ Y and F : Y 7→ X129

such that for x ∈ X , G(x) = ŷ, for ŷ ∈ Y and that130

for y ∈ Y , F(y) = x̂, for x̂ ∈ X . If the transla- 131

tions are perfect, G(F(y)) = y and F(G(x)) = x. 132

By using the Cross-Entropy Loss (CEL) (Zhang 133

and Sabuncu, 2018) in the role of the Cycle Consis- 134

tency Loss (CCL), we can determine the distance 135

between the original sentence and its double trans- 136

lation in order to compute the gradients. 137

As in the original CycleGAN work, our current 138

study also implements an Identity Loss (IL), which 139

relies on the CEL, to help with the training stability. 140

As G consists in a mapping X 7→ Y , if given an 141

input y ∈ Y , we want to obtain an unchanged 142

output such that G(y) = y. The same is applied to 143

F , where we also compute the IL between F(x) 144

and x. See Figure 1. 145

4.1 Obtaining labels 146

In the training process of a Transformer model, it 147

is imperative to have prior knowledge of the la- 148

bels, as the decoder predicts tokens sequentially. 149

Each token prediction, barring the initial one, is 150

contingent upon all preceding predictions. The act 151

of selecting the most probable token constitutes a 152

non-differentiable operation, thus precluding the 153

possibility of backpropagation. By possessing prior 154

knowledge of the reference translation, it becomes 155

feasible to contrast each predicted token against 156

the ground truth, enabling the calculation of loss at 157

every step. 158

Teacher Forcing (Gers et al., 2002) is a technique 159

that involves substituting the predicted token with 160

the actual ground truth at each stage of the decoding 161

process. This approach is designed to mitigate the 162

cascading impact of early erroneous predictions in 163

the sequence. 164

The CycleGN training process used here con- 165

sists in a cooperation between G and F . The first 166

step is to generate x̂ and ŷ, since labels are not 167

required during inference, as backpropagation is 168

unnecessary. Even though this step cannot be used 169

to compute the gradients, it is crucial for the entire 170

process. From G(F(y)) = y and F(G(x)) = x, it 171

follows that the label for ŷ is x and the label for x̂ 172

is y. We can compute ˆ̂x from F(ŷ) with x as the 173

label, and ˆ̂y from G(x̂) with y as the label, and use 174

the CCL between ˆ̂x and x, and between ˆ̂y and y to 175

compute the gradients and backpropagate. 176

4.2 A Discriminator-less GAN 177

The CycleGAN methodology, as indicated by its 178

nomenclature, is predicated on the Generative 179

Adversarial Network (GAN) framework, initially 180
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Figure 1: CycleGN training process.

introduced in Goodfellow et al. (2014). This181

paradigm involves the training of a Generator182

model in conjunction with another model, termed183

the Discriminator. The Discriminator is specifically184

trained to distinguish between authentic samples185

drawn from the dataset and synthetic samples pro-186

duced by the Generator. In the CycleGAN train-187

ing process, the Discriminators intervene after the188

generation of x̂ and ŷ, helping the training of the189

Generators. However, as mentioned in Section 4.1,190

there can be no gradient computation during the191

generation of x̂ and ŷ in a transformer model and as192

such, Discriminators cannot be used in the present193

work. This is why CycleGN is not an “Adversarial”194

approach, hence the name.195

5 Model architecture196

The architecture used for both models, G and F ,197

is the Marian framework (Junczys-Dowmunt et al.,198

2018) implemented by Huggingface’s Transform-199

ers library (Wolf et al., 2020), which is licenced200

under the Apache Licence. While most parameters201

follow the default configuration, Table 1 references202

the changes that were made in order to reduce the203

computational cost of the architecture.204

6 Vocabulary organization205

Sequence2Sequence models employ either a uni-206

fied tokenizer or two distinct tokenizers. In the case207

of a single tokenizer, it is trained using sentences208

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6

Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLU

Table 1: Non-default parameters in the configuration of
Marian Transformer models

from both the source and target distributions, avoid- 209

ing any duplicates. This approach facilitates the 210

sharing of the encoder and decoder embedding lay- 211

ers, thereby diminishing computational demands 212

and enhancing model accuracy (Press and Wolf, 213

2017). 214

Conversely, the alternative approach entails train- 215

ing one tokenizer on the source distribution and 216

another one on the target distribution. While this 217

method restricts the possibility of tying embed- 218

dings, it can potentially double the vocabulary size. 219

The overall vocabulary size of the model in this sce- 220

nario, is the cumulative total of the two individual 221

vocabularies, barring shared tokens like punctua- 222

tion symbols. 223

While contemporary Transformer models like 224

Bidirectional Encoder Representations from Trans- 225

formers (BERT) (Devlin et al., 2019) and Genera- 226

tive Pre-trained Transformers (GPT) (Radford et al., 227
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2018) typically utilize a single tokenizer, this study228

introduces a novel vocabulary methodology that229

amalgamates the aforementioned approaches. This230

method involves training two tokenizers, each for231

a respective language and with half the vocabulary232

size. Subsequently, the identifiers of one tokenizer233

are adjusted to prevent overlap, yielding a result234

analogous to a single tokenizer that includes dupli-235

cates across languages. It is important to note that236

special tokens such as < eos > (End of Sentence)237

and < pad > (Padding) are shared and not dupli-238

cated. This strategy is designed to simplify model239

analysis during development, albeit at the expense240

of a reduced vocabulary.241

7 Pretraining242

The CycleGN approach requires a pre-training step,243

as it will not converge at all without it. Indeed, as244

there is no Discriminator to ensure that x̂ belongs245

to X and ŷ belongs to Y , G and F can converge246

towards identity matrices. That is, if both G and F247

do not apply any change to their input, they can still248

achieve G(F(y)) = y and F(G(x)) = x without249

learning how to translate.250

Masked Language Modeling (MLM) is a pre-251

training strategy first implemented in BERT,252

wherein a specified proportion of tokens within the253

input text are substituted with a unique < mask >254

token. The objective of the neural network under255

this paradigm is to accurately reconstruct the orig-256

inal sentence. This process enables the model to257

discern intricate relationships between words and258

to develop a profound representation of the lan-259

guage. This pre-training has revealed excellent260

performances in diverse NLP application such as261

sentiment analysis (Alaparthi and Mishra, 2021),262

text classification (Sun et al., 2020), Named Entity263

Recognition (NER) (Souza et al., 2020) (Chang264

et al., 2021) (Akhtyamova, 2020) and paraphrase265

detection (Khairova et al., 2022).266

As MLM does not require any labeling, it is267

perfectly adapted to the CycleGN approach. A268

single model H is trained on the entire dataset for269

a single epoch to reconstruct both languages, with270

15% of the input tokens masked. When training the271

CycleGN, rather than randomly initializing G and272

F , the parameters from H are directly copied to273

G and F . Indeed, as H learns to reconstruct both274

language X and Y , it can be used to initialize both275

networks. Figure 2 shows the training process of276

H.277

Figure 2: Masked Language Modeling training process.

8 Batch size 278

The original CycleGAN research mentions using 279

a batch size of one, and while they did not state 280

the reason in the research paper, one of the authors 281

explained it in a GitHub issue (Junyanz, 2017) as a 282

lack of GPU memory. 283

Rajput et al. (2021) examined the impact of batch 284

size within the CycleGAN architecture, observing a 285

significant decline in performance with its increase. 286

This deterioration was evident both through the ex- 287

ample images presented in that study and through 288

the calculated cosine dissimilarity, indicating in- 289

ferior model performance with larger batch sizes. 290

However, quality was achieved at the expense of 291

computational efficiency, as the training duration 292

to achieve 200 epochs was 8 hours with a batch 293

size of 1, but this was reduced to just 2 hours with 294

a batch size of 64. 295

In the context of our research, however, the trade- 296

off between quality improvement and computing 297

resource, as observed in the aforementioned study, 298

does not hold true. Utilizing a batch size of 1 in 299

our experiments hindered any form of convergence. 300

Consequently, a batch size of 16 was selected, as 301

it represented the maximum capacity that could be 302

accommodated within the available 24GB of GPU 303

memory of the Nvidia 4090 used for this work. 304

9 Training stability 305

It is crucial for a CycleGAN architecture that the 306

two models exhibit approximately equivalent levels 307

of performance. Given the interdependent nature 308

of these models, where the output of one serves as 309

the input for the other, maintaining consistency be- 310

tween them during training is imperative. Without 311

a strategy in place to prevent the performance of 312

the models from diverging, it is possible for one 313

model to gain the “upper hand” over the other. 314

9.1 Divergence between the Generators 315

Figure 3 presents the evolution of the CCL of an 316

early prototype of CycleGN and it can clearly be 317

seen that one of the two generators, F , ends up per- 318

forming much better than its counterpart G, which 319
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blocks any future training.320

Figure 3: Evolution of the Cross-Entropy Loss during
the training of an early prototype.

9.2 Gradient Clipping321

Gradient clipping is a technique utilized in the train-322

ing of Deep Learning (DL) models, to address the323

problem of ‘exploding’ gradients. This issue oc-324

curs when gradients escalate to excessively high325

values during training, leading to numerical insta-326

bility and impeding the model’s convergence to an327

optimal solution.328

Gradient clipping can be implemented through329

two primary methods: norm clipping and value330

clipping. Norm clipping involves establishing a331

threshold on the overall magnitude of the gradient332

vector. On the other hand, value clipping involves333

individually adjusting elements of the gradient vec-334

tor that exceed the specified threshold.335

By clipping the gradients by norm, with a thresh-336

old of 1.0, as advised by the Huggingface library,337

the training stabilized and the divergence between338

G and F was observed to disappear.339

10 One large epoch or multiple smaller340

ones?341

The CycleGAN framework is recognized for its342

computational intensity due to several inherent fac-343

tors. Primarily, as CycleGAN operates on the prin-344

ciple of cycle consistency, it necessitates the train-345

ing of two GANs simultaneously – one for each346

direction of the transformation. This structure re-347

quires substantial computational resources, as each348

GAN consists of both a Generator and a Discrimi-349

nator.350

The resource-intensiveness of the CycleGAN351

process, thus limits the size of the dataset that can352

be used in a reasonable time. This necessitated a 353

decision between training for a single epoch on a 354

large dataset, or training for multiple epochs on a 355

smaller corpus arose. 356

We compared the CycleGN model on the entire 357

dataset under four different conditions: 358

1. One epoch containing 1% of the dataset 359

2. Five epochs containing 0.2% of the dataset 360

3. One epoch containing 2% of the dataset 361

4. Five epochs containing 0.4% of the dataset 362

We have selected the Crosslingual Optimised 363

Metric for Evaluation of Translation (COMET) 364

score, as proposed by Rei et al. (2020), as our com- 365

parison criterion. This metric has proven to be one 366

of the most effective in recent WMT competitions, 367

according to Kocmi et al. (2022), due to its strong 368

correlation with human judgment, aligning well 369

with our goal of mirroring human evaluative stan- 370

dards. Multiple COMET models have been made 371

available and we chose the default “wmt22-comet- 372

da” model. The average scores obtained on 10,000 373

sentences that were not part of the model training 374

set are presented in Table 2. 375

Condition English->German German->English
1 0.2727 0.2715
2 0.2411 0.2635
3 0.2741 0.2665
4 0.2258 0.2658

Table 2: COMET scores of CycleGN models depending
on the dataset condition.

Models exposed to a larger portion of the to- 376

tal dataset demonstrate superior performance com- 377

pared to those limited to a smaller, repetitive subset, 378

especially when the dataset encompasses over half 379

a million to a million sentences. We extrapolate 380

this result to larger datasets and thus chose to train 381

our model for a single epoch on the largest dataset 382

possible. 383

11 Results 384

To measure the performances of CycleGN, every 385

1000th batch the CCL was averaged and 1,000 sen- 386

tences from the test set were translated to compute 387

the COMET score. 388

Figure 4 demonstrates how the addition of gradi- 389

ent clipping helps with training stability. 390
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Figure 4: Evolution of the Cross-Entropy Loss during
the training.

11.1 Translation quality391

Even if tracking the CCL is an inexpensive manner392

to estimate the progress of the training of the Cy-393

cleGN architecture, as mentioned in Section 7, it394

can also hide an absence of translation. Figure 5395

demonstrates that the actual quality of translation,396

as measured by the COMET metric, increases with397

time. Note that the sudden drop is discussed in the398

next section.399

Figure 5: Evolution of the COMET score during the
CycleGN training.

After the end of the training, a test set of 10,000400

sentences per language were translated and the401

COMET scores are displayed in Table 3.402

English->German German->English
Score 0.505 0.537

Table 3: COMET score of CycleGN models.

As mentioned in Section 3, in order to give403

a point of comparison, we trained a couple of404

architecture-matched models using the parallel 405

dataset. As in the case of the CycleGN training, 406

these models were only trained for a single epoch 407

on the first half of the WMT23 English-German 408

language pair. Results are displayed in Table 4. We 409

fully expected the COMET score of the CycleGN 410

to be inferior to architectures using parallel corpora, 411

but we believe the differences between the scores 412

will reduce with larger datasets. 413

English->German German->English
Score 0.780 0.775

Table 4: COMET score of architecture-matched models.

11.2 The sudden drop 414

Upon examining Figure 5, there is an observable 415

precipitous deterioration in the CEL of Generator G 416

post the 600,000th batch mark. Delving into the test 417

set translations conducted at every 1,000th batch in- 418

terval reveals substantial and abrupt modifications. 419

Appendix A presents the evolution of the first three 420

translations of the test set. 421

While these alterations, despite their detrimental 422

effect on the translation’s quality, ostensibly do not 423

exert a significant influence on the aggregate trans- 424

lation score at first, they are impressively accurate 425

in predicting the drop in quality that ensues. 426

Examining the progression of alterations without 427

delving into the translation quality, one can discern 428

a clear pattern. Initially, an inverted comma is intro- 429

duced at the onset of each sentence, subsequently 430

appearing at the termination of most sentences as 431

well. This is then substituted with a “(3)” at the 432

start of each sentence, eventually being replaced by 433

a letter “(b)”. This phase, primarily characterised 434

by superficial quality degradation, gives way to 435

a more pronounced collapse. Here, a significant 436

portion of sentences is rendered as a parenthesis 437

followed by a repeated letter “k”. 438

11.3 Recovery 439

Remarkably, this phase of decline vanishes in the 440

subsequent batch, resulting in a minor, primarily 441

cosmetic alteration in the output. This demon- 442

strates that the training process is robust and can 443

withstand even major disturbances to one of the 444

two generators. This also shows the importance 445

of accurately monitoring the accuracy achieved, to 446

avoid stopping the training during such a drop. 447
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12 Future Work448

12.1 Activation function449

The activation function in machine learning, espe-450

cially in neural networks, plays a crucial role in451

determining the output of a node or neuron. It is a452

mathematical function that introduces non-linearity453

into the network, enabling it to learn and perform454

more complex tasks that linear functions cannot455

handle. The current CycleGN implementation re-456

lies on ReLU, but it seems GELU has now become457

the default activation function in Huggingface.458

12.2 Longer dataset459

Our current work has been trained on a small460

dataset compared to MT standards. Future work461

should try to see how convergence progresses with462

more iterations. Further computational optimiza-463

tions are probably necessary to shorten the training464

time required.465

12.3 Larger models466

The current architecture relies on a total of467

158,769,152 parameters, which is only about a third468

of the size of the default in the Huggingface library.469

Although Table 4 demonstrates that the current470

number of parameters is capable of producing bet-471

ter translations and an increase in both the number472

of epochs and the size of the dataset should be473

prioritized, larger models are common in NMT.474

13 Source Code475

The source code of CycleGN is available at476

[anonymized].477

14 Conclusion478

In conclusion, our research presents a pioneering479

application of the Transformer model in the realm480

of cyclic text-to-text mapping for language trans-481

lation. To the best of our knowledge, this study482

is the first of its kind to successfully employ the483

Transformer architecture in this context.484

Neither Discriminators nor backpropagation485

throughout the training process are required for486

the CycleGN architecture to be capable of produc-487

ing high-performance translation models without488

the need for a parallel corpora.489

The success of the CycleGN model in text trans-490

lation suggests its potential applicability in broader491

NLP tasks, such as more generalized style transfer.492

This possibility paves the way for future research493

to explore and expand the model’s utility in various 494

other linguistic transformations. 495

Limitations 496

As previously discussed in Section 3, we used a 497

specific case of non-parallel dataset where all sen- 498

tences have a translation, which is different from 499

the common non-parallel corpora where only a cer- 500

tain number of samples will have a ground truth. 501

As such, it is not yet known whether or not this 502

method can be generalized to any type of non- 503

parallel dataset or if it only works above a certain 504

threshold of ground truth presence. 505

The current implementation of the CycleGN ar- 506

chitecture has not yet been fully optimized and as 507

such, the training process took 16 days on a Nvidia 508

4090. This makes it a computationally expensive 509

network which might make scaling the number of 510

parameters exceedingly expensive. 511

Another issue that arises from the computing 512

cost of CycleGN is the lack in language diversity. 513

Indeed, our current work only used the English- 514

German language pair, which are both European 515

languages that use the Latin alphabet. Conse- 516

quently, it cannot be certain that the approach pre- 517

sented can be applied to other languages and alpha- 518

bets. 519

CycleGN may result in models that are less ro- 520

bust and more prone to errors, especially in han- 521

dling idiomatic expressions or culturally specific 522

content, resulting in translations that are either too 523

literal or completely off the mark. Although non- 524

parallel datasets present a crucial asset, especially 525

for languages lacking substantial parallel corpora, 526

the inherent risks and challenges associated with 527

their use must be carefully considered. 528

Ethics Statement 529

This study, focusing on the training of NMT mod- 530

els using non-parallel datasets, adheres to the high- 531

est ethical standards in research. We recognize 532

the critical importance of ethical considerations 533

in computational linguistics and machine learning, 534

especially as they pertain to data sourcing, model 535

development, and potential impacts on various lin- 536

guistic communities. 537

Our research utilizes publicly available, non- 538

parallel linguistic datasets. We ensure that all data 539

is sourced following legal and ethical guidelines, 540

respecting intellectual property rights and privacy 541

concerns. 542

7



In our commitment to scientific integrity, we543
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A Sudden Drop697

Batch number CycleGN translations
647,000 Rückflussen Sie diesen Kalender nicht mit der Exposition bei Bedarf NICHT in alle

Euro-Arm-Arm-Arm in den Haupt und längere Aufarbeitungsoperationen.
Wenn die Blutvideos sind, ist die dritte Dosis mit Vorsicht vorzunehmen, um auf
geringfügige Gesamtüberleben zu achten.
Wenn die Blutvideos sind, ist die dritte Dosis mit Vorsicht vorzunehmen, um auf 14%
der Gesamtdosis zu achten.

648,000 "Der EWSA in Rücksprache mit diesem Kalender kann die EZB bei Bedarf NICHT
in allen Euro-Arm Ländern in die wichtigsten und längeren Aufarbeitarbeiten gelangt
sein.
"Der EWSA ist das EWSAbestandstatte, das dritte Mal im Rahmen der gefälschten
EWSA auf geringfügige Gesamtüberlebensraten zurückgeht.
"Der EWSAbestandstatte ist der dritte im Rahmen der gefälschten EWSA auf 14%
der Gesamtüberlebensdosis.

649,000 " Rücktünftiger Kalender" der EZB bei der Gewährleistung der Lebensqualität in
allen Europäischen Ländern eintretenden Haupt- und längere Aufarbeitarbeiten.
"Vorschlag der LandesVorbereitung des dritten Impfstoffs mit gefälschten Direk-
tzahlungen auf geringfügige Gesamtüberleben"
"Vorschlag der LandesVorbereitung des dritten Impfstoffs mit einer Zulassungsstel-
lungnahme auf 14% der Gesamtüberlebensdauer"

650,000 (3) Rückt diesen Kalender auf der EZB bei, dass notifizierte Personen in allen Euro-
Währungsgebiets in die Haupt- und längere Aufarbeitungsoperationen einbezogen
werden können.
(3) Die notifizierte LandesVorlage ist die dritte im Rahmen des gefälschten Rahmen-
programms auf geringfügige Gesamtüberleben.
(3) Die notifizierte LandesVorlage ist die dritte im Rahmen des gefälschten Reform-
programms auf 17% der Gesamtmenge.

651,000 (b) Rückscheinend kann dieser Kalender der EZB bei den Gegenparteien in allen Euro-
Währungsgebiets in den Haupt- und längeren Aufarbeitarbeiten eingesetzt werden.
(b) Die notifizierte Landesstattstelle ist die dritte im Rahmen der gefälschten Gegen-
partei auf geringfügige Gesamtübersicht.
(b) Die notifizierte Landesstattstelle ist die dritte im Rahmen der gefälschten Gegen-
partei auf 17% der Gesamtsumme.

652,000 (kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
(kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
(kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

653,000 1.1 Rückblick dieses Kalenders kann die EZB bei den Gegenparteien in allen Euro-
päischen Ländern in die wichtigsten und längeren Aufarbeitarbeiten investieren.
1.1 DieSTRÖMbestandstattung ist die dritte im gefälschten Rechtsrahmen auf ger-
ingfügige Weise der Gesamtumsatz.
1.1 Die EFSIbestandstattung ist die dritte im gefälschten Rechtsrahmen auf 16% des
Gesamtumsatzes.

Table 5: Generated test translations at specific batches.
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