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Abstract001

Large-scale multimodal data have greatly ac-002
celerated the progress of vision-language mod-003
els. However, selecting high-quality and di-004
verse training data under limited data budgets005
remains an under-explored problem. We pro-006
pose DOSE, a novel data selection pipeline that007
uses off-the-shelf models—without any fine-008
tuning on the target corpus—to independently009
evaluate text quality and image–text alignment.010
These scores are combined into a joint qual-011
ity–alignment distribution, from which we ap-012
ply adaptive weighted random sampling to se-013
lect informative samples while preserving long-014
tail diversity. Extensive experiments on general015
VQA and math benchmarks show that DOSE016
enables a flexible trade-off between model per-017
formance and data selection efficiency. Re-018
markably, DOSE achieves near full-dataset per-019
formance using only 20% of the original data,020
and can even surpass the full-dataset baseline021
when using larger subsets. Since DOSE only re-022
quires inference-time computation and no addi-023
tional fine-tuning, it is particularly suitable for024
resource-constrained settings and fast model025
development cycles.026

1 Introduction027

In recent years, Multimodal Large Language Mod-028

els (MLLMs) have achieved remarkable progress029

in tasks such as image-text understanding, visual030

question answering, and instruction following (Liu031

et al., 2023; Bai et al., 2023). The training of these032

models typically follows a two-stage paradigm: an033

alignment pretraining phase followed by a super-034

vised fine-tuning (SFT) phase. While this two-035

stage framework has been widely adopted in mul-036

timodal model development, the second phase of-037

ten relies on large-scale, high-quality instruction038

datasets. The construction and training of such039

datasets are computationally expensive, posing a040

major bottleneck to the further advancement of041
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Figure 1: Comparison of data selection methods. (A)
The methods that rely on a single metric from either
vision or text model (dashed line). (B) The methods that
leverage VLMs for data quality assessment. Notably,
the VLMs are already trained on the target data that will
be filtered. (C) Our approach constructs data distribu-
tion by harnessing existing pre-trained models that have
not been exposed to the target data.

MLLMs (Zhao et al., 2023; Wang et al., 2024a; 042

Shi et al., 2024; Nguyen et al., 2023). Inspired 043

by (Zhou et al., 2023), which showed that a high- 044

quality subset of data can deliver performance com- 045

parable to that of full-scale data, we aim to develop 046

a data selection method that retains only the most 047

valuable examples. This method should substan- 048

tially reduce computational cost, while maintain- 049

ing or even exceeding the performance of models 050

trained on the full dataset. 051

While data selection has shown great potential 052

in improving both the efficiency and effectiveness 053

of model training, existing approaches often face 054

a trade-off between selection quality and computa- 055

tional cost. Lightweight methods—such as those 056

based on training loss or model confidence—are 057

efficient and scalable, but often rely on simple 058

scoring rules that may overlook more informa- 059
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tive or subtle examples (Paul et al., 2021; Chen060

et al., 2024; Marion et al., 2023a). In contrast,061

more sophisticated techniques—such as influence-062

based scoring, multi-task consistency, or cluster-063

ing based on transferability (Cao et al., 2023; Wu064

et al., 2024b; Lee et al., 2024)—offer better se-065

lection quality, but are computationally intensive066

and difficult to scale. Beyond scoring strategies,067

the sampling process itself presents further chal-068

lenges. Some methods focus only on selecting069

the highest-scoring samples (Cao et al., 2023; Wu070

et al., 2024a), which can ignore moderately ranked071

data that may still provide valuable learning sig-072

nals. Others depend on accurately estimating data073

distributions; if these estimates are inaccurate, they074

risk introducing bias. More adaptive strategies,075

such as iterative re-evaluation, improve flexibility076

but add latency and resource overhead (Wu et al.,077

2024b). Furthermore, many of these techniques078

have only been tested on limited domains, making079

it unclear whether they perform well on broader080

or more diverse tasks (Lee et al., 2024). Together,081

these limitations call for a more balanced data se-082

lection approach—one that combines strong per-083

formance with low cost, while also preserving data084

diversity and generalizing across tasks.085

To address these challenges, we propose DOSE,086

a two-stage data selection framework tailored for087

multimodal tasks, aiming to jointly optimize four088

key objectives: performance, efficiency, diver-089

sity, and cross-domain robustness. In the qual-090

ity evaluation stage, we leverage off-the-shelf091

LLMs with carefully designed prompts to gen-092

erate approval probabilities as quality scores for093

text data (Sachdeva et al., 2024), and apply vision-094

language matching models to compute alignment095

scores for image-caption pairs (Hessel et al., 2021).096

This scoring process requires only a single forward097

pass, avoiding the computational overhead of back-098

propagation, and benefits from the generalization099

capabilities of pre-trained models to provide ro-100

bust cross-modal quality estimates. In the sam-101

pling stage, we perform weighted random sampling102

based on the score distribution from the quality103

evaluation stage. Unlike strategies that retain only104

top-ranked samples (Paul et al., 2021; Lee et al.,105

2024; Cao et al., 2023), our method assigns non-106

zero sampling probabilities across all score ranges,107

thereby preserving rare but informative examples108

from low-density regions. This design not only109

enhances data diversity but also improves model110

robustness. By combining these two stages, DOSE111

yields a compact and information-rich training sub- 112

set that sustains training efficiency while delivering 113

strong performance on both in-domain and out- 114

of-domain tasks, offering a more balanced data 115

foundation for multimodal model training. 116

We conducted extensive evaluations on general 117

VQA benchmarks and specialized math tasks us- 118

ing LLaVA-1.5-7B and LLaVA-1.5-13B (Liu et al., 119

2023) as baselines. Remarkably, DOSE retains 120

96% of full-data performance on general VQA 121

using only 20% of the data and even surpasses 122

full-data results on math tasks with the same 20% 123

subset. DOSE outperforms methods requiring prior 124

exposure to filtered data, demonstrating superior 125

balance across performance, computational cost, 126

cross-domain generalization, and sample diversity. 127

Our main contributions are: 128

• We propose an efficient data selection method 129

that leverages pre-trained, off-the-shelf models 130

to rapidly assess text quality and image-text rel- 131

evance, significantly reduces the cost of data fil- 132

tering. 133

• Extensive experiments demonstrate that our ap- 134

proach achieves Pareto optimality between selec- 135

tion efficiency and training performance. 136

• Experiments on multimodal math benchmarks 137

validate that our approach generalizes well to 138

specialized domains, where a small fraction of 139

training data achieves performance comparable 140

to the full training set. 141

2 Related Work 142

2.1 Data Quality Scoring 143

Quality-score was originally developed for impor- 144

tance sampling but is now widely used in training 145

LLMs. The scoring algorithm evaluates sample 146

importance using various methods, including mea- 147

suring disagreement rates between models (Chitta 148

et al., 2021), assessing whether a sample is likely 149

to be "forgotten" (Toneva et al., 2019), "memo- 150

rized" (Feldman and Zhang, 2020), or "unlearn- 151

able" (Mindermann et al., 2022), and applying 152

perplexity filtering to prioritize low-perplexity sam- 153

ples while discarding high-perplexity ones (Wen- 154

zek et al., 2019; Marion et al., 2023b; Muen- 155

nighoff et al., 2023). Recent advancements have en- 156

abled perplexity estimation through efficient model- 157

based simulators, eliminating the need for full LLM 158

inference (Guu et al., 2023). Additionally, some 159

approaches select training data by minimizing the 160

2



distance between the selected data distribution and161

high-quality sources such as Wikipedia or books.162

This is often achieved through contrastive classi-163

fiers or feature-space matching (Radford et al.,164

2019; Anil et al., 2023; Javaheripi et al., 2023). To165

more effectively assess the comprehensive quality166

of multimodal image-text data, we introduce the167

CLIP-Score (Hessel et al., 2021) for evaluating168

image-text relevance. For textual data, we lever-169

age the reasoning capabilities of instruction-tuned170

LLMs to directly evaluate sample quality. Specifi-171

cally, we use the acceptance probability assigned172

by the LLM to measure the likelihood that a given173

text is valid and meaningful.174

2.2 Data Selection on Distribution175

Data selection is crucial for improving model train-176

ing quality and can be divided into two categories:177

distribution-agnostic filtering and distribution-178

aware selection. Distribution-agnostic methods179

focus on the quality of individual samples, typ-180

ically using thresholds to identify subsets. For181

example, these methods may detect mismatched182

text-image pairs or misleading elements in images.183

Specifically, (Nguyen et al., 2023; Mahmoud et al.,184

2023) employ BLIP to identify mismatches be-185

tween captions and images, while (Maini et al.,186

2023) leverage OCR models to filter images where187

text is the only feature correlated with the caption.188

In contrast, distribution-aware methods optimize189

subset selection by statistically analyzing the over-190

all data distribution. Classical techniques, such191

as those proposed in (Wei et al., 2015; Raskutti192

and Mahoney, 2016; Coleman et al., 2019), aim to193

maximize subset performance under a fixed budget.194

More recently, (Wang et al., 2023) introduced an195

approach that replaces traditional models with a196

trained codebook, clusters samples, and selects rep-197

resentative samples from each cluster. Our method198

builds upon these ideas by constructing a joint dis-199

tribution of image-text relevance and text quality.200

We carefully analyze the impact of different regions201

and diversity within this joint distribution on data202

quality, ultimately selecting the most representative203

samples for training.204

3 Methodology205

Multimodal data selection mainly focuses on as-206

sessment data quality, with existing methods typi-207

cally assessing text quality and the overall quality208

of image-text pairs. To achieve comprehensive209

quality assessment, we combine these methods and 210

create a unified scoring strategy. Existing text qual- 211

ity evaluation methods either introduce bias toward 212

noisy samples with information or face the issue 213

where the evaluation model has already seen the 214

data during training. To address this, we introduce 215

the Text-Quality Score, which leverages the reason- 216

ing capabilities of a pre-trained LLM to assess text 217

quality. Additionally, we use the widely adopted 218

CLIP-Score to evaluate the quality of image-text 219

pairs. Meanwhile, selecting data using a static 220

threshold may lead to a loss of diversity and the 221

discarding of valuable edge cases, potentially lim- 222

iting performance. To address this, we introduce 223

a weighted sampling strategy that integrates data 224

diversity with score-based selection. This approach 225

enables us to select a high-quality subset while 226

maintaining stability and representativeness, ensur- 227

ing both performance and diversity are preserved. 228

3.1 Off-the-Shelf Quality Assessment 229

We leverage the reasoning capabilities of pre- 230

trained LLMs and multimodal language mod- 231

els to evaluate data quality. Inspired by Ask- 232

LLM (Sachdeva et al., 2024), we prompt the LLM 233

to predict whether an input sample is suitable for 234

fine-tuning a multimodal language model. As il- 235

lustrated in Table 3, the LLM predicts “yes” when 236

the text is informative, well-formatted, and aligned 237

with visual instruction tuning objectives. The soft- 238

max probability assigned to the “yes” token serves 239

as the Text-Quality Score for the sample. 240

In addition, similar to (Nguyen et al., 2023; Mah- 241

moud et al., 2023; Maini et al., 2023; Fang et al., 242

2023), we use the CLIP-ViT-B32 (OpenAI, 2023) 243

to obtain CLIP-Score (Hessel et al., 2021) to assess 244

the alignment between images and their captions. 245

The CLIP model projects both images and text into 246

a shared embedding space, and the cosine similarity 247

between these embeddings quantitatively measures 248

the image-text relevance. 249

3.2 Weighted Random Sampling 250

To effectively select high-quality and diverse sam- 251

ples, we first construct a target distribution q(x) 252

based on the original score distribution p(x). This 253

new distribution shifts the density toward high- 254

quality regions while increasing the probability of 255

sampling rare but informative long-tail examples, 256

mitigating the over-representation of moderate- 257

quality, high-density regions. We then perform 258

Weighted Random Sampling (WRS) based on q(x), 259
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assigning higher sampling probabilities to desirable260

samples. This strategy enables a balanced selection261

that promotes both sample quality and diversity, as262

shown in Figure 5 in the Appendix.263

Sampling Procedure We begin by computing264

the statistical properties of the score distribution, in-265

cluding the mean µdata and standard deviation σdata.266

To obtain a smooth estimate of the data distribution,267

we apply Kernel Density Estimation (KDE):268

KDE(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
, (1)269

where K(·) is the Gaussian kernel, N is the num-270

ber of samples, and h is the bandwidth. To miti-271

gate the influence of extreme values, we employ272

DBSCAN (Ester et al., 1996), a density-based clus-273

tering algorithm that identifies core, border, and274

outlier points based on local neighborhood density.275

Samples located in sparse regions are labeled as276

outliers (i.e., ℓi = −1) and subsequently removed.277

We then apply KDE to the filtered data and identify278

the principal mode of the distribution:279

µpeak_kde = arg max
x∈[xmin, xmax]

KDE(x). (2)280

Next, we define the maximum non-outlier score281

as:282 XDB = max
i|ℓi ̸=−1

xi, (3)283

where ℓi is the DBSCAN-assigned cluster label for284

xi.285

To determine a robust target center, we com-286

bine two complementary indicators: the KDE mode287

µpeak_kde, which captures the most representative288

high-density region of the distribution, and XDB ,289

which reflects the highest-quality sample not con-290

sidered an outlier. Averaging these two values bal-291

ances the typical quality level with the upper bound292

of acceptable sample quality, while avoiding the293

skew often introduced by means or medians in im-294

balanced data. The final target center is defined295

as:296

µpeak_wrs =
µpeak_kde +XDB

2
. (4)297

Based on µpeak_wrs, we define the target distri-298

bution q(x) and the original distribution p(x) as299

Gaussian distributions centered at µpeak_wrs and300

µp, respectively. Their corresponding probability301

density functions are given as follows:302

q(x) = N
(
x; µpeak_wrs, σdata

)
,

p(x) = N
(
x; µpeak_kde, σdata

)
.

(5)303

where µpeak is the mean of the target distribution, 304

and σdata is the standard deviation (consistent with 305

the original data). To perform WRS, we calculate 306

the weight for each data point xi as the ratio of the 307

probability density under the target distribution to 308

that under the original distribution: 309

wi =
q(xi)

p(xi) + ϵ
, (6) 310

where ϵ = 10−10 is a small constant added to avoid 311

division by zero. Subsequently, we normalize the 312

weights: 313

w′
i =

wi∑N
j=1wj

. (7) 314

Finally, based on the normalized weights w′
i, we 315

perform weighted random sampling to select M 316

samples (without replacement) from the original 317

data: 318

Sx = {xi1 , xi2 , . . . , xiM }, (8) 319

where ik are indices randomly drawn according 320

to the weights w′
i. Through these steps, we gener- 321

ate a new sample set S that better aligns with the 322

characteristics of the target distribution q(x). Also, 323

based on the Image-Text Relevance Scores (yi), we 324

can apply the same sampling strategy to obtain the 325

corresponding subset: 326

Sy = {yi1 , yi2 , . . . , yiM }, (9) 327

Combined Sampling Once the positions of all 328

data points are determined in a two-dimensional 329

coordinate space—where each point is defined by 330

xi (text quality) and yi (image-text relevance)—we 331

construct a density-like distribution that captures 332

the frequency of data points within local regions. 333

This distribution reveals patterns in the data, en- 334

abling us to analyze and compare the data distri- 335

bution before and after sampling. Based on this 336

distribution, we design a sampling strategy that 337

prioritizes regions with both high densities and fa- 338

vorable characteristics in terms of xi and yi. Specif- 339

ically, we define subsets Sx and Sy, which capture 340

key features along the xi and yi dimensions, re- 341

spectively. By combining the intersection of Sx 342

and Sy, we derive the final sampling results. 343

DOSE = {(xi, yi) | (xi, yi) ∈ Sx ∩ Sy}. (10) 344

This approach ensures that the sampled points 345

not only reflect the underlying data distribution but 346

also align with preferred ranges for text quality and 347

image-text relevance. 348
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Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA-W Rel. (%)
en cn Bench

Full 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 100

Methods that already used full data before data selection
COINCIDE 76.5 59.8 46.8 69.2 55.6 86.1 1495.6 63.1 54.5 67.3 97.4
ICONS 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1 98.6

Methods that never used full data before data selection
Random 75.7 57.6 44.7 66.5 54.2 84.1 1389.0 62.2 54.8 65.0 94.5
CLIP-Score 73.4 51.4 43.0 65.0 54.7 85.3 1331.6 55.2 52.0 66.2 91.2
EL2N 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 53.2 47.4 64.9 92.0
Perplexity 75.8 57.0 47.8 65.1 52.8 82.6 1341.4 52.0 45.8 68.3 91.6
SemDeDup 74.2 54.5 46.9 65.8 55.5 84.7 1376.9 52.2 48.5 70.0 92.6
D2-Pruning 73.0 58.4 41.9 69.3 51.8 85.7 1391.2 65.7 57.6 63.9 94.8
Self-Sup 74.9 59.5 46.0 67.8 49.3 83.5 1335.9 61.4 53.8 63.3 93.4
Self-Filter 73.7 58.3 53.2 61.4 52.9 83.8 1306.2 48.8 45.3 64.9 90.9

Ours 77.3 58.7 46.5 67.2 54.4 83.6 1462.2 62.5 54.8 65.8 96.0

Table 1: Comparisons with baseline methods. For a fair comparison, all models are trained by 20% of full training
data and the data subsets are selected by different methods. The best results among methods that do not access the
full training data before selection are shown in bold.

4 Experiments349

In this section, we first describe our implementa-350

tion and benchmark setups, then present results351

on VLM evaluations and ablation studies. We as-352

sess general VQA performance across nine bench-353

marks (see the Appendix for dataset details) and,354

following ICONS and COINCIDE, report the aver-355

age relative performance (Rel.) to quantify cross-356

benchmark generalization.357

4.1 Setup358

Implementation Details Our method has been359

validated on both pre-training and downstream360

tasks for VLMs. For the pre-training task, we fol-361

low the settings of LLaVA-1.5-7b (Liu et al., 2023)362

and score and filter the data in stage 2 of LLaVA,363

retrain stage 2, and compare the performance dif-364

ferences across various data scales and filtering365

methods. For the downstream task, we follow366

the settings of Math-LLaVA (Wang et al., 2024b)367

and apply the same method to score and filter the368

MathV360k (Shi et al., 2024) dataset. Based on369

the pre-trained LLaVA-1.5-13b (Liu et al., 2023),370

we perform continuous fine-tuning. In the Text-371

Quality Scoring phase, we score the 665k text data372

using Vicuna-7b (Team, 2023), obtaining its orig-373

inal distribution. Based on this distribution, we374

adaptively fit a WRS sampling. Similarly, we use375

CLIP-Score (Hessel et al., 2021) to obtain another376

distribution and perform sampling. By combining377

this with the proposed combined sampling strategy,378

we obtain the final sampling results, which are used379

for the main results.380

4.2 Main Results 381

Comparisons with Baselines We compare our 382

DOSE against a suite of established data-selection 383

methods using a 20 % subset of LLAVA-1.5’s 384

Stage-2 data, shown in Table 2. Baselines in- 385

clude Random sampling; CLIP-Score (Hessel 386

et al., 2021) for image–text alignment; EL2N (Paul 387

et al., 2021) based on embedding L2 norms; Per- 388

plexity (Marion et al., 2023a) from language- 389

model likelihoods; SemDeDup (Abbas et al., 2023) 390

for semantic deduplication; D2-Pruning (Maha- 391

rana et al., 2023) for distribution-aware pruning; 392

and Self-Sup (Sorscher et al., 2022) leveraging 393

self-supervised signals. We also include vision- 394

language–specific approaches Self-Filter (Chen 395

et al., 2024) and COINCIDE (Lee et al., 2024). 396

DOSE achieves the highest overall relative perfor- 397

mance (96.0 %), surpassing all unseen-selection 398

baselines by over 1 pp—e.g., improving on D2- 399

Pruning (94.8 %)—and closing the gap to seen-data 400

methods like ICONS (98.6 %) to just 2.6 pp. No- 401

tably, DOSE outperforms Random on every bench- 402

mark (e.g., GQA: 58.6 vs 57.6; TextVQA: 54.4 vs 403

54.2) and matches or exceeds stronger baselines 404

across tasks from VQA-v2 through MMBench, 405

demonstrating its ability to select a small, high- 406

value subset that nearly rivals full-data finetuning. 407

While DOSE achieves strong unseen-data selec- 408

tion performance (96.0 % Rel.), it trails seen-data 409

methods such as ICONS (Wu et al., 2024b) (98.6 410

%) and COINCIDE (Lee et al., 2024) (97.4 %). 411

The reason is that those approaches first fine-tune 412

on the full dataset and then use their own learned 413
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Figure 2: DOSE Data-Selection Efficiency and Wall-Clock Time Trade-Offs. (Left) Average relative performances
of all coreset selection techniques at different sampling ratios for the LLaVA-1.5 dataset. (Right) Comparison of
coreset selection techniques on average relative performance and wall-clock time cost. The wall-clock time cost
includes both the data selection and finetuning of the target VLM. The time cost is measured in hours of running
time on a computing node with 4×V100 GPUs. The left panel presents the average relative performance across
sampling ratios of 20%, 40%, and 60%.

model parameters to rank or cluster samples, giving414

them direct access to downstream performance sig-415

nals. In contrast, DOSE relies only on off-the-shelf416

pre-trained models—no additional finetuning—so417

it cannot leverage those proprietary performance418

cues. However, this independence from any prelim-419

inary full-data training is also DOSE’s key advan-420

tage: it avoids the redundant, expensive pass over421

the entire dataset purely for selection purposes, dra-422

matically reducing computation and resource costs423

while still delivering near–state-of-the-art results424

on much smaller subsets.425

Different Selection Ratio. As shown in Figure426

2, we compare DOSE (red solid line with circles)427

against ten baselines—Random (black), Perplex-428

ity (Marion et al., 2023a), CLIP-Score (Hessel429

et al., 2021), EL2N (Paul et al., 2021), SemD-430

eDup (Abbas et al., 2023), Self-Sup (Sorscher et al.,431

2022), D2-Pruning (Maharana et al., 2023), COIN-432

CIDE (Lee et al., 2024), ICONS (Wu et al., 2024b),433

and Self-Filter—across sampling ratios from 5 % to434

60 %. DOSE rapidly climbs to 99 % Rel. by 40 %435

sampling, matching or exceeding all other unseen-436

data methods and even approaching the seen-data437

ICONS (Wu et al., 2024b) curve at higher ratios.438

Pareto Superior. Among all data selection base-439

lines showen in Figure 4, DOSE achieves the440

largest performance gains among methods that do441

not rely on prior exposure to the training data,442

outperforming baselines such as Random, CLIP-443

Score, EL2N, SemDeDup, Perplexity, Self-Sup,444

D2-Pruning, and Self-Filter by 1–4 percentage445

points under identical sampling ratios and time446

budgets. Even against the two leading seen-data 447

methods, ICONS and COINCIDE, DOSE holds 448

clear advantages. ICONS and COINCIDE both 449

require an expensive full-data fine-tuning pass be- 450

fore sample selection—a cost that would recur for 451

any new dataset yet is omitted from their reported 452

compute comparisons—whereas DOSE skips this 453

phase entirely, relying solely on off-the-shelf pre- 454

trained models for scoring and weighted sampling. 455

As a result, direct comparisons of compute costs are 456

misleading. Moreover, DOSE’s linear-time scoring 457

lets it reach 97.4 % relative performance in 12 h 458

and 98.5 % in 22 h, whereas COINCIDE needs 15 459

h/97.4 % and 25 h/98.4 %, and ICONS—lacking 460

a time-optimized pipeline—lags further behind. Fi- 461

nally, DOSE requires no clustering hyperparam- 462

eters, gradient-influence computations, or extra 463

network training—its runtime scales linearly with 464

dataset size and is immediately deployable—while 465

seen-data methods add complexity that complicates 466

tuning and extension. 467

Unseen-task Generalization. As shown in Table 468

2, we filtered the MathV360K (Shi et al., 2024) 469

dataset and performed continuous fine-tuning on 470

LLaVA-1.5-13B (Liu et al., 2023) using high- 471

quality subsets of varying proportions. In this pro- 472

cess, we strictly adhered to the experimental set- 473

tings of Math-LLaVA (Shi et al., 2024). Since the 474

evaluation on MathVista requires GPT-3.5 (Brown 475

et al., 2020) to extract key results, and the perfor- 476

mance of different period versions may vary, we 477

reproduced the results of Math-LLaVA as a bench- 478

mark for comparison. The experimental results 479
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Size Math-LLaVA on MathVista

FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA Rel.% Aver.

Random selection on MathV360K
5% 22.7 38.0 30.7 41.1 38.6 36.7 31.4 38.1 21.6 30.6 38.5 23.9 88.4 32.7

20% 30.9 44.2 42.9 39.9 33.5 39.9 36.5 43.9 28.8 27.8 45.1 29.6 98.7 36.9
40% 32.3 52.4 43.0 37.3 35.2 45.6 35.7 52.3 16.2 27.8 41.9 35.9 97.6 38.0

DOSE selection on MathV360K
5% 33.4 38.9 30.1 36.1 34.1 36.3 29.5 36.8 24.3 26.4 36.1 31.9 88.4 32.8

10% 30.5 39.9 33.9 39.9 31.8 37.4 30.0 40.2 16.2 26.7 40.2 31.9 86.8 33.2
20% 33.1 45.7 45.7 42.4 36.9 43.1 38.5 45.2 29.7 31.3 41.0 35.9 104.8 39.1
40% 32.7 49.5 47.3 43.7 34.6 47.0 37.1 49.4 18.9 27.8 40.2 37.5 100.4 38.8
65% 30.5 49.5 53.8 42.4 29.1 44.8 37.4 48.5 8.1 24.3 41.9 37.5 93.1 37.3
80% 32.4 53.4 49.5 45.6 36.3 48.4 39.4 51.9 16.2 27.8 46.7 38.2 103.5 40.5

100%† 37.9 52.8 46.8 44.3 27.9 48.4 33.2 51.9 18.9 23.6 45.1 41.9 100 39.4

Table 2: Comparison with different data selection scales on domain-specific benchmarks. † represents our
reproduced results of Math-LLaVA-13B. The best results in all tasks are in bold. MathVista is divided in two ways:
task type or mathematical skill, and we report the accuracy under each subset. Rel.% keep same setting with general
benchmarks, and Aver. means the average score of all tasks.

demonstrate that our method achieves performance480

comparable to Math-LLaVA (Shi et al., 2024) when481

using only 20% of the high-quality data. Further-482

more, when using 80% of the data, the overall483

performance of the model improves by 1 percent-484

age point. While DOSE generally performs well, it485

occasionally underperforms compared to random486

sampling on tasks like GPS (40%), TQA (5%), and487

VQA (5%) under small sampling ratios. This is488

mainly because high-score samples tend to cluster489

in semantically similar regions, leading to reduced490

diversity and limited generalization. In contrast,491

random sampling retains a broader variety of exam-492

ples, which can be more effective in certain tasks.493

4.3 Ablation Study494

In this section, we conduct ablation experiments by495

comparing different scoring strategies, score-based496

sampling strategies, and the fusion of these two497

strategies. The results are presented in Figure 3a,498

Figure 3b, and Figure 4 in Appendix.499

Effectiveness of Single Methods To evaluate the500

effectiveness of Text-Quality and CLIP scores in-501

dependently, we conduct controlled experiments502

in Stage 2 of the LLaVA training pipeline, as503

shown in Figure 3a. We compare four sampling504

strategies using the Text-Quality Score: Rand (ran-505

dom sampling), High (top-scoring filtering), Low506

(low-scoring filtering), and Gas (Gaussian-based507

weighted random sampling that balances quality508

and diversity). Overall, the High strategy outper-509

forms Low, demonstrating the validity of the Text-510

Quality score in assessing data quality. However, 511

when the sampling ratio is small (e.g., 5%), High 512

performs worse than Rand, suggesting that diver- 513

sity is more important than quality in low-resource 514

settings. We further observe in Figure 4 that at 515

a 40% sampling ratio, Rand surpasses High on 516

several benchmarks. As discussed in Section 4.3, 517

score-based filtering tends to concentrate on sam- 518

ples with similar language and structure, reducing 519

task diversity and generalization. In contrast, ran- 520

dom sampling naturally preserves variation in task 521

types and styles, sometimes yielding better perfor- 522

mance. These findings highlight the motivation be- 523

hind our proposed DOSE framework: combining 524

quality-driven scoring with diversity-aware sam- 525

pling to achieve a better trade-off. The Gas strat- 526

egy, which embodies this principle, consistently 527

outperforms Rand, confirming the effectiveness of 528

our data selection method. We will clarify these 529

insights in the final version. 530

In our evaluation of image-text relevance, shown 531

in Figure 3b, we compared four sampling strate- 532

gies using the CLIP Score. The results revealed 533

that the “Gas” strategy significantly outperformed 534

the others. This suggests that as the filtering ratio 535

decreases, data quality differences become more 536

noticeable, making it suitable for large datasets 537

with low usage needs. However, as the dataset size 538

grows, the differences in quality between filtered 539

and unfiltered data become smaller. We also found 540

that in the GQA task, the data filtered by CLIP 541

Score did not show significant advantages, likely 542

because the original data already had strong image- 543
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(a) Performance comparison of different strategies based on Text-Quality Score on TextVQA, GQA, MME, and POPE datasets.
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(b) Performance comparison of different strategies based on CLIP-Score on TextVQA, GQA, MME, and POPE datasets.

Figure 3: Overall performance comparisons across different strategies and datasets. (a) and (b) correspond to
ablation studies on individual selection stratege based on Text-Quality Score and CLIP-Score.

text relevance. This highlights a limitation of CLIP544

Score in selecting certain datasets. To address this545

issue, we recommend using a combined sampling546

approach for a better assessment of data quality.547

Effectiveness of Combined Sampling As shown548

in Figure 4, we identified 9 candidate regions based549

on the original data distribution. These regions550

represent clusters of data, reflecting the similari-551

ties and differences among samples. To create the552

combined distribution sampling data, we randomly553

sampled 5% of the overall data from each candi-554

date region. This method ensures diversity in the555

samples while effectively capturing the underlying556

structure of the data. After constructing the com-557

bined distribution sampling data, we trained the558

model using the same settings as the single-method559

approach and tested it on several datasets, includ-560

ing TextQA (Singh et al., 2019a), GQA (Hudson561

and Manning, 2019a), POPE (Li et al., 2023a), and562

MME (Fu et al., 2023). And, the performance re-563

sults are shown in Figure 4, which indicate that in564

the upper right area—where both CLIP and Text-565

Quality Score are high—the model generally per-566

forms better. This suggests that in general task, the567

combination of the two sampling methods can ef-568

fectively select data that helps improve the model’s569

performance. By using this combined sampling570

method based on the distribution, we enhance the571

representativeness and quality of the data, thereby572

improving the model’s training efficiency. 573

5 Conclusion 574

In this work, we propose DOSE, an efficient and 575

practical data selection method for multimodal in- 576

struction tuning. DOSE leverages off-the-shelf 577

models to evaluate text quality and image-text 578

alignment separately, then combines these scores 579

into a unified quality-alignment distribution for 580

adaptive weighted random sampling. This ap- 581

proach preserves data diversity while identifying 582

the most informative samples. Our experimen- 583

tal evaluation demonstrates DOSE’s effectiveness 584

across multiple dimensions. On both general VQA 585

tasks and specialized math benchmarks, DOSE 586

achieves comparable performance to full-dataset 587

training using only 20% of the data, and surpasses 588

full-dataset results when using 40% to 80% sub- 589

sets. Crucially, DOSE outperforms existing unseen- 590

data selection strategies in both effectiveness and 591

computational efficiency, while operating entirely 592

at inference time without requiring fine-tuning or 593

additional training. These results underscore the 594

critical importance of high-quality data selection in 595

multimodal learning and establish DOSE as a scal- 596

able, practical solution for resource-constrained 597

environments. The method’s ability to maintain 598

strong performance with significantly reduced data 599

requirements makes it particularly valuable for effi- 600

cient multimodal model development. 601
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6 Limitations602

While our method demonstrates strong perfor-603

mance and high efficiency, our study is constrained604

by the experimental cost and a limited exploration605

budget. We evaluated only an array of sampling606

ratios and primarily tested our method on LLaVA-607

1.5 models (7B & 13B), without assessing more608

fine-grained sampling ratios or more types of mod-609

els. As a result, the generality of DOSE across610

additional sampling ratios and diverse architectures611

remains to be validated in future work.612
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cuses on reasoning about visual attributes like color 886

and shape, and VQA-v2 (Goyal et al., 2017), which 887

assesses broader visual reasoning. MME (Fu et al., 888

2024) evaluates both perceptual abilities and cog- 889

nitive reasoning, while TextVQA (Singh et al., 890

2019b) tests OCR-based reasoning. POPE (Li et al., 891

2023b) addresses object hallucination, assessing 892

models’ ability to avoid generating non-existent 893

objects. VizWiz (Gurari et al., 2018) focuses on 894

basic visual reasoning for users who are blind, and 895

ScienceQA (Lu et al., 2022) evaluates knowledge- 896

grounded question answering. Together, these 897

benchmarks provide a comprehensive test of rea- 898

soning, perception, and understanding. Meanwhile, 899

for the Special VQA task, we use MathVista (Lu 900

et al., 2023), a benchmark designed to assess math- 901

ematical reasoning in visual contexts. It comprises 902

6,141 questions from various datasets and covers 903

categories such as FQA, GPS, MWP, TQA, and 904

VQA. With a focus on arithmetic, algebra, and 905

logic, MathVista includes a diverse range of image 906

types, making it an essential platform for evaluating 907

models’ capabilities in mathematical reasoning. 908

B Result Analysis 909

To understand how our proposed data selection 910

strategy enhances training performance and effi- 911

ciency, we conducted a visualization and analysis 912

of the data used in LLaVA stage 2, consisting of 913

665k data points. In the left panel of Figure 5, we 914

plotted the CLIP-Score and Text-Quality Score for 915

each data point, revealing a significant concentra- 916

tion of data points in the central area. This suggests 917

that the data likely follows a normal distribution in 918

both scores, indicating regions of higher data qual- 919

ity. These insights led us to examine performance 920

variations across different regions, as discussed in 921
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Section 4.3. We found that areas with higher con-922

centrations of data points generally correlated with923

better performance. This understanding drove us924

to combine these insights with WRS to create a925

high-quality data subset selection strategy.926

We then visualized the distributions resulting927

from random sampling (light blue) and WRS sam-928

pling (light green) in the right panel of Figure929

5. The WRS sampling distribution shows a pro-930

nounced concentration in regions with higher CLIP931

and Text-Quality Scores, effectively validating our932

strategy for assessing data quality and demonstrat-933

ing the benefits of our sampling approach.934

C Time Cost Analysis935

Figure 2 presents a joint analysis of model perfor-936

mance and wall-clock cost across different data937

selection strategies. The left panel reports the av-938

erage relative performance of each method under939

varying sampling ratios (20%, 40%, 60%), while940

the right panel compares the corresponding total941

wall-clock time, including both data selection and942

fine-tuning. Each curve comprises three data points943

representing these ratios.944

Although the x-axes differ (sampling ratio vs.945

total time), the relationship is direct—higher sam-946

pling ratios typically incur greater computational947

cost. This visualization highlights how different948

methods navigate the trade-off between efficiency949

and effectiveness.950

Among the methods, Perplexity-based filtering951

exhibits the steepest increase in time cost as the952

sampling ratio grows. This is due to its inherently953

sequential and non-parallelizable scoring process,954

which requires token-level log-likelihood computa-955

tion for every instruction–response pair. Addition-956

ally, Perplexity re-evaluates the selected samples957

from scratch at each ratio, leading to near-linear958

or worse scaling behavior in wall-clock time. This959

limits its scalability to large datasets.960

Consistent with prior works such as ICONS (Wu961

et al., 2024b) and COINCIDE (Lee et al., 2024),962

we omit the full-data training cost–performance963

curve in this figure, as the focus is on fixed-ratio964

comparisons to highlight efficiency gains.965
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Tasks Examples of Task Templates

Original Template Question: " ⟨image⟩ What are the colors of the bus in the image? "
Answer: " The bus in the image is white and red. "

Scoring Template

Question: " ### What are the colors of the bus in the image? The bus in the image is white and red. ### Does the previous
paragraph demarcated within ### contain informative signal for visual instruction tuning a vision-language model? An
informative data point should be well-formatted, contain usable knowledge of the world, and strictly NOT have any harmful,
racist, sexist, etc. content. OPTIONS: -yes -no "
Answer: " Response: yes"

Table 3: Task template examples. "Original Template" represents the original format of the data, while "Scoring
Template" represents the format used to assist in evaluating the quality of the text within the data. ⟨image⟩ indicates
that the original data contains corresponding image information; in the scoring template, we only assess the quality
of the textual information, so this token is omitted.
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Figure 4: Performance comparison of different part datasets.
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Figure 5: (Left) The combined distribution of Text-Quality and CLIP Score. The combined distribution is
plotted with Text-Quality Score on the X-axis and CLIP Score on the Y-axis, forming a 2D distribution. The density
is illustrated, where lighter colors indicate lower densities and brighter colors represent higher densities. (Right)
The combined distribution of sampling results of 665K data of LLaVA Stage 2. The same axis settings as the
left figure are used, with an additional z-axis representing the data density. The height of the z-axis corresponds to
the density of data in the respective region.
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