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Abstract

Sparse Autoencoders (SAEs) have emerged as a
powerful framework for machine learning inter-
pretability, enabling the unsupervised decompo-
sition of model representations into a dictionary
of abstract, human-interpretable concepts. How-
ever, we reveal a fundamental limitation: exist-
ing SAEs exhibit severe instability, as identical
models trained on similar datasets can produce
sharply different dictionaries, undermining their
reliability as an interpretability tool. To address
this issue, we draw inspiration from the Archety-
pal Analysis framework introduced by Cutler &
Breiman (1994) and present Archetypal SAEs (A-
SAE), wherein dictionary atoms are constrained
to the convex hull of data. This geometric an-
choring significantly enhances the stability of in-
ferred dictionaries, and their mildly relaxed vari-
ants RA-SAEs further match state-of-the-art re-
construction abilities. To rigorously assess dictio-
nary quality learned by SAEs, we introduce two
new benchmarks that test (i) plausibility, if dictio-
naries recover “true” classification directions and
(ii) identifiability, if dictionaries disentangle syn-
thetic concept mixtures. Across all evaluations,
RA-SAEs consistently yield more structured rep-
resentations while uncovering novel, semantically
meaningful concepts in large-scale vision models.
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Figure 1. A) Archetypal-SAE. Archetypal-SAEs constrain dictio-
nary atoms (decoder directions) to the data’s convex hull, improv-
ing stability. A relaxed variant (RA-SAE) allows mild relaxation,
matching standard SAEs in reconstruction while maintaining stabil-
ity. Both integrate with any SAE variant (e.g., TopK, JumpReLU).
B) Instability Problem. Standard SAEs produce inconsistent dic-
tionaries across runs, undermining interpretability. For example,
in classical SAEs, the second most important concept for “rabbit”
in one run has no counterpart in another run (cos = 0.58). In
contrast, Archetypal-SAEs maintain consistent concept correspon-
dences across runs, ensuring stability.
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1. Introduction
Artificial Neural Networks (ANNs) have revolutionized
computer vision, setting new benchmarks across a wide
range of tasks. Despite these successes, the “black-box”
nature of ANNs poses significant challenges, particularly in
domains requiring transparency, accountability, and adher-
ence to strict ethical and regulatory standards (Tripicchio &
D’Avella, 2020). Beyond compliance, there is a growing cu-
riosity within the scientific community to better understand
these models’ internal mechanisms, both to satisfy funda-
mental questions about their function, leverage insights for
debugging (Adebayo et al., 2020) and improvement, and
even explore parallels with neuroscience (Goodwin et al.,
2022; Vilas et al., 2024). These motivations have spurred
the rapid growth of explainable artificial intelligence (XAI),
a field dedicated to enhancing the interpretability of ANNs,
thereby bridging the gap between machine intelligence and
human understanding (Doshi-Velez & Kim, 2017).

Among XAI approaches, concept-based methods (Kim et al.,
2018) have emerged as a powerful framework for uncov-
ering intelligible visual concepts embedded within the in-
tricate activation patterns of ANNs (Ghorbani et al., 2019;
Zhang et al., 2021; Fel et al., 2023b; Graziani et al., 2023;
Vielhaben et al., 2023). These methods excel in making the
internal representations of ANNs more comprehensible by
associating them with human-interpretable concepts. Re-
cently, concept extraction methods have been shown to be
instances of dictionary learning (Fel et al., 2023a), where
the goal is to map the activation space of an ANN into a
(higher-dimensional), sparse “concept space”. The result-
ing concept basis is often considered more interpretable.
For such representations to be effective, they must be as
sparse as possible while still enabling accurate reconstruc-
tion of the original activations from the learned basis using
a dictionary of atoms—also called prototypes. Historically,
dictionary learning methods have included techniques such
as Non-negative Matrix Factorization (NMF) (Lee & Se-
ung, 2001; Kowal et al., 2024a; Jourdan et al., 2023) and
K-Means (Gersho & Gray, 1991; Ghorbani et al., 2019),
while more recent approaches like Sparse Autoencoders
(SAEs) (Cunningham et al., 2023; Bricken et al., 2023; Ra-
jamanoharan et al., 2024; Gao et al., 2025; Thasarathan
et al., 2025; Poché et al., 2025) have emerged as a powerful
alternative. SAEs achieve a good balance between sparsity
and reconstruction quality, and their optimization frame-
works scale well to large datasets. However, compared to
traditional methods, SAEs suffer from a critical limitation:
instability. As illustrated in Figure 1, training two identical
SAEs on the same data can yield significantly different dic-
tionaries (concept bases), undermining their reliability and
interpretability.

In this work, we address the instability of current SAEs

by introducing two novel variants: Archetypal-SAE (A-
SAE) and its relaxed counterpart (RA-SAE). Building upon
archetypal analysis (Cutler & Breiman, 1994), A-SAE con-
strains each dictionary atom to reside within the convex hull
of the training data, ensuring a more stable and consistent
set of basis elements across different training runs by virtue
of this geometrical constraint. RA-SAE further extend this
framework by incorporating a small relaxation term, allow-
ing for slight deviations from the convex hull to enhance
modeling flexibility while maintaining stability. Overall,
our work makes the following contributions.

1. Instability in SAEs. We identify a critical limitation
of current SAEs paradigms: two training runs on iden-
tical data can yield concept dictionaries that are largely
distinct, hence compromising their reliability as an
interpretability protocol.

2. A-SAE: Archetypal anchoring to overcome insta-
bility. To address the challenge above, we take in-
spiration from Cutler & Breiman (1994)’s Archetypal
analysis of dictionary learning and propose A-SAE,
an SAE paradigm wherein the dictionary atoms (de-
coder directions) are forced to lie in the convex hull of
sample representations. As we show, this geometrical
anchoring yields substantial stability across training
runs. Moreover, we show a mild relaxation of this pro-
tocol, which we title RA-SAE, uncovers meaningful
and interpretable concepts in large-scale vision models.

3. Rigorous evaluations with novel metrics and bench-
marks. We introduce novel metrics to evaluate the
quality of dictionaries learned using different SAE
paradigms, while proposing two new benchmarks for
testing SAEs’ ability to recover classification direc-
tions and to disentangle synthetic image mixtures, in-
spired by identifiability theory (Locatello et al., 2019;
2020; Higgins et al., 2017). Our results provide sub-
stantial evidence that A-SAEs find more structured
and coherent concepts. Further, to enable reproduction,
we open-source our extensive codebase for large-scale
SAE training on modern vision models.

2. Related Work
Sparse Coding & Dictionary Learning. Dictionary
learning (Tošić & Frossard, 2011; Rubinstein et al., 2010;
Elad, 2010; Mairal et al., 2014; Dumitrescu & Irofti, 2018)
emerged as a fundamental approach for uncovering latent
factors of a data-generating process in signal processing
and machine learning, building upon early work in sparse
coding (Olshausen & Field, 1996; 1997; Lee et al., 2006;
Foldiak & Endres, 2008; Rentzeperis et al., 2023). The
primary objective of these methods is to find a sparse rep-
resentation of input data (Hurley & Rickard, 2009; Eamaz
et al., 2022), such that each data sample can be accurately
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reconstructed using a linear combination of only a small sub-
set of dictionary atoms. The field gained momentum with
compressed sensing theory (Donoho, 2006; Candès et al.,
2006; Candès & Wakin, 2008; Lopes, 2013; Rencker et al.,
2019), which established theoretical foundations for sparse
signal recovery. Early dictionary learning methods evolved
from vector quantization and K-means clustering (Gersho
& Gray, 1991; Lloyd, 1982), leading to more sophisticated
approaches like Non-negative Matrix Factorization (NMF)
and its variants (Lee & Seung, 1999; 2001; Gillis, 2020;
Ding et al., 2008; Kersting et al., 2010; Thurau et al., 2009;
Gillis & Kumar, 2015), Sparse PCA, (d’Aspremont et al.,
2004; Zou et al., 2006) and K-SVD (Aharon et al., 2006a;
Elad & Aharon, 2006). The field further expanded rapidly
(Wright et al., 2010; Chen et al., 2021; Tasissa et al., 2023)
with online methods (Mairal et al., 2009; Kasiviswanathan
et al., 2012; Lu et al., 2013) and structured sparsity (Jenatton
et al., 2010; Bach et al., 2012; Sun et al., 2014). Theoretical
guarantees for dictionary learning emerged (Aharon et al.,
2006b; Spielman et al., 2012; Hillar & Sommer, 2015; Fu
et al., 2018; Barbier & Macris, 2022; Hu & Huang, 2023),
alongside connections to deep learning (Baccouche et al.,
2012; Tariyal et al., 2016; Papyan et al., 2017; Mahdizade-
haghdam et al., 2019; Tamkin et al., 2023; Yu et al., 2023).
Parallel developments in archetypal analysis from Cutler &
Breiman (1994) provided complementary perspectives on
dictionary learning by focusing on extreme points in a set
of observations (Dubins, 1962).

Vision Explainability. Early work in the field of Ex-
plainable AI primarily revolved around attribution meth-
ods, which highlight the input regions that most influence a
model’s prediction (Simonyan et al., 2013; Zeiler & Fergus,
2014; Bach et al., 2015; Springenberg et al., 2014; Smilkov
et al., 2017; Sundararajan et al., 2017; Selvaraju et al., 2017;
Fong & Vedaldi, 2017; Fel et al., 2021; Novello et al., 2022;
Muzellec et al., 2024)—in other words, where the network
focuses its attention to produce its prediction. While valu-
able, attribution methods exhibit two core limitations: (i)
they provide limited information about the semantic orga-
nization of learned representations (Hase & Bansal, 2020;
Hsieh et al., 2021; Nguyen et al., 2021; Colin et al., 2021;
Kim et al., 2022; Sixt et al., 2020), and (ii) they can pro-
duce incorrect explanations (Adebayo et al., 2018; Ghorbani
et al., 2017; Slack et al., 2021; Sturmfels et al., 2020; Hsieh
et al., 2021; Hase et al., 2021). In other words, just because
the explanations make sense to humans, we cannot conclude
that they accurately reflect what is actually happening within
the model—as shown by ongoing efforts to develop robust
evaluation metrics for explainability (Petsiuk et al., 2018;
Bhatt et al., 2020; Jacovi & Goldberg, 2020; Hedström et al.,
2022; Fel et al., 2022; Hsieh et al., 2021; Boopathy et al.,
2020; Lin et al., 2019; Idrissi et al., 2021).

To overcome the constraints above, concept-based inter-

pretability (Kim et al., 2018) has gained traction. Its central
objective is to pinpoint semantically meaningful directions—
revealing not just where the model is looking, but also what
patterns or concepts it employs—and to link these systemat-
ically to latent activations (Bau et al., 2017; Ghorbani et al.,
2019; Zhang et al., 2021; Fel et al., 2023b; Graziani et al.,
2023; Vielhaben et al., 2023; Kowal et al., 2024a;b). In
line with this perspective, Fel et al. (2023a) demonstrate
that popular concept-extraction methods : ACE (Ghorbani
et al., 2017), ICE (Zhang et al., 2021), CRAFT (Fel et al.,
2023b) and more recently SAEs (Cunningham et al., 2023;
Bricken et al., 2023; Rajamanoharan et al., 2024; Gao et al.,
2025; Surkov et al., 2024; Gorton, 2024; Bhalla et al., 2024a)
all address essentially the same dictionary learning task, al-
beit subject to distinct constraints (see Eq. 1).

Within this broader context, we note Sparse Autoencoders
(SAEs) have emerged as a highy scalable special case of
dictionary learning: unlike NMF, Sparse-PCA, or other op-
timization problem, SAEs can be trained with the same
algorithms and architectures used in modern deep learn-
ing pipelines, making them especially well-suited for large-
scale concept extraction. However, motivated by more am-
bitious use-cases of interpretability, e.g., to develop trans-
parency and accountability (Anwar et al., 2024), recent
work has started to demonstrate limitations in existing SAE
frameworks and propose improvements. Examples of such
limitations include learning of overly specific or sensitive
features (Bricken et al., 2023; Chanin et al., 2024), chal-
lenges in compositionality (Wattenberg & Viegas, 2024;
Clarke et al., 2024), and limited effects of latent interven-
tions (Bhalla et al., 2024b; Menon et al., 2024). In this paper,
we aim to bring to attention an underappreciated challenge
in SAEs’ training –instability – wherein mere reruns of SAE
training yield inconsistent interpretations (Figure 1).

3. (In)Stability of SAEs
We first establish the challenge of instability in SAEs’ train-
ing. To this end, we start by defining notations and provid-
ing background on the SAEs analyzed in this work, then
offering a formal measure of instability in SAE training.

Notation. Throughout this work, || · ||2 and || · ||F rep-
resent the ℓ2 and Frobenius norms, respectively. We de-
fine [n] = {1, . . . , n}, and consider a general represen-
tation learning framework where a deep learning model
f : X → A maps inputs from an input space X to a rep-
resentation space A ⊆ Rd. The representation is captured
as a set of n points arranged in a matrix A ∈ Rn×d, with
Ai denoting its i-th row, where i ∈ [n] and Ai ∈ Rd. For
any matrix X , X ≥ 0 denotes that all elements of X are
non-negative, and P(n) is the set of n × n signed permu-
tation matrices. Given A ∈ Rn×d, we define cone(A) =
{x | x = Av, v ∈ Rn, v ≥ 0}, and conv(A) = {x |
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Figure 2. SAEs are a promising direction for scalable concept extraction in vision. Comparison of reconstruction error (ℓ2 Loss)
and sparsity across four large-scale vision models: ConvNext, DINO, SigLIP, and ViT. The figure compares the performance of various
dictionary learning methods, including classical approaches (Convex-NMF, Semi-NMF) and modern Sparse Autoencoders (Vanilla SAE,
Top-K SAE, JumpReLU SAE). Each SAE is trained up to 250 million tokens per epoch over 50 epochs, demonstrating the scalability of
SAEs and their ability to achieve superior trade-offs between reconstruction fidelity and sparsity compared to traditional methods.

x = Av, v ∈ Rn, v ≥ 0, 1Tv = 1} as the conical and
convex hulls, respectively, generated by the columns of A.

Concept Extraction as Dictionary Learning. Concept
extraction can be naturally framed as a dictionary learn-
ing problem, wherein a set of n activations, represented
by the matrix A ∈ Rn×d, is approximated using a struc-
tured decomposition. The goal is to learn a Dictionary
D—also referred to as atoms (Serre, 2006), prototypes, or
a codebook (Tamkin et al., 2023)—such that activations
can be reconstructed as sparse linear combinations of these
learned directions. The corresponding coefficients, known
as Codes Z, capture the latent structure of the activations
and enforce interpretability by promoting sparsity or non-
negativity. This leads to the general optimization framework:

(Z⋆,D⋆) = argmin
Z,D

||A−ZDT||2F ,

s.t.


∀i,Zi ∈ {e1, . . . , ek}, (ACE - K-Means),
DTD = I, (ICE - PCA),
Z ≥ 0,D ≥ 0, (CRAFT - NMF),
Z = Ψθ(A), ||Z||0 ≤ K, (SAEs).

Here, ei denotes the i-th canonical basis vector, I is the iden-
tity matrix, and Ψθ is a neural network parameterized by θ
(typically a single feedforward layer with bias). Notably, in
Sparse Autoencoder (SAE) literature, the dictionary D is
often identified with the decoder weight matrix, denoted as
Wdec. This optimization framework unifies various classical
methods for concept extraction, ranging from clustering-
based approaches (Ghorbani et al., 2019), orthogonal factor-
ization methods (Zhang et al., 2021; Graziani et al., 2021),

and nonnegative matrix factorization (Fel et al., 2023b) to
modern sparse autoencoding techniques (SAEs) (Cunning-
ham et al., 2023; Bricken et al., 2023).

Despite similar formulations to SAEs, solving K-Means,
PCA, or NMF typically does not rely on backpropaga-
tion and lacks inherent batch-learning capabilities. This
make SAEs particularly appealing for large-scale applica-
tions. Additionally, optimization problems solved in mul-
tiple steps, such as NMF, Semi-NMF, or K-Means, can be
interpreted as having a multi-layer nonlinear encoding (akin
to a Ψθ with multiple layers)1. We note that the decoding
process in these methods remains linear.

To compare these approaches, we generally evaluate the
trade-off between two metrics: sparsity, measured as the
ℓ0 norm of Z, and fidelity, measured as the ℓ2 reconstruc-
tion error. As a starting point, we propose to study this
pareto frontier using state-of-the-art SAEs, including Jump-
ReLU (Rajamanoharan et al., 2024), TopK (Gao et al.,
2025), and a vanilla SAE with ℓ1 regularization (Bricken
et al., 2023), alongside classical sparse dictionary learning
methods. Since PCA is non-sparse, K-Means sparsity is
fixed, and NMF is applicable only to non-negative activa-
tions, we adopt modified versions of these methods that
are broadly applicable for concept extraction (Kowal et al.,
2024a; Parekh et al., 2024), such as Convex-NMF and Semi-
NMF. For SAEs, we use the following standard formulation:

Ψθ(A) = σ(AWθ + b), (1)

where A denotes a linear encoder layer and σ(·) is an ele-

1A single optimization step in a NMF is akin to a linear model
followed by a ReLU (projection onto the positive orthant).
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mentwise non-linearity that depends on the specific SAE ar-
chitecture. For all SAEs, the resulting codes Z = Ψθ(A) ≥
0 holds. We employ a Silverman kernel (Silverman, 1984)
for instantiating Jump-ReLU SAEs. For vanilla SAEs, an
ℓ1 regularization on Z is applied until the desired sparsity is
achieved. Top-K and Jump-ReLU SAEs directly control or
optimize an ℓ0 constraint.

Results in Figure 2 illustrate that the SAE methods discussed
above outperform optimization based dictionary learning
methods in terms of reconstruction fidelity for fixed sparsity
levels. While this positions SAEs as a compelling solu-
tion for concept extraction, as we show in the following, a
significant drawback of current methods lies in their insta-
bility: minor changes to the dataset can lead to substantial
variations in the learned dictionary.
Measuring Instability. To formally define a notion of
stability in SAEs’ training, we seek inspiration from the dic-
tionary learning literature and prior works (Spielman et al.,
2012), yielding the following metric for two dictionaries
D ∈ Rn×d and D′:

Stability(D,D′) = max
Π∈P(n)

1

n
Tr(DTΠD′), (2)

where we assume that each atom lies on the unit ℓ2-norm
ball, i.e., ||Di||2 = 1 for all i ∈ [n]. This metric essentially
measures the optimal average cosine similarity between the
dictionaries after finding the best alignment via the Hungar-
ian algorithm2.

We evaluate stability across various vision models by alter-
ing only the random seed of the algorithm, while keeping
the dataset unchanged across 4 runs. A similar trend is ob-
served when the dataset is perturbed by as little as 5% or
10%, consistent with prior findings (Fel et al., 2023a; Braun
et al., 2024; Paulo & Belrose, 2025). Results in Figure 3
show that while SAEs outperform classical dictionary learn-
ing methods in terms of reconstruction error (ℓ2-loss), they
exhibit lower stability, with cosine stability values around
0.5 for TopK SAE trained on DinoV2 with over 250 million
tokens. As a first approximation, this implies that re-running
the same algorithm with a different seed can result in dic-
tionaries where only half the concepts remain, while the
other half are new orthogonal concepts. By contrast, the
proposed Archetypal SAE, introduced below, achieves sta-
bility comparable to classical dictionary learning methods
without compromising reconstruction fidelity.

4. Towards Archetypal SAEs
In their seminal work, Cutler & Breiman (1994) proposed
representing each data point as a convex combination of

2In practice, we use the linear sum assignment function
from scipy (Virtanen et al., 2020), which solves the linear sum
assignment problem by finding the optimal matching in a bipartite
graph using the Jonker-Volgenant algorithm.

Archetypes, which are themselves defined as convex com-
binations of data points. Concretely, the dictionary (the
collection of Archetypes) can be constructed by multiply-
ing the data by a row-stochastic matrix. Drawing on these
ideas, we propose a solution to the problem of instability
in SAEs’ training: the Archetypal SAE (A-SAE), which
acts as a plug-and-play parameterization of the dictionary—
i.e., the decoder matrix—and can be seamlessly integrated
into any existing SAE, e.g., TopK (Gao et al., 2025) or
Jump-ReLU (Rajamanoharan et al., 2024).

Formulation. Let A ∈ Rn×d represent the data matrix
(with n data points in Rd), and ∆n = {x ∈ Rn | xi ≥
0,1Tx = 1} denote the (n−1)-dimensional simplex in Rn.
A matrix W ∈ Rk×n is row-stochastic if each row Wi

belongs to ∆n. Define the set of row-stochastic matrices as

Ωk,n ≜ {W ∈ Rk×n | W ≥ 0,W1n = 1k}. (3)

An archetypal dictionary D is then defined as follows.

D = WA, where W ∈ Ωk,n. (4)

Hence, each row of D is a convex combination of the rows
of A, ensuring that each archetype originates from the data.

Geometric Interpretation. In standard SAEs (and most
dictionary learning approaches), the dictionary D is free in
the sense that each atom Di ∈ Rd can be placed anywhere
in the ambient space. From a geometric perspective, this
flexibility allows the reconstructions ZD to span regions
that may exceed the convex hull of the data A. While this
unconstrained setting enables greater expressivity, it comes
with significant drawbacks. Specifically, small perturbations
in the data or random initializations can lead to unstable so-
lutions, resulting in dictionaries that differ drastically across
training runs. Moreover, if the dictionary atoms Di point
in directions unrelated to the data, probing these directions
may fail to activate any meaningful mechanisms within the
underlying model (Makelov et al., 2023). This highlights
the importance of ensuring that the dictionary aligns with
“real” directions inherent to the data.

In contrast to above, the Archetypal dictionary imposes
a crucial geometric restriction: every dictionary atom is
constrained to lie within the convex hull of A, i.e., each
dictionary atom Di is a convex combination of samples’
representations. Thus, once multiplied by a nonnegative
Z, the reconstructions ZD remain within the conic hull
of A. This anchoring within the data manifold precludes
the emergence of pathological or out-of-sample directions,
yielding stability gains shown empirically in Figure 3 and
formalized in Proposition G.2. Concretely, we always have:

D ∈ conv(A), ZD ∈ cone(A).
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Figure 3. Stability-Reconstruction tradeoff (optimal: top-left). We implement 5 dictionary learning methods on 4 models at 5 levels
of sparsity each, as well as our A-SAE method. We show that SAEs exhibit instability (minor perturbations in the dataset can lead to
significant changes in the learned dictionary), while traditional dictionary learning methods are more stable but worse at reconstructing the
data. Archetypal-SAEs (ours) help mitigate this issue. We measure stability based on Equation (2): the optimal average cosine similarity
between the dictionaries across 4 runs after finding the best alignment via the Hungarian algorithm. Archetypal-SAEs improve stability
without compromising reconstruction fidelity, performing better on the stability-reconstruction tradeoff than existing methods.

Moreover, one can restrict D to be formed from a subset
C ⊆ Rn′×d (rather than all of A) without losing expressiv-
ity, provided C contains the extreme points of A (Dubins,
1962). Indeed, in that case cone(C) = cone(A), ensuring
the same representational power (see Proposition G.1).

We must now ask the core question that makes SAEs excit-
ing: does an SAE with an Archetypal dictionary, as defined
above, scale? Indeed, optimizing the matrix W of size
k × n, where n is the number of points and k is the num-
ber of concepts, is often infeasible in practice (e.g., when
the number of tokens n > 108). This limitation speaks
to the importance of the matrix C, which can either be a
subset of A or elements within conv(A), such as mixtures
of points. Specifically, accessing extreme points is neces-
sary to achieve perfect reconstruction (Simon, 2011), but
this is also intractable in practice for such high dimensions.
However, we propose to address this with a relaxation.

Scaling Archetypal-SAE. To maintain the desirable prop-
erties of A-SAE while addressing scalability, we propose
using a reduced subset of points C, with n′ ≪ n, chosen as
centroids of A obtained via K-Means. We fix C and train
only W . We apply a ReLU activation and normalize each
row of W at each step to ensure that W ∈ Ωk,n. Experi-
ments indicate that K-Means forms the most reliable method
for distilling A into C (see Figure 11), compared to alter-
natives such as isolation forests (Liu et al., 2008), convex
hull computation in reduced dimensions, or outlier detec-
tion methods (Scholkopf et al., 1999; Breunig et al., 2000)
(details in Appendix E). Hereafter, we use A-SAE to refer
to this implementation where we directly optimize W to

Figure 4. Impact of the Relaxation Parameter (δ). Enumerating
extreme points is infeasible in practice; therefore, we introduce a
small relaxation parameter (δ) that allows exploration beyond the
convex hull of C. The magnitude of this relaxation enables the
Archetypal SAE to achieve performance comparable to the uncon-
strained TopK SAE denoted as Baseline (left) while maintaining
excellent stability (right).

find the best convex combination of points that reconstruct
data. To enable a controlled degree of flexibility beyond
conv(C), we introduce a mild relaxation term Λ ∈ Rk×d,
a matrix of the same dimensions as the dictionary, with a
small norm constraint ||Λ||22 ≤ δ. This leads to a relaxed
formulation, which we call the Relaxed Archetypal SAE
(RA-SAE). Unlike standard A-SAEs, RA-SAE learns both
the convex combination weights W and the relaxation term
Λ, while ensuring that deviations from the convex hull re-
main minimal. Formally, we define the dictionary as:

D = WC +Λ, s.t. W ∈ Ωk,n and ||Λ||22 ≤ δ.
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Here, only W and Λ are trainable parameters, as detailed
in the pseudocode (Figure 5). This implementation ensures
that W remains row-stochastic and that the deviation term
Λ stays within the prescribed norm constraint. As shown in
Figure 4, RA-SAE achieves reconstruction performance on
par with conventional Top-K SAEs while maintaining the
stability benefits of the archetypal constraint.

class ArchetypalDictionary(nn.Module):
def __init__(self, C, k, δ=1.0):
super().__init__()
n′, d = C.shape
self.register_buffer("C", C)
self.W = nn.Parameter(torch.eye(k, n′))
self.Λ = nn.Parameter(torch.zeros(k, d))
self.δ = δ

def forward(self, Z):
with torch.no_grad():
W = torch.relu(self.W)
W /= W.sum(dim=-1, keepdim=True)
Λ *= torch.clamp(

self.δ / Λ.norm(dim=-1, keepdim=True),
max=1

)
D = W @ self.C + Λ
return Z @ D

Figure 5. Pseudocode for Relaxed Archetypal SAE (RA-SAE).
This implementation ensures that dictionary atoms remain close
to convex hull of the data conv(C) while allowing controlled
deviations for better flexibility.

5. Experiments
This section is organized into five parts. We begin by de-
scribing the experimental setup in detail. Then, we introduce
a novel set of theoretical metrics designed to better under-
stand the differences between optimization-based dictionary
learning methods, standard SAEs, and the proposed Archety-
pal SAEs. Following this, we present a new benchmark
inspired by identifiability theory, which serves to evaluate
the plausibility and uniqueness of the learned representa-
tions. We then propose a second, more practical benchmark
to assess whether the models can retrieve “true” directions
or concepts effectively utilized by the models. Finally, we
conclude with qualitative examples showcasing the concepts
discovered by SAEs, particularly when applied to the DI-
NOv2 model, providing insight into the interpretability and
utility of the learned representations.

Setup. We evaluate five models: DINOv2 (Darcet et al.,
2023; Oquab et al., 2023), SigLip (Zhai et al., 2023),
ViT (Dosovitskiy et al., 2020), ConvNeXt (Liu et al., 2022),
and ResNet50 (He et al., 2016), sourced from the timm li-
brary (Wightman et al., 2019). Unless specified, we trained

overcomplete dictionaries with size k = 5× the feature
dimension (e.g., 768 × 5 for DINOv2 and 2048 × 5 for
ConvNeXt). Models were trained on the ImageNet dataset
(∼ 1.28M images), resulting in over 60M tokens per epoch
for ConvNeXt (7× 7 tokens/image) and over 250M tokens
per epoch for DINOv2 (14× 14 patches/image) across 50
epochs. Semi-NMF and Convex-NMF were trained using
gradient descent with accumulation and ℓ1 regularization
to control sparsity, while the RA-SAE was applied atop a
TopK SAE to maintain consistent sparsity. To compute C,
we applied K-Means clustering to the entire dataset, reduc-
ing it to 32,000 centroids, which achieved reconstruction
error comparable to the unconstrained SAE. The data ma-
trix A was element-wise standardized. All the SAEs were
trained using the Overcomplete library3.

5.1. Dictionary Learning Metrics

To improve SAEs, it is essential to deepen our understanding
of the solutions they yield. We thus evaluate both standard
and novel sets of metrics that evaluate dictionary learning
methods across four key dimensions: (i) sparse reconstruc-
tion, (ii) consistency, (iii) structure in the dictionary (D),
and (iv) structure in the codes (Z), all reported in Tab. 1 (see
App. D for formal definitions). Overall, we find Archety-
pal SAEs achieve a strong balance between reconstruction
performance, consistency, and identification of structure.

i) Sparse Reconstruction. Prior work (Bricken et al., 2023)
commonly assesses the quality of the learned dictionary
to reconstruct the original data under sparsity constraints
via metrics such as R2, sparsity (ℓ0 norm), and the effec-
tive usage of dictionary atoms (e.g., dead codes). We find
that Archetypal SAEs perform on-par with existing SAEs
and outperform NMF methods in reconstruction, achieving
higher R2 scores for comparable sparsity levels.

ii) Consistency. Excelling in reconstruction does not guar-
antee that the learned solution aligns with the underlying
data distribution or is stable across training runs. To this
end, we measure stability, which assesses the consistency
of learned dictionaries across different initializations or per-
turbations in the data, and the OOD score, which quantifies
how close the dictionary atoms are to real data points, i.e.,
whether learned concepts remain grounded and interpretable.
Our findings indicate that SAEs perform poorly in consis-
tency, showing both low stability (as evidenced in Figure 3)
and suboptimal OOD scores. In contrast, Archetypal SAEs
significantly enhance stability and OOD score without sac-
rificing reconstruction performance. In Proposition G.4,
we provide theoretical arguments showing that, under mild
assumptions, the OOD score of Archetypal SAEs is inher-
ently lower-bounded, ensuring that learned dictionary atoms
remain well-anchored within the data.

3https://github.com/KempnerInstitute/overcomplete
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Metric Van. SAE TopK SAE Jump SAE SNMF CNMF RA-SAE

R2 (↑) 83.94 89.52 89.92 67.43 55.48 89.34
Dead Codes (↓) 0.00 0.00 0.00 0.064 0.031 0.02

Stability (↑) 0.710 0.542 0.539 0.925 0.933 0.927
Max Cosine (↑) 0.997 0.993 0.994 0.999 0.999 0.999
OOD Score (↓) 0.451 0.551 0.551 0.430 0.087 0.060

Stable Rank (↓) 86.8 141.6 128.0 5.38 6.65 5.89
Eff. Rank (↓) 363 372 371 186 289 310
Coherence (↓) 0.838 0.728 0.560 0.999 0.999 0.973

Connectivity (↑) 0.000 0.002 0.003 0.243 0.138 0.159
Neg. Inter. (↓) 39.99 135.7 243 0.005 0.002 0.012

Table 1. Quantitative comparison of the dictionary learning methods on DINOv2, using a 90% sparse, overcomplete dictionary
with 2000 concepts. SAE methods achieve the highest reconstruction performance. C-NMF, S-NMF, and Archetypal methods excel in
consistency, ensuring stability across runs and that found concepts are close to real data (OOD). Additionally, these methods demonstrate
superior dictionary structure (Stable and Eff. Rank) and codes structure (Connectivity and Neg Inter.), indicating patterns in the inferred
concepts and structured sparsity.

iii) Structure in the Dictionary (D). This dimension ex-
amines whether the learned dictionary exhibits meaningful
patterns. A well-structured dictionary may reveal meta-
concepts or decomposable higher-level abstractions. Met-
rics such as stable rank, effective rank, and coherence pro-
vide insights into the compactness and interpretability of the
dictionary. In particular, among solutions with comparable
reconstruction performance, a more structured dictionary
is preferable due to its potential for higher interpretability
and organization. Across runs, methods like CNMF, SNMF,
and Archetypal dictionary learning consistently yield dic-
tionaries with better structure, reflecting their capacity for
capturing higher-level patterns within the data. We also
provide theoretical arguments in Proposition G.3, demon-
strating that the rank of Archetypal dictionaries is inherently
bounded by the rank of the data matrix.

iv) Structure in the Codes (Z). The structure in the en-
coding space is equally important, as it determines how
concepts are combined to reconstruct the data. Connectivity,
measured as the ℓ0 norm of ZZT, reflects the combinato-
rial diversity of the concepts. High connectivity enables
complex reconstructions, while low connectivity highlights
structural sparsity and simpler patterns. Additionally, nega-
tive interference (Neg. Inter.) quantifies the simultaneous
activation of conflicting concepts, which can cancel each
other out. Archetypal SAEs and optimization-based dictio-
nary learning approaches reliably produce more structured
codes with reduced interference, enhancing the coherence
of their representations.

5.2. Plausibility Benchmark
We evaluate SAEs’ ability to recover true classification di-
rections by assessing whether the learned dictionary D
aligns with the classifier’s final layer weights {v1, . . . ,vc},
where c is the number of classes. Specifically, for each
class vector vi, we compute the most aligned dictionary

Dict. size (k) 512 1k 2k 4k 8k 16k 32k

ConvNeXt

Baseline (TopK SAE) 0.1681 0.1686 0.1668 0.1671 0.1684 0.1692 0.1684
A-SAE (δ = 0) 0.2172 0.3046 0.3597 0.3887 0.3957 0.3984 0.3999
RA-SAE (δ = 0.01) 0.1973 0.2887 0.3581 0.3900 0.4007 0.4038 0.4045
RA-SAE (δ = 0.1) 0.1270 0.1596 0.2106 0.2681 0.3280 0.3674 0.3845
RA-SAE (δ = 1.0) 0.1172 0.1475 0.2124 0.3116 0.4342 0.5203 0.5581

ResNet

Baseline (TopK SAE) 0.2295 0.2484 0.3055 0.3203 0.3301 0.3014 0.3125
A-SAE (δ = 0) 0.5920 0.5985 0.5992 0.6013 0.6029 0.6105 0.6133
RA-SAE (δ = 0.01) 0.5905 0.5985 0.5991 0.6013 0.6039 0.6106 0.6136
RA-SAE (δ = 0.1) 0.5777 0.5932 0.6002 0.6039 0.6046 0.6067 0.6083
RA-SAE (δ = 1.0) 0.6151 0.6165 0.6173 0.6189 0.6200 0.6208 0.6213

ViT

Baseline (TopK SAE) 0.1317 0.1589 0.1984 0.2265 0.2595 0.2807 0.2939
A-SAE (δ = 0) 0.2079 0.2459 0.2820 0.3096 0.3361 0.3581 0.3721
RA-SAE (δ = 0.01) 0.2102 0.2490 0.2861 0.3132 0.3200 0.3642 0.3821
RA-SAE (δ = 0.1) 0.2278 0.2747 0.3153 0.3410 0.3496 0.3912 0.4103
RA-SAE (δ = 1.0) 0.1497 0.2123 0.2936 0.3624 0.4277 0.4786 0.5014

Table 2. Plausibility Benchmark Results. The Plausibility Score
measures the alignment between the learned dictionary concepts
and the classification head’s directions. RA-SAE achieves a sig-
nificantly higher score compared to a TopK SAE (baseline). Best
scores are wrapped in green, and worst scores are wrapped in red.

atom Dj and average the alignment score: Plausibility =
1
c

∑c
i=1 maxj⟨vi,Dj⟩. A score of 1 indicates perfect align-

ment, while a score of 0 implies that all concepts lie in the
classifier’s null space, making probing ineffective. This
metric could help us detect potential hallucinations if con-
cepts diverge too much from true classification directions,
and is broadly similar to Karvonen et al. (2024); Mayne
et al. (2024)’s evaluation of whether SAEs infer known
linear features in toy settings. Results are reported in Ta-
ble 2. We find that classical SAEs, even with extremely
large dictionaries, achieve limited alignment with the clas-
sification directions (inline with prior work). In contrast,
RA-SAE significantly enhances this alignment, recovering a
substantial portion of the true classification directions. This
demonstrates RA-SAE’s efficacy in producing semantically
meaningful dictionaries.
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Figure 6. Soft Identifiability benchmark. This example uses the “gems” dataset, part of the 12 identifiability benchmarks we introduce.
The goal is to evaluate whether SAEs (or any dictionary learning method under study) can disentangle and recover each object from the
hidden ground truth generative process. By analyzing the model’s ability to assign distinct codes to the underlying concepts, we test its
capacity to reconstruct and interpret the true structure of the data.

5.3. Soft Identifiability Benchmark
Recent work on disentangled representation learning often
evaluates whether an autoencoder trained to reconstruct sam-
ples from a data-generating process learns to represent its un-
derlying concepts (Locatello et al., 2019; 2020; Von Kugel-
gen et al., 2021; Gresele et al., 2020; Khemakhem et al.,
2020; Schott et al., 2021; Zimmermann et al., 2021; Menon
et al., 2024). Identifiability theorems on the topic (Locatello
et al., 2019; 2020) have however shown that unless the au-
toencoding architecture possesses the right inductive biases
that match the generative process, there is no guarantee
concepts underlying the data will map onto the autoen-
coder’s latents. Since these results do not make assumptions
about the data modality, they remain valid for a standard
SAE training setup, e.g., similar to our experiments above.
Then, an intriguing experiment involves evaluating whether
when trained on representations of samples from a toy data-
generating process with predefined concepts, A-SAE, or
any other SAE architecture, develops latents capturing said
concepts—if it does, then that is strongly suggestive of the
SAE possessing the right inductive biases, i.e., it captures
the mechanism via which a model encodes concepts in its
representations.

Motivated by the above, we propose a Soft Identifiability
Benchmark. Specifically, we construct twelve synthetic
datasets, each comprising images formed by collaging four
distinct objects (e.g., different types of gems) sampled from
a pre-defined set. Each dataset is processed through a pre-
trained vision model to obtain pooled activations. Ideally,
when trained on these activations, the SAE is able to recover
the original objects as distinct concepts within its dictionary.
We then assess performance by checking whether each ob-
ject class has a corresponding concept that activates above
a threshold λ when an object yj appears in the image. For-
mally, for each image, we feed it into a model and then into
the trained SAE to get a concept-label pair (z,y), where

z ∈ Rk represents the k concept values and y ∈ Rc denotes
the c class labels. We then define the accuracy for the class
j as: Accuracyj = maxλ∈R,i∈[k] P(z,y)((zi > λ) = yj).

Impact Statement
We identify a fundamental limitation of Sparse Autoen-
coders (SAEs): their instability undermines reliability as
interpretability tools. To address this, we introduce Archety-
pal SAEs (A-SAE), which constrain dictionary atoms to
the data’s convex hull, and a relaxed variant (RA-SAE) that
preserves expressivity while enhancing stability. Our evalu-
ations, grounded in identifiability theory, demonstrate that
these constraints yield more consistent, semantically mean-
ingful, and better-structured dictionaries without sacrificing
reconstruction quality.

These contributions not only improve the scientific rigor
and reproducibility of SAE-based interpretability but also
enable stable concept discovery at scale in large vision mod-
els. Moreover, the method generalizes across modalities,
offering a robust foundation for interpretable representation
learning in language models and beyond.
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Tošić, I. and Frossard, P. Dictionary learning. IEEE Signal
Processing Magazine, 2011.

Tripicchio, P. and D’Avella, S. Is deep learning ready to
satisfy industry needs? Procedia Manufacturing, 2020.
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Appendix

Figure 7. Examples of 3 Concept Clusters in DinoV2. Each cluster contains 4 example concepts. • Complex hand positions, ranging
from hands in pockets to hands on another person. • Abstract “under” concepts, linking animals and objects, such as birds, zebras, felines,
and airplanes, while focusing on lower regions. • Fine-grained animal facial features, including ears, eyebrows, and cheeks.
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Method DINOv2 ResNet SigLIP ViT

KMeans 0.7678 0.7624 0.7684 0.7702
ICA 0.8092 0.8370 0.8243 0.8267
Sparse PCA 0.7981 0.8318 0.8069 0.8082
SVD 0.7979 0.8291 0.8062 0.8075
SemiNMF 0.8297 0.8327 0.8358 0.8423
ConvexNMF 0.7645 0.7582 0.7639 0.7634
PCA 0.7979 0.8291 0.8062 0.8075
Vanilla 0.8047 0.8167 0.8126 0.8223
TopK 0.8135 0.8150 0.8289 0.8328
Jump 0.8010 0.7988 0.8131 0.8053
A-SAE 0.9482 0.9631 0.9602 0.9615
RA-SAE 0.9447 0.9602 0.9585 0.9586

Table 3. Soft Identifiability benchmark Across Models and Methods. This table presents the average accuracy scores for various
methods evaluated across four different models: DINO, ResNet, SigLIP, and ViT. Best-performing scores for each model are in bold and
second best are underlined. Full results are available in Appendix I.

A. Soft-Identifiability results

Figure 8. Exotic Concepts in DinoV2. A) Highlights tokens in shad-
ows of dogs, suggesting shadow-based features and potential depth
reasoning. B) A “barber” concept exclusively active for barbers, not
their clients. C) A fine-grained concept focusing on petal edges or
contours.

Intuitively, the evaluation above gauges whether each ob-
ject is disentangled into its “own box”, in that a threshold
λ enables one-hot classification for all objects. In each of
the 12 synthetic datasets, the size of the dictionary is set to
the exact number of distinct objects (from 9 to 20 objects)
and we generate datasets of 2,000 samples. An example
of the dataset and the procedure is given in Figure 6.

Results are shown in Table 3. Classical dictionary learn-
ing methods and standard SAEs exhibit comparable
performance, struggling to accurately recover the true
generative factors. In contrast, RA-SAE consistently
achieves higher accuracy in recovering the underlying
object classes across all synthetic datasets. This indicates
that RA-SAE not only stabilizes the dictionary, but also
enhances its ability to discern the true underlying struc-
ture of the data, thereby improving the disentanglement
of mixed objects.

B. Qualitative Examples
This section provides qualitative insights into the con-
cepts learned by DinoV2 (Oquab et al., 2023; Darcet
et al., 2023). We trained an Archetypal SAE on DinoV2-
B with 4 registers and reported key performance metrics
in Figure 10. RA-SAE uncovers unexpected concepts,
such as shadow-based features (potentially linked to depth
reasoning), a context-dependent “barber” concept (acti-
vating for barbers but not clients), and fine-grained edge
detection in flower petals (Figure 8). It also learns more
structured within-class distinctions (e.g., separating rabbit
ears, faces, and paws) compared to TopK-SAEs (Figure 9).
Finally, its dictionary forms clear clusters, grouping se-
mantically related features like fine-grained animal faces or spatial concepts such as “underneath” (Figure 7).

To explore the dictionary learned by the model, we analyzed three clusters of concepts, as illustrated in Figure 7. Specifically:
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Figure 9. Top-5 Concepts for the Rabbit Class in DinoV2. The RA-SAE on top of TopK identifies distinct and fine-grained concepts,
including rabbit ears, body, face, and paws. These concepts exhibit greater structure and granularity compared to those found by the
unconstrained TopK SAE (baseline) method.

• A cluster of concepts capturing complex hand positions, ranging from hands in pockets to hands resting on another person
(e.g., on a shoulder). • An abstract “under” concept cluster, linking entities such as birds, zebras, felines, and airplanes,
while highlighting the lower regions of objects. • A cluster representing fine-grained facial concepts in animals, including
ears, eyebrows, and cheeks.

In addition, we identified surprising and specific concepts among the 16, 000 dictionary atoms, shown in Figure ??. These
include: A) A concept highlighting tokens corresponding to shadows of dogs, suggesting that DinoV2 may use shadows as a
feature, potentially contributing to its depth estimation or 3D reasoning capabilities. B) A “barber” concept that activates
exclusively on tokens representing barbers but not on the individuals receiving haircuts or shaves. C) A fine-grained visual
concept that activates along the contours or edges of flower petals.

Finally, we present the top-5 concepts associated with the rabbit class on DinoV2 in Figure 9. The concepts learned by
RA-SAE are distinct and exhibit greater structure compared to their TopK counterparts. For instance, RA-SAE successfully
identifies separate concepts for rabbit ears, body, face, and paws, demonstrating its ability to disentangle fine-grained
features within a class. These results suggest that RA-SAE provides a more organized and meaningful decomposition of
concepts.
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Figure 10. Performance, Auto-Correlation, and Firing Rate of DinoV2 for Archetypal SAE. The Archetypal SAE analyzed here
demonstrates a well-structured dictionary with low auto-correlation, indicating that the dictionary atoms are not collinear. The firing rate
exhibits a long-tail distribution, and reconstruction error is uniformly distributed across tokens, except for the CLS token, which shows
the highest reconstruction error.
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C. Extended Related Work on Archetypal Analysis
Archetypal analysis (AA) was introduced by Cutler and Breiman in 1994 as a method to represent observations as convex
combinations of extremal “pure types” called archetypes (Cutler & Breiman, 1994). Each archetype lies on the boundary
of the data’s convex hull and is itself constrained to be a convex combination of data points, yielding an interpretable
factorization where data are explained in terms of extreme exemplars. This approach was proposed as an alternative to
principal component analysis for uncovering latent structure, providing data-like representative factors instead of orthogonal
directions (Cutler & Stone, 1997). Shortly after its introduction, AA was extended to spatio-temporal settings by identifying
archetypes that vary over time (Stone & Cutler, 1996) and (Prabhakaran et al., 2012) proposed an automatic model selection
criterion for AA, alleviating the need to fix k a priori. After its initial formulation, AA did not gain widespread popularity,
partly due to computational limitations and the availability of more established techniques like k-means or NMF. Nonetheless,
several works in the 2000s applied AA successfully in scientific domains. For instance (Chan et al., 2003) applied AA to
astronomical spectra. In genetics, (Gimbernat-Mayol et al., 2022) found that archetypes learned from human genotype data
corresponded to ancestral population prototypes. AA was also utilized in socio-economic and bibliometric analyses (Seiler
& Wohlrabe, 2013), and to model player behavior in video games (Sifa & Bauckhage, 2013). Various enhancements to the
basic AA model have been proposed, (Eugster & Leisch, 2011) introduced weighted and robust AA, (Seth & Eugster, 2016)
proposed to treats archetypes as latent factors in a probabilistic generative model. In a similar vein, contemporary work has
developed AA for binary data specifically (Wedenborg & Mørup, 2025) and (Epifanio et al., 2019) tackled the presence of
missing values. Likewise (Moliner & Epifanio, 2019) formulated robust AA for multivariate functional data.

Another important direction has been the development of non-linear and kernel variants of AA (Mørup & Hansen, 2012;
Bauckhage & Manshaei, 2014). These kernel and multi-layer approaches connect AA with manifold learning techniques.
(Javadi & Montanari, 2019) cast NMF as a special case of AA under separability assumptions. In term of algorithmic and
scalability improvements (Chen et al., 2014) proposed a fast active-set algorithm, implemented in the SPAMS toolbox,
making AA tractable for large-scale computer vision tasks. (Bauckhage et al.) adapted a Frank–Wolfe algorithm for AA,
reducing runtime. (Mair & Brefeld, 2019) proposed coreset approximations to speed up archetype discovery, and (Abrol &
Sharma, 2020) developed a greedy AA algorithm that extended naturally to robust and kernelized variants. Finally, (Mei
et al., 2018) proposed an online algorithm for streaming data scenarios.

Mairal et al.’s task-driven dictionary learning framework inspired supervised AA models (Mairal et al., 2011). Related
topic modeling approaches such as SurvLDA (Dawson & Kendziorski, 2012) and anchor-based models (Ding et al., 2016;
Arora et al., 2013) similarly identify extremal structure. More recently, deep learning has been integrated with AA to handle
complex, non-linear data. Wynen et al. (Wynen et al., 2018) applied AA to deep features for archetypal style analysis in
artwork. Bauckhage et al. (Bauckhage et al.) described AA as an autoencoder. Keller et al. (Keller et al., 2020) developed a
VAE-based deep AA that accommodates supervision. Applications are widespread. In vision, AA has been used to discover
prototypical images (Thurau & Bauckhage, 2009), representative behaviors (Fotiadou et al., 2017), and fMRI brain patterns
(Hinrich et al., 2016). In hyperspectral imaging, recent contributions such as SUnAA (Rasti et al., 2023) and entropic
descent AA (Zouaoui et al., 2023) set new benchmarks. In NLP, AA was used in multi-document summarization (Canhasi &
Kononenko, 2016) and anchor-based topic modeling (Ding et al., 2016; Arora et al., 2013).

Comparison to Our Work Our method departs from AA by constraining only the decoder to the convex hull of data,
while using a linear encoder, maintaining full compatibility with modern SAEs architectures like TopK and JumpReLU.
Unlike AA, which jointly optimizes over convex atoms and codes, we retain end to end SAE training. Our goal is not AA
approximation or generation, but improved stability and semantic consistency of SAEs. We further introduce a scalable
relaxation of the convex constraint, adapted to large-scale training and distinct from prior AA relaxations (e.g., (Mørup &
Hansen, 2012)).
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D. Formal Definitions of Metrics
To comprehensively evaluate SAEs and their archetypal vari-
ants, we have defined in Sec.5.1 a set of metrics that assess
four key dimensions of the SAEs: (i) sparse reconstruction,
(ii) consistency, (iii) structure in the dictionary (D), and (iv)
structure in the codes (Z).

D.1. Sparse Reconstruction

As explained in the main paper, these metrics evaluate the
ability of the model to accurately reconstruct activations
while enforcing sparsity constraints. We believe they are
well understood and already used by the interpretability
community. The Reconstruction Error (R2) measures the
fidelity of the reconstruction by quantifying how well the
learned dictionary approximates the input activations:

R2 = 1− ||A− Â||2F
||A− Ā||2F

, (5)

with Â = ZD the predicted activation and Ā the mean
activation matrix. Essentially, R2 measures how much we
improve on explaining variance upon the best possible pre-
dictor that uses only a single bias. The Dead Codes measure
the fraction of dictionary atoms that remain unused across
the dataset, highlighting inefficiencies in the learned repre-
sentation, for a set of n codes and k concepts Z ∈ Rn×k:

Dead Codes = 1− 1

k
||

n∑
i

Zi||0 (6)

D.2. Consistency

The second category of metrics assesses how consistent
and well-grounded the learned dictionary is. Specifically,
we evaluate (i) the Stability of the learned solution across
training runs and (ii) its proximity to real data, measured
via the Out-of-Distribution (OOD) Score.

Stability, introduced in Eq. 2, quantifies how consistent the
learned dictionary remains when training is repeated with
different initializations. Given two independently trained
dictionaries, D and D′, stability is defined as:

Stability(D,D′) = max
Π∈P(n)

1

n
Tr(DTΠD′), (7)

where P(n) is the set of n× n signed permutation matrices.
A score of 1 indicates perfect alignment—each concept in
D has a direct equivalent in D′, while a score of 0 implies
that all concepts are seed-specific and change arbitrarily
across runs.

A looser measure of stability is the Max Cosine Similarity,
which only considers the best-matching concept between

two training runs:

Max Cosine = max
i,j

⟨Di,D
′
j⟩. (8)

This metric provides an upper bound on alignment but does
not enforce global consistency across the dictionary.

Beyond stability, we assess how well the learned dictionary
aligns with real data. The Out-of-Distribution (OOD)
Score measures the deviation of dictionary atoms from real
data points by computing the cosine similarity between each
dictionary atom Di and its closest real activation Aj :

OOD Score = 1− 1

k

k∑
i=1

max
j∈[n]

⟨Di,Aj⟩. (9)

A score of 0 indicates that every dictionary atom Di ex-
actly matches an existing data point Aj , meaning the model
purely reconstructs real activations. Notably, methods like
Separable-NMF (Gillis, 2020), which enforce the “pure-
pixel” assumption by explicitly selecting dictionary atoms
from the dataset, naturally achieve an OOD score of 0.

Together, these metrics provide a comprehensive evalua-
tion of how stable, interpretable, and grounded the learned
dictionary remains across training runs and relative to real
data.

D.3. Structure in the Dictionary (D)

The third category assesses the internal organization of the
dictionary, providing insights into its effective dimensional-
ity, redundancy, and (we hope) overall interpretability. Un-
like reconstruction or consistency metrics, which evaluate
external properties of the learned dictionary, these metrics
focus on how well-formed and structured the set of concepts
is. Again, a dictionary with lower effective dimensionality
suggests structure like compositionality and/or hierarchical
concepts. Stable Rank is the first metric we propose that
provides an effective measure of the intrinsic dimensionality
of the dictionary:

Stable Rank =
||D||2F
||D||22

. (10)

Unlike the traditional matrix rank, which is sensitive to
numerical precision (all dictionaries are nearly full rank in
practice because of numerical error), the stable rank remains
well-behaved even in high-dimensional settings, serving as
a smooth proxy for rank estimation. Effective Rank offers
an alternative perspective by measuring the entropy of the
singular value distribution of D:

Eff. Rank = exp

(
−

k∑
i=1

σi log σi

)
, (11)
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where σi are the normalized singular values of D (i.e.,∑
i σi = 1). An effective rank close to k suggests that

all dictionary atoms are equally important, whereas a low
effective rank implies that only a few dominant concepts
capture most of the variation in the data. A fully orthogonal
dictionary (thus not overcomplete) would achieve an effec-
tive rank of k. Coherence is a common notion in dictionary
learning and compress sensing, it quantifies redundancy
between dictionary atoms by measuring the maximum pair-
wise cosine similarity:

Coherence = max
i̸=j

|DT
i Dj |. (12)

We still admit that each Di is on the ℓ2 ball. Lower coher-
ence indicates that dictionary atoms are more diverse and
span independent directions, which is desirable for disentan-
gled representations. Conversely, high coherence suggests
that multiple dictionary atoms encode nearly identical fea-
tures, reducing the efficiency of the learned basis. Notably,
coherence is closely related to the concept of mutual in-
coherence in compressed sensing (Donoho, 2006), where
low-coherence bases are preferred for sparse signal recov-
ery.

D.4. (iv) Structure in the Codes (Z)

The last category measures how much structure we have in
the codes. While dictionary structure (iii) focuses on the
learned basis D, the structure of the codes Z determines
how these dictionary atoms are used to reconstruct activa-
tions. A well-structured encoding should exhibit meaningful
combinations of concepts while avoiding redundancy and
destructive interference. Connectivity measures the diver-
sity of concept usage by counting the number of unique
co-activations within the code matrix:

Connectivity = 1− (
1

d2
||ZTZ||0). (13)

This metric quantifies how many distinct pairs of concepts
(i, j) are activated together across samples. A high connec-
tivity score suggests that a broad range of concepts can be
meaningfully combined, leading to more complex represen-
tations. Conversely, low connectivity implies a highly struc-
tured representation, and in some sense a group-sparsity
representation where only a subset of concepts can fire to-
gether. We note that connectivity in sparse coding has been
linked to compositionality (Olshausen & Field, 1996). We
believe that none of the SAEs currently studied achieve
interesting performance on this metric. Finally, Negative
Interference quantifies the extent to which co-activated
concepts cancel each other out, reducing their effectiveness:

Neg. Inter. = ||ReLU(−(ZTZ)⊙ (DDT))||2. (14)

Where ⊙ is the Hadamard product, this metric captures
cases where two concepts i and j frequently co-activate
(as measured by ZTZ), yet their dictionary atoms are neg-
atively correlated (indicated by a negative dot product in
DDT). The ReLU function ensures that only destructive
interactions are counted, where activation of both concepts
leads to mutual cancellation rather than constructive com-
bination. A high negative interference score suggests that
the learned dictionary contains redundant or antagonistic
concepts. In extreme cases, we could imagine a strong neg-
ative interference can lead to concept pairs that consistently
suppress each other to comply with some sparsity constraint.
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Figure 11. Comparison of Distillation Methods. To scale up the
Archetypal SAE, it is impractical to utilize the entire data matrix
A for identifying archetypes. Instead, we first reduce the dataset
to a smaller subset of points, denoted as C, and construct the
archetypes/dictionary elements from this reduced set. Among the
distillation methods evaluated, K-Means proves to be the most
effective approach, generating points within the convex hull of the
data and achieving strong performance scores. These experiments
were conducted on DINOv2 using an Archetypal SAE without
relaxation.

E. Distilling A into C

As a recall, Archetypal SAEs construct dictionary atoms as
convex combinations of data points,

D = WA, with W ∈ Ωk,n, A ∈ Rn×d, (15)

requiring access to the full data matrix A. However, the
original problem is intractable, as the number of points n
requires storing and processing millions of activations at
each gradient step, which is computationally prohibitive,
particularly for large-scale datasets of tokens. To address
this, we proposed in Sec. 4 a distillation step, reducing A
to a compact subset C. The dictionary D is then formed
using only C ∈ Rn′×d, with n′ ≪ n, ensuring a tractable
optimization while remaining representative of the original
distribution.

We investigated five different methods to distill A into C,
as illustrated in Fig. 11:

• K-Means: Groups data into m clusters and selects cen-
troids as representatives. This ensures that C remains
within the convex hull of A while capturing its most fre-
quent patterns.

• Local Outlier Factor (LOF) (Breunig et al., 2000): Iden-
tifies statistically atypical points compared to their neigh-
bors, helping remove rare or extreme cases.

• Isolation Forest (Iso) (Liu et al., 2008): Uses recursive

partitioning to isolate anomalies, providing an efficient
method for detecting outliers.

• Convex Hull on Reduced Dimensions: Computes the
convex hull of A after projecting it onto its 10 principal
components via PCA. This ensures that extreme points
defining the overall shape of the distribution are retained
while reducing computational complexity.

• One-Class SVM (OC-SVM) (Scholkopf et al., 1999):
A support vector method that learns a boundary around
high-density regions, effectively isolating representative
points while filtering outliers.

Among these, K-Means emerges as the most effective
method. Furthermore, while convex hull approaches theo-
retically guarantee coverage of extreme points, their com-
putational cost scales poorly with high dimensions, making
them impractical for large datasets.

F. Implementation Details
We provide an efficient PyTorch implementation of the re-
laxed dictionary learning module used in Archetypal SAEs.
Given a distilled set of centroids C ∈ Rn′×d, our goal is
to construct a dictionary D as a convex combination of ele-
ments in C, while allowing a controlled degree of relaxation
via additive perturbations.

- The weight matrix W ∈ Rk×n′
is constrained to the

probability simplex, ensuring convex combinations of
centroids. This is enforced via a convex param function
that projects W onto the simplex using ReLU and row-
wise normalization.

- The relaxation term δ ∈ Rk×d allows mild deviations
from strict convexity. To prevent excessive drift, δ is reg-
ularized by adaptively scaling its norm to remain within a
relaxation factor.

- Dictionary atoms are computed as D = WC + δ.
- The model supports gradient updates for W and δ while

keeping C fixed.
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class ArchetypalDictionary(nn.Module):
"""Relaxed Archetypal SAE (RA-SAE) dictionary.

Constructs a dictionary where each atom is a convex combination of data
points from C, with a small relaxation term Λ constrained by δ.
"""

def __init__(self, C, k, delta=1.0):
"""
Parameters
----------
C : Tensor

Candidate archetypes of shape (n’, d).
k : int

Number of dictionary atoms.
delta : float

Upper bound on the norm of the relaxation term Λ.
"""
super().__init__()
n_prime, d = C.shape
self.register_buffer("C", C) # store C as a fixed buffer (non-trainable)
self.W = nn.Parameter(torch.eye(k, n_prime)) # trainable param (row-stochastic)
self.Lambda = nn.Parameter(torch.zeros(k, d)) # small relaxation term
self.delta = delta # constraint on the relaxation term norm

def forward(self, Z):
"""
Parameters
----------
Z : Tensor

Sparse codes of shape (n, k).

Returns
-------
Tensor

Reconstructed activations of shape (n, d).
"""
with torch.no_grad():
# ensure W remains row-stochastic (positive and row sum to one)
W = torch.relu(self.W)
W /= W.sum(dim=-1, keepdim=True)
self.W.data = W

# enforce the norm constraint on Λ to limit deviation from conv(C)
norm_Lambda = self.Lambda.norm(dim=-1, keepdim=True) # norm per row
scaling_factor = torch.clamp(self.delta / norm_Lambda, max=1) # safe scaling factor
self.Lambda *= scaling_factor # scale Λ to satisfy ||Λ|| ≤ δ

# compute the dictionary as a convex combination plus relaxation
D = self.W @ self.C + self.Lambda

return Z @ D

Figure 12. Detailed Pytorch code for Relaxexd Archetypal SAE (RA-SAE).
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G. Theoretical properties of Archetypal
Dictionary

In this section, we provide theoretical insights into Archety-
pal Sparse Autoencoders (A-SAEs) by addressing three key
aspects: (i) why standard SAEs can produce dictionaries
that drift away from the data manifold, (ii) a geometric in-
terpretation of the A-SAE solution and the conditions under
which distillation is optimal, and (iii) bounds on the stability,
rank, and out-of-distribution (OOD) score of A-SAEs.

A simple explanation for why standard SAEs may drift
away from the data manifold can be found by examining
the gradient descent (GD) update rule for the dictionary D.
Given a dataset A ∈ Rn×d, nonnegative codes Z ≥ 0 ∈
Rn×k, and a dictionary D ∈ Rk×d with unit-norm rows
(∥Dj∥2 = 1), the standard SAE optimization problem is:

min
Z,D

∥A−ZDT∥2F s.t. Z ≥ 0, ∥Dj∥2 = 1. (16)

The gradient of the reconstruction loss with respect to D is
given by:

∇D∥A−ZDT∥2F = 2(ZTZD −ZTA). (17)

This gradient can be decomposed into two components:

∆D = ZTA︸ ︷︷ ︸
data-anchored term

− ZTZD︸ ︷︷ ︸
out-of-data term

.

The first term, ZTA, pulls dictionary atoms toward a conic
combination of data points, anchoring them to cone(A).
However, the second term, ZTZD, introduces a drift effect
that pushes the dictionary away from the data, as it depends
on the correlations within Z and the original seed D.

Empirically, in high-dimensional settings where the codes
Z exhibit sufficient variability could induce the second term
to dominate. This could explain why classical SAEs have
a relatively low OOD score, as shown in Sec. 1 and why
minor perturbations in initialization or the training set can
potentially yield different dictionaries, as the second term is
entirely dependent of the seed.

G.1. Geometric interpretation of A-SAE

Proposition G.1 (Archetypal Dictionary, Convex and Conic
Hulls). Given A ∈ Rn×d as a set of n data points and
W ∈ Ωk,n as any row-stochastic matrix, parameteriz-
ing D = WA ensures that each concept Di lies within
the convex hull of the data, i.e., Di ∈ conv(A) for all
i ∈ [k]. Moreover, for any nonnegative codes Z ≥ 0, the
reconstruction ZD lies within the conic hull of the data,
i.e., ZD ⊆ cone(A). More generally, let C ∈ Rn′×d

such that conv(C) ⊆ conv(A) be a subset of A or any
set of points within conv(A). Then D′ = WC satisfies

D′
i ∈ conv(C) ⊆ conv(A) and ZD′ ⊆ cone(A). Finally,

if C includes the extreme points of A, then no representa-
tional power is lost.

Proof. Since W is row-stochastic, each Di = WiA is a
convex combination of the rows of A, i.e., Di ∈ conv(A).
Furthermore, for nonnegative Z, we have ZD = (ZW )A,
with ZW ≥ 0, which implies that ZD ⊆ cone(A).
With D′ = WC for conv(C) ⊆ conv(A), each row D′

i

lies within conv(C) ⊆ conv(A). Lastly, if C contains
the extreme points (Boyd & Vandenberghe, 2004) of A,
then by simple application of the Krein-Milman theorem
(Lax, 2014), conv(C) = conv(A) and cone(ZWC) =
cone(A), ensuring no loss in expressivity.

The constraints imposed by A-SAE on D lead to a straight-
forward yet crucial geometric property: each dictionary
atom Di remains within the convex hull of the data. This
result, while simple, has interesting implications for some
of the metrics we study, notably stability and OOD. In fact,
we will now see that this implies a bounded OOD score,
prevents the rank of the dictionary (and thus its structure)
to higher than the rank of the data, and induces some loose
form of algorithmic stability.

G.2. Stability of Archetypal Dictionary

Proposition G.2 (Geometric Stability of Archetypal Dic-
tionaries). Let A,A′ ∈ Rn×d be two data matrices such
that ||A − A′||F ≤ ε. Suppose W ,W ′ ∈ Ωk,n are row-
stochastic matrices (i.e. each row belongs to the probability
simplex). Define the archetypal dictionaries D = WA and
D′ = W ′A′. Then,

||D −D′||F ≤
√
k ε+ 2

√
k min (||A||F , ||A′||F ) .

Proof. Using triangle inequality, we have

||D −D′||F = ||WA−W ′A′||F ≤||WA−WA′||F +

||WA′ −W ′A′||F .

We bound each term separately, since D and D′ are archety-
pal dictionaries, W is row-stochastic, hence ||W ||2 ≤

√
k.

Therefore,

||WA−WA′||F = ||W (A−A′)||F ≤
||W ||2 ||A−A′||F ,

and ||W ||2 ||A−A′||F ≤
√
k ε. For the second term,

||WA′ −W ′A′||F = ||(W −W ′)A′||F ≤
||W −W ′||F ||A′||F ,
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with ||W −W ′||F ≤ 2
√
k summing these yield:

||D −D′||F ≤
√
k ε+ 2

√
k ||A′||F .

It is straightforward to repeat the above process with a
||A′||F factor in the right hand side. Taking the minimum
over the two factors then completes the proof.

The key observation is that a row-stochastic matrix W can-
not stretch data arbitrarily, imposing a natural control on
how D = WA changes if A is slightly perturbed. By
contrast, in the unconstrained setting, where the dictionary
D is free to move anywhere (subject only to norms or regu-
larization), there is no comparably simple bound ensuring
stability. Even small perturbations in A (or in the random
seed, initialization, etc.) can shift the solution significantly:
as there is no requirement that D stay close to conv(A),
the learned atoms can drift to entirely different regions of
the space.

G.3. Controlled Rank and Stability in A-SAE
Dictionaries

We now show that the rank of the dictionary obtained using
the Archetypal parametrization are inherently controlled.
Specifically, the rank of the dictionary cannot exceed the
rank of the data. This property is interesting as it prevents
the dictionary from becoming arbitrarily complex, promot-
ing solutions that are more structured and aligned with the
data. Consequently, the dictionary is more likely to uncover
meta-concepts or low-rank representations.

Proposition G.3 (Rank Bound of Archetypal Dictionaries).
Let A ∈ Rn×d be a data matrix with rank(A) = r ≤ d,
assuming n ≫ d and k ≫ d. Let W ∈ Ωk,n be a row-
stochastic matrix, and define the dictionary as D = WA.
Then, the rank of D is bounded by the rank of the data:

rank(D) ≤ min(rank(A), rank(W )) ≤ d.

Proof. Since D = WA, the column space of D is con-
tained in the column space of A, implying

rank(D) ≤ rank(A) = r.

Additionally, since W ∈ Rk×n is row-stochastic, its rank
is at most min(k, n), giving

rank(W ) ≤ min(k, n).

it follows that

rank(D) = rank(WA) ≤ min(r, rank(W )).

G.4. Bounding OOD score with Archetypal Constraints

We now demonstrate that the OOD measure of dictionary
atoms obtained under some assumption is inherently lower-
bounded. Specifically, the measure is directly tied to the
weights in the row-stochastic matrix, with a maximum value
of 1 achieved when a dictionary atom perfectly aligns with
a data point. This property is particularly interesting as it
ensures that dictionary atoms remain well-grounded in the
data. Furthermore, the sparsity of the weight matrix plays a
crucial role in maintaining orthogonality, thereby preserving
the plausibility of the assumption and the robustness of the
bounds.

Proposition G.4 (OOD Measure with Non-Interfering
Archetypes). Let A ∈ Rn×d be our data matrix where each
point Ai is normalized (∥Ai∥2 = 1 for all i ∈ [n]). Let
our archetypal dictionary D = WA, where W ∈ Rk×n

is a row-stochastic matrix (W ∈ Ωk,n). We assume
non-interfering Archetypes, meaning two non-orthogonal
archetypes cannot be active at the same time (but can exist
in the bank of points A). Formally, for each row Wi, the
active rows of A (those Aj with Wij > 0) are orthogonal,
i.e.,

⟨Aj ,Aj′⟩ = 0 for j ̸= j′ and Wij ,Wij′ > 0.

Then, the out-of-distribution (OOD) measure for each Di

admits the upper bound:

OOD(Di) ≤ 1−max
j∈[n]

Wij .

Proof. By definition, Di =
∑n

j=1 WijAj , so

⟨Di,Aj⟩ =

〈
n∑

k=1

WikAk,Aj

〉
=

n∑
k=1

Wik⟨Ak,Aj⟩.

Under the orthogonality assumption ⟨Ak,Aj⟩ = 0 for k ̸=
j, only the k = j term remains:

⟨Di,Aj⟩ = Wij⟨Aj ,Aj⟩.

Since ∥Aj∥2 = 1, we have ⟨Aj ,Aj⟩ = 1, so:

⟨Di,Aj⟩ = Wij .

By definition:

∥Di∥22 =

∥∥∥∥∥∥
n∑

j=1

WijAj

∥∥∥∥∥∥
2

2

.

By the orthogonality of the active rows of A, the contribu-
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Figure 13. Example of kernel functions for JumpReLU over the
interval [−3, 3] with a bandwidth of 1. The Silverman kernel
produced more stable and positive results, leading to its selection
for all experiments with a smaller bandwidth of 10−2.

tions of different rows do not interfere, so:

∥Di∥22 =

n∑
j=1

W 2
ij∥Aj∥22.

Since ∥Aj∥2 = 1, this simplifies to:

∥Di∥22 =

n∑
j=1

W 2
ij .

Substituting these yields our bound:

OOD(Di) = 1−max
j∈[n]

⟨Di,Aj⟩
∥Di∥2

≤ 1−max
j∈[n]

Wij .

As a notable special case, we observe that OOD(Di) = 0
when Wij = 1 for some j ∈ [n], as the dictionary atom
aligns perfectly with a data point. In practice, the sparsity of
W plays a crucial role: it limits interference between (non-
orthogonal) components, ensuring that the orthogonality
assumption remains plausible and that the derived bounds
hold robustly.

H. Kernel for JumpReLU
JumpReLU (Rajamanoharan et al., 2024) is a recently in-
troduced activation mechanism for SAEs designed to opti-
mize ℓ0 sparsity by controlling the discontinuities of ReLU
through a parameter θ. Its optimization relies on a kernel
for density estimation. To assess the effect of kernel choice,

we evaluated several options, including Gaussian, Cauchy,
and Silverman, on DinoV2. As shown in Figure 13, the
Silverman kernel consistently yielded the most stable and
accurate reconstruction results. For our experiments, we
selected the Silverman kernel with a bandwidth of 10−2,
although the choice of kernel appears to have only a modest
impact on performance.

I. Soft Identifiability Benchmark
In this appendix, we provide additional details regarding
the experimental setup and evaluation criteria used in the
Soft Identifiability Benchmark. We recall that the goal is to
assess the ability of SAEs to recover distinct concepts from
synthetic image mixtures, where the underlying generative
factors are known.

We generate twelve synthetic datasets using Midjourney
API4. For each of these datasets, we programmatically cre-
ate 4,000 images. These images are constructed by collaging
four distinct objects selected from the predefined set, such
as different types of gems. Each dataset is generated from
between 9 and 20 unique objects, with the dictionary size
set exactly to the number of true generative factors (unique
object number). An example of some datasets used in the
benchmark is shown in Figure 14.

Each dataset is split into a training set of 2,000 images and a
test set of 2,000 images. The images are processed through
a pre-trained vision model, in our case DinoV2, ResNet50,
SigLIP and ViT. The resulting pooled activations serve as
the input representations for the SAE.

Metrics. To quantitatively evaluate identifiability, we de-
fine an accuracy metric that measures whether each object
class in the dataset is correctly assigned a distinct concept
in the SAE dictionary. Given an image, we pass it through
the vision model and then through the trained SAE to obtain
a concept-label pair (z,y), where z ∈ Rk represents the
k learned concept activations, and y ∈ Rc denotes the c
ground-truth class labels.

We define the accuracy for class j as:

Accuracyj = max
λ∈R,i∈[k]

P(z,y)((zi > λ) = yj), (18)

where λ is a threshold determining whether a concept is
activated.

To find an appropriate λ, we use the empirical percentiles
of the concept activations Z, ranging from the 1st to the
100th percentile. This ensures that the threshold is adaptive
to the distribution of activations, optimizing for the best
classification accuracy.

4www.midjourney.com
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Figure 14. Examples of synthetic datasets used in the Identifiability Benchmark.

I.1. Complete Results

The full set of results across all methods and datasets is pro-
vided in Table 4. We also provide a comprehensive break-
down, including per-dataset accuracy scores and additional
analysis.
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Table 4. Accuracy Scores for Various Methods Across Models and Classes
Model Method Animals Birds Books Candy Cards Cocktails Flowers Gems Landscapes Planets Potions Watches Avg

DINO

KMeans 0.7679 0.7678 0.7715 0.7709 0.7724 0.8095 0.6670 0.8137 0.7147 0.7786 0.8104 0.7693 0.7678
ICA 0.8113 0.7967 0.8099 0.8182 0.8212 0.8296 0.7497 0.8569 0.7807 0.8002 0.8297 0.8068 0.8092
Sparse PCA 0.8033 0.7919 0.8013 0.7939 0.8129 0.8245 0.7126 0.8322 0.7733 0.8022 0.8307 0.7986 0.7981
SVD 0.8037 0.7916 0.8018 0.7935 0.8142 0.8245 0.7116 0.8320 0.7716 0.8023 0.8301 0.7978 0.7979
SemiNMF 0.8175 0.8059 0.8560 0.8660 0.8464 0.8516 0.7360 0.8564 0.8111 0.8261 0.8569 0.8264 0.8297
ConvexNMF 0.7726 0.7658 0.7739 0.7759 0.7711 0.8108 0.6264 0.8163 0.7013 0.7688 0.8205 0.7711 0.7645
PCA 0.8037 0.7916 0.8018 0.7935 0.8142 0.8245 0.7116 0.8320 0.7716 0.8023 0.8301 0.7978 0.7979
Vanilla 0.7968 0.7878 0.8087 0.8161 0.8062 0.8468 0.7202 0.8518 0.7601 0.8262 0.8385 0.7977 0.8047
TopK 0.7906 0.7942 0.8104 0.8283 0.8243 0.8407 0.7728 0.8501 0.7744 0.8184 0.8387 0.8191 0.8135
Jump 0.7863 0.7956 0.7970 0.8174 0.8121 0.8251 0.7389 0.8418 0.7504 0.7989 0.8438 0.8042 0.8010
A-SAE 0.9433 0.9413 0.9692 0.9722 0.9750 0.8901 0.9590 0.9590 0.9677 0.9277 0.9129 0.9606 0.9482
RA-SAE 0.9402 0.9313 0.9703 0.9614 0.9686 0.8905 0.9613 0.9503 0.9666 0.9227 0.9094 0.9642 0.9447

ResNet

PCA 0.8249 0.8086 0.8556 0.8643 0.8622 0.8501 0.7908 0.8446 0.7814 0.8203 0.8326 0.8134 0.8291
KMeans 0.7670 0.7647 0.7720 0.7668 0.7669 0.8123 0.6418 0.8109 0.6964 0.7713 0.8109 0.7686 0.7624
ICA 0.8169 0.8231 0.8315 0.8358 0.8295 0.8852 0.7902 0.8900 0.8378 0.8206 0.8619 0.8213 0.8370
Sparse PCA 0.8256 0.8162 0.8599 0.8689 0.8661 0.8501 0.7937 0.8461 0.7841 0.8230 0.8330 0.8155 0.8318
SVD 0.8249 0.8086 0.8556 0.8643 0.8623 0.8501 0.7910 0.8445 0.7816 0.8201 0.8324 0.8134 0.8291
SemiNMF 0.8259 0.8274 0.8536 0.8611 0.8419 0.8577 0.7307 0.8632 0.8198 0.8195 0.8486 0.8432 0.8327
ConvexNMF 0.7647 0.7648 0.7699 0.7669 0.7659 0.8086 0.6102 0.8111 0.6939 0.7686 0.8098 0.7644 0.7582
Vanilla 0.8062 0.8143 0.8270 0.8228 0.8397 0.8412 0.7380 0.8393 0.7894 0.8147 0.8475 0.8198 0.8167
TopK 0.8078 0.8083 0.8384 0.8269 0.8176 0.8496 0.7437 0.8397 0.7753 0.8193 0.8482 0.8052 0.8150
Jump 0.7949 0.8027 0.8082 0.8274 0.8144 0.8345 0.6648 0.8373 0.7485 0.8161 0.8287 0.8084 0.7988
A-SAE 0.9633 0.9703 0.9638 0.9673 0.9713 0.9738 0.9894 0.9722 0.9658 0.9342 0.9539 0.9315 0.9631
RA-SAE 0.9613 0.9577 0.9694 0.9834 0.9709 0.9625 0.9497 0.9640 0.9629 0.9371 0.9554 0.9479 0.9602

SigLIP

PCA 0.8253 0.7957 0.8264 0.8030 0.8157 0.8286 0.7367 0.8270 0.7678 0.7931 0.8291 0.8261 0.8062
KMeans 0.7733 0.7672 0.7733 0.7691 0.7742 0.8094 0.6690 0.8121 0.7171 0.7733 0.8101 0.7724 0.7684
ICA 0.8372 0.8171 0.8151 0.8254 0.8382 0.8341 0.7918 0.8333 0.8420 0.8056 0.8362 0.8158 0.8243
Sparse PCA 0.8251 0.7962 0.8374 0.8021 0.8152 0.8269 0.7369 0.8286 0.7676 0.7941 0.8286 0.8240 0.8069
SVD 0.8253 0.7957 0.8264 0.8030 0.8157 0.8286 0.7367 0.8269 0.7678 0.7931 0.8291 0.8261 0.8062
SemiNMF 0.8574 0.8386 0.8413 0.8559 0.8521 0.8393 0.7780 0.8524 0.7979 0.8320 0.8389 0.8463 0.8358
ConvexNMF 0.7706 0.7706 0.7769 0.7704 0.7687 0.8090 0.6314 0.8121 0.6972 0.7718 0.8134 0.7745 0.7639
Vanilla 0.8240 0.8160 0.8097 0.8202 0.8429 0.8436 0.7167 0.8493 0.7775 0.7976 0.8433 0.8108 0.8126
TopK 0.8254 0.8190 0.8215 0.8439 0.8664 0.8460 0.7576 0.8547 0.8022 0.8253 0.8483 0.8364 0.8289
Jump 0.8199 0.8351 0.8048 0.8206 0.8222 0.8367 0.7307 0.8493 0.7813 0.7946 0.8352 0.8269 0.8131
A-SAE 0.9727 0.9613 0.9517 0.9686 0.9753 0.9445 0.9622 0.9669 0.9553 0.9479 0.9457 0.9704 0.9602
RA-SAE 0.9655 0.9654 0.9411 0.9681 0.9749 0.9366 0.9632 0.9594 0.9543 0.9325 0.9546 0.9861 0.9585

ViT

PCA 0.7994 0.8107 0.8226 0.8258 0.7963 0.8352 0.7780 0.8274 0.7556 0.8029 0.8199 0.8164 0.8075
KMeans 0.7706 0.7719 0.7744 0.7776 0.7752 0.8095 0.6721 0.8134 0.7120 0.7841 0.8099 0.7722 0.7702
ICA 0.8134 0.8251 0.8243 0.8437 0.8159 0.8623 0.7983 0.8539 0.7998 0.8229 0.8415 0.8188 0.8267
Sparse PCA 0.8003 0.8109 0.8225 0.8287 0.7963 0.8342 0.7780 0.8282 0.7563 0.8022 0.8201 0.8208 0.8082
SVD 0.7994 0.8107 0.8226 0.8258 0.7963 0.8351 0.7780 0.8274 0.7556 0.8029 0.8201 0.8164 0.8075
SemiNMF 0.8232 0.8414 0.8436 0.8410 0.8598 0.8661 0.8133 0.8584 0.8064 0.8418 0.8492 0.8629 0.8423
ConvexNMF 0.7709 0.7685 0.7684 0.7714 0.7689 0.8117 0.6254 0.8132 0.7017 0.7736 0.8134 0.7738 0.7634
Vanilla 0.8169 0.8548 0.8459 0.8234 0.8438 0.8481 0.7312 0.8598 0.7512 0.8249 0.8285 0.8387 0.8223
TopK 0.8494 0.8430 0.8577 0.8264 0.8405 0.8503 0.7849 0.8534 0.7910 0.8215 0.8310 0.8451 0.8328
Jump 0.8042 0.7995 0.8316 0.8156 0.8064 0.8377 0.6872 0.8515 0.7681 0.8143 0.8300 0.8172 0.8053
A-SAE 0.9647 0.9847 0.9519 0.9838 0.9733 0.9578 0.9938 0.9488 0.9384 0.9369 0.9325 0.9719 0.9615
RA-SAE 0.9699 0.9847 0.9683 0.9696 0.9694 0.9620 0.9576 0.9455 0.9281 0.9484 0.9253 0.9745 0.9586
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