
Under review as a conference paper at ICLR 2021

ITERATED GRAPH NEURAL NETWORK SYSTEM

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Iterated Graph Neural Network System (IGNNS), a new framework
of Graph Neural Networks (GNNs), which can deal with undirected graph and
directed graph in a unified way. The core component of IGNNS is the Iterated
Function System (IFS), which is an important research field in fractal geometry.
The key idea of IGNNS is to use a pair of affine transformations to characterize
the process of message passing between graph nodes and assign an adjoint prob-
ability vector to them to form an IFS layer with probability. After embedding
in the latent space, the node features are sent to IFS layer for iterating, and then
obtain the high-level representation of graph nodes. We also analyze the geomet-
ric properties of IGNNS from the perspective of dynamical system. We prove
that if the IFS induced by IGNNS is contractive, then the fractal representation
of graph nodes converges to the fractal set of IFS in Hausdorff distance and the
ergodic representation of that converges to a constant matrix in Frobenius norm.
We have carried out a series of semi-supervised node classification experiments
on citation network datasets such as citeser, Cora and PubMed. The experimen-
tal results show that the performance of our method is obviously better than the
related methods.

1 INTRODUCTION

GNN (Scarselli et al., 2009) has been proved to be effective in processing graph structured data, and
has been widely used in natural language processing, computer vision, data mining, social network
and biochemistry. In recent years, GNN has developed a variety of architectures, such as GCN
(Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), DGI
(Veličković et al., 2019), GIN (Xu et al., 2019), GCNII (Ming Chen et al., 2020) and GEN (Li et al.,
2020). These architectures have a common feature, that is, the representation of each node is updated
using messages from its neighbors but without distinguishing the direction (or angle) of message
passing between two nodes. Recent studies have shown that considering directed message passing
between nodes can improve the performance of GNN and achieve success in related fields. For
example, DimeNet (Klicpera et al., 2020) considers the spatial direction from one atom to another
and can learn both molecular properties and atomic forces. R-GCN (Schlichtkrull et al., 2018) and
Bi-GCN (Marcheggiani & Titov, 2017; Fu et al., 2019) are models for directed graph, applied in the
field of natural language processing. We note that the above direction based model does not consider
the bidirectional mixed passing of messages.

But in real life, message passing is interactive in different directions. For example, node A obtains
a message from node B. After processing the message, node A not only passes it to the next node
C, but also feeds back to node B. Suppose there are only two directions for message passing, for-
ward and backward, represented by 0 or 1, respectively. The symbol space of the first generation
message passing path is {0, 1} = {0, 1}1, and that of the second generation message passing path
is {00, 01, 10, 11} = {0, 1}2. Generally, the symbol space of the n-th generation message passing
path is {0, 1}n and the size of the symbol space is 2n. This means that the scope of message passing
spreads with exponent 2. However, in Bi-GCN (similar to Bi-LSTM) and R-GCN architectures, the
symbol space is {{0}n, {1}n}, and its size is 2, which indicates that a lot of information will be lost
in the process of message passing (see Appendix A).

How to characterize the above message passing patterns? We use two mappings to represent message
passing process in two directions. Then the interactive passing of messages in different directions
is equivalent to the composite operation of corresponding mappings. In addition, the direction of
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Figure 1: Message passing patterns. Where the symbol H is the representations of all the notes.
(a) An undirected graph is transformed into a directed graph in a natural way. (b) Regardless of
direction, simply gather information from neighbors. (c) Message is passed in the same direction
(forward or backward), and get two hidden representations independently. (d) Message passing not
only occurs in the same direction, but also occurs interactively in different directions, which is more
in line with the actual situation. For example, in layer 1, node 2 passes the processed message
f1(m2) to node 1, and then, in layer2, node 1 processes the received message f1(m2) and returns
the processed message f0(f1(m2)) to node 2.

message passing is often random, so we endow the two mappings with an adjoint probability vector
to reflect the randomness. Because the symbol space of the iterative path of the Iterated Function
System (IFS) with two mappings is also {0, 1}n and the mapping is selected with a certain prob-
ability, the iterative process of IFS is similar to the message passing process. In other words, the
above message passing pattern can be described perfectly by IFS with probabilities. We natural-
ly present the Iterative Graph Neural Network System (IGNNS), whose core layer is constructed
by IFS. Figure 1 describes the differences in message passing patterns among GCN, Bi-GCN and
IGNNS. At the same time, we regard undirected graph as a directed graph with equal probability
of bidirectional message passing (see Figure 1(a)), so the IGNNS architecture can handle directed
graph and undirected graph in a unified way.

2 PRELIMINARIES

A graph G = (V,E) is defined by its note set V = {v1, v2, ..., vN} and edge set E =
{(vi, vj)|vi, vj ∈ V }. Let A ∈ RN denote the adjacency matrix of G, providing with relation-
al information between nodes. A[i, j] denote i, jth element of A, A[i, :] means the ith row, and
A[:, j] means the jth column. In this paper, we assume that all nodes of G are self adjacent, that
is A[i, i] = 1, i = 1, 2, ..., N . let D = diag(d1, d2, ..., dN ) be the degree matrix of A, where
di =

∑N
j=1 A[i, j].

Neighborhood Normalization. There are two ways to normalize A. One approach is the following
mean-pooling employed by Hamilton et al. (2017) and Veličković et al. (2019) for inductive learning:

Amp = D−1A.

Another approach is the following symmetric normalization employed by Kipf & Welling (2017):

Asym = D−
1
2AD−

1
2 .

Iterated Function System. A mapping f : RN → RN is said to be a contractive mapping on RN if
there exists a constant 0 < c < 1 such that ‖f(x1)− f(x2)‖2 < c‖x1 − x2‖2 for all x1, x2 ∈ RN .
An iterated function system (Hutchinson, 1981) is defined by

IFS = {RN ; f1, f2, ..., fm;p},
where each fi : RN → RN is a contractive mapping and p = (p1, p2, ..., pm) is an adjoint probabil-
ity vector meaning that fi is selected by probability pi for each iteration. Hutchinson (1981) showed
that there exists a unique nonempty compact set F such that

F =

m⋃
i=1

fi(F).
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Figure 2: An overview of IGNNS. The upper part of the Figure describes how to generate two affine
transformations on R4, where we use the mean-pooling method to normalize A, p0 = 0.6, p1 = 0.4,
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We call F the fractal set or invariant set of IFS. More conclusions on IFS can be found in the Ap-
pendix D. It is well known that there exists a unique probability measure µ with support F satisfying
the equation

µ =

m∑
i=1

piµ ◦ f−1i . (1)

The probability measure µ in (1) is called the self-similar measure of IFS with probability vector p.

3 IGNNS ARCHITECTURE

In this section, we will introduce the architecture of the IGNNS according to the input layer, IFS
layer, representation layer and output layer, which is described in Figure 2.

3.1 INPUT LAYER

Given a graph structure data X ∈ RN×F of G = (V,E), called as the feature matrix of node set V .
A row of X represents the F -dimensional feature vector of a node in V . Let W int ∈ RF×H be a
learnable parameter matrix, where H is the dimension of the latent space. Then XW int ∈ RN×H .
The output of input layer is defined by

X int = σ(XW int) ∈ RN×H , (2)

where σ(·) is the activation function. Generally, ReLU(x) = max(0, x) is used as the nonlinear
activation function. Here, each column of X int is regarded as a point in RN , so X int is the set of H
points in RN and arranged in a certain order. The vector composed of the ith component of these
points (the ith row of X int) is a feature representation of the ith node of graph G.
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3.2 IFS LAYER

Let A be the adjacency matrix of G. Let triu(A) denote the upper triangular matrix of A and
tril(A) denote the lower triangular matrix of A. The symmetric normalization of triu(A) and
tril(A) are

A0 = D
− 1

2
0 triu(A)D

− 1
2

0 and A1 = D
− 1

2
1 tril(A)D

− 1
2

1 ,

where D0 and D1 are degree matrices of triu(A) and tril(A) respectively. Sometimes, we use the
mean-pooling of triu(A) and tril(A), i.e. A0 = D−10 triu(A),A1 = D−11 tril(A). Let f0, f1 be
the two affine transformations on RN , induced by A0,A1 respectively, defined as follows:

f0 : x→ A0x+ b0, x ∈ RN , b0 ∈ R, f1 : x→ A1x+ b1, x ∈ RN , b1 ∈ R,
where b0 and b1 are learnable biases, namely add constants b0 and b1 to each component of A0x and
A1x respectively. Constructing iterated function system

IFS = {RN ; f0, f1;p},
where p = (p0, p1) is a learnable adjoint probability vector, satisfying p0 > 0, p1 > 0 and p0+p1 =
1. Using the symbol space Ωm = {0, 1}m, then for each i = (i1, i2, ..., im) ∈ Ωm the length of i is
m, denoted as |i| = m, and defining pi = pi1pi2 · · · pim and fi = fi1 ◦ fi2 ◦ · · · ◦ fim . Let n be
the number of iterations of IFS. For IGNNS, n is a preset parameter. The iterative process of IFS is
described as follows:

The first iteration (|i| = 1). The result of the first iteration is denoted by

H(1) = {f0(X int), f1(X int)} = {Hi}|i|=1,

where Hi = fi(X
int), ∀i ∈ Ω1. Since IFS selects the iteration branch fi with probability pi, the

mathematical expectation of H(1) is computed by

E1 = p0f0(X int) + p1f1(X int) = p0H0 + p1H1 =
∑
|i|=1

piHi.

If choose to use bias in iterations, then H0 = A0X
int + b0,H1 = A1X

int + b1, where b0 and b1
are learnable H-dimensional vectors.

The second iteration (|i| = 2). Using the results of the first iteration as the input of the second
iteration, then the result of the second iteration is denoted by

H(2) = {f0(f0(X int)), f0(f1(X int)), f1(f0(X int)), f1(f1(X int))}
= {f00(X int), f01(X int), f10(X int), f11(X int)} = {Hi}|i|=2,

where Hi = fi(X
int), ∀i ∈ Ω2. Note that IFS selects the iteration path fi with probability pi, then

the mathematical expectation of H(2) is computed by

E2 =
∑
|i|=2

pifi(X
int) =

∑
|i|=2

piHi.

We expand the expression of E2 and perceive its powerful feature representation ability. First,

H00 = f0(H0) = A0(A0X
int + b0) + b0,H01 = f0(H1) = A0(A1X

int + b1) + b0,

H10 = f1(H0) = A1(A0X
int + b0) + b1,H11 = f1(H1) = A1(A1X

int + b1) + b1.

Then
E2 = p00H00 + p01H01 + p10H10 + p11H11

= (p00A00 + p01A01 + p10A10 + p11A11)X int

+ (p00A0b0 + p01A0b1 + p10A1b0 + p11A1b1) + (p00b0 + p01b0 + p10b1 + p11b1),

where Ai = Ai1Ai2 , ∀i = (i1, i2) ∈ Ω2.

The n-th iteration (|i| = n). Inductively, we have

H(n) = {Hi}|i|=n, Hi = fi(X
int), En =

∑
|i|=n

piHi. (3)

Note that Hi ∈ RN×H and each column of Hi is a point in RN , so we regard it as a subset of RN

withH elements. Thus H(n) is a subset of RN withH×2n elements (including duplicate elements).
Because of Theorem 4.1, we call H(n) the fractal representation with depth n of notes.
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3.3 REPRESENTATION LAYER

After n iterations of IFS layer, the dynamic trajectory of IFS is obtained:

O = {E1,E2, ...,En}.

In general, the global representation R of notes is obtained by time average or concatenation opera-
tions on O.

R =
1

n

n∑
i=1

Ei ∈ RN×H or R =‖ni=1 Ei ∈ RN×nH ,

where ‖ is the concatenation operator. Because of Theorem 4.2, we call R the ergodic representation
of notes. In practice, we adopt weighted time average or weighted concatenation. According to the
Theorem C.1, we use heuristic weights (Here, we understand it as the average expansion factor of
the distance between two points after affine transformation). Let r =

√
ln(N) + γ, where γ ≈

0.577215664 is the Euler constant. Suppose r = (r1, r2, ..., rn) is a learnable n-dimensional vector
with initial value ri =

(
1
r

)i−1
. Then the ergodic representation of notes is

R =
n∑

i=1

riEi ∈ RN×H or R =‖ni=1 riEi ∈ RN×nH .

3.4 OUTPUT LAYER

Let W out ∈ RH×P be a learnable parameter matrix, where P is the dimension of the output layer
(such as the number of class labels). If R is generated byO concatenation, then let W out ∈ RnH×P .
There are two ways to construct output layer, one is to use a Single-Layer Perception (SLP) as output,
that is

O = RW out + bout;

the other is to use f0, f1 for Mixed Propagation (MP), that is, let R0 = f0(RW out) and R1 =
f1(RW out), where the biases of f0, f1 are removed, then the output

O = p0R0 + p1R1 + bout.

Where the bias bout ∈ RP is an optional learnable parameter vector.

3.5 INITIALIZATION OF LEARNABLE VARIABLES

The learnable parameters of IGNNS include input layer matrix W int ∈ RF×H , adjoint proba-
bility vector p = (p0, p1) ∈ R2 of IFS, biases b0, b1 ∈ RH of IFS layer, weight coefficien-
t r = (r1, r2, ..., rn) of representation layer, matrix W out ∈ RH×P of output layer and bias
bout ∈ RP of output layer. Among them, W int and W out are the required learnable parameters,
using the initialization described in Glorot & Bengio (2010); b0, b1 and bout are optional learnable
parameters with an initial value 0; p is a optional learnable parameter, for undirected graph, setting
p0 ∈ [0.5− 0.1, 0.5 + 0.1], and for directed graph, setting (For the reasons, see Appendix G)

p0 =
detD1

detD0 + detD1
, p1 =

detD0

detD0 + detD1
;

r is a optional learnable parameter, and its initial value as defined in 3.3. Let n be the number of
iterations of IFS. We regard n as the depth of IGNNS. Thus, IGNNS is denoted as

O = IGNNS(X,A;W int, n,p, b0, b1, r,W
out, bout) or simply O = IGNNS(X, IFS),

where IFS is induced by relational matrix A. The output of IGNNS can be used as the input of
downstream tasks, and can also be connected to other network architectures.

3.6 THEORETICAL TIME COMPLEXITY OF IGNNS

Let n,N,H, P be defined as above. Let T (·) denote the number of calculations of an object. For
input layer,

T (input layer) = NFH +NH = O(NFH).
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For IFS layer, during the iterative calculation, we will store the previous calculation results, thus
T (H(1)) = 2N2H , T (H(i)) = 2×T (H(i−1)), i = 2, 3, ..., n. It follows that T (H(i)) = 2iN2H, i =
1, 2, ..., n. Similarly, T ({pi||i| = i}) = 2i, i = 1, 2, ..., n. Complete the above calculation, it is easy
to see that T (Ei) = 2iNH . Thus

T (IFS layer) =

n∑
i=1

(
T (H(i)) + T ({pi||i| = i}) + T (Ei)

)
= O(2nN2H).

It is easy to verify that T (representation layer) = O(nNH). We assume that the output layer
is constructed by mixed propagation, then T (output layer) = O(N2P ) if W out ∈ RH×P , and
T (output layer) = O(N2P + nNHP ) if W out ∈ RnH×P . Then

T (IGNNS) = O(2nN2H +N2P ) or O(2nN2H +N2P + nNHP ).

In practice, for large graphs, 2nN2H � N2P � nNHP , thus 2nN2H is the main factor affect-
ing the time complexity of IGNNS. Furthermore, for large graphs of the same size, n is the main
important factor affecting time complexity. For citation network datasets such as citeser, Cora and
PubMed, we suggest that n ≤ 8 (see Appendix B).

4 GEOMETRIC PROPERTIES OF IGNNS

The discussion here assumes that affine f0, f1 are contractive. Otherwise, let f0 : x →
1

‖A0‖F+1A0x + b0 and f1 : x → 1
‖A1‖F+1A1x + b1. In practice, IGNNS does not use contrac-

tive affine. If contractive affine is used in IGNNS, it can be seen from the following theorems
that the characterization ability of IGNNS decreases with the increase of IFS iterations, which is
similar to the performance of Graph Convolution Network (GCN). Such a phenomenon is called
over-smoothing (Li et al., 2018b; Xu et al., 2019; Chen et al., 2020), which suggests that as the
number of layers increases, the representations of the nodes in GCN are inclined to converge to a
certain value and thus become indistinguishable. In order to overcome the over-smoothing problem
of deep GNN, people need to use some new methods such as Skip connection (Xu et al., 2018), Drop
edge (Rong et al., 2020), Residual connection (Klicpera et al., 2019a), Identity mapping (Chen et al.,
2020), Generalized message aggregation functions (Li et al., 2020) and so on. Generally speaking,
deep network may lead to the decrease of generalization performance. To analyze which type of
deep GNN would achieve better generalization performance, Xu et al. (2020) proposes a guiding
theoretical framework.

Theorem 4.1 (Fractal generation) Let H(n) = {Hi}|i|=n, which is a subset of RN with H × 2n

elements (including duplicate elements), then

dH(H(n),F)→ 0, n→∞,
where dH is the Hausdorff distance defined on H(RN ), the set of all nonempty compact subsets of
RN , and F is the fractal set of IFS in IGNNS. In other words, as the number of iterations increases,
H(n) will be independent of node feature X , only related to the graph structure described by A.

Let T be the Hutchinson operator on H(RN ), defined as T (B) = f0(B)
⋃
f1(B),∀B ∈ H(RN ).

Then the updated rule of H(n) satisfies

H(n) = T (H(n−1)) = · · · = Tn(H(0)),

where H(0) = {X int} is a subset of RN with H elements. In fractal geometry, H(n) is used to draw
the fractal image on the plane. First, taking initial value H(0) = {x0}, where x0 is a point in plane.
For enough n, printing all the points of H(n) on the screen to obtain the approximate fractal image.

Theorem 4.2 (Ergodic property) Let En =
∑
|i|=n piHi be the mathematical expectation of

H(n) = {Hi}|i|=n, then En converges to a constant matrix E ∈ RN×H in Frobenius norm, i.e.
limn→∞En = E, where E[i, :] = (ei, ei, ..., ei)

> ∈ RH and ei ∈ R is a constant, i = 1, 2, ..., N .
Furthermore, the time average of the dynamic trajectory O of IFS satisfies

lim
n→∞

1

n

n∑
i=1

Ei = lim
n→∞

En = E

and series
∑∞

i=1 riEi ∈ RN×H converges in Frobenius norm.
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Table 1: Summary statistics of the benchmark datasets used in the experiment.

Dataset Nodes Edges Features Classes Training Validation Testing

Cora 2708 5429 1433 7 140 500 1000
Citeseer 3327 4732 3703 6 120 500 1000
Pubmed 19717 44338 500 3 60 500 1000

Theorem 4.2 shows that as long as the number of iterations is large enough, the embeddings of nodes
will be close to linear correlation, and the representation ability of IGNNS will decline. However, in
the framework of IGNNS, because the spectral radius ρ(A0) = ρ(A1) = 1, IFS is not contractive
in general, and IGNNS still has the ability of depth feature representation.

5 EXPERIMENTS

5.1 EXPERIMENTAL TASK: SEMI-SUPERVISED NODE CLASSIFICATION

Let Z = softmax(O), where Z ∈ RN and softmax(·) is the softmax activation function, defined
as softmax(xi) = 1

Z exp(xi) with Z =
∑

i exp(xi), is applied row-wise. For semi-supervised
multiclass classification, we employ the following cross-entropy to evaluate error over all labeled
examples: L = −

∑
l∈YL

∑P
i=1 Y [l, i] lnZ[l, i],where YL is the set of node indices that have labels

with P classes, Y [l, :] is a one-hot vector of size P representing the class of node l and Z[l, :] is the
row l of the matrix Z.

5.2 EXPERIMENTAL SETUP

Datasets. In our experiment, we use three standard citation network benchmark datasets for eval-
uation, including Cora, Citeseer, Pubmed and apply the standard fixed training/validation/testing
split (Yang et al., 2016; Kipf & Welling, 2017; Veličković et al., 2018) on above datasets, with 20
nodes per class for training, 500 nodes for validation and 1,000 nodes for testing. In these citation
networks, papers are represented as nodes, and citations of one paper by another are denoted as
edges. Node features are the bag-of-words vector of papers, and node label is the only one academic
topic of a paper. See Table 1 for more details.

Parameter Setting. Random seed for Tensorflow and Numpy is set to 1234. ReLU (Nair & Hinton,
2010) is used as the activation function in input layer and output layer. Dropout (Srivastava et al.,
2014) is applied to input layer, IFS layer and output layer. In representation layer, we adopt weighted
time average to get the global representation of notes. In output layer, we adopt the method of mixed
propagation to get the output of IGNNS. We use the AdamOptimizer (P.Kingma & Ba, 2015) during
training. More details of hyper-parameters are shown in Table 2. During training stage, we select
the best model to maximize the accuracy of the validation set and use early stopping with a patience
of 100 epochs.

5.3 EXPERIMENTAL RESULT

We compare with those models that strictly follow the standard of experiment setup of semi-
supervised node classification, i.e. the standard fixed training/validation/testing split (Yang et al.,
2016; Kipf & Welling, 2017) is applied on dataset. For baselines, we include recent deep GNN
models such as JKNet (Xu et al., 2018), APPNP (Klicpera et al., 2019a), Attention-based models
such as GAT (Veličković et al., 2018), AGNN (Thekumparampil et al., 2018) and H-GAT (Gulcehre
et al., 2019) , and other models such as TAGCN (Du et al., 2017) and N-GCN (Abu-El-Haija et al.,
2018). We also include three state-of-the-art shallow GNN models: Planetoid (Yang et al., 2016),
GCN (Kipf & Welling, 2017) and DGCN (Zhuang & Ma, 2018). The detailed results are shown in
Table 3.

We can see from Table 3 that the improved performance of model IGNNS in dataset Cora and
Citeseer is much higher than that in dataset Pubmed. To understand why this happens, we analyze
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Table 2: hyper-parameters in experiment.

Setting Cora Citeseer Pubmed

Neighborhood Normalization symmetric mean-pooling symmetric
Learning rate 0.005 0.002 0.01
Initial value of p0 0.5 0.5 0.5
Dropout 0.9 0.9 0.8
Weight decay 5e-3 5e-3 5e-3
Epochs 1000 1000 1000
Hidden dimensions 48 72 72
Number of iterations in IFS layer 5 4 4
Learnable adjoint probability vector False True False
Learnable representation layer coefficient True True True
Use bias for IFS layer True False False
Use bias for output layer False False False

Table 3: Summary of classification accuracy (%) results on Cora, Citeseer and Pubmed. The results
are taken from the corresponding papers. The first value in brackets indicates the total training time
in seconds and the second value in brackets indicates the average training time in seconds per epoch.

Method Cora Citeseer Pubmed

Planetoid (Yang et al., 2016) 75.7 64.7 77.2
GCN (Kipf & Welling, 2017) 81.5 70.3 79.0
GAT (Veličković et al., 2018) 83.0 72.5 79.0
TAGCN (Du et al., 2017) 83.3 71.4 81.1
JKNet (Xu et al., 2018) 81.1 69.8 78.1
AGNN (Thekumparampil et al., 2018) 83.1 71.7 79.9
N-GCN (Abu-El-Haija et al., 2018) 83.0 72.2 79.5
DGCN (Zhuang & Ma, 2018) 83.5 72.6 80.0
APPNP (Klicpera et al., 2019a) 83.3 71.8 81.1
H-GAT (Gulcehre et al., 2019) 83.5 72.9 −
IGNNS (ours) 86.3(44s, 0.17s) 75.1(65s, 0.16s) 80.5(221s, 1.47s)

the characteristics of these citation networks. We consider two statistical properties of networks,
one is the Network Density d(G), which is defined as d(G) = 2L

N(N−1) , where N is the number of
nodes and L is the number of edges, and the other is the Average Clustering Coefficient C, which
is defined as C = 1

N

∑
i∈V Ci, where V is the set of nodes, Ci = 2ei

ki(ki−1) , ki is the number of
the neighbors of node vi and ei is the number of undirected edges between ki neighbors. The small
Network Density means the strong global sparsity of the network, and the small Average Clustering
Coefficient means the strong sparsity of the neighbors of nodes. The calculation results of the
statistical characteristics of the network are shown in Table 4. We can see from Table 4 that Pubmed
is more sparse than Cora and Citeseer. The performance of IGNNS benefits from the bidirectional
mixed propagation of information between nodes, but this sparsity weakens the gain of IGNNS.

5.4 PERFORMANCE OF COMPLETELY LINEAR IGNNS

In Nonlinear IGNNS, we use the nonlinear activation function ReLU(x), learn adjoint probability
vector p = (p0, p1) by p0 ← ReLU(p0)+0.1

ReLU(p0)+ReLU(p1)+0.2 , p1 ←
ReLU(p1)+0.1

ReLU(p0)+ReLU(p1)+0.2 and learn the rep-

resentation layer coefficient r = (r1, r2, ..., rn) by ri ← ReLU(ri) with initial value ri =
(
1
r

)i−1
where r =

√
ln(N) + 0.577215664. In this experiment, to get a completely linear IGNNS, we let

all the activation functions be the identity function, i.e. σ(x) = x, and let the adjoint probability
vector p = (p0, p1) and the representation layer coefficient r = (r1, r2, ..., rn) be hyperparameters

8
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Table 4: Statistical characteristics of the networks. Bold for minimum.
Statistical characteristics Cora Citeseer Pubmed

Network Density 0.00144000 0.00084514 0.00022805
Average Clustering Coefficient 0.24067330 0.14147102 0.06017521

Table 5: Performance of completely linear IGNNS on Cora, Citeseer and Pubmed.

Method Cora Citeseer Pubmed

GCN (Kipf & Welling, 2017) 81.5 70.3 79.0
IGNNS(Linear) 83.9 72.4 79.9

without learning. For Citeseer, we let p0 = 0.6, and for Pubmed, we use bias for IFS layer. Ex-
cept for the above changes, experimental task and the other experimental setups remain unchanged
as showed in section 5.1 and 5.2 respectively. We can see from Table 5 that the performance of
completely linear IGNNS is better than that of baseline model GCN. Compared with other models,
completely linear IGNNS is still competitive. This is due to the fact that the IFS can extract more
features than spectral filters. For more discussion, Let A be the normalization adjacency matrix of
graph G, and let A0 and A1 be defined as in section 3.2. We further assume that the dimension
of the hidden space is equal to 1. This means that the input of GNN (GCN or IGNNS) is a point
x0 = X int = XW int ∈ RN×1. Let n be the depth of GNN, for IGNNS, equal to the number
of iterations of IFS. For convenience, we ignore the activation function and parameter matrix. Let
f(x) = Ax+ b, f0(x) = A0x+ b0 and f1(x) = A1x+ b1. For GCN, the message passing results
are

{f(x0)}, {f2(x0)}, ..., {fn(x0)}.
We see that each iteration only gets one value, i.e. |{fn(x0)}| = 1. For IGNNS, the message
passing results are as follows:

{f0(x0), f1(x0)}, {f0(f0(x0)), f0(f1(x0)), f1(f0(x0)), f1(f1(x0))}, ..., {fi(x0)}|i|=n.

If f0 and f1 satisfy separation condition, i.e. f0(x) = f1(y) implies x = y, then |{fi(x0)}|i|=n| =
2n. This means that IGNNS can extract more information than GCN. Even if f0 and f1 are con-
tractive mappings, by Theorem 4.1, we have {fi(x0)}|i|=n → F, where F is the fractal set of IFS
induced by f0 and f1. Generally speaking, F is a uncountable compact set. This means that when n
is large, the features may still be distinguishable.

6 CONCLUSION

In this paper, we propose a new framework of graph neural networks, IGNNS, which give a con-
nection between Graph Neural Networks and Iterated Function System. We use IFS to simulate the
bidirectional message passing process of graph neural network, and obtain the fractal representa-
tion and ergodic representation of graph nodes, which are very helpful for downstream tasks. The
experiments show that we have achieved good results in semi-supervised node classification task.
Interesting directions for future work include pruning the iterative path space {0, 1}n to reduce the
computational complexity, coding graph structured data with IFS, and establishing more interesting
connections between IFS and graph neural networks.
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A THE FRACTAL REPRESENTATION OF GRAPH G WITH ONLY ONE SELF
ADJACENT NODE v.

For the sake of discussion, we assume that the dimension of the hidden space is equal to 1. We
assume that messages are sent from node v, propagate in two directions (clockwise and anticlock-
wise), and are finally received by node v. The received messages in the clockwise direction become
one-third of the original, and the received messages in the anticlockwise direction become one-third
of the original plus a constant of 2

3 . It is expressed by mathematical formula as follows

f0(x) =
x

3
, f1(x) =

x

3
+

2

3
, x ∈ R.

For Bi-GCN, messages are delivered independently in both directions. In other words, there are two
independent channels, and the message passing (transmitting or receiving) can only be carried out
by their own channels. Let x0 ∈ R be the initial message. In the clockwise direction, after n passes,
the received messages are

x0
3
,
x0
32
, ...,

x0
3n
→ 0.

In the anticlockwise direction, the received messages are

x0
3

+
2

3
,
x0
32

+
2

32
+

2

3
, ...,

x0
3n

+

n∑
i=1

2

3i
→ 1.

For IGNNS, the two channels have a connection point at node v. First, node v sends the message x0
in both directions, and the connection point of node v will receive two messages {f0(x0), f1(x0)}.
In the second launch, any message (f0(x0) or f1(x0)) can be sent in both directions, so the received
messages are

{f0(f0(x0)), f0(f1(x0)), f1(f0(x0)), f1(f1(x0))}.
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Figure 3: Comparison of feature extraction ability between Bi-GCN and IGNNS. Bi-GCN gets
boundary messages and IGNNS gets all messages.

In summary, After n passes, the received messages are

H(n) = {fi(x0)}|i|=n → C,

where C is the famous Cantor Set. This means that we have not only received one message, but
2n, since f0 and f1 satisfy the separation condition. We can see from Figure 3 that Bi-GCN gets
boundary messages and IGNNS gets all messages. Let p = (p0, p1) be the adjoint probability vector,
then the mathematical expectation En of H(n) is

∑
|i|=n pifi(x0). We interpret En as the average

of all messages received. Now the question is, fractal representation gets enough messages, but is
there redundancy in these messages? How to select the valid message from the fractal representation
becomes the focus of our research in the next stage.

B ANALYSIS OF TIME COMPLEXITY ON CORA, CITESEER AND PUBMED.

From section 3.6, we have known that the time complexity in Experiment 5.1 isO(2nN2H+N2P ),
where n is the number of iterations of IFS (the depth of IGNNS), N is the number of nodes, H is
the dimension of the latent space and P is the dimension of the output layer. In this section, we
compare the real running time (100 epochs) of IGNNS on Cora, Citeseer and Pubmed. Let H = 8,
then 2nN2H is the main factor affecting the time complexity of IGNNS. Let the depth of IGNNS

12
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Figure 4: Real training time on Cora, Citeseer and Pubmed.

go from 1 to 8, and compare the real training time on Cora, Citeseer and Pubmed. We can see from
Figure 4 that the actual results are basically consistent with the theoretical analysis results.

C FROBENIUS NORM OF MATRIX

Theorem C.1 Let A ∈ RN×N be the adjacency matrix of a graph with no weights, i.e. Ai,j = 1

if there exists an edge i → j in the graph and Ai,j = 0 otherwise, and A1 = D−11 tril(A) (or

A1 = D
− 1

2
1 tril(A)D

− 1
2

1 ) as defined in IGNNS, then

‖A1‖F ≥
√

ln(N) + γ,

where γ ≈ 0.577215664 is the Euler constant.

Proof. Case 1: A1 = D−11 tril(A). Let tril(A) = (aij)N×N , D1 = diag(d1, d2, ..., dN ) be the
degree matrix of tril(A) and A1 = (bij)N×N . Note that tril(A) is an lower triangular matrix, then
di =

∑N
j=1 aij =

∑i
j=1 aij . Since aij ∈ {0, 1}, we have i ≥ di. Computing the Frobenius Norm

of A1 as follows:

‖A1‖2F =

N∑
i=1

N∑
j=1

b2ij =

N∑
i=1

i∑
j=1

b2ij =

N∑
i=1

i∑
j=1

(
aij
di

)2

. (4)

∀i ∈ {1, 2, ..., N}, note that di elements in {aij}ij=1 are 1 and the rest are 0. It follows that

i∑
j=1

(
aij
di

)2

=

(
1

di

)2

×
i∑

j=1

a2ij =

(
1

di

)2

× di =
1

di
≥ 1

i
. (5)

13



Under review as a conference paper at ICLR 2021

It follows from (4) and (5) that

‖A1‖2F ≥
N∑
i=1

1

i
.

So ‖A1‖F ≥
√∑N

i=1
1
i ≈

√
ln(N) + γ, where γ ≈ 0.577215664 is the Euler constant.

Case 2: A1 = D
− 1

2
1 tril(A)D

− 1
2

1 . Computing the Frobenius Norm of A1 as follows:

‖A1‖2F =

N∑
i=1

N∑
j=1

b2ij =

N∑
i=1

i∑
j=1

b2ij =

N∑
i=1

i∑
j=1

a2ij
didj

. (6)

∀i ∈ {1, 2, ..., N}, it follows from j ≥ dj that

i∑
j=1

a2ij
didj

≥ 1

di

i∑
j=1

1

j
· a2ij . (7)

Note that di elements in {aij}ij=1 are 1 and the rest are 0. It follows from Rearrangement inequality
that

i∑
j=1

1

j
· a2ij ≥

1

i− di + 1
· a2i(i−di+1) +

1

i− di + 2
· a2i(i−di+2) + · · ·+ 1

i
· a2ii, (8)

where ai(i−di+1) = ai(i−di+2) = · · · = aii = 1. Thus

i∑
j=1

1

j
· a2ij ≥

1

i
· 12 +

1

i
· 12 + · · ·+ 1

i
· 12 = di ×

1

i
. (9)

It follows from (6), (7) and (9) that

‖A1‖2F ≥
N∑
i=1

1

i
.

Which completes the proof.

D INTRODUCTION TO ITERATED FUNCTION SYSTEM

In order to prove Theorem 4.1 and Theorem 4.2, we will briefly introduce the relevant conclusions
on IFS in this section, and we will not give the proof here. More details of IFS Theory can be found
in Hutchinson (1981); Elton (1987); Barnsley (1988); Falconer (1990); Massopust (2017).

D.1 FRACTAL SPACE

Let (X; d) be a complete metric space. Let H(X) denote a set consisting of all nonempty compact
subsets of X . Hausdorff distanceon dH onH(X) defined by

dH(A,B) = max{max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)},∀A,B ∈ H(X). (10)

Theorem D.1 (H(X); dH) is a complete metric space.

We call (H(X); dH) a Fractal space. Let {fi}ni=1 be a set of mappings on (X; d). Hutchinson
operator T : (H(X); dH)→ (H(X); dH) defined as

T (B) =

n⋃
i=1

fi(B),∀B ∈ H(X). (11)

Theorem D.2 If {fi}ni=1 is a set of contractive mappings on (X; d), then Hutchinson operator T is
a contractive mapping on (H(X); dH).
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D.2 MARKOV OPERATOR OF IFS

Let (X; d) be a complete metric space. Let M(X) be the set of all probability measures on X .
Let C(X) be the set of all continuous functions mapping X to R. We say that f ∈ L̃ip1, if
|f(x)− f(y)| ≤ d(x, y),∀x, y ∈ X . It is easy to see that if f ∈ L̃ip1 then f ∈ C(X). Hutchinson
metric dM onM defined as

dM (µ, ν) = sup

{∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣ |f ∈ L̃ip1} ,∀µ, ν ∈M(X). (12)

Theorem D.3 (M(X); dM ) is a complete metric space.

Let IFS = {X; f1, f2, ..., fn;p}, the Markov operator M :M(X)→M(X) of IFS defined as

Mµ =

n∑
i=1

piµ ◦ f−1i , µ ∈M(X). (13)

Theorem D.4 Markov operator M of IFS is a contractive mapping on space (M(X); dM ).

Let measure sequence {µi} ⊂ M and µ ∈M, we call {µi} weakly convergent to µ if the following
equation holds:

lim
i→∞

∫
X

fdµi =

∫
X

fdµ,∀f ∈ C(X), (14)

denoted as µi
w−→ µ as i→∞.

Theorem D.5 If µi
dM−−→ µ as i→∞, then µi

w−→ µ as i→∞.

E THE PROOF OF THEOREM 4.1

Proof. By Theorem D.1, (H(RN ); dH) is a complete metric space. Let T be the Hutchinson
operator on H(RN ), defined as T (B) = f0(B)

⋃
f1(B),∀B ∈ H(RN ). By Theorem D.2, T is a

contractive mapping on (H(RN ); dH). It follows from the Banach fixed point theorem that there
exits a unique compact subset F ofH(RN ) such that

F = T (F) = f0(F)
⋃
f1(F),

which implies that F is the fractal set of IFS. Further more, ∀B ∈ H(RN ), we have Tn(B)
dH−−→ F.

The above convergence is independent of the choice of initial value. Thus, let H(0) = {X int} =
{x1, x2, ..., xH}, xi ∈ RN , we have

H(n) = T (H(n−1)) = · · · = Tn(H(0))
dH−−→ F.

The above result indicates that when n is large enough, H(n) is close to the fractal set F of IFS in
the sense of Hausdorff distance, and has nothing to do with the choice of initial value H(0).

F THE PROOF OF THEOREM 4.2

Proof. It suffices to prove that ∀j ∈ {1, 2, ...,H} , En[:, j], the j column of En, satisfies

lim
n→∞

En[:, j] =


e1
e2
...
eN


N×1

.

For this purpose, let xj be the j column of X int as defined in (2), then xj is a point in RN . Define a
Dirac measure as follows:

δx(B) =

{
1 x ∈ B,
0 other.

(15)
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It is easy to see that δx ∈ M(RN ). The Markov operator M :M(RN )→M(RN ) of IFS, defined
as

Mµ =

1∑
i=0

piµ ◦ f−1i , µ ∈M(RN ). (16)

Now take µ0 = δxj
, and the results of iterative calculation are as follows:

µ1 = Mµ0 =

1∑
i=0

piµ0 ◦ f−1i =

1∑
i=0

piδxj
◦ f−1i =

1∑
i=0

piδfi(xj) =
∑
|i|=1

piδfi(xj).

µ2 = M2µ0 = Mµ1 =

1∑
i=0

piµ1 ◦ f−1i =

1∑
i=0

pi(
∑
|i|=1

piδfi(xj)) ◦ f
−1
i

= p0p0δf0(f0(xj)) + p0p1δf0(f1(xj)) + p1p0δf1(f0(xj)) + p1p1δf1(f1(xj))

=
∑
|i|=2

piδfi(xj)

Inductively, we have

µn = Mnµ0 =
∑
|i|=n

piδfi(xj). (17)

By Theorem D.4, it follows from the Banach fixed point theorem that there exits a unique probability
measure µ∗ such that

µn
dM−−→ µ∗.

The above µ∗ is actually the self-similar measure of IFS. By Theorem D.5, we have µn
w−→ µ∗, i.e.

lim
n→∞

∫
Fdµn =

∫
Fdµ∗, ∀F ∈ C(RN ).

It follows from (17) and (3) that

∫
Fdµ∗ = lim

n→∞

∫
Fdµn = lim

n→∞

∫
Fd(

∑
|i|=n

piδfi(xj))

= lim
n→∞

∑
|i|=n

piF (fi(xj))

= lim
n→∞

∑
|i|=n

piF (Hi[:, j]), ∀F ∈ C(RN ). (18)

In (18), ∀i ∈ {1, 2, ..., N}, take the continuous function Fi to satisfy

Fi(t) = ti, ∀t = (t1, t2, ..., tN )> ∈ RN .

It follows from (18) that ∀i ∈ {1, 2, ..., N},

lim
n→∞

En[i, j] = lim
n→∞

∑
|i|=n

piHi[i, j] = lim
n→∞

∑
|i|=n

piFi(Hi[:, j])

=

∫
Fi(t)dµ∗(t) =

∫
tidµ∗(t) =

∫
F
tidµ∗(t) = ei. (19)

Which combined with simple mathematical analysis technology completes the proof.
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G HOW TO SET THE INITIAL VALUE OF ADJOINT PROBABILITY VECTOR?

The geometric meaning of matrix determinant detA is the expansion factor of graph volume under
linear transformation A. Let F be the fractal set of IFS as defined in IGNNS. Then

F = f0(F)
⋃
f1(F).

Note that

detAi =
volume(fi(F))

volume(F)
, i = 0, 1.

It can be seen that if the value of detAi is large, it reflects that fi(F) has a large share in F. therefore,
when selecting the iterative function, fi should have a greater probability of being selected. So set

p0 =
detA0

detA0 + detA1
, p1 =

detA1

detA0 + detA1
;

Note that A0, A1 are triangular matrixes and the diagonals of triu(A), tril(A) are equal to 1. It

follows from A0 = D−10 tril(A) (or A0 = D
− 1

2
0 tril(A)D

− 1
2

0 ) that detA0 = 1
detD0

. Similarly,
detA1 = 1

detD1
. It follows that

p0 =
detD1

detD0 + detD1
, p1 =

detD0

detD0 + detD1
,

where D0 and D1 are degree matrices of triu(A) and tril(A) respectively.
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