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Abstract. We introduce Medal S, a medical segmentation foundation
model that supports native-resolution spatial and textual prompts within
an end-to-end trainable framework. Unlike text-only methods lacking
spatial awareness, Medal S achieves channel-wise alignment between vol-
umetric prompts and text embeddings, mitigating inaccuracies from res-
olution mismatches. By preserving full 3D context, it efficiently pro-
cesses multiple native-resolution masks in parallel, enhancing multi-class
segmentation performance. A lightweight 3D convolutional module en-
ables precise voxel-space refinement guided by both prompt types, sup-
porting up to 243 classes across CT, MRI, PET, ultrasound, and mi-
croscopy modalities in the BiomedSegFM dataset. Medal S offers two
prompting modes: a text-only mode, where model predictions serve as
spatial prompts for self-refinement without human input, and a hy-
brid mode, incorporating manual annotations for enhanced flexibility.
We propose dynamic resampling to address target-patch ratio imbal-
ance, extending SAT and nnU-Net for data augmentation. Furthermore,
we develop optimized text preprocessing, a two-stage inference strat-
egy, and post-processing techniques to improve memory efficiency, pre-
cision, and inference speed. On five-modality average, Medal S outper-
forms CAT with a DSC of 75.55 (vs. 68.68), NSD of 77.53 (vs. 70.52),
F1 of 37.32 (vs. 13.82), and DSC TP of 64.61 (vs. 33.05). Medal S
achieves state-of-the-art performance by harmonizing spatial precision
with semantic textual guidance, demonstrating superior efficiency and
accuracy in multi-class medical segmentation tasks compared to sequen-
tial prompt-based approaches. Medal S will be publicly available at
https://github.com/yinghemedical/Medal-S.

Keywords: Medical Segmentation · Foundation Model · Spatial and
Textual Prompts.

1 Introduction

Medical image segmentation, the precise delineation of anatomical structures and
pathologies within medical volumes, is fundamental to computational health-
care. Despite its importance, challenges persist due to the diversity of imaging
modalities and anatomical variations. Recent advances in foundation models,
notably the Segment Anything Model (SAM) [13] and its successor, SAM 2 [19],

https://github.com/yinghemedical/Medal-S


2 P. Shi et al.

PET

UltrasoundCT MRI Microscopy

Challenge

Effect

Solution

Multi-modal 
heterogeneity 

Multi-class 
segmentation

Target-patch 
ratio imbalance 

Time-consuming 
sequential inference

FP/FN
 errors

Spatio-textual 
prompt misalignment 

Channel-wise 
prompt alignment 

Parallel spatial 
prompts

Dynamic 
resampling

Text prompt examples

29：Head and neck CT showing pituitary gland structures

1：Echocardiography imaging of the myocardial tissue in the cardiac region

1：Synaptic clefts segmentation in Drosophila brain Electron microscopy

7：Stomach anatomy characterized by abdominal MR protocols

1：Lesion delineation in whole body PET imaging

Fig. 1. Left: Example renders from the BiomedSegFM challenge dataset (original im-
ages and segmentation masks) covering five imaging modalities: CT, MRI, microscopy,
PET, and ultrasound. Top-right: Sample text prompts. Bottom-right: Key challenges
include (1) multi-modal heterogeneity, (2) multi-class segmentation, and (3) target-
patch ratio imbalance, causing spatio-textual misalignment, sequential inference ineffi-
ciency, and FP/FN errors. Our solutions: channel-wise prompt alignment (2.3), parallel
spatial prompts (2.3), and dynamic resampling (2.5).

have transformed natural image segmentation by introducing promptable models
that generalize across various image distributions and tasks. However, directly
applying these models to medical volumes is hindered by the intrinsic differences
between natural and medical images.

Adaptations of foundation models for medical image segmentation have fol-
lowed distinct strategies, each with inherent trade-offs. Early approaches, such
as MedSAM [16], extended SAM’s 2D capabilities to medical images, primarily
using bounding box prompts. Similarly, ScribblePrompt [23], a 2D model, im-
proved segmentation accuracy for unseen labels and image types by supporting
flexible annotation styles, including bounding boxes, clicks, and scribbles. To
overcome the limitations of 2D methods and leverage 3D spatial information,
subsequent models incorporated 3D spatial prompts. For example, SAM-Med3D
[22], SegVol [5], and VISTA3D [9] introduced dedicated 3D prompting mecha-
nisms. VISTA3D [9] enabled automatic and interactive 3D segmentation with
spatial prompts, facilitating efficient inspection and editing by clinicians. SegVol
[5] expanded prompt types to include spatial and semantic cues, improving pre-
cision and semantic disambiguation. Beyond this, MedSAM2 [18] and nnInterac-
tive [6] advanced 3D segmentation by using intuitive 2D interactions to generate
full 3D segmentations. MedSAM2 [18], akin to SAM 2 [19], supports segmenta-
tion of 3D medical images and videos, primarily using bounding box prompts
and memory-conditioned features.

Most recently, nnInteractive [6], built on the nnU-Net [11] framework, in-
troduced a comprehensive 3D interactive open-set segmentation method. This
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approach supports diverse spatial prompts, including points, scribbles, boxes,
and a novel lasso prompt, leveraging 2D interactions to produce complete 3D
segmentations with superior performance. Despite these advancements, current
medical segmentation models face significant limitations with spatial prompts.
Models like SegVol [5] and SAM-Med3D [22] often rely on multiple downsampling
operations for spatial prompts, while VISTA3D [9] downsamples spatial point
prompts, leading to substantial loss of voxel-level details. In contrast, nnInter-
active [6] incorporates spatial prompts at the native resolution, preserving 3D
spatial context. Moreover, existing spatial prompting methods process multiple
classes sequentially rather than in parallel, reducing inference efficiency and lim-
iting the model’s ability to learn features across interrelated anatomical regions.

On the text prompt front, models like CLIP-Driven Universal Model [15]
and SegVol [5] utilize simple semantic classes as prompts, while VISTA3D [9]
employs similar class-based prompts. However, such categorical prompting often
lacks flexibility in practice. More recent models, such as SAT [28] and BioMed-
Parse [27], adopt text-only prompting paradigms. However, BioMedParse, a 2D
model, remains limited in handling 3D medical images. These approaches often
sacrifice 3D spatial context and lack spatial prompts, hindering self-iterative re-
finement and real-world correction capabilities. CAT [10] attempts to integrate
spatial anatomical information with text prompts but embeds cropped regions
after multiple downsampling steps, failing to utilize spatial prompts at native
resolution. Additionally, its complex contrastive learning approach for inter-class
relationships is less streamlined. This fragmentation creates a tension between
preserving native-resolution spatial prompts and achieving efficient multimodal
processing. Ideally, spatial prompts for different anatomical classes and their
corresponding text should maintain one-to-one channel-wise correspondence at
the native resolution. In text-guided controllable generation, several works have
successfully integrated native-resolution segmentation masks with text prompts.
Prior works like MakeAScene [7] and SpaText [1] have demonstrated effective
fusion of segmentation masks and text for controllable generation. ControlNet
[25] further enhances this through spatial conditioning of diffusion models. How-
ever, such joint textual and native-resolution spatial prompts approaches remain
unexplored for medical image segmentation.

To address these challenges, we introduce Medal S, a medical segmentation
foundation model that natively supports both spatial and textual prompts in
an end-to-end framework. Medal S aligns with initiatives like ScaleMAI [14] and
supports datasets including RadGenome-Chest CT [26] and RadGPT [2].

Our key contributions are:

– A novel channel-wise alignment between volumetric prompts and text em-
beddings through text embedding transformation and lightweight 3D con-
volution, addressing spatial prompt-text misalignment and enabling precise
simultaneous refinement.

– Parallel processing of spatial prompts at native resolution without degrada-
tion, supporting simultaneous 3D spatial and textual prompts for multiple
classes while maintaining full image fidelity.
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– Dynamic resampling for target-patch ratio imbalance (building upon SAT [28]
and nnU-Net [11]), with optimized text preprocessing, two-stage inference,
and post-processing, achieving fast inference, memory efficiency, and state-
of-the-art performance.

– Comprehensive support for 243 anatomical classes across CT, MRI, PET, ul-
trasound, and microscopy (BiomedSegFM dataset), featuring both text-only
self-refinement and hybrid manual annotation modes for enhanced clinical
flexibility.

2 Method

Our proposed Medal S framework presents a novel approach to universal medi-
cal image segmentation by synergistically integrating spatial prompts with text-
driven feature adaptation. As illustrated in Figure 2, the framework consists of
three key components: (1) An image encoder that extracts multi-scale visual
features, (2) A text encoder that processes prompt embeddings, and (3) A query
decoder that fuses visual and textual features to produce adapted embeddings.
Spatial prompts–whether simulated, predicted, or annotated–are processed at
native resolution and aligned with spatio-textual features through channel-wise
alignment. The framework supports iterative self-refinement for precise segmen-
tation, offering both robustness and flexibility in medical segmentation.

2.1 Prompt Encoder

The prompt encoder comprises two components: foreground spatial prompt en-
coding and textual prompt encoding, with implementations inspired by nnInter-
active [6] and SAT [28] respectively.

Foreground spatial prompt encoding To enhance the model’s focus on tar-
get foreground regions, we generate a foreground spatial prompt Sf ∈ R1×H×W×D

by aggregating parallel spatial prompts Sp ∈ RN×H×W×D (obtained from either
previous predictions or user annotations) through a binary thresholding opera-
tion:

Sf = H

(
N∑
i=1

S(i)
p

)
(1)

where H(·) is the Heaviside step function:

H(x) =

{
1 if x > 0

0 otherwise
(2)

The resulting Sf is concatenated with the input image as additional channels
to the U-Net encoder, similar to the native resolution prompt in nnInteractive.
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Fig. 2. Medal S framework pipeline. The image encoder extracts multi-scale visual
features, while the text encoder generates text embeddings. A query decoder fuses
them into adapted embeddings. Spatial prompts (simulated, predicted, or annotated)
are processed at native resolution and aligned via channel-wise matching. Supports
iterative self-refinement for precise segmentation.

Textual prompt encoding We employ a frozen pre-trained text encoder
Φtext from the SAT framework to process medical terminology prompts T =
{t1, . . . , tN}:

zj = Φtext(tj), zj ∈ Rd (3)

where zj represents the embedding for anatomical target tj .

2.2 Spatial Prompt Generation

We introduce a spatial prompt generation method Gprompt that enhances segmen-
tation robustness for both interactive applications and autonomous refinement.
The generator produces realistic coarse segmentations from ground truth masks
M ∈ 0, 1N×H×W×D, where N represents semantic channels and (H,W,D) de-
note spatial dimensions. The method outputs two complementary binary prompts:
a single-channel global foreground prompt Sf ∈ 0, 11×H×W×D and a multi-
channel class-specific prompt Sp ∈ 0, 1N×H×W×D.

The generation process applies controlled stochastic transformations through
five key parameters. The drop probability range [pmin

drop, p
max
drop] ∈ [0, 1]2 regulates

false negative simulation by removing mask blocks, while the add probability
range [pmin

add , p
max
add ] controls false positive generation through block additions.
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Algorithm 1 Spatial Prompt Generation
Require: M ∈ {0, 1}N×H×W×D, [pmin

drop, p
max
drop], [pmin

add , p
max
add ], pchan-zero, pzero ∈ [0, 1],

B ⊂ Z3
≥1

Ensure: Sf ∈ {0, 1}1×H×W×D, Sp ∈ {0, 1}N×H×W×D

1: if Random(0, 1) < pzero then
2: return 01×H×W×D, 0N×H×W×D

3: end if
4: Meff ←M⊙ ChannelMask(M, pchan-zero)
5: Sp ←Meff

6: Sf ← (
∑N

c=1 Meff,c > 0)
7: if pmax

drop > 0 or pmax
add > 0 then

8: [bh, bw, bd]← RandomChoice(B)
9: [nh, nw, nd]← [⌈H/bh⌉, ⌈W/bw⌉, ⌈D/bd⌉]

10: pd ∼ U(pmin
drop, p

max
drop), pa ∼ U(pmin

add , p
max
add )

11: Bdrop ← Random(nh, nw, nd) < pd
12: Badd ← (Random(nh, nw, nd) < pa) ∧ (¬Bdrop)
13: Udrop,Uadd ← Upsample(Bdrop, (H,W,D)),Upsample(Badd, (H,W,D))
14: Sf ← Sf ⊙ (1−Udrop) ∨Uadd

15: Ckeep ← AssignBlocksToChannels(¬Bdrop, N)
16: Cadd ← AssignBlocksToChannels(Badd, N)
17: Sp ← Sp ⊙Ckeep ∨Cadd

18: end if
19: Sf ← (Sf > 0), Sp ← (Sp > 0)
20: return Sf , Sp

Channel-level variations are introduced via pchan-zero, which nullifies entire chan-
nels in Sp, and pzero determines the probability of returning empty prompts.
The block size set B ⊂ Z3

≥1 defines the possible 3D block dimensions for these
transformations.

As detailed in Algorithm 1, the process begins by potentially returning empty
prompts when a random sample falls below pzero. Otherwise, Meff is created by
randomly zeroing out channels in M according to pchan-zero. The single-channel
prompt Sf is generated by channel summation and binarization of Meff. For
block operations, the method samples block dimensions [bh, bw, bd] ∈ B, estab-
lishing a transformation grid. Mutually exclusive drop and add masks (Bdrop
and Badd) are generated using probabilistically sampled parameters, upsampled
to full resolution, and applied to both prompt types. The multi-channel prompt
additionally incorporates class-specific variations through random channel as-
signment of modified blocks. Final outputs undergo binarization to maintain
strict 0,1 values.

This approach systematically simulates diverse input conditions ranging from
coarse segmentations to imperfect user annotations, significantly improving model
generalization across varying input qualities while maintaining anatomical plau-
sibility. The stochastic yet controlled transformations enable robust handling of
real-world scenarios where prompt quality may vary substantially.
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2.3 Query Decoder

Our query decoder builds upon the architectures of SAM [13] and SAT [28],
while incorporating key design principles from DETR [3] and MaskFormer [4]
for segmentation tasks. Departing from conventional approaches that compress
dense prompts into low-dimensional mask embeddings (e.g., SAM-Med3D [22],
SegVol [5], and VISTA3D [9]), our method introduces a novel preservation of
the complete 3D spatial context in volumetric prompts. This preservation proves
particularly vital for 3D medical imaging applications, where the maintenance
of native spatial resolution directly impacts diagnostic accuracy.

The decoder’s architecture establishes precise channel-wise alignment be-
tween volumetric prompts and text embeddings, effectively mitigating the accu-
racy degradation typically caused by resolution mismatches. This design enables
efficient parallel processing of multiple native-resolution masks, yielding signif-
icant improvements in multi-class segmentation performance. Furthermore, we
incorporate a lightweight 3D convolutional module that jointly optimizes voxel-
space features using both prompt modalities while maintaining their channel-
wise alignment, ensuring accurate and robust 3D segmentation across targets
with varying semantics.

The query decoder operates on per-voxel features F ∈ RC×H×W×D, where
(H,W,D) denote the voxel grid dimensions and C represents the feature chan-
nels. These features are derived through progressive upsampling of visual en-
coder outputs with skip connections in a U-Net-style architecture [20]. Concur-
rently, the decoder receives adapted text embeddings T ∈ RN×C produced by a
transformer-based query decoder [21], where N indicates the number of semantic
queries (corresponding to anatomical targets). The query decoder adapts text
embeddings Z ∈ RN×L (with L as the text dimension) using multi-scale visual
features V ∈ RCV ×HV ×WV ×DV according to:

T = Φquery(V,Z)

The core innovation of our approach lies in the spatial prompt refinement
module. This module enhances per-voxel features F through an interaction
mechanism between adapted text embeddings T and parallel spatial prompts
Sp ∈ RN×H×W×D (which originate from either previous predictions or user an-
notations during inference). The refinement process begins with the computation
of spatio-textually aligned features Fa ∈ RC×H×W×D via:

Fa = T⊤Sp

where T⊤ ∈ RC×N denotes the transposed adapted text embeddings. We
then concatenate Fa with the original features F along the channel dimension,
resulting in a R2C×H×W×D tensor. This combined representation is processed by
a lightweight 3D convolutional module inspired by nnU-Net’s native-resolution
skip connection architecture [11], producing refined features Fr ∈ RC×H×W×D:

Fr = Conv([F;Fa])
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The final per-voxel prediction P ∈ RN×H×W×D is obtained through voxel-
wise correlation between queries and refined features, followed by sigmoid acti-
vation σ(·):

P = σ (TFr)

This approach produces a multi-channel probability map with dedicated
channels for each anatomical structures and pathological region, facilitating com-
plete 3D volumetric segmentation.

2.4 Iterative Inference

Our query decoder employs an iterative inference approach inspired by Masked
Autoencoders (MAE) [8]. The algorithm progressively refines predictions through
multiple iterations, where each output P(t) ∈ RN×H×W×D serves as the spatial
prompt Sp for subsequent iterations. The random masking mechanism facilitates
prediction in unprompted regions, with complementary masked predictions ag-
gregated to improve robustness against input noise.

As detailed in Algorithm 2, each iteration t consists of four key components:
(1) feature enhancement through cross-attention between text queries T and spa-
tial prompts, (2) R rounds of random block masking using block sizes B = 4, 8,
(3) parallel prediction of both masked and unmasked regions, and (4) prediction
averaging across all rounds.

Medal-S supports two distinct prompting strategies. The Text-Only mode ini-
tializes with zero tensors and relies solely on text prompts with self-refinement,
while the Hybrid mode incorporates external spatial cues such as manual anno-
tations when configured. The inference pipeline orchestrates prompt generation
and iterative refinement through coordinated function calls, dynamically updat-
ing spatial prompts to enhance segmentation accuracy throughout the process.

2.5 Dynamic Resampling

Dynamic resampling addresses the challenge of varying segmentation target sizes
relative to a fixed patch size in medical image segmentation. When the target
size significantly exceeds the patch size, partial visibility of the target within a
patch can lead to false positives (FP), as the model lacks global context and
may misinterpret background noise as part of the target. Conversely, when the
target is much smaller than the patch, the imbalance between foreground and
background can result in false negatives (FN), as the model struggles to focus on
small, critical regions. To mitigate these issues, we propose a dynamic resampling
strategy that adjusts the voxel spacing of the input image based on the physical
size of the smallest foreground connected component or the smallest class-specific
target, ensuring balanced representation within the fixed patch size used by the
model.

Our approach begins by identifying the smallest foreground connected com-
ponent or the smallest target class in each case, which serves as the reference
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Algorithm 2 Iterative Query Decoder Inference
Require: Voxel features F ∈ RC×H×W×D, queries T ∈ RN×C , initial prompt Sp ∈

RN×H×W×D, iterations T , parameters Θ, block sizes B = {4, 8}, repetitions R = 1
Ensure: Prediction P ∈ RN×H×W×D

1: P(0) ← 0
2: for t = 1 to T do
3: E(t) ← T⊤S

(t−1)
p

4: F
(t)
r ← Conv([F;E(t)];Θ)

5: P(t) ← σ(TF
(t)
r )

6: S
(t)
p ← P(t)

7: Psum ← 0
8: for r = 1 to R do
9: b← RandomChoice(B)

10: Nh ← ⌈H/b⌉, Nw ← ⌈W/b⌉, Nd ← ⌈D/b⌉
11: Nselected ← max(1, ⌊(Nh ·Nw ·Nd)/2⌋)
12: Mb ← RandomMask(Nh, Nw, Nd, Nselected)
13: M← Upsample(Mb, (H,W,D))
14: Mc ← 1−M
15: P1 ← Model(T,P(t),M;Θ)
16: P2 ← Model(T,P(t),Mc;Θ)
17: Ppatch ← P1 ·Mc +P2 ·M
18: Psum ← Psum +Ppatch

19: end for
20: P(t) ← Psum/R
21: end for
22: return P(T )

for resampling. Ideally, each target would have a tailored resampling rate to op-
timize its representation within the patch. However, to balance computational
efficiency during training and inference, we focus on the smallest target to deter-
mine the resampling parameters. The core idea is to adjust the current spacing
s = [sx, sy, sz] of the image to a target spacing t = [tx, ty, tz] such that the
physical dimensions of the target align with the patch size p = [px, py, pz]. The
adjusted spacing for each dimension i is computed as:

s′i =

max
(
ti,

pi·α·ti
di

)
, if si > ti,

min
(
ti,

pi·α·ti
di

)
, otherwise,

where s′i is the adjusted spacing, di is the image dimension, and α is a scale factor.
This formula ensures that the physical size of the resampled image fits within
the patch while preserving sufficient detail. To prevent excessive resampling, we
impose constraints such that s′i remains within practical bounds, depending on
the target class and inference stage.
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2.6 Two-stage Inference

We propose a two-stage inference strategy to optimize computational efficiency
and segmentation accuracy for medical imaging, particularly for localized regions
like focal lesions or anatomical structures. The coarse-to-fine strategy first per-
forms low-resolution segmentation to identify regions of interest (ROIs), followed
by high-resolution refinement to capture fine details. This approach is efficient
for datasets with small foreground regions, reducing inference time compared to
full high-resolution processing.

The strategy trains two models: one for coarse segmentation at a voxel spac-
ing of (1.5, 1.5, 3.0) and another for high-resolution segmentation at (1.0, 1.0,
1.0). In the first stage, images are processed using a sliding window with a crop
size of (224, 224, 128), corresponding to a physical field of view of approximately
(336, 336, 384). This coarse resolution enables rapid ROI detection. The output
mask highlights potential target regions, but if no foreground is detected, the
strategy defaults to full-volume high-resolution inference to avoid missing subtle
targets.

In the second stage, the ROI is extracted based on the coarse segmentation’s
non-zero predictions, scaled by a factor (1.1 to 1.5) to include context. The
image is resampled to a target spacing of (1.0, 1.0, 1.0) with a crop size of (192,
192, 192). To manage memory, the physical volume V =

∏3
i=1 si · di (where

si and di are voxel spacing and dimension size) is constrained by a threshold
Vthreshold = (1.8)3 ·

∏3
i=1 ci, with ci as the crop size. If exceeded, voxel spacing

is adjusted to satisfy si · di ≤ 1.9 · ci · ti, where ti is the target spacing, ensuring
memory usage stays below 32 GB.

The second stage refines segmentation using the coarse predictions as spa-
tial prompts, enhancing accuracy for small or intricate structures like synaptic
clefts or micro-lesions. A sliding window approach ensures high precision despite
increased computational cost. The strategy allows flexible use of either stage:
the first for rapid analysis or the second for high-resolution segmentation when
resources permit. This adaptability balances efficiency and accuracy, making the
approach suitable for diverse medical imaging applications.

2.7 Text Prompts Preprocessing

To effectively preprocess text prompts from the BiomedSegFM dataset, a sys-
tematic approach is employed to extract modality and class-specific identifiers,
enabling dynamic resampling and post-processing strategies. The methodology
begins by parsing the text prompts JSON to generate a class mapping, which
assigns unique identifiers to anatomical structures and lesions across modalities
(CT, MRI, US, PET, Microscopy). This mapping is constructed by extracting
modality information from dataset prefixes and standardizing class names, such
as mapping "Left renal structure" to "Left kidney" or "Myocardium" to "Heart".
The resulting class mapping, stored as a JSON file, ensures each class within a
modality has a unique identifier, facilitating consistent encoding.
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Next, a variant mapping is created to handle diverse terminologies in the
prompts. This mapping accounts for anatomical and lesion variants, incorporat-
ing directionality (e.g., "left" or "right") and suffixes (e.g., "lesions", "tumors").
For instance, "hepatic lesions" is mapped to "Liver lesions" using predefined
rules and regular expressions to detect directional patterns. The variant map-
ping prioritizes longer, more specific terms to avoid partial matches, ensuring
"Brainstem" is distinguished from "Brain". This preprocess yields a comprehen-
sive variant mapping JSON, covering all prompt variations.

For training and inference, a text preprocessing function extracts modality
and class information from each prompt. Given a sentence s and instance label
l (0 for anatomy, 1 for lesion), the function identifies the modality m (e.g., CT,
MRI, US, PET, or Microscopy) by matching keywords. It then retrieves the class
identifier cid and canonical name cname from the class mapping, using the variant
mapping to handle term variations. The function prioritizes longer matches to
ensure specificity, formalized as:

(cid, cname) = argmax
k∈K

(
len(k) | k ∈ s, k ∈ M l

m

)
,

where K is the set of terms (class names and variants), M l
m is the modality-

specific class dictionary for label l, and len(k) is the term length. Directional
patterns are detected using regular expressions to refine matches, such as distin-
guishing "Left kidney" from "Kidney".

The extracted modality m and class identifier cid are input to a text encoder,
producing embeddings that guide dynamic resampling and post-processing. For
example, the extracted modality m enables the text encoder to distinguish be-
tween different modalities, while resampling strategies leverage cid to apply class-
specific target spacing, or post-processing leverages cid to apply class-specific
segmentation refinements. This streamlined pipeline ensures robust handling of
diverse text prompts, enhancing segmentation accuracy.

2.8 Loss Function

We employ a combined loss L = LBCE + LDice, standard in medical image
segmentation. For N classes and C voxels:

LBCE = − 1

MC

∑
n, c [sn,c log pn,c + (1− sn,c) log(1− pn,c)]

LDice = 1− 2
∑

n, cpn,csn,c∑
n,c p

2
n,c +

∑
n,c s

2
n,c

where pn,c and sn,c are the predicted probability and ground truth (0 or 1)
for class n at voxel c. This combination optimizes both pixel-level accuracy and
region-based overlap.
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2.9 Post-processing

Our post-processing method refines segmentation results by suppressing spu-
rious predictions while preserving anatomically plausible structures, improving
upon nnU-Net [11]. Unlike nnU-Net, which retains only the largest connected
component across all classes in a single operation, our approach processes each
class independently and leverages probability maps to prioritize components
based on both probability and size. As outlined in Algorithm 3, given a prob-
ability map P ∈ RN×H×W×D, where N is the number of classes, the segmen-
tation map S ∈ R1×H×W×D is derived by computing the maximum proba-
bility across classes, pmax = maxj=1,...,N Pj , and the corresponding class index,
cmax = argmaxj=1,...,N Pj . Voxels are assigned class labels lj ∈ {1, . . . , N} where
pmax ≥ 0.5, i.e., S = lcmax if pmax ≥ 0.5, otherwise S = 0 (background).

For each class l ∈ {1, . . . , N}, a binary mask Ml = (S = l) is created. Con-
nected components in Ml are labeled using 6-connectivity, yielding a labeled
image Cl and component sizes Σl = {(ci, si)}. The mean probability for compo-
nent ci is computed as the average of Pl over voxels where Cl = ci. Among the
top three largest components, those with mean probabilities within τ = 0.1 of the
maximum and above 0.86 are retained. If none qualify, the highest-probability
component is kept if it is among the two largest and its size is at least 0.6 times
the largest; otherwise, the largest component is selected. The refined mask M ′

l

updates S by setting S = 0 where Ml ∧ ¬M ′
l . This method enhances nnU-Net

by processing classes individually and using probabilities to guide component
selection, improving multi-class segmentation robustness.

3 Experimental Setup

3.1 Data and Evaluation Methodology

The development set builds upon the CVPR 2024 MedSAM on Laptop Chal-
lenge [17], incorporating additional 3D cases sourced from publicly available
datasets1. This collection encompasses various standard 3D imaging modalities,
including Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
Positron Emission Tomography (PET), Ultrasound, and Microscopy. The hidden
test set was collaboratively developed by the community, consisting exclusively
of previously unpublished cases. All annotations were either supplied by data
contributors or generated by the challenge organizers using 3D Slicer [12] and
MedSAM2 [18]. Participants have the option to either use the full training set
or participate in the coreset track, which permits model development using only
10% of the total training cases.

The text-guided segmentation task evaluates both semantic and instance seg-
mentation performance. Semantic segmentation assessment employs two metrics:

1 Complete dataset details can be found at https://medsam-datasetlist.github.
io/

https://medsam-datasetlist.github.io/
https://medsam-datasetlist.github.io/
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Algorithm 3 Post-processing
Require: P ∈ RN×H×W×D, labels {1, . . . , N}, background b = 0, threshold τ = 0.1,

connectivity k = 6
Ensure: Refined segmentation S ∈ R1×H×W×D

1: pmax ← maxj=1,...,N Pj , cmax ← argmaxj=1,...,N Pj

2: S← 0, S[pmax ≥ 0.5]← lcmax

3: for l = 1 to N do
4: Ml ← (S = l)
5: Cl, Σl ← ConnectedComponents(Ml, k)
6: if Σl = ∅ then continue
7: end if
8: T ← SortBySize(Σl)[: 3]
9: PT ← {(ci,mean(Pl[Cl = ci])) | ci ∈ T}

10: pmax ← max{pi | (ci, pi) ∈ PT }
11: K ← {ci | (ci, pi) ∈ PT , (pmax − pi) ≤ τ, pi > 0.86}
12: if |K| ≥ 2 then
13: M ′

l ← (Cl ∈ K)
14: else
15: cmax ← argmaxci{pi | (ci, pi) ∈ PT }
16: T2 ← T [: 2]
17: if cmax ∈ T2 and Σl(cmax)/Σl(T [0]) > 0.6 then
18: M ′

l ← (Cl = cmax)
19: else
20: M ′

l ← (Cl = T [0])
21: end if
22: end if
23: S[Ml ∧ ¬M ′

l ]← b
24: end for
25: return S

the Dice Similarity Coefficient (DSC) for measuring region overlap and Normal-
ized Surface Distance (NSD) for evaluating boundary accuracy. Instance segmen-
tation performance is quantified using the F1 score at a 0.5 overlap threshold,
along with DSC scores for correctly identified instances. A runtime constraint
of 60 seconds per class is enforced - submissions exceeding this limit will receive
zero scores for all DSC and NSD metrics on the affected test cases.

3.2 Implementation Details

Data preprocessing Consistent with MedSAM [16], all medical images were
converted to npz format and normalized to an intensity range of [0, 255]. For CT
scans specifically, we performed Hounsfield unit normalization using standard
window settings: soft tissues (width:400, level:40), lung (width:1500, level:-160),
brain (width:80, level:40), and bone (width:1800, level:400). Following this nor-
malization, the intensity values were linearly scaled to the target range of [0, 255].
For non-CT imaging modalities, we first truncated intensity values at the 0.5th
and 99.5th percentiles before applying the same rescaling procedure. Images
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that already had native intensity values within the [0, 255] range underwent no
additional preprocessing steps.

Table 1. Training protocols.

Pre-trained Model SAT
Batch size 4
Patch size 224×224×128
Total steps 108600
Optimizer AdamW
Initial learning rate (lr) 1e-4
Lr decay schedule cosine
Training time 168 hours
Loss function BCE+Dice
Number of model parameters 221M

Table 2. Training protocols for the 2nd model

Pre-trained Model SAT
Batch size 8
Patch size 192×192×192
Total steps 91300
Optimizer AdamW
Initial learning rate (lr) 1e-4
Lr decay schedule cosine
Training time 160 hours
Loss function BCE+Dice
Number of model parameters 221M

Training Protocols To handle large-scale datasets for fast preprocessing and
data loading, the dynamic resampling strategy mentioned in Section 2.5 is de-
veloped based on the latest version of the resampling function from the nnU-
Net [11] framework. The resampling function in the latest version of nnU-Net
significantly improves the efficiency of resampling large-scale data by leveraging
CPU processing. Additionally, the latest Blosc2 compression format from nnU-
Net is adopted to compress npz files, achieving a balance between file storage
size and read speed during dataloader operations. For the preprocessing of 3D
images, dataloader, and data augmentation, most of the functions and code from
nnU-Net are retained with appropriate modifications.

For the text dataloader and simultaneous training across multiple datasets,
different sampling rates are set for each dataset, along with adjustments to the
positive-negative sample ratio and padding alignment for varying batch text
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prompt lengths. Multi-GPU training is primarily based on the SAT [28]. The
optimal model selection criteria are also based on SAT, as the learning rate
curve decreases gradually with each epoch; by default, the model from the final
iteration is adopted.

The training configurations are as follows: for the 224×224×128 input size,
we use a batch size of 2 per GPU across 2 GPUs (effective batch size of 4), while
for the 192×192×192 input size, we employ a batch size of 2 per GPU across
4 GPUs (effective batch size of 8). The complete training process takes 7 days
(168 hours) to complete. Detailed environment settings and training protocols
are presented in Tables 3, 1, and 2.

Environment settings The development environments and requirements are
presented in Table 3.

Table 3. Development environments and requirements.

System Ubuntu 22.04.4 LTS (Jammy Jellyfish)
CPU Intel(R) Xeon(R) Platinum 8468 CPU @2.10GHz
RAM 2TB DDR (1.8TB available)
GPU (number and type) Eight NVIDIA H100 80GB HBM3
CUDA version 12.2
Programming language Python 3.10.16
Deep learning framework torch 2.2.0, torchvision 0.17.0

4 Results and discussion

4.1 Quantitative results on validation set

The quantitative evaluation results on the validation set for the all-data track, as
shown in Table 4, highlight the performance of our proposed method, Medal S,
compared to the CAT baseline across multiple modalities. Due to the absence of
updated validation results for SAT in the CVPR25-Baseline-ValidationResults,
our analysis focuses on comparisons with CAT, as SAT results are currently
unavailable.

Medal S achieves state-of-the-art performance in multi-class medical segmen-
tation by integrating spatial precision with semantic textual guidance, signifi-
cantly outperforming CAT across most modalities and metrics on the validation
set. For CT, Medal S achieves a Dice Similarity Coefficient (DSC) of 81.90 and
Normalized Surface Dice (NSD) of 81.61, surpassing CAT’s 69.52 and 69.41. In
instance segmentation for CT, Medal S attains an F1 score of 39.97 and DSC
TP of 50.94, compared to CAT’s 29.89 and 37.17. For MRI, Medal S records
a DSC of 62.31, NSD of 71.49, F1 of 46.99, and DSC TP of 66.41, all higher
than CAT’s 50.61, 58.55, 13.76, and 28.13. In Microscopy and PET, Medal S
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Fig. 3. Comparison of Medal S and ground truth results on the validation set for five
different modalities. For each modality, we present both good segmentation results and
bad segmentation results.

achieves F1 scores of 29.75 and 32.57, and DSC TP scores of 68.97 and 72.11,
far exceeding CAT’s 0.58 and 39.11 for Microscopy, and 11.06 and 27.78 for PET.
For Ultrasound, Medal S’s DSC is 82.45 and NSD is 79.48, slightly below CAT’s
85.92 and 83.59. On average, Medal S outperforms CAT with a DSC of 75.55
(vs. 68.68), NSD of 77.53 (vs. 70.52), F1 of 37.32 (vs. 13.82), and DSC TP of
64.61 (vs. 33.05), with higher values bolded in the Table 4.

These improvements stem from Medal S’s innovative architecture, which
aligns volumetric prompts and text embeddings through a channel-wise transfor-
mation and lightweight 3D convolutions, effectively resolving spatial prompt-text
misalignment. This design enables precise refinement of 3D spatial and textual
prompts simultaneously. By processing spatial prompts in parallel at native res-
olution, Medal S maintains full image fidelity while supporting multiple classes.
Drawing on techniques from SAT and nnU-Net, it incorporates dynamic re-
sampling to handle target-patch ratio imbalances, complemented by optimized
text preprocessing, a two-stage inference pipeline, and efficient post-processing.
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Table 4. Quantitative evaluation results of the validation set on the all-data track.

Modality Method Semantic Segmentation Instance Segmentation
DSC NSD F1 DSC TP

CT
CAT 69.52 69.41 29.89 37.17
SAT
Medal S 81.90 81.61 39.97 50.94

MRI
CAT 50.61 58.55 13.76 28.13
SAT
Medal S 62.31 71.49 46.99 66.41

Microscopy
CAT - - 0.58 39.11
SAT
Medal S - - 29.75 68.97

PET
CAT - - 11.06 27.78
SAT
Medal S - - 32.57 72.11

Ultrasound
CAT 85.92 83.59 - -
SAT
Medal S 82.45 79.48 - -

Average CAT 68.68 70.52 13.82 33.05
Medal S 75.55 77.53 37.32 64.61

Together, these elements ensure fast inference, memory efficiency, and state-of-
the-art performance.

In the ultrasound modality, however, Medal S slightly trails CAT, with a DSC
of 82.45 and NSD of 79.48 against CAT’s 85.92 and 83.59. This gap may arise
from ultrasound data’s large target-patch ratios, where target sizes exceed our
patch size. While our dynamic resampling approach is effective, further refine-
ments are needed to better accommodate such data characteristics and enhance
performance across all modalities.

4.2 Qualitative results on validation set

As illustrated in Figure 3, the qualitative results on the validation set provide
insights into the performance of our proposed method, Medal S, across different
modalities. Due to the unavailability of the CAT all-data Docker and the lack
of updated qualitative results for CAT, a direct comparison with CAT on the
all-data track for the validation set is not feasible. Consequently, our analysis
focuses on comparing Medal S predictions against ground truth annotations
across five modalities, presenting both successful and challenging segmentation
cases for each.

The qualitative results reveal that Medal S performs effectively in segmenting
multi-class targets and regions with substantial volume across various modalities.
In such cases, the model accurately delineates boundaries and captures struc-
tural details, benefiting from its channel-wise alignment of volumetric prompts
and text embeddings, as well as its ability to process spatial prompts at native
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resolution. However, segmentation quality diminishes for smaller lesions, partic-
ularly in datasets with significant foreground-background imbalance or blurred
boundaries, such as those involving tumors. These challenging cases often ex-
hibit ambiguous edges and complex textures, which pose difficulties for precise
segmentation.

A contributing factor to these failures is the inherent noise in the labels of
such data, which increases segmentation difficulty. Small lesions and imbalanced
datasets amplify the impact of label inaccuracies, making it harder for the model
to distinguish between foreground and background. While Medal S’s dynamic
resampling and optimized preprocessing mitigate some of these issues, further
improvements in handling noisy labels and refining boundary detection for small,
ambiguous targets are necessary to enhance performance in these scenarios.

4.3 Results on final testing set

This is a placeholder. No need to show testing results now. We will announce the
testing results during CVPR (6.11) then you can add them during the revision
phase.

4.4 Limitation and future work

While Medal S demonstrates strong performance across multiple modalities, cer-
tain limitations warrant further exploration. The dynamic resampling strategy,
although effective in addressing target-patch ratio imbalances, requires addi-
tional refinement to better handle modalities like ultrasound, where large tar-
get sizes challenge the current patch-based approach. Expanding the variety of
spatial prompts could further enhance performance. For instance, incorporat-
ing diverse spatial prompts, such as those in nnInteractive, including 2D spatial
cues, could improve flexibility and precision in capturing complex anatomical
structures.

Future work will focus on optimizing Medal S for challenging datasets, par-
ticularly those involving instance segmentation with small lesions, significant
foreground-background imbalances, or blurred boundaries, such as tumor data.
Additionally, addressing datasets with a high number of classes and intricate
anatomical relationships will be a priority. To align with clinical scenarios, we
aim to develop robust solutions for diverse, complex datasets with numerous
lesions, ensuring the model’s applicability in real-world medical imaging tasks.

5 Conclusion

This study presents Medal S, a novel method that achieves superior performance
in multi-modal medical image segmentation, as demonstrated by quantitative
and qualitative results on the validation set of the all-data track. Medal S out-
performs the CAT baseline across most modalities and metrics, including CT,
MRI, microscopy, and PET, with significant improvements in Dice Similarity
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Coefficient, Normalized Surface Dice, F1, and DSC TP scores. These advance-
ments stem from its innovative channel-wise alignment of volumetric prompts
and text embeddings, lightweight 3D convolutions, and parallel processing at na-
tive resolution, which collectively ensure precise segmentation while maintaining
image fidelity. The integration of dynamic resampling, optimized text prepro-
cessing, two-stage inference, and efficient post-processing further contributes to
its state-of-the-art performance, characterized by fast inference and memory ef-
ficiency.

Qualitative analysis highlights Medal S’s strengths in segmenting multi-class
and larger-volume targets, though challenges remain with small lesions and
datasets exhibiting significant imbalances or noisy labels. While performance
in ultrasound slightly lags due to target-patch ratio issues, ongoing refinements
to the dynamic resampling strategy aim to address this. Future work will focus
on enhancing robustness for complex, clinically relevant datasets and incorporat-
ing diverse spatial prompts to further improve segmentation accuracy. Overall,
Medal S represents a significant step forward in medical image segmentation,
offering a versatile and high-performing solution for diverse imaging modalities.
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