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Abstract

Learning representations for solutions of constrained optimization problems (COPs)
with unknown cost functions is challenging, as models like (Variational) Autoen-
coders struggle to enforce constraints when decoding structured outputs. We
propose an Inverse Optimization Latent Variable Model (IO-LVM) that learns
a latent space of COP cost functions from observed solutions and reconstructs
feasible outputs by solving a COP with a solver in the loop. Our approach leverages
estimated gradients of a Fenchel-Young loss through a non-differentiable deter-
ministic solver to shape the latent space. Unlike standard Inverse Optimization
or Inverse Reinforcement Learning methods, which typically recover a single or
context-specific cost function, IO-LVM captures a distribution over cost functions,
enabling the identification of diverse solution behaviors arising from different
agents or conditions not available during the training process. We validate our
method on real-world datasets of ship and taxi routes, as well as paths in synthetic
graphs, demonstrating its ability to reconstruct paths and cycles, predict their dis-
tributions, and yield interpretable latent representations. The code is available at
https://github.com/AlanLahoud/IO-LVM

1 Introduction

When learning latent generative representations, it is often necessary for inferred samples to satisfy
specific constraints, such as forming paths in a graph between designated start and target nodes,
consistent with the feasible set of an associated constrained optimization problem (COP). A major
challenge is learning such models when the feasible set of solutions is discrete, as the gradients
of these solutions with respect to the model parameters are zero almost everywhere, and therefore
non-informative [1]. In this paper, we pose this problem as learning a latent cost representation of the
COP from observed solutions.

State-of-the-art approaches for recovering underlying cost functions of COPs from observed solutions,
e.g., structured decisions performed by agents, primarily address the non-informative gradient problem
by either smoothing solver operations [21], interpolating COP solutions [28], perturbing the COP cost
[7], or relaxing the COP [39] to match statistics of the observed behavior (i.e., solutions). However,
these methods assume a single underlying cost, making them unable to directly learn from data of
multiple different agents with different underlying cost functions. To correctly learn from real world
data containing behavior from different agents, they require supervision through agent labels.

In this paper, we introduce IO-LVM, a novel approach for learning latent representations of COP costs
that can recover observed COP solutions, specifically for route problems in graphs. Our approach
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does not assume a single underlying COP cost, allowing it to learn effectively even when multiple
agents or context are represented in the data without labels. Similar to a Variational Autoencoder
(VAE) [18], we use amortized inference and map into a meaningful and interpretable low-dimensional
latent cost space. In contrast of ordinary VAEs, we guarantee that samples fulfill requirements of the
feasible set (e.g., connected paths) by using a black-box COP solver in the generative step. To address
non-informative gradient challenge posed by discrete solutions, we employ a gradient estimation
technique based on perturbing the input of the black-box solver and the Fenchel-Young loss [7, 8].

Applied to path and route data, we can use IO-LVM to, e.g., generate new paths by selecting a latent
cost and providing source and target nodes to the black-box solver, which ensures validity of the path.
This allows us to infer how different agents would navigate between new source and target nodes.
As the IO-LVM learns costs instead of the shape / geometry of solutions, a low-dimensional latent
representation is often sufficient, offering easy interpretation and analysis such as clustering similar
COP costs, denoising observed paths by finding a small number of representative paths, and detecting
outliers and deviating behavior.

We state our contributions as follows: i) We introduce IO-LVM, a method that combines variational
approximation techniques with COP solver gradient estimation to learn latent representations for the
underlying costs of COPs based on observed decisions; ii) IO-LVM naturally constructs a meaningful
and interpretable latent space, allowing for the reconstruction of observed path distributions without
making assumptions about the distribution of inferred paths. Notably, the ability to recover distinct
(e.g., multimodal) representations for the underlying costs enables the modeling of different agents
making decisions; iii) We demonstrate the versatility of IO-LVM using both synthetic and real-world
datasets, highlighting its potential for path analysis tasks such as naturally separating underlying
costs into meaningful groups, reconstructing or denoising observed paths, and predicting paths for
unseen start and target nodes. Our aim is not only to provide quantitative results but also to offer
insights through visualizations of routes and latent variables.

1.1 Related Work

Obtaining useful gradients through optimizers for end-to-end learning is challenging and previous
works focussed on convex solvers [3, 2] and linear or quadratic programs [11, 36]. However,
these methods are mainly limited to continuous COP formulations and are difficult to extend to
combinatorial problems such as the graph-based problems in our work with the non-informative
gradients. More related to our work are efforts to differentiate through dynamic programming
algorithms, such as dynamic programming differentiability [22], or more specifically, a differentiable
version of the Floyd-Warshall algorithm to learn from observed paths in graphs [21]. Different to our
work, their approach struggles with scalability as graph size increases.

Learning cost parameters from observed solutions is also done by Inverse Optimization [4, 32, 33],
Inverse Reinforcement Learning, and Inverse Path Planning [37, 21]. Here, cost parameters are either
global [21], linear [23, 38, 39, 24] or non-linear [13, 37, 12], and often learned with end-to-end
gradient estimation by exploiting insight in the underlying optimization process or in some cases
assuming a black box optimizer [29, 7]. In the later case, the Fenchel-Young loss, also used in
this paper, has been demonstrated as a suitable way to match inferred and observed paths within a
smooth and convex space [7]. Different to us, these methods typically assume a single underlying
cost function or condition the cost on a given context, which may not capture the diversity of agent
behaviors present in real-world scenarios.

Autoencoders [17] and Variational Autoencoders (VAEs) [18] are often used to learn lower-
dimensional representations of data and there have been attempts to simplify solving COPs by
learning better representations of the feasible solutions [6]. However, we observe in our work that
VAEs do not reliable generate feasible solutions in complex route problems like TSP and shortest
path. In contrast to VAE, IO-LVM uses a COP solver in the decoding step and thereby guarantees
that generated samples are feasible solutions.

2 Preliminaries

Below, we recap the Evidence Lower Bound (ELBO) for deep latent variable models and introduce
Fenchel-Young losses which are both fundamental for our approach.
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Evidence Lower Bound (ELBO). The objective in latent variable models is to identify the latent
variables z that best explain the observed data x. However, it is well-known that directly computing
the posterior P (z | x) is generally intractable. To address this, a variational distribution qφ(z | x) is
introduced and learned with a lower bound objective (ELBO) [18, 31]. The ELBO makes a trade-off
between accurately reconstructing the input data (the expected log-likelihood) using a model pθ(x | z)
and adhering to the prior distribution P (z) for the latent variables, i.e.,

l(θ, φ) = −Eqφ(z|x) [log pθ(x | z)] + βDKL (qφ(z | x) ‖P (z)) , (1)
where DKLis Kullback-Leibler (KL) divergence and β is a balance factor [16, 9]. In our approach
detailed in Sec. 3, we also use a learned qφ (encoder), but replace the usual reconstruction loss with a
Fenchel-Young loss (see below).

Fenchel-Young Losses Fenchel-Young losses are a versatile class of loss functions derived from
convex duality theory, specifically leveraging Fenchel conjugates [8, 7, 5]. These losses generalize
several common loss functions used in structured prediction tasks, such as cross-entropy and hinge
losses, by formulating the learning problem as a regularized prediction task [8]. Fenchel-Young
losses are defined as lFY(y,x) = ΩFC(y) + Ω(x)− 〈y,x〉, where Ω(x) is a chosen regularization
function, ΩFC(y) is its conjugate, and 〈., .〉 represents the inner product between two vectors. In
our context, x represents a decision vector (e.g., a structured output), and y a cost vector; the loss
measures how suboptimal x is under the cost structure implied by y, and is minimized when x is the
optimal decision under y and regularizer Ω.

3 Inverse Optimization Latent Variable Model

In this section, we introduce the notations and problem definition, present IO-LVM in a general COP
setting (Sec. 3.1), and discuss assumptions for path and cycle applications (Sec. 3.2).

Notation and Problem Definition. Our dataset D = {(xi,pi)}Ni=1 consists of structured decision
vectors xi ∈ X in a constrained space X , e.g., connected paths performed by agents in a graph,
and corresponding problem requirements pi ∈ P , e.g., start and target nodes for the path. We
denote by ω a black-box solver for the COP that takes cost vectors yi and problem requirements
pi to output an optimal COP solution x̂i = ω(yi,pi), where the COP solved by ω is defined as
argminx∈X (pi)

〈yi,x〉 which, although formulated with linear costs, can represent a wide variety of
COPs, specially combinatorial ones [20]. The main goal is to model a low-dimensional representation
of COP costs yi ∈ Y that leads to the observed decision vectors from D. Concretely, we aim to
estimate the posterior distribution P (z | x), where z ∈ Z ⊆ Rk is a latent vector in a space of
dimension k.

3.1 IO-LVM Description and Learning

We learn a latent representation Z with amortized inference [19] using a nonlinear mapping qφ to
map samples xi to the latent space Z , and then reconstruct them back to the constrained space X ,
similar to a VAE. Different from VAE models, where reconstruction is done by a decoder network,
our reconstruction is non-trivial due to the constraints on the COP solution space X . E.g., X contains
valid paths between specific nodes in a graph. To achieve this, we define our reconstruction as a
composition of functions gθ : Z → Y and ω : Y × P → X , where the former is a nonlinear map
parameterized by θ, and the latter is a solver that is potentially non-differentiable. This sequence of
transformations is visualized in Fig. 1.

To learn our IO-LVM, we adapt the VAE’s ELBO objective by changing the reconstruction loss (first
term) of Eq. (1). We introduce the solver ω and a suitable distance measure d in X resulting in the
term Eqφ(z|x)

[
d(x, ω(yθ,p))

]
, where yθ := gθ(z). In contrast to VAE models, the black box solver

ω in our reconstruction generally prohibits end-to-end learning with a common loss such as the Mean
Squared Error. For this reason, we use the Fenchel-Young loss for d by inducing perturbations in the
input space of the COP. Consequently, our loss function is defined as:

l(θ, φ) = Eqφ(z|x)
[
lFY(yθ,x)

]
+ βDKL (qφ(z|x) ‖P (z)) . (2)

By choosing Ω (in lFY) to be the conjugate of Eε[minx∈X 〈y + ε,x〉], we rewrite (brief derivation in
Appendix A) lFY as

lεFY(y,x) = 〈y,x〉 − Eε[min
x∈X
〈y + ε,x〉]. (3)
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Figure 1: IO-LVM during learning: structured data is mapped from X to latent space Z , then
reconstructed in two steps: Z to unconstrained space Y , and Y to constrained space X by a solver ω.

The second term corresponds to the expected optimal cost under random perturbations of the cost
vector y. In Proposition 1 (see below), we justify this choice in the context of our problem setting by
showing that, under mild conditions on the perturbation distribution E , this formulation ensures that
no solution is a priori favoured by the noise or problem structure, and solutions with the same cost
impact gradients with the same probability. Specifically, we assume that the components of ε ∼ E
are independent, zero-mean, and identically distributed with finite variance, and that E is closed
under convolution, e.g., Gaussian noise. In this case, the Fenchel-Young loss gradient with respect to
y-elements is analytically computed as∇yl

ε
FY(y,x) = x− x̂ε, where x̂ε = ω(y + ε), minimizing

the Fenchel-Young loss if and only if x̂ε = x [7]. This allows us to obtain gradient estimates w.r.t.
the weights θ, as the chain of gradients in the reconstruction block can now be written as

∇θlεFY(yθ,x) = (x− x̂θε)
∂yθ

∂θ
, (4)

where x̂θε = ω(yθ + ε). Estimating the gradients in Eq. (4) is generally done in a Monte Carlo
fashion, which is expensive due to the need of running the solver ω several times. To avoid this, we
use the property of expectation linearity to rewrite the reconstruction loss in Eq. (3) as

Eqφ(z|x)Eε

[[
〈yθ,x〉 − 〈yθ + ε, ω(yθ + ε,p)〉

]]
, (5)

highlighting that the estimator is unbiased with a double expectation. This result allows us to use a
stochastic gradient descent (SGD) method to learn θ and φ, as described in Alg. 1. By leveraging
SGD, the solver runs once (rather than several times in a Monte Carlo fashion) per data sample during
training, reducing the computational cost per iteration.

Algorithm 1 One epoch of IO-LVM training process.

1: Components:
2: - Encoder hφ; Decoder gθ.
3: Input: Dataset D = {(xi,pi)}Ni=1
4: Output: Trained model parameters
5: for each sample (x,p) ∈ D do
6: Step 1: Encoding: (µ, σ) = hφ(x,p).
7: Step 2: Sample z: z = µ+ σ · ε, ε ∼ N .
8: Step 3: Map z to COP cost space: yθ = Φ(gθ(z)).
9: Step 4: Solve the COP using ω, p and the inferred

cost yθ: x̂θε = ω(yθ + ε,p), where ε ∼ N .
10: Step 5: Compute the loss as in Eq. (2).
11: Step 6: Update the encoder and decoder parameters

(φ, θ) allowed by Eq. (4).
12: end for

Algorithm details. The algorithm
details the steps in the training pro-
cess using an encoder hφ to model
qφ(z | x), and a mapping gθ. Note
that in step 1, the problem requirement
sample can be leveraged into the en-
coder as additional information. Step
2 samples the latent value using the
VAE re-parametrization trick [19]. In
step 3, we include a transformation Φ
to ensure that costs yθ fits to COP in-
put space Y . It is common that some
COPs require their cost elements to be
positive, for instance, which is gener-
ally fixed by ordinary activation func-
tions Φ. In step 4, we compute the
COP solution given an inferred and
perturbed cost. In step 6, the back-propagation is allowed due to the gradient estimator described in
Eq. (4), bridging the gap of the non-differentiable COP solver.

3.2 IO-LVM Assumptions and Applications

We assume that the observed structured decision samples in D presented in Sec. 3 are optimal COP
solutions, e.g., the taxi drivers solve a shortest path problem under their own underlying cost values.
Therefore, the variations in the observed structured decision samples arises from differences in
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valuations of COP costs. Below, we describe how we model the two problem domains used in
experiments in Sec. 4.

Path Planning. For a fixed directed graph with edge set E, we can model a set of paths as a set of
binary vectors X ⊆ {0, 1}|E| corresponding to edge usage. Here, D contains samples of paths ´in
the graph. In this case, a common path requirement is {p = (s, t) | s, t ∈ V, s 6= t}, defining start
and target nodes of those paths. In this scenario, we assume there is an underlying set of edges costs
for each data sample such that a Shortest Path Problem (SPP) solver (e.g., Dijkstra) ω recovers the
observed paths.

Hamiltonian Cycles. For a fixed, either directed or undirected graph, with edge set E, we can model
a set of cycles also as a set of binary vectors X ⊆ {0, 1}|E| corresponding to edge usage. Here,
D contains samples of Hamiltonian cycles in the graph. We assume that there is an underlying set
of edge costs for each data sample such that a Traveling Salesman Problem (TSP) solver recovers
the observed cycle. Although path requirements could be added, we consider a null set in our
experiments.
Proposition 1. Suppose all feasible routes x ∈ X have equal length, i.e., the same number of edges.
Let ε ∈ R|E| be a random perturbation vector with independent, zero-mean components, each with
identical variance σ2. Then, the perturbed cost vector y+ε induces a distribution overX in which all
solution costs have equal expected value and equal variance, preventing bias toward specific solution
in X after perturbation, and paths with the same cost impact gradients with the same probability.

This condition holds exactly for Hamiltonian cycles, where all feasible solutions have the same length
by definition, and serves as a reasonable approximation in our real-world path planning applications,
where the graph is embedded in a space with relatively uniform node spacing and no significant
shortcuts. Therefore, the corresponding Fenchel-Young loss chosen in 5, defined via the additive
perturbation, is a good choice for both experimental settings. When this is not the case, alternative
perturbation methods would be required. A proof for Proposition 1 is provided in Appendix B.

Note that in both applications, as in general discrete problems, the COP can be formulated with a
linear objective [20]: x̂ ∈ argminx∈X 〈y,x〉, fulfilling the requirement for the gradient estimator.
Importantly, as in other works in structured prediction [7, 28, 21], IO-LVM is limited to problems for
which fast solvers ω exist, since the solvers are the computational bottleneck of the training process.

3.3 IO-LVM Inference Tasks

Once the IO-LVM training process is complete, we can perform inference tasks in the above appli-
cations. IO-LVM allows reconstructing paths from parts of the low-dimensional latent space using
again, as in the training step, a composition of the learned decoder and the solver, i.e., Φ(gθ) and
ω(.), allowing us to observe different patterns reconstructed in the path space. By fitting a kernel
density estimation (KDE) into the low-dimensional learned latent space, we can sample latent values
and generate paths as mentioned above, leading to an inferred path distribution.

Selecting a proper β during the training process is not only useful to mitigate the issue of posterior
collapse or avoid overfitting as in β-VAEs [34], but in our case can also be useful to denoise a test
path at inference time, i.e., remove uncommon patters in the observed test path by encoding it through
the learned h(φ) and decoding it using Φ(gθ) and ω(.). In a similar direction, similarity metrics
between a test path x and inferred paths from IO-LVM can also be used to detect if x is an outlier.

4 Experiments

The experiments focus on route problems in graphs using ω Dijkstra and a TSP solver for path
planning and Hamiltonian cycles assumptions, respectively, as described in Sec. 3.2. Details of the
IO-LVM training process are provided in Appendix F. We use four different datasets to evaluate
IO-LVM in tasks like route reconstruction, path distribution prediction, facilitation to latent space
analysis, and its potential for unsupervised learning tasks such as anomaly detection and denoising.
The datasets used in the experiments are presented below, while further details are described in
Appendix C.

A) Synthetic Waxman Random Graph. We generate a Waxman graph [35] with 700 nodes and
7230 edges; with three different cost functions for the edges costs y, all of them on the basis of a

5



nonlinear function from unobserved features. We increased the costs of southern edges for agent 1
and of northern edges for agent 3, while agent 2 was unbiased in terms of south/north edges (in Fig.
2 and 5 it is possible to observe those preferences). We solved the SPP using Dijsktra for each agent
cost multiple times on the basis of the generated edges costs plus a Gaussian noise, i.e., ω(y + ε),
to generate multiple paths to D. These paths are generated in two manners, one set with a single
source-target pair (Single S&T), and another set with multiple pairs (Mult. S&T). In both cases,
6000 paths were generated, which 5000 were used for training.

B) Ships Dataset. Using Automatic Identification System (AIS) data from the Danish Maritime
Authority [10], we use ship locations collected during three months. We project the locations to a
grid graph with 2513 nodes and 8924 edges, resulting in a set of 2500 paths with different start and
target nodes, where 2,000 were used for training.

C) Taxi Dataset. We use the Cabspotting dataset [27], which contains real-world taxi trajectories in
the city of San Francisco, following a preprocessing approach to build a graph based on the available
trajectories [21]. Unlike the original setup, we increase the number of nodes and edges to 1125 and
8022 to better reflect the realism of the actual trajectories, resulting in 101344 trajectories.

D) TSPLIB. From TSPLIB95 [30], we use burma14 (14 nodes, 91 edges) and bayg29 (29 nodes,
406 edges) graphs. Actual (underlying) edges costs y are generated using a nonlinear function
incorporating unobserved features and Euclidean distances between nodes as offset. We create two
versions for each graph, one using 3 unobserved features and another using 50 unobserved features.
3000 actual Hamiltonian Cycles (2400 for training) are generated with a TSP solver ω using the
underlying costs y as input.

4.1 Qualitative Latent Space Analysis

In this section, we analyze the learned latent space Z . The goal is to observe that paths generated by
similar costs (e.g., coming from the same agent or similar context) are encoded close to each other
in latent space after IO-LVM training. We also analyze how structure in the latent space influences
reconstruction by sampling latent values and observing corresponding inferred routes.

Additional results of latent space analysis using the Taxi and TSPLIB datasets are reported in
Appendix D.

Figure 2: Left: Dataset (Mult. S&T) of paths from 3 agents
(blue, red, green) with different underlying costs (+ noise). Right:
Learned 2D latent spaces of IO-LVM (top) and VAE (bottom).
IO-lVM groups data by cost while VAE groups data by path
geometry.

Synthetic Waxman Paths.
Fig. 2 shows the learned two-
dimensional latent space for the
Mult S&T dataset. The colors
represent the agent that executed
each path. Importantly, the
agent identity was not provided
during training. We observe that
IO-LVM successfully disentan-
gles the factors associated with
the costs of the three different
agents. For example, Agent 1
(red) follows several distinct
paths with different start and
target nodes, yet these paths
are consistently mapped to a
common region in the latent
space, reflecting their shared
underlying transition costs, that
is, to avoid southern edges when
possible. In contrast, the VAE
latent space fails to exhibit
this structure: paths performed
by the red agent are spread in
different locations of the latent space. This suggests that VAEs are unable to disentangle the transition
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cost structure inherent in the data. Illustrations of path reconstruction from different regions of the
latent space are presented in Appendix D.

Ship Paths. The top-left chart in Fig. 3 illustrates the 2D latent space (3D latent space results are seen
in Fig. 12 in the Appendix). Each hexagon in the right chart of Fig. 3 corresponds to a subspace of the
latent space. For each hexagon, the average of the ships’ width is plotted in color. Larger ships are less
frequently found in the top-right corner of the latent space, leading to a low average ship width in that
region. This is another example that IO-LVM was capable to capture unobserved factors within the la-
tent space, i.e., the ship width information (provided by AIS) was not used during the training process.

Figure 3: A) Ship paths (bottom-left chart in black) are encoded
to the latent space using qφ (top-left chart). Colors in the latent
space represent the average ship width in each hexagon. B) Costs
are sampled from Gaussians in the latent space (three top-right
graphs), and respective paths are inferred given a hypothetical
(non-existent in training paths) pair of start and target nodes (three
bottom-right graphs).

We also analyze the reconstruc-
tion process through this dataset
by sampling 20 latent values
from Gaussians in the latent
space and then computing the re-
spective edges costs and paths.
As seen in the right part of Fig.
3, neighbor latent values share
a high number of edges in the
graph (e.g., many path samples
are the same). Moreover, an in-
teresting pattern emerges: some
regions of the latent space con-
taining wider ships avoid the Ore-
sund Strait when traveling from
the east to the north part of Den-
mark even though it is the short-
est path in terms of euclidean dis-
tance, as observed in the second
column of the figure where ships
prefer going through the Great
Belt.

4.2 Validating IO-LVM Reconstruction Quality

Table 1: Reported are the percentage of full reconstruction match (i.e., the reconstructed cycle
matches perfectly with the target) calculated on the test set.

Dataset / Methods ω(yE) VAE VAE IO-LVM IO-LVM
(k = 2) (k = 10) (k = 2) (k = 10)

burma14 (3 feats.) 9.0% 55.2± 1.1% 78.4± 0.6% 82.7± 1.3% 91.0 ± 0.7%
bayg29 (3 feats.) 4.5% 15.4± 1.3% 46.0± 1.6% 37.3± 7.3% 77.1 ± 1.5%
burma14 (50 feats.) 1.3% 9.8± 1.3% 45.3± 1.9% 29.6± 2.6% 78.3 ± 1.1%
bayg29 (50 feats.) 0.0% 0.2± 0.1% 3.4± 0.5% 1.5± 0.2% 31.9 ± 3.5%

Table 2: Reconstruction match calculated
on the test set varying the training size for
bayg29 with 50 features.

Methods / Train. size 1000 10000

VAE (k = 10) 0.8% 11.8%
VAE (k = 100) 1.3% 30.2%
IO-LVM (k = 10) 20.8% 58.3%

We evaluate reconstruction performance by compar-
ing if the inferred output perfectly match the observed
path (input to the encoder) with low latent dimensions
on the TSPLIB datasets. Note that the task of recon-
structing a perfect Hamiltonian cycle is challenging,
since there are 13! ≈ 6 ∗ 109 possible Hamiltonian
cycles for the burma14 dataset and 28! ≈ 3∗1029 for
the bayg29. Results reported in Table 1 demonstrates
that IO-LVM consistently outperforms VAE due to
its structured reconstruction process. As a naive reference, we include the ω(yE), a non-learning
baseline where the TSP solution is computed using edge costs defined as the Euclidean distances
between node positions. Although VAEs demonstrate to have good performance when the recon-
struction is measured by edge matching instead of full reconstruction, as show in Table 4 (Appendix
E), they do not guarantee feasible outputs with respect to the COP, leading to worse results in a full
match comparison. Also, results in Table 2 shows that even by increasing the latent dimension of
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VAEs, they are still far from the reconstruction power of IO-LVMs for the most challenging dataset
(bayg29 with 50 features). The gap is even higher when the number of training samples are smaller,
as also shown in Table 2. Additional results on the variation of the number of latent dimensions are
provided in Appendix E.

Figure 4: Each column illustrates an inferred sample for the Hamiltonian cycles experiment using
VAE (top) and IO-LVM (bottom) on the first three samples of each dataset generated with 50 features.
Green edges denote correct reconstructions relative to groundtruths, while red edges indicate false
positives. VAEs might yield unstructured outputs. Groundtruths and other baseline results are
available in the Appendix E, Figure 11.

Fig. 4 illustrates some reconstructed samples of IO-LVM against VAE , where the decoder outputs
paths as binary edge usage indicators (i.e., probabilities converted to binary). In the figure, thick
edges illustrate the reconstructed paths for the first three test samples of each dataset (burma14 and
bayg29 created with 50 features). It can be seen from the figure that, different from VAEs, IO-LVM
ensures that the output forms a valid Hamiltonian cycle due to the inclusion of a TSP solver in its
processing loop. This happens even when the reconstruction is not fully correct (e.g., most right
graph in in Fig. 4).

Figure 5: Lower β yields more distinct paths recon-
structed by IO-LVM, while a balanced or higher β
increases denoising.

Effect of varying β: Reconstruction versus
Denoising We analyze the effect of varying
β on two metrics in the Single S&T synthetic
Waxman dataset: i) the number of distinct
paths reconstructed by the decoder using the
test dataset; ii) and the Intersection over Union
(IoU) metric between observed and inferred
edges usage during training. Figure 5 shows
that as β increases, the number of distinct
paths decreases, indicating a denoising effect
due to the diminished influence of the recon-
struction loss. This results in the decoder re-
ducing diversity of generated paths due to the
posterior collapse. The IoU decreases with
larger β, also reflecting a reduction in recon-
struction power. In Figure 14 (Appendix E),
we show a projection of noisy real-world taxi
paths into similar but expected paths by recon-
structing them using IO-LVM.

4.3 Inference Results

Path Distribution Prediction. To measure the prediction quality of the overall test paths distribution,
we used a kernel density estimator (KDE) in the learned latent space to estimate its probability density
function and sample latent values from it. We evaluate the quality of predicted path distributions
using two metrics: Jensen-Shannon divergence (DJS, lower is better) and root mean squared error
(RMSE, lower is better), both computed on edge usage frequencies between predicted and ground
truth paths given fixed start and target nodes. For the Ship and Taxi datasets, these nodes are selected
as the most frequent pairs in the data to ensure consistency in comparisons at inference time. Path
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Table 3: Results on the prediction of paths distribution. Average and standard deviation of DJS and
RMSE on edges usage over 20 runs are reported. NC denotes no convergence.

Method Single S&T Ship Data Taxi Data

DJS RMSE DJS RMSE DJS RMSE

BO 0.777± 0.040 3.678± 0.299 0.795± 0.011 6.44± 0.07 0.707± 0.037 5.70± 0.09
PO 0.058± 0.008 0.218± 0.063 0.164± 0.007 1.18± 0.06 0.439± 0.003 2.61± 0.03
VAE 0.060± 0.005 0.177± 0.067 NC NC 0.599± 0.020 3.44± 0.08
IO-LVM 0.054 ± 0.003 0.151 ± 0.034 0.141 ± 0.010 0.96 ± 0.11 0.289 ± 0.008 1.56 ± 0.10

samples for the VAE and IO-LVM are obtained using KDE samples from their latent spaces, inferring
their corresponding edges costs yθ, and solving Dijkstra on them, i.e., ω(yθ). We also compare
the results against two other baselines: the Perturbed Optimizer (PO) baseline [7], which estimates
gradients for structured prediction without modeling a latent space. We adapt PO to our setting
by removing contextual inputs and reintroducing the training-time noise ε at inference to sample
paths as ω(yθ + ε); and a naive BO baseline, where we minimize RMSE (x, ω(yE + εBO)) through
Bayesian Optimization where the distribution variance from which ε is sampled is a single decision
variable. Results in Table 3 show that IO-LVM outperforms VAE, which fails to model constraints
under limited data, e.g., in the Ship dataset, the sparse path count relative to the graph size prevented
convergence (NC). IO-LVM also outperforms PO, whose naive sampling, i.e., ω(yθ + ε), fails to
capture some characteristics of the true path distribution. The resulting inferred path distribution by
IO-LVM of the Taxi dataset is illustrated with the blue paths of Figure 6 (top-left chart), and can be
compared with the green observed paths in the test dataset with the same pairs of start and target
nodes (top-mid chart).

Figure 6: Taxi paths from a fixed start (airport region) and
target (union square) nodes. Frequency of inferred paths by
IO-LVM (blue), observed paths (green), and outlier paths
(purple, red). Plots are generated with Open Street Map
[25]. Quantile scores Qτ=0.02

z∼Z [d(x, x̂θ(z))] for test paths
x are reported for outlier detection.

Outlier Detection. We generate two
path outliers in the taxi dataset as illus-
trated in the top-right chart of Fig. 6,
one by using Dijsktra considering edge
costs as Euclidean distances between
nodes (purple path), and the other
solving Dijkstra on learned costs but
removing edges in latitude/longitude
box, enforcing deviation (red path). To
analyze if each of the observed paths
(greens) and each of the outlier paths
are actually outliers, we compute a low
τ -th quantile Qτ (e.g., τ = 0.02) of
a distance measured between this test
path x and the path distribution using
inferred samples x̂θ by IO-LVM, i.e.,
Qτz∼Z [d(x, x̂θ(z))], a score reflecting
how far each observed path lies from
most of the paths in the inferred distri-
bution. Although alternative distances
d could be chosen, we compute d as
the RMSE between the cost of those
paths by sampling N edges from
the learned latent space, i.e., d =
RMSE

(
[〈x,yθi 〉]Ni=1, [〈x̂θ,yθi 〉]Ni=1

)
.

This distance reflects how far two paths
are from each other when projected on
learned costs. A high quantile score
Qτ suggests that the path is unlikely
under the inferred path distribution
and therefore anomalous. We compute
this score Qτ for each path in the data
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(green) and the created outliers (purple and red) for τ = 0.02. Results showing higher scores for
outlier paths are reported in the bottom graphs of Fig. 6, and could also indicate the existence of
other potential outliers in the test dataset (green bars).

5 Conclusion

This paper proposed IO-LVM, a novel approach for learning latent representations of COP costs,
specifically for paths and cycles in graphs. The method leverages amortized inference and integrates
black-box solvers within a probabilistic framework, allowing for the modeling of multiple agents and
diverse behaviors in graphs. By employing a Fenchel-Young loss with perturbed inputs, it overcomes
the gradient challenges in optimizing COPs, ensuring feasible and interpretable path reconstructions.
The learned latent space captures meaningful structures, highlighting the model’s characteristic to
distinct agent behaviors, while maintaining accurate path reconstruction and prediction. Our method
description is valid for a general set of COPs if gradient estimation is available.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims are summarized in the last paragraph of the introduction. Contribution
i is reflected through the method section. Contribution ii is a qualitative measure presented
in the latent space analysis in the experiments. Contribution iii is in its majority represented
by quantitative measures reflected in Tables 1, 2, 3 and Fig. 6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations regarding additive perturbation and use of a solver in the training
process are explicitly discussed in Section 3.2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: There is a proof for Proposition 1 detailed in Section B. The assumption is
described in Proposition 1, and it is connected to one of the limitations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Synthetic dataset generation and dataset details (e.g., preprocessing) are
provided in Appendix C. The main algorithm is presented in Algorithm 1, while its imple-
mentation details (e.g., hyperparameters, type of optimizers, baseline details) are presented
in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For the real datasets, the reference is provided and the used preprocessing
code is found in the supplementary material. The code for the method and how to run it is
also provided in the supplementary material. The full code will be publicly available after
acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details are found either in Appendix C or in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The only result without standard deviation is in Table 2, since the analysis is
a supplement to the main results for path prediction (e.g., to vary training size and latent
dimensions).
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are found in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted is aligned with all relevant points in the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: The paper proposes an algorithm for latent space model in graph-based
applications. Therefore, it is hard to directly connect to societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Both real-world datasets are referenced. The preprocessing step in the Taxi
dataset is also referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets are provided in the supplementary material, such as the code,
the synthetic dataset generation process, and the preprocessing step of real-datasets. A
description of assets related to the dataset processing is found in Appendix C.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method development in this research does not involve the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Perturbed Fenchel-Young brief derivation

For a regularized maximization problem, the Fenchel-Young loss is defined in [8] as

lFY(y,x) = ΩFC(y) + Ω(x)− 〈y,x〉

where Ω is a convex regularized and ΩFC is its convex conjugate. By choosing the regularized Ω as
the conjugate of the perturbed minimum cost, i.e., ΩFC = Eε[minx′〈y + ε,x′〉], the loss is rewritten
as

lFY(y,x) = Eε[minx′〈y + ε,x′〉] + Ω(x)− 〈y,x〉

Since the only important terms for our gradient-based learning approach are the terms dependent on
y, i.e., we are only interested in gradients with respect to y, and inverting the sign of the loss to be
suitable to a minimization problem instead of a maximization problem, we simplify the loss for the
gradient computation as:

l′FY(y,x) = 〈y,x〉 − Eε[minx′〈y + ε,x′〉]

B Perturbed Fenchel-Young for Graph-based Applications

Proof of Proposition 1. Let y ∈ R|E| be the edge cost vector, and let ε ∈ R|E| be a random vector
with independent, zero-mean components added to each edge. Let ỹ = y + ε denote the perturbed
cost vector. For any path or cycle x ∈ X ⊆ {0, 1}|E|, represented as an indicator vector over edges,
the perturbed cost is given by 〈ỹ,x〉, representing the inner product between both variables.

We first show that the expected cost of a path remains unchanged under perturbation:

Eε[〈ỹ,x〉] = Eε[〈y + ε,x〉] = 〈y,x〉+ E[〈ε,x〉] = 〈y,x〉,

since each component of ε has zero mean and x is fixed.

Next, we compute the variance of the perturbed cost. The variance of the cost 〈ỹ,x〉 = 〈y + ε,x〉
arises from the perturbation:

Var[〈ỹ,x〉] = Var[〈ε,x〉].
Assuming the components εe are independent with identical variance σ2, we obtain:

Var[〈ε,x〉] =

|E|∑
e=1

x2e Var[εe] = σ2

|E|∑
e=1

xe = σ2‖x‖0,

where ‖x‖0 denotes the number of edges in the path x. Hence, if all x ∈ X have equal length, the
variance is the same for all paths.

As a direct consequence, the additive perturbation model induces equal expected cost and variance
across paths or cycles when their lengths are equal. This condition holds exactly in our Hamiltonian
cycle experiment, where all feasible cycles visit each node once and thus have fixed length. In the path
planning experiment, although path lengths may vary, the uniform spatial layout in our real-world
datasets (ship and taxi) and lack of large shortcuts make it reasonable to assume that most feasible
paths between start and target nodes have similar lengths, while too lengthy paths are extremely
unlike to be optimal even with perturbation. Consequently, the induced variance does not vary much,
validating the use of this perturbation model in both settings.

C Datasets details

Synthetic Waxman Random Graph We generate a Waxman graph [35] with 700 nodes (α = 0.05,
β = 0.6), where the probability of an edge between two nodes u and v is given by P (u, v) =

α · exp
(
−d(u,v)β·dmax

)
, where we considered d(u, v) as the Euclidean distance between nodes u and v,

and dmax is the maximum distance between of two nodes, consequently ending up in 7230 edges. We
create three edge cost sets to simulate three different agents performing decisions to go from start and
end nodes. The edge costs are based on Euclidean distances, with higher costs for the southern edges
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for agent 1, and higher costs in the northern for agent 3, while agent 2 is not biased by the edges
position. For each agent, we add a random noise in the cost elements y so the generated paths can be
different from each other even within the same agent. The "observed" paths are generated by running
the Dijkstra on the noisy edge costs. Two sets of 6,000 observed paths are generated: one with a
single source and target pair (Fig. 2, top-left) and another with multiple source-target pairs (Fig. 2,
bottom-left). In each of these sets, 5,000 paths are used for training IO-LVM and the baselines, while
1,000 are used for evaluation purposes. Further details on cost generation are provided in the code.

Ships dataset We use the Automatic Identification System (AIS) data provided by the Danish
Maritime Authority [10], considering latitude and longitude projected in a 2D space for simplicity.
The analysis focuses on paths from the first week of the months January 2024, May 2024, and June
2024. Only paths that exceed a distance of 4 units (in latitude/longitude) in Euclidean space are
included. A path is considered completed either when the ship speed approaches zero or when there
is an abrupt change in its heading. In some cases, there are gaps in the latitude/longitude signals;
when such jumps occur, we segment the data and treat them as separate paths. We created a grid
graph with a distance of 0.09 units between adjacent nodes, focusing on the area where there are
more route options to be taken, which in total led to 2513 nodes and 8924 edges. This resulted in
approximately 2,500 ship paths, for which the first 2000 (in the order available from the data) is used
for training. Note that this is the most sparse dataset, i.e. few paths in comparison with the graph size.
This led, in our experiments, the VAE not being able to learn even after considerably more (e.g., 10x
more) epochs than IO-LVM.

Taxi dataset The data and the preprocessing follows exactly what is done in [21] with their available
preprocessing code, except for the fact that we increase the density of the grid, so that the resulting in
a bigger graph, consisted of 1125 nodes and 8022 edges and 101344 trajectories. We split the train
and test datasets by randomizing the taxi drivers (anonymized driver id), where 70% was used for
training and 30% for test.

TSPLIB We use datasets from TSPLIB95 [30], a library of benchmark instances for the Traveling
Salesman Problem (TSP) and related optimization problems. Specifically, we selected two graphs:
burma14, which consists of 14 nodes representing locations in Myanmar, forming a complete graph
with 91 edges, and bayg29, which consists of 29 nodes representing the coordinates of cities in
Bavaria, Germany, forming a complete graph with 406 edges. To assign the actual edge costs y,
we uses the Euclidean distance between nodes as an offset, and design a nonlinear function that
incorporates unobserved features to calculate edge costs. We generate two datasets for each graph,
one considering 3 unobserved features (less complex), and one considering 50 unobserved features
(more complex). The observed paths are generated as ω(y) without noise, where ω represents a
TSP search solver. In all experiments with TSPLIB, even with different training size, we always
used the same 600 test samples for a fair evaluation and proper comparisons. For the main results
2400 samples were used for training, while we had other experiments (see tables in the main paper)
where we also used 1000 and 10000 training samples to understand the role of the training size in the
reconstruction results.
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D Additional Results: Latent Space Analysis

Single S&T. We sample 20 latent values from Gaussians in the latent space and compare distribution
of paths generated by the composition of the decoder and solver. Reconstructed synthetic paths from
the Single S & T dataset are shown in the bottom graphs of Fig. 7. It is observed that points closer in
the latent space share a high number of edges in the graph. Additionally, as the variance increases,
the number of distinct reconstructed paths grows, indicating consistency in the learned latent space.
e.g., difference between third and fourth columns in Fig. 7.

Figure 7: Reconstruction for the Single S&T. Top charts: region of samples from a Gaussian in the
latent space. Bottom charts: corresponding generated trajectories. Blue agents has higher costs on
edges in the north, while red edges has higher costs on edges in the south.

Hamiltonian Cycles. We select nine samples from the test set of the burma14 graph, dis-
tributed across different regions of the latent space. They are organized into three groups
of three samples each (see the top graph of Fig. 9). The corresponding paths that gen-
erated these latent values by the encoder are visualized in the bottom graph of Fig. 9.

Figure 8: Relationship between Manhattan distance groups
and the average Euclidean distance in the latent space. Sam-
ples with smaller Manhattan distances (i.e., paths with more
similar edge usage) tend to have smaller Euclidean distances
in the latent space.

Paths with more edges intersection
tend to be closer to each other in the
latent space. We generalize this anal-
ysis by computing the Euclidean dis-
tance between all pairs of latent values
versus the Manhattan distance based
on edge usage (path choice) between
those paths. For each group of sam-
ple pairs with a specific Manhattan
distance, we calculate the average Eu-
clidean distance in the latent space.
The results, presented in Fig. 8, reveal
that samples that are closer in the la-
tent space are also closer in terms of
edge intersection.

E Additional Results:
Inference

Taxi Dataset. We sample three different latent vectors from the learned latent space on the Taxi
Dataset and compute three different set of learned edges costs, i.e., yθ = Φ(gθ(z)). Then, we use
Dijkstra as ω(yθ) on those three set of edges to compute the shortest path given two set of nodes in
the extremes of the graph on those learned edges. The resulting edges costs, normalized by the mean
and standard deviation of a bigger sampling population of edges, and the resulting shortest paths, are
illustrated in Figure 10.
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Figure 9: Visualization of the latent space and paths for the burma14 graph. The top graph shows
the latent space with nine manually selected samples. The bottom graphs display the corresponding
paths for these samples.

Figure 10: Three different set of edges costs from the learned latent space on the Taxi Dataset (top
graphs, one per column). Corresponding shortest path given two set of nodes in the extremes of the
graph on those learned edges (bottom graphs, one per column).

TSPLIB reconstruction The results in Table 4 are Recall of edges reconstruction in the TSPLIB
datasets for both training and test path samples. IO-LVM is capable to reach almost 1.0 in all cases.
VAEs can also do a good reconstruction when analyzing this metric. However, most of the mistakes
in VAEs reconstruction leads to a non-structured output, i.e., a non Hamiltonian cycle, which can be
observed with some reconstruction examples in Figure 11.

Varying the number of latent dimensions

In our experiments, we observed that for certain tasks, a very low number of latent dimensions
was enough. For instance, in the Ship Dataset, attempting to add a third dimension to the latent
space revealed that the second and third dimensions are highly correlated (Fig. 12), indicating that
the third dimension is unnecessary. Conversely, in the Hamiltonian Cycles experiment, where 50
hidden features were used to generate edge costs with a complex relationship, increasing the latent
dimensions proved beneficial in mitigating underfitting during the reconstruction process. This effect
is illustrated in Fig. 13, which compares the performance of using 2 latent dimensions (left graphs)
versus 10 latent dimensions (right graphs) for both the burma14 (top graphs) and bayg29 datasets.
In the right-hand charts, we observe that using 10 latent dimensions achieves 100% Recall in the
reconstructions for the training datasets and improves Recall for the test datasets compared to the
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Table 4: Reported are the average Recall of edges reconstruction (edge matching) on the training
(first row) and test (second row) sets for the Hamiltonian Cycles experiment.

Methods Lat. Dims burma14 (3 dims) bayg29 (3 dims) burma14 (50 dims) bayg29 (50 dims)

VAE 2 0.924± 0.004 0.805± 0.007 0.704± 0.007 0.572± 0.026
0.908± 0.004 0.798± 0.003 0.678± 0.003 0.555± 0.028

VAE 10 1.000± 0.000 0.995± 0.002 0.998± 0.001 0.916± 0.025
0.976± 0.004 0.957± 0.003 0.911± 0.009 0.799± 0.033

IO-LVM 1 0.900± 0.003 0.856± 0.003 0.731± 0.004 0.696± 0.005
0.890± 0.007 0.846± 0.004 0.724± 0.005 0.685± 0.006

IO-LVM 2 0.973± 0.004 0.908± 0.016 0.867± 0.008 0.786± 0.010
0.950± 0.007 0.883± 0.013 0.810± 0.009 0.723± 0.005

IO-LVM 10 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.997 ± 0.001
0.985 ± 0.002 0.971 ± 0.005 0.960 ± 0.004 0.900 ± 0.004

Figure 11: Each column illustrates an inferred sample for the Hamiltonian Cycles experiment. The
first row represents the cycle observed in the test set. The second row represents a solution of the
TSP using edges cost as euclidean distances (offset in the data generation process). Third and Fourth
rows represent inference using VAE and IO-LVM with 10 latent dimensions. Green edges denote
correct reconstructions relative to the groundtruth, while red edges indicate false positives.

2-dimensional case shown in the left-hand charts. However, with 10 latent dimensions, a slight
overfitting emerges, which could be mitigated through more careful regularization and neural network
architecture design. Addressing this was beyond the scope of our current study.

E.1 Denoising Taxi paths

By encoding observed paths using the trained encoder of IO-LVM, and then decoding the correspond-
ing latent value through the decoder + solver, it is possible to observe slight differences between the
input and output. This is due to the well-balances β chosen in the training process to avoid overfitting,
leading to a denoising feature, i.e., removing uncommon patterns in an observed path. Figure 14
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Figure 12: Latent space of ship trajectories using three dimensions. The right graph indicates that
there is no need for a third latent dimension. Narrow ships are more concentrated in the top right
corner of the two left graphs.

Figure 13: Comparison of training and validation curves for reconstruction performance using 2
latent dims (left) and 10 (right) for the burma14 (top) and bayg29 (bottom) datasets. Increasing the
number of latent dims improves Recall for both training and validation datasets.

illustrates four samples of observed paths and its corresponding reconstruction. There are small
differences in three of them, indicating less likely path decision patterns based on the training dataset.

Figure 14: Four observed paths in the test dataset (green) are reconstructed (blue) by IO-LVM,
eliminating potential uncommon patterns. When there is no uncommon pattern, the blue path
overlaps the green path.
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F Implementation details

IO-LVM is trained according to Algorithm 1. We used PyTorch [26] for the implementation. We
consider a learning rate of 0.00004 and a batch size of 250 for the Waxman synthetic dataset, the Ship
dataset, while the Taxi dataset and the Hamiltonian Cycle experiment uses a learning rate of 0.0001
and a batch size of 200. COPs are solved in parallel for the batches. The neural network architectures
do not have any special implementations. The encoder architecture consists of a neural network
with 4 hidden layers, each containing 1000 neurons, with ReLU activation functions in the hidden
layers. The decoder architecture is the same as the encoder, but with a Softplus activation function
to ensure that all edge costs remain positive. The RMSProp optimizer is used for the Synthetic and
Ship datasets, while the AdamW optimizer is used for the Hamiltonian Cycles experiment. The
experiments were run on a CPU due to the bottleneck introduced by COP solvers. The processor
model used was the 13th Gen Intel(R) Core(TM) i7-13700KF, which has 24 cores. We use Dijkstra
from networkx library in python [15] for solving SPP: and Ortools routing python library for TSP
solutions [14]. For all the experiments, we run with a fixed and high number of epochs. The most
time consuming experiment is with the Taxi dataset dueto the number of samples. We observed
that after 100 epochs (around 2 days to complete with our resources) was enough for the model to
converge. The other experiments can be finished in a maximum of few hours with no more than 500
epochs (the higher the better). However, for the VAEs baseline, more epochs are generally needed
(we observed convergence after 1200 epochs for the synthetic experiment, for example). Further
details are found in the provided code at https://github.com/AlanLahoud/IO-LVM

Baselines. BO was performed to optimize a single variable i.e., the variance of the perturbation. 100
calls for each run was performed by varying the initial state. PO was trained by setting a pre-defined ε
(Synthetic and Ship Datasets), as in related works, or by leveraging the mean of trained latent values
in IO-LVM (Taxi Dataset), since the training process of PO is equivalent to IO-LVM with a single
point in the latent space. Further details are found in the provided code.
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