
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

SCALING FLAWS OF VERIFIER-GUIDED SEARCH IN
MATHEMATICAL REASONING

Fei Yu, Yingru Li†, Benyou Wang†
School of Data Science
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China
yufei21@outlook.com,szrlee@gmail.com,wangbenyou@cuhk.edu.cn

ABSTRACT

Large language models (LLMs) struggle with multi-step reasoning, where
inference-time scaling has emerged as a promising strategy for performance im-
provement. Verifier-guided search outperforms repeated sampling when sample
size is limited by selecting and prioritizing valid reasoning paths. However, we
identify a critical limitation: scaling flaws, prevalent across different models (Mis-
tral 7B and DeepSeekMath 7B), benchmarks (GSM8K and MATH), and verifiers
(outcome value models and process reward models). As sample size increases,
verifier-guided search exhibits diminishing advantages and eventually underper-
forms repeated sampling. Our analysis attributes this to verifier failures, where im-
perfect verifiers misrank candidates and erroneously prune all valid paths. These
issues are further exacerbated in challenging and out-of-distribution problems,
restricting search effectiveness. To mitigate verifier failures, we explore reduc-
ing reliance on verifiers and conduct preliminary investigations using two simple
methods. Our findings reveal fundamental limitations in verifier-guided search
and suggest future directions.

1 INTRODUCTION

Multi-step reasoning is challenging to LLMs (Hendrycks et al., 2021; Zheng et al., 2022). Recent
studies have identified inference-time scaling (Brown et al., 2024; Snell et al., 2024; Wu et al.,
2024b) as a promising strategy to enhance LLM performance on multi-step reasoning. By increasing
inference-time computation through multiple attempts via repeated sampling (Brown et al., 2024),
LLMs can solve more problems, with at least one attempt succeeds. Building on this insight, search-
based approaches have emerged to guide computation toward more effective reasoning paths (Snell
et al., 2024; Wu et al., 2024b).

Search reallocates computational resources by evaluating and selecting partial paths during gener-
ation. A common approach for path evaluation uses verifiers (Snell et al., 2024; Wu et al., 2024b),
such as outcome value models (OVMs) (Yu et al., 2024) and process reward models (PRMs) (Light-
man et al., 2024), to score and rank candidates, prioritizing valid paths. This makes verifier-guided
search effective for challenging problems with sparse valid solutions, offering advantages over re-
peated sampling when the sample size is limited.

Obvervation of scaling flaws. However, we observe that verifier-guided search (e.g. OVM-
and PRM-guided) might experience diminishing advantages and eventually underperforms repeated
sampling as the sample size scales. Its performance improves more slowly than repeated sampling,
ultimately making them less effective. We refer to this phenomenon as scaling flaws of verifier-
guided search.

Identification of verifier failures. To understand the cause of scaling flaws, we analyze search
failures and identify verifier selection failures as the main factor, where imperfect verifiers misrank
and incorrectly prune all valid paths—an issue we term “verifier failures”. Morever, verifier selection
itself exhibits scaling issues: as the candidate size increases, valid paths become more widespread

†Corresponding to Yingru Li and Benyou Wang.

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

across the problem set, yet verifiers struggle to identify them, leading to their erroneous pruning.
This contributes to the overall search scaling flaws.

Analysis of verifier failures. Our investigation shows that verifier failures and scaling flaws worsen
in challenging and out-of-distribution problems. As problem difficulty and solution sparsity in-
crease, scaling flaws intensify. This paradoxically undermines search, which is intended to outper-
form repeated sampling in such cases. Moreover, out-of-distribution problems, common in real-
world deployment, exacerbate these challenges, highlighting fundamental limitations of verifier-
guided search approaches.

Mitigating verifier failures. To explore potential approaches for mitigating verifier failures, we
conduct a preliminary investigation into two simple methods that reduce reliance on verifiers, both
of which demonstrate benefits.

Summary of contributions. (1) This work identifies and analyzes the scaling flaws of verifier-
guided search (2) We pinpoint verifier failures as the primary cause of these flaws (3) Our analysis
reveals that these issues become more severe for challenging and out-of-distribution problems, rais-
ing concerns about the development of verifier-guided search algorithms and their application in
real-world settings (4) We suggest reducing reliance on verifiers and conduct preliminary investiga-
tions using two simple methods.

2 RELATED WORKS

Search algorithms Search algorithms often face a tradeoff between effectiveness and efficiency.
Approaches like Monte Carlo Tree Search (Hao et al., 2023; Tian et al., 2024) improve effectiveness
by incorporating backtracking, but at the cost of efficiency. Other methods prioritize efficiency
with minimal sacrifice in effectiveness (Wu et al., 2024a). In this work, we use a simple beam
search algorithm (Yu et al., 2024; Chen et al., 2024) for our experiments, focusing on highlighting
challenges in the candidate evaluation and selection stage, orthogonal to these advanced techniques.

Candidate evaluation in search Candidate evaluation is a crucial stage that determines which
paths are more valuable for further selection and exploration. Some methods rely on the some rule-
based heuristics (Xin et al., 2024), with limited effectiveness. Some approaches involve lookahead
techniques to assess candidates by simulating their subsequent outcomes (Snell et al., 2024; Wan
et al., 2024), which significantly increases computational cost. Other methods incorporate external
verifier models (Yu et al., 2024; Snell et al., 2024) to evaluate each candidate. In this work, we focus
on the challenges and limitations of the this approach.

3 BACKGROUND: VERIFIER-GUIDED SEARCH

This section begins by defining mathematical reasoning questions and introducing two widely em-
ployed solution frameworks: repeated sampling and search. We then detail a specific search frame-
work, beam search, and discuss two widely-used verifier types employed in the search process.

Definition. A mathematical reasoning question q requires a step-by-step solution path S =
[s1, . . . , sT , a] to be addressed, where si represents the i-th step, T is the number of steps, and
a is the final answer.

Multi-step reasoning (Cobbe et al., 2021; Hendrycks et al., 2021) suffers from error propagation
issues–errors in earlier steps affect later ones, compromising the final answer. Recent studies show
that LLMs can address more challenging problems through repeated sampling (Brown et al., 2024).

Repeated sampling LLMs can solve some challenging problems through multiple at-
tempts (Cobbe et al., 2021; Brown et al., 2024), i.e. repeatedly sampling a set of solution paths{
Sk

}K

k=1
from the generator. Increasing the number of attempts, K, often improves the cover-

age—the fraction of problems for which at least one sampled path is correct, but also requires more
computation.

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

1 21 22 23 24 25

sample size

0.6

0.7

0.8

0.9

co
ve

ra
ge

repeated sampling (DeepSeekMath 7B)
repeated sampling (Mistral 7B)
OVM-guided search (DeepSeekMath 7B)
OVM-guided search (Mistral 7B)

(a) OVM on GSM8K

1 21 22 23 24 25

sample size

0.4

0.5

0.6

0.7

0.8

0.9

co
ve

ra
ge

repeated sampling (DeepSeekMath 7B)
repeated sampling (Mistral 7B)
PRM-guided search (DeepSeekMath 7B)
PRM-guided search (Mistral 7B)

(b) PRM on GSM8K

1 21 22 23 24 25

sample size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

co
ve

ra
ge

repeated sampling (DeepSeekMath 7B)
repeated sampling (Mistral 7B)
OVM-guided search (DeepSeekMath 7B)
OVM-guided search (Mistral 7B)

(c) OVM on MATH

1 21 22 23 24 25

sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

co
ve

ra
ge

repeated sampling (DeepSeekMath 7B)
repeated sampling (Mistral 7B)
OVM-guided search (DeepSeekMath 7B)
OVM-guided search (Mistral 7B)

(d) PRM on MATH

Figure 1: Scaling Flaws in OVM-guided search and PRM-guided search on GSM8K and MATH
(scaling of sample sizes). While verifier-guided search outperforms repeated sampling initially, its
performance increases at a slower rate, ultimately underperforming repeated sampling.

However, repeated sampling becomes inefficient for challenging problems, like competition-level
mathematics problems (Hendrycks et al., 2021), where it often demands many more attempts to find
a correct solution (Brown et al., 2024).

3.1 SEARCH

Search aims to explore correct solutions more efficiently than repeated sampling by pruning un-
promising partial paths and discarding early errors. This paper focuses on step-level beam search, a
widely used and sufficiently straightforward framework for illustrating the core concept.

Step-level beam search This framework intervenes in generation and selection at the step level
and explore multiple paths in parallel. Given a question q, at each step t, the generator produces K
candidates S(1:t) =

{
S
(1:t)
k

}K

k=1
, where S

(1:t)
k = [s1k, . . . , s

t
k] is the k-th partial path. During the se-

lection stage, a scoring function f evaluates these candidates, assigning scores V(1:t) =
{
v
(1:t)
k

}K

k=1
,

where v
(1:t)
k is the score for S(1:t)

k , ranking them for selection. The top b paths proceed to the next
step, generating K/b new candidates each, maintaining a total of K candidates. This process repeats
until all b paths terminate, yielding b full solution paths. See details in Appendix 1. The hyperpa-
rameter b controls the number of parallel paths. Larger b or K improve the ability to handle a wider
range of problems.

Search using verifiers as scoring functions is particularly noteworthy (Yu et al., 2024; Chen et al.,
2024; Snell et al., 2024). We refer to this approach as “verifier-guided search”.

3.2 VERIFIERS

Verifiers (Lightman et al., 2024; Yu et al., 2024) are commonly employed as scoring functions to
evaluate candidate, determining which paths to be further explored. In this work, we focus on the

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

two most widely used types of verifiers–Outcome-supervised Value Models (Yu et al., 2024) and
Process-supervised Reward Models (Lightman et al., 2024).

Outcome-Supervised Value Model (OVM) The OVM (Yu et al., 2024) evaluates each candidate
by estimating the probability of arriving at a correct answer from the given partial path. It assumes
that each local step with the highest probability of success ultimately leads to the correct answer.
We refer to search using OVM for evaluation as “OVM-guided search”.

Process-Supervised Reward Model (PRM) The PRM (Lightman et al., 2024) evaluates each
candidate by predicting its step correctness. It assumes that each correct local step guides to the
correct final answer. We refer to search using PRM for evaluation as “PRM-guided search”.

Verifiers play a key role in candidate evaluation and selection, directly influencing the search suc-
cess. When they correctly identify valid paths, they can steer the search towards correct solutions
more efficiently than repeated sampling.

However, we observe that although the search process initially shows advantages over repeated
sampling, these advantages disappear as scaling, as shown in the next section.

4 SCALING FLAWS OF VERIFIER-GUIDED SEARCH

In this section, we present extensive experiments showing that verifier-guided search suffers scaling
flaws: it outperforms repeated sampling at small sample sizes but underperforms it at large sample
sizes. These flaws are worse on more difficult and out-of-distribution problems.

4.1 EXPERIMENTAL SETUP

Benchmarks We perform experiments on two mathematical reasoning datasets: GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021). The experiments are conducted under four dis-
tinct settings, including two in-distribution and two out-of-distribution (OOD) scenarios, as detailed
below:

• GSM8K: The official training split is used for training, and the model is evaluated on the
test split.

• MATH: The official training split, comprising 7,500 problems, is used for training, while
evaluation is performed on the MATH500 (Lightman et al., 2024).

• OOD-L4: Training is conducted on MATH Level 1, Level 2, Level 3, and Level 5 prob-
lems, while evaluation is performed specifically on Level 4 problems within MATH500.
This setting requires models to generalize to problems of median difficulty.

• OOD-L5: We train on MATH Level 1 - Level 4 problems and evaluate on Level 5 problems
within MATH500. In this setting, models are required to generalize to solve more difficult
problems.

Models We use Mistral 7B (Jiang et al., 2023) and DeepSeekMath 7B (Shao et al., 2024) for the
GSM8K and MATH experiments, and exclusively use DeepSeekMath 7B for the two OOD settings.
For each setting, the base models are trained on the corresponding training sets to serve as the
generators. The OVMs used in each setting are initialized from these generators. For PRMs, we
leverage the open-source Math-Shepherd dataset (Wang et al., 2024). Generators are first fine-tuned
on a subset of this data, after which PRMs, initialized from the corresponding generators, are trained
under supervision using process labels.

Scaling beam search We investigate the scaling laws of two factors: (1) the number of parallel
explored paths b, with K/b fixed at 8, and (2) the number of generated candidates K, with b fixed
at 8. For the comparison between beam search and repeated sampling, we align them in terms of
“sample size”, which represents the number of complete solution paths generated by each algorithm.
For beam search, the sample size corresponds to the number of parallel explored paths, b, while for
repeated sampling, it corresponds to the number of attempts. Each experiment is repeated three

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

times, and we report the average coverage (i.e. the fraction of problems for which at least one
sampled path is correct) along with their standard deviation.

See implementation details in Appendix A.4.

4.2 SCALING FLAWS

The results of scaling verifier-guided search are presented in Figure 1-2. Notably, both OVM-guided
and PRM-guided encounter scaling flaws across all settings.

Scaling flaws of verifier-guided search Verifier-guided search encounters scaling flaws across
benchmarks and models. Both OVM-guided and PRM-guided search exhibit failures in scaling
sample sizes (Figure 1) and generated candidate sizes (Figure 2). When scaling sample sizes, as
shown in Figure 1, both OVM-guided and PRM-guided search initially outperforms repeated sam-
pling, e.g. when the sample size is set to 1, on GSM8K and MATH. However, as the sample size
increases, the performance of verifier-guided search increases at a slower rate compared to repeated
sampling, ultimately underperforming repeated sampling.

For instance, in Figure 1(b), PRM-guided search based on either DeepSeekMath or Mistral initially
achieves over 20% higher performance than repeated sampling when the sample size is 1. However,
this advantage erodes as the sample size scales, and by a sample size of 16, verifier-guided search
becomes inferior to repeated sampling, reaching approximately 5% lower performance when scaled
to 32. Similarly, in Figure 1(c), OVM-guided search based on DeepSeekMath or Mistral is overtaken
by repeated sampling at a sample size of 4, eventually falling behind by approximately 20% when
the sample size reaches 32.

Moreover, increasing the number of generated candidates fails to improve and even degrades the
performance of verifier-guided search, as shown in Figure 2.

Intensified on difficult problems Scaling flaws are more severe on more difficult problems. As
shown in Figure 1 and Table 1, scaling flaws are more pronounced on MATH than on GSM8K and
become increasingly severe as problem difficulty increases within MATH. In Figure 1, the perfor-
mance degradation—measured as the gap between search and repeated sampling at a sample size of
32—is approximately 10% for OVM-guided search (both DeepSeekMath and Mistral) on GSM8K,
increasing to around 20% on MATH. Similarly, for PRM-guided search, the performance degrada-
tion rises from about 5% on GSM8K to nearly 30% on MATH.

Furthermore, as observed in Table 1, consistent with previous research (Snell et al., 2024), verifier-
guided search shows greater benefits over repeated sampling for moderate problems. For instance,
at a sample size of 1, gains are larger for Level 2–Level 4 problems compared to Level 1 and
Level 5. However, as problem difficulty increases, the performance degradation of both OVM- and
PRM-guided search approximately upward monotonically. Notably, the loss gap exceeds 20% when
comparing Level 1 to Level 5 problems, suggesting the increasing severity of scaling flaws.

Table 1: Increased average coverage of search over repeated sampling across various problem diffi-
culties on MATH and OOD settings (DeepSeekMath 7B). ‘L’: ‘Level’, #sample: sample size.

#sample L1 L2 L3 L4 L5 OOD-L4 OOD-L5

OVM 1 11.6% 23.0% 21.3% 17.7% 7.0% 14.1% 1.2%
32 -3.1% -6.0% -15.6% -19.3% -23.9% -25.8% -32.8%

PRM 1 8.5% 18.9% 12.1% 13.5% 2.5% 8.1% 5.0%
32 -11.6% -24.4% -42.5% -43.8% -37.8% -46.1% -39.1%

Intensified on OOD problems Scaling flaws are more severe on OOD problems. As shown in
Figure 1, performance degradation at a sample size of 32 is more pronounced in OOD settings for
both OVM- and PRM-guided search. For instance, the performance degradation of OVM-guided
search on the in-distribution Level 4 setting is 19.3%, and it increases to 25.8% in the OOD-L4
setting. Similarly, the loss rises from 23.9% on Level 5 to 32.8% in the OOD-L5 setting. These
results reveal the exacerbated impact of scaling flaws when generalizing to OOD problems.

A notable concern arises: these findings indicate that the performance degradation of verifier-guided
search compared to repeated sampling as scaling is enhanced with increasing problem difficulty.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

However, this contradicts the purpose of verifier-guided search, which is designed to improve per-
formance in solving difficult problems. Furthermore, out-of-distribution scenarios—commonly en-
countered in real-world deployment—further exacerbate these scaling flaws.

24 25 26 27

search candidate size

0.30

0.35

0.40

0.45

0.50

0.55
co

ve
ra

ge

repeated sampling (DeepSeekMath 7B)
repeated sampling (Mistral 7B)
OVM-guided search (DeepSeekMath 7B)
OVM-guided search (Mistral 7B)

(a) OVM on MATH

24 25 26 27

search candidate size

0.2

0.3

0.4

0.5

0.6

co
ve

ra
ge

repeated sampling (DeepSeekMath 7B)
repeated sampling (Mistral 7B)
OVM-guided search (DeepSeekMath 7B)
OVM-guided search (Mistral 7B)

(b) PRM on MATH

24 25 26 27

search candidate size

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

co
ve

ra
ge

repeated sampling (ID)
repeated sampling (OOD)
OVM-guided search (ID)
OVM-guided search (OOD)

(c) OVM on OOD-L5

24 25 26 27

search candidate size

0.10

0.15

0.20

0.25

0.30

0.35

co
ve

ra
ge

repeated sampling (ID)
repeated sampling (OOD)
OVM-guided search (ID)
OVM-guided search (OOD)

(d) PRM on OOD-L5

Figure 2: Scaling Flaws in OVM-guided search and PRM-guided search on MATH and OOD-L5
(scaling generated candidate size).

5 VERIFIER FAILURES

Section 4 observed scaling flaws in verifier-guided search, but the underlying cause remains un-
known. This section conducts an in-depth analysis, identifying incorrect selection due to imperfect
verifiers as the root cause of these flaws. In Section 5.2, we term this phenomenon as “verifier
failures” and analyze its connection to search scaling flaws. In Section 5.3, we investigate the dis-
tribution of failed selection stages during the search, examining their correlation with the sparsity of
candidate space.

5.1 EXPERIMENTAL SETUP

In this section, we analyze the selection stages from two perspectives: (1) only the first selection
stage with a large number of candidates K = 256 to study the relationship between the number
of candidates and the performance of verifier selection, including both OVM selection and PRM
selection (2) analyze all selection stages during the OVM-guided search with b = 8,K = 64, as
this configuration suffers from scaling flaws across benchmarks and models while maintaining an
acceptable computational cost for valid path labeling.

The selection stages during the search are analyzed based on a single criterion: whether at least one
valid path is selected when valid paths are available. A candidate is considered a valid path if it can
lead to the correct final answer. To determine valid paths, we complete each partial path by rolling
out multiple samples and verifying whether any of the rollouts successfully reach the correct answer.
Specifically, we generate 4 rollouts per candidate for GSM8K and 16 rollouts for MATH and OOD
settings.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

5.2 VERIFIER FAILURES CAUSE SEARCH SCALING FLAWS

Search failures can arise from either the generation stage or the selection stage—specifically, when
no valid candidates are generated or when valid paths produced during generation fail to be selected.

Generation vs. selection failures Search failures are largely attributable to selection failures.
We analyze all search processes in which problems fail to be solved and attribute these failures
to either generation or selection. A failure is attributed to the generation stage if there is at least
one intermediate step where no valid partial paths are generated. Conversely, it is attributed to
the selection stage if, at any intermediate step, valid paths are produced but fail to be selected. As
shown in Table 2, a large proportion of OVM-guided search failures occur during the selection stage,
highlighting it as a critical issue 1.

Table 2: Fraction of OVM-guided search failure sources across benchmarks and models (‘dsm’:
‘deepseekmath’, ‘mst’: ‘mistral’; ‘G’: ‘Generation’, ‘S’: ‘Selection’).

GSM8K MATH OOD-L4 OOD-L5dsm mst dsm mst

G 11.4% 16.5% 20.0% 22.9% 15.7% 18.8%
S 88.6% 83.5% 80.0% 77.1% 84.3% 81.2%

Selection failures in verifier-guided search are directly attributable to verifiers. When verifiers fail
to differentiate between valid and invalid paths, and mistakenly assign low ranks to all valid paths,
none of them will be further explored, resulting in a selection failure. We refer to this issue as
“verifier failures”. Such failures, which prune all valid paths as failing to select any, ultimately lead
to search failures.

To validate the role of verifier failures in contributing to search scaling flaws, we examine the rela-
tionship between the success of the selection stage and the number of candidates. Specifically, we
analyze the performance of verifier selection in correctly identifying and selecting at least one valid
path as the number of candidates increases during the first selection stage. To ensure that the analy-
sis accounts for the presence of valid paths in the candidate set, we use oracle selection performance
as a baseline. This baseline serves as a reference for the maximum potential success of the selection
process, independent of verifier performance.

Verifier selection scaling failures There are verifier selection scaling failures during the selection
stage. As shown in Figure 3, verifier selection exhibits scaling failures. Specifically, the perfor-
mance of verifier selection improves only marginally, saturates, or even decreases as the candidate
size increases, despite the presence of valid paths across more problems, as indicated by the oracle
selection performance. This phenomenon is consistent across various beam sizes. While select-
ing and exploring more candidates improves robustness to verifier limitations—evidenced by the
reduced gap between verifier selection and oracle selection performance—a significant gap persists
even at the largest beam size tested, b = 16. These scaling failures suggest that verifier selection
is a key bottleneck in the success of the selection process, and increasing the candidate size offers
limited improvement in addressing this issue.

The scaling failure of verifier selection can explain the diminishing advantage of verifier-guided
search. Initially, verifier-guided search is more efficient than repeated sampling, as it effectively
selects valid paths and reallocates computational resources for several problems. However, as scal-
ing increases, even though valid paths are available across a broader range of problems, verifiers
fail to identify and select them. In contrast, repeated sampling explores more paths without being
constrained by verifier failures, ultimately outperforming verifier-guided search at larger scales.

5.3 MORE CHALLENGING SCENARIOS

In this section, we analyze the failed selection stages during the search, showing that the search
process is most hindered when valid paths are sparse.

1We present only the results of OVM-guided search, as generation failures in PRM-guided search are ex-
pected to be similar due to the independence of the generation and selection stages.

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

23 24 25 26 27

candidate size

0.5

0.6

0.7

0.8

0.9

co
ve

ra
ge

oracle selection
OVM selection (b=2)
OVM selection (b=4)
OVM selection (b=8)
OVM selection (b=16)

(a) OVM, MATH (DeepSeekMath 7B)

23 24 25 26 27

candidate size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pa
ss

oracle selection
OVM selection (b=2)
OVM selection (b=4)
OVM selection (b=8)
OVM selection (b=16)

(b) OVM, OOD-L5

23 24 25 26 27

candidate size

0.75

0.80

0.85

0.90

0.95

co
ve

ra
ge

oracle selection
PRM selection (b=2)
PRM selection (b=4)
PRM selection (b=8)
PRM selection (b=16)

(c) PRM, MATH (DeepSeekMath 7B)

23 24 25 26 27

candidate size

0.5

0.6

0.7

0.8

0.9

pa
ss

oracle selection
PRM selection (b=2)
PRM selection (b=4)
PRM selection (b=8)
PRM selection (b=16)

(d) PRM, OOD-L5

Figure 3: Scaling failures of verifier selection at the first selection stage across various beam sizes
on MATH and OOD-L5.

Sparser candidate space Verifier selection failures occur and block search more often when valid
paths are sparse. We investigate the failed selection stages during the search and examine the valid
path sparsity of these stages. Valid path sparsity is defined as the fraction of valid paths among the
candidates. First, we group the valid path sparsity across all selection stages of unsolved problems
into four uniform categories. Next, we identify the specific failure stage in each search process
where verifier failures occur. we use these groupings to plot the distribution of valid path sparsity
across the identified failure stages.

As illustrated in Figure 4, the distribution of failed selection stages demonstrates a monotonic trend:
as valid path sparsity decreases, the proportion of failed selection stages increases. This observation
aligns with intuition, as identifying valid paths becomes increasingly difficult in sparser spaces.

These findings reveal that verifier failures become increasingly significant during the search pro-
cess, amplifying the risk of search failure when solving sparser correct solution spaces, where the
identification and selection of valid paths become considerably harder.

Although search is expected to offer greater efficiency than repeated sampling in solving more chal-
lenging problems by reallocating computational resources through effective selection, our obser-
vations suggest that these challenging scenarios are more susceptible to verifier failures, thereby
exacerbating scaling flaws.

6 ALLEVIATING VERIFIER FAILURES

Imperfect verifiers can lead to verifier failures, obstructing the success of the search process. In
this section, we explore two simple methods to alleviate verifier failures by reducing dependency on
verifiers: stochastic selection and integration with one-time Monte Carlo rollout.

Experimental setup We evaluate these methods across all the selection stages of the search with
b = 8, k = 64. For each method, we measure the accuracy improvement in the selection stage
before and after its application.

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

< 0.2 [0.2, 0.4) [0.4, 0.7) >= 0.7
fraction of valid paths among candidates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) MATH

< 0.15 [0.15, 0.3) [0.3, 0.5) >= 0.5
fraction of valid paths among candidates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) OOD-L5

Figure 4: Distribution of OVM failures across groups based on valid path sparisty on MATH and
OOD-L5 (DeepSeekMath 7B).

Stochastic selection Imperfect verifiers can produce incorrect candidate rankings, potentially
leading to misguided selection decisions. To mitigate the risk of over-reliance on erroneous rank-
ings, we introduce stochasticity into the selection stage. Rather than deterministically selecting
candidates based solely on verifier-predicted score rankings, we apply a softmax function to the
candidates’ scores and sample from the resulting probability distribution. This approach maintains
a preference for high-scoring candidates while still allowing lower-scoring ones a chance to be se-
lected, thereby reducing the risk of incorrectly pruning misranked valid paths.

As shown in Table 3, stochastic selection improves selection stage accuracy across all benchmarks
and models, regardless of temperature, with a notable improvement of up to 11.2% on OOD-L4
and OOD-L5. Interestingly, on GSM8K, a lower temperature (0.1) yields equal or even greater
accuracy gains compared to a higher temperature (10), whereas this trend reverses on MATH and
OOD settings. This observation aligns with intuition: since MATH and OOD settings experience
more severe verifier failures than GSM8K, reducing reliance on verifier selection through a higher
temperature could be more beneficial in these scenarios.

One-time Monte Carlo rollout This method aims to enhance candidate evaluation by incorpo-
rating simulated rewards alongside verifier-predicted scores. Specifically, we perform a one-time
rollout for each partial path S(1:t) until completion and obtain the reward of the resulting full path. 2

We then linearly combine this reward r with the verifier-predicted score v(1:t) using the formula
λr + (1− λ)v(1:t), where λ controls the balance between the reward and the verifier’s evaluation.

As shown in Table 3, increasing λ generally results in higher accuracy gains. Notably, the highest
accuracy gain is achieved when relying entirely on the simulated reward, without incorporating the
verifier-predicted score. This underscores the limitations of verifiers in candidate evaluation.

Table 3: Accuracy gain over OVM on the selection stage through two inference-time modification
methods (DeepSeekMath 7B).

GSM8K MATH OOD-L4 OOD-L5

temperature in stochastic selection
0.1 1.6% 2.8% 8.7% 5.3%
1 2.0% 5.4% 11.8% 10.3%
10 1.6% 6.1% 11.2% 11.2%

lambda for one-time Monte Carlo rollout
0.5 1.3% -0.8% 2.1% 1.8%
0.75 1.4% -0.3% 3.0% 2.2%
1 1.8% 1.7% 6.0% 2.5%

2The reward is estimated by the same verifier based on the complete path.

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

7 CONCLUSION

We investigate the scaling flaws of verifier-guided search, identifying verifier failures as their un-
derlying cause. While designed to enhance performance on challenging problems, these methods
struggle with scalability as problem complexity grows and in real-world OOD settings. Relaxing
the reliance on verifier scores could be a promising direction.

REFERENCES

Bradley C. A. Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V. Le, Christopher
Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. CoRR, abs/2407.21787, 2024. doi: 10.48550/ARXIV.2407.21787. URL https:
//doi.org/10.48550/arXiv.2407.21787.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervi-
sion without process. CoRR, abs/2405.03553, 2024. doi: 10.48550/ARXIV.2405.03553. URL
https://doi.org/10.48550/arXiv.2405.03553.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 8154–8173. Associ-
ation for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.507. URL
https://doi.org/10.18653/v1/2023.emnlp-main.507.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.
doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.
06825.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,

10

https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2405.03553
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
v8L0pN6EOi.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute opti-
mally can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.
48550/ARXIV.2408.03314. URL https://doi.org/10.48550/arXiv.2408.03314.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing. CoRR, abs/2404.12253, 2024.
doi: 10.48550/ARXIV.2404.12253. URL https://doi.org/10.48550/arXiv.2404.
12253.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and train-
ing. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
C4OpREezgj.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 9426–9439. Association for Computational Linguis-
tics, 2024. doi: 10.18653/V1/2024.ACL-LONG.510. URL https://doi.org/10.18653/
v1/2024.acl-long.510.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis of
compute-optimal inference for problem-solving with language models. CoRR, abs/2408.00724,
2024a. doi: 10.48550/ARXIV.2408.00724. URL https://doi.org/10.48550/arXiv.
2408.00724.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
arXiv preprint arXiv:2408.00724, 2024b.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. CoRR, abs/2408.08152, 2024. doi: 10.
48550/ARXIV.2408.08152. URL https://doi.org/10.48550/arXiv.2408.08152.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for plan-
ning in mathematical reasoning. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard
(eds.), Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City,
Mexico, June 16-21, 2024, pp. 858–875. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.FINDINGS-NAACL.55. URL https://doi.org/10.18653/
v1/2024.findings-naacl.55.

11

https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2408.03314
https://doi.org/10.48550/arXiv.2404.12253
https://doi.org/10.48550/arXiv.2404.12253
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.48550/arXiv.2408.00724
https://doi.org/10.48550/arXiv.2408.00724
https://doi.org/10.48550/arXiv.2408.08152
https://doi.org/10.18653/v1/2024.findings-naacl.55
https://doi.org/10.18653/v1/2024.findings-naacl.55

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark
for formal olympiad-level mathematics. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=9ZPegFuFTFv.

A APPENDIX

Table 4: Summary of Notations Used in the Paper
Notation Description

q Mathematical reasoning question requiring a sequence of steps
S Solution path for a question, S = [s1, . . . , sT , a]
si i-th step in a solution path
a Final answer in a solution path
T Number of steps in a solution path
y Binary label (0 or 1) indicating the correctness of a

S(1:t) Partial solution path up to step t, S(1:t) = [s1, . . . , st]

S(1:t) Set of candidate partial paths S(1:t) = {S(1:t)
k }Kk=1

v(1:t) The score for the partial path S(1:t)

V(1:t) Set of scores for candidate partial paths V(1:t) =
{
v
(1:t)
k

}K

k=1
K Number of candidates
b Beam size

A.1 DISCUSSION

This work focuses on scaling flaws related to coverage, rather than precision (Brown et al., 2024).
While precision is important for single-response applications, it is often limited by reward models
or selection rules for the final selection. Coverage, however, represents the upper bound of precision
and directly equates to it in applications with oracle solution selection, such as automatic theorem
proving (Zheng et al., 2022) and code generation (Chen et al., 2021).

Limitations We do not investigate the impact of scaling verifier sizes and the size of the training
dataset. Larger verifier models and more extensive training data could potentially reduce verifier
failures and alleviate scaling flaws.

Future work A promising direction is to reduce reliance on verifier selection, as discussed in
this work. Another avenue is detecting verifier failures and adapting verifier usage accordingly.
Uncertainty measures could be useful for identifying these failures.

A.2 VERIFIER TRAINING

OVM training dataset construction OVMs are trained on automatically constructed datasets,
where the correctness of the final answer serves as the label for each instance. The training dataset
is constructed from the generator and the given question-answer pairs: For each pair (q, a) ∈ Q, the
generator produces n solution paths, resulting in |Q| × n question-solution pairs. The label y for
each solution S is determined by checking the correctness of the final answer, e.g. matching it to
the ground truth a, with 1 indicating “correct” and 0 indicating “incorrect”. This process generates
a training dataset of (q, S, y) tuples for value models.

PRM training dataset PRMs are trained at a fine-grained step level, requiring annotations of step
correctness. In this study, we use the open-source Math-Shepherd process data (Wang et al., 2024)
to train the PRMs.

Both OVMs and PRMs are trained with mean squared losses.

12

https://openreview.net/forum?id=9ZPegFuFTFv

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.3 STEP-LEVEL BEAM SEARCH

The algorithm is shown in Appendix 1.

Algorithm 1 Step-Level Beam Search
Input: Question q, Beam size b, Sampled steps per state K, Maximum step count Tmax

Output: b solution sequences for q
Model: Generator and VM

1: Initialize step sequences S← {}
2: Sample initial steps {s11, . . . , s1K}
3: Select b steps via SELECTION(q, {s11, . . . , s1K}, b, VM) and add to S
4: t← 1
5: while sequences in S are not complete and t < Tmax do
6: Snew ← {}
7: for each sequence S(1:t) in S do
8: for i = 1 to K/b do
9: S

(1:t+1)
i = Generator(S

(1:t)
i ; q)

10: Snew ← Snew + S
(1:t+1)
i

11: end for
12: end for
13: Snew ← SELECTION(q, Snew, b, VM)
14: S← Snew
15: t← t+ 1
16: end while

return S

A.4 IMPLEMENTATION DETAILS

A.4.1 OVMS

Training generators We train the base models (Mistral 7B or DeepSeekMath 7B) on the training
sets of each setting. In MATH, we split the steps using period and newline characters. We normalize
datasets to use the newline character as the marker for the end of each step across all tasks. In
all datasets, supervised fine-tuning is performed for 2 epochs with a batch size of 128. We use a
linear learning rate scheduler with a maximum learning rate of 2e-6 for Mistral 7B and 5e-5 for
DeepSeekMath 7B. The AdamW optimizer (Loshchilov & Hutter, 2019) is used for training.

Building training dataset for OVMs The dataset construction process is introduced in Ap-
pendix A.2. We sample 50 solution paths per problem in GSM8K, and 100 solution paths per
problem in MATH. For GSM8K, we follow the setup in (Yu et al., 2024), with a decoding tem-
perature of 0.7 and top-k set to 50 for dataset collection. The maximum new token length is set to
400 for GSM8K. In MATH (including OOD settings), we use a decoding temperature of 1, top-p of
0.98, and a maximum new token length of 2000. As token sequences in MATH are long, we apply
vllm (Kwon et al., 2023) to accelerate the generation process.

Training OVMs OVMs are initialized from the corresponding generator checkpoints and trained
for one epoch, using the same learning rate scheduler as the generator training. The batch size is set
to 128 in GSM8K and to 512 in MATH. The optimizer used for training is AdamW.

A.4.2 PRMS

We use the open-source Math-Shepherd dataset (Wang et al., 2024) to train both the generators and
PRMs.

Data extraction We extract training problems for each setting. Specifically, for the GSM8K task,
we extract all problems from the training split of GSM8K, and for the MATH task, we extract all
problems from the training split of MATH. Similar extractions are performed for the OOD settings.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Data preprocessing Since the data format in Math-Shepherd is inconsistent, we normalize the
solution paths. We detect steps in each path, normalize them to be split by a newline character, and
summarize the final answer in the format of “The answer is xx”. For MATH problems, the final
answer is enclosed in “\boxed{}”.

Training generators For each setting, we randomly select one correct solution for each training
problem. If no correct solution is provided, we randomly select one other solution. The training
parameters, including the number of epochs, learning schedule, batch size, and optimizer for each
base model (Mistral 7B or DeepSeekMath 7B), are the same as those in Appendix A.4.1.

Training PRMs We use all solution paths and annotations provided in Math-Shepherd to train
PRMs, which are initialized from the corresponding generator checkpoints and trained for one
epoch. Same as above, the batch size is set to 128 in GSM8K and 512 in MATH, and AdamW
is used for training. The maximum learning rates for Mistral 7B and DeepSeekMath 7B are 2e-6
and 5e-5, respectively.

We observe that the Math-Shepherd data is noisy and some steps are missing labels. We speculate
that this might contribute to its inferior performance compared to OVM in this work.

A.4.3 STEP-LEVEL BEAM SEARCH

In GSM8K, we set the decoding temperature to 0.7, top-k to 50, maximum new token length to 400,
and maximum number of steps to 10. In MATH, we set the decoding temperature to 1.0, top-p to
0.98, maximum new token length to 2000, and maximum number of steps to 30. During the beam
search process, we prioritize selecting non-duplicate steps. We use vllm in MATH to accelerate
token sequence generation.

14

	Introduction
	Related Works
	Background: Verifier-Guided Search
	Search
	Verifiers

	Scaling Flaws of Verifier-Guided Search
	Experimental Setup
	Scaling Flaws

	Verifier Failures
	Experimental setup
	Verifier Failures Cause Search Scaling Flaws
	More Challenging Scenarios

	Alleviating Verifier Failures
	Conclusion
	Appendix
	Discussion
	Verifier Training
	Step-Level Beam Search
	Implementation Details
	OVMs
	PRMs
	Step-level beam search

