
Tensor Decomposition Networks for Fast Machine
Learning Interatomic Potential Computations

Yuchao Lin1,2∗, Cong Fu1∗, Zachary Krueger1, Haiyang Yu1, Maho Nakata3,
Jianwen Xie2, Emine Kucukbenli4, Xiaofeng Qian5, Shuiwang Ji1,5,6†,

1Department of Computer Science and Engineering, Texas A&M University, USA
2Lambda, Inc., USA

3RIKEN Cluster for Pioneering Research, RIKEN, Japan
4NVIDIA, USA

5Department of Materials Science and Engineering, Texas A&M University, USA
6Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, USA

Abstract

SO(3)-equivariant networks are the dominant models for machine learning inter-
atomic potentials (MLIPs). The key operation of such networks is the Clebsch-
Gordan (CG) tensor product, which is computationally expensive. To accelerate
the computation, we develop tensor decomposition networks (TDNs) as a class
of approximately equivariant networks in which CG tensor products are replaced
by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP)
decomposition. With the CP decomposition, we prove (i) a uniform bound on the
induced error of SO(3)-equivariance, and (ii) the universality of approximating any
equivariant bilinear map. To further reduce the number of parameters, we propose
path-weight sharing that ties all multiplicity-space weights across the O(L3) CG
paths into a single shared parameter set without compromising equivariance, where
L is the maximum angular degree. The resulting layer acts as a plug-and-play
replacement for tensor products in existing networks, and the computational com-
plexity of tensor products is reduced from O(L6) to O(L4). We evaluate TDNs on
PubChemQCR, a newly curated molecular relaxation dataset containing 105 mil-
lion DFT-calculated snapshots. We also use existing datasets, including OC20, and
OC22. Results show that TDNs achieve competitive performance with dramatic
speedup in computations. Our code is publicly available as part of the AIRS library
(https://github.com/divelab/AIRS/).

1 Introduction

Symmetry is a fundamental aspect of molecular and material systems [1], making it a crucial
consideration in developing machine learning interatomic potentials (MLIPs). Equivariant graph
neural networks have emerged as dominant frameworks in this domain. Usually, equivariant models
incorporate directional features and spherical harmonics to maintain equivariance under rotation
symmetry [2, 3, 4]. Among these, tensor product (TP) operations play a central role in fusing
equivariant features, providing a powerful mechanism for building expressive models that adhere to
SO(3)-equivariance [5, 6, 7, 8, 9].

However, the computational cost of tensor product operations grows rapidly with the maximum
angular degree L, reaching O(L6) in conventional implementations. Recent efforts to mitigate this

∗Equal contribution
†Correspondence to: Shuiwang Ji <sji@tamu.edu>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/divelab/AIRS

cost have focused on accelerating the TP operation or applying frame averaging (FA) to enforce equiv-
ariance [10, 11, 12, 13]. While frame averaging is architecture-agnostic, it suffers from discontinuity
issues [11]. On the other hand, TP acceleration techniques, such as SO(2)-based convolutions [14, 15]
and fast spherical Fourier transformations [16], reduce complexity but are no longer the standard CG
tensor product with the same expressivity. Thus, there remains a gap in developing a method that
simultaneously reduces computational complexity and parameter count while maintaining similar
accuracy and equivariance of CG tensor product.

In this work, we propose Tensor Decomposition Networks (TDNs), a new class of approximately
equivariant networks that replace the standard CG tensor product with low-rank tensor decompositions
based on CANDECOMP/PARAFAC (CP) decomposition. TDNs introduce a CP decomposition
that provides error bounds on equivariance and universality, ensuring consistency under SO(3)
transformations. Additionally, a path-weight sharing mechanism consolidates multiplicity-space
weights across CG paths, significantly reducing the parameter count from O(cL3) to O(c) with
c the parameter count of weight of each path. The resulting layer has expressive power close to
conventional TP while lowering computational complexity from O(L6) to O(L4). We validate TDNs
on a newly curated relaxation dataset with 105 million DFT-calculated molecular snapshots, along
with the established OC20 and OC22 datasets, demonstrating competitive accuracy with substantial
computational speedup.

2 Preliminaries and Related Work

Clebsch–Gordan (CG) tensor product is a fundamental operation widely used as the backbone for
SO(3)-equivariant neural network, enabling the fusion of feature fields at different angular degrees.
We discuss the formal definition of CG tensor product with the maximum angular degree L. Consider
two feature fields x =

⊕L
ℓ1=0 x

(ℓ1) and y =
⊕L

ℓ2=0 y
(ℓ2), where x(ℓ1),y(ℓ2) are type-ℓ1 and

type-ℓ2 irreducible representations (irreps) of SO(3). The CG tensor product fuses a pair of SO(3)-
representations x(ℓ1) and y(ℓ2) into every admissible output type |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 via the
CG coefficients Cℓ3,m3

ℓ1,m1,ℓ2,m2
, defined as:

(x(ℓ1)⊗CGy(ℓ2))(ℓ3)m3
=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

Cℓ3,m3

ℓ1,m1,ℓ2,m2
x(ℓ1)
m1

y(ℓ2)
m2

, −ℓ3 ≤ m3 ≤ ℓ3. (1)

A triple (ℓ1, ℓ2, ℓ3) satisfying the CG selection rule |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 is referred to as a path,
and each path constitutes an independent SO(3)-equivariant mapping. Collecting the contributions
from all admissible paths, the complete CG tensor product is expressed as:

x⊗CG y =

L⊕
ℓ1=0

L⊕
ℓ2=0

min(ℓ1+ℓ2, L)⊕
ℓ3=|ℓ1−ℓ2|

(x(ℓ1)⊗CGy(ℓ2))(ℓ3).

However, the computational complexity of the CG tensor product scales as O(L6) as it involves
O(L3) distinct paths and O(L3) operations per path. This significant cost poses a major bottleneck
in practical implementations, especially when dealing with higher angular degrees. To mitigate this
computational challenge, inspired by tensor decomposition [17] to low-rank tensors, we propose an
efficient approximation based on tensor decomposition techniques, specifically the CP decomposition,
to reduce the complexity while preserving approximate equivariance. The detailed formulation and
implementation of the CP decomposition are presented in the following section.

Invariant and Equivariant Models. Symmetry has been a widely discussed constraint when
developing machine learning methods for predicting chemical properties of molecules. Invariant and
equivariant graph models have been widely used in these cases. Invariant models [18, 2, 19, 20, 21]
aim to consider the rotation invariant features such as pairwise distance as the input, and make use
of these to predict final properties. Equivariant models [3, 4, 22, 23, 24, 25] further incorporate
equivariant features such as pairwise directions and spherical harmonics into the model. These
models are built with equivariant blocks to ensure that output features rotate consistently with any
rotation applied to the input features, thereby maintaining equivariant symmetry.

Tensor Product Acceleration. Among these equivariant networks, tensor product [5, 6, 26, 7, 9, 8, 27,
28] is one of the most important components that fuse two equivariant features into one. It provides a

2

powerful and expressive way [29] to build equivariant networks, while the computational cost of TP
is usually considerable. Therefore, there are several directions to accelerate the equivariant networks.
First direction is to accelerate TP. eSCN [14, 15, 30] proposes to reduce the SO(3) convolution into
SO(2) for TP when one of the inputs of TP is spherical harmonics. Gaunt tensor product [16] makes
use of fast spherical Fourier transformation to perform the TP. The other direction is to apply frame
averaging (FA) [10, 11, 12], which uses group elements from an equivariant set-valued function
called frame to transform the input data and subsequently the model’s output, enabling any models to
obtain the desired symmetries. Although it is flexible and has no requirement for model architectures,
it faces an unsolvable discontinuity problem [11].

3 Tensor Decomposition Networks

This section presents the techniques employed in the proposed Tensor Decomposition Network (TDN).
In Section 3.1, we introduce a CP-decomposition-based approximation for the tensor product, and
in Section 3.2, we detail a path-wise weight-sharing scheme. These strategies effectively reduce both
computational cost and parameter count. In Section 3.3, we analyze the computational complexity of
the approximate tensor product, and in Section 3.4, we discuss its error bound and universality.

3.1 Tensor Product and Its Approximation

The tensor product is a fundamental operation in equivariant neural networks, enabling the coupling
of features across multiple vector spaces. However, direct implementation of the tensor product
incurs significant computational cost. To mitigate this, we introduce a low-rank approximation using
the CANDECOMP/PARAFAC (CP) decomposition to reduce the time complexity.

Tensor Product. Before developing our tensor-product approximation we recall the canonical
definition of the tensor product in the simplest non-trivial two-order case. The multi-order coun-
terpart and its CP decomposition are introduced in Appendix A. In practice, higher-rank tensors
are stored as flattened vectors via a fixed index ordering; this reshaping preserves the vector-space
operations. Without loss of generality, we present the following tensor product definition. Let
V1 = Rd1 , V2 = Rd2 , and V3 = Rd3 be finite-dimensional real vector spaces with ordered bases
{ei}d1

i=1, {fj}d2
j=1, {gk}

d3

k=1. The tensor product V1 ⊗ V2 is the space that corepresents bilinear maps:
for every bilinear m : V1 × V2 → V3 there exists a unique linear map m̃ : V1 ⊗ V2 −→ V3 such that
m(x,y) = m̃(x⊗ y). With respect to the chosen bases, m̃ is encoded by a three–way tensor

M =
(
Mkij

)
∈ V3 ⊗ V∗

1 ⊗ V∗
2

∼= Rd3×d1×d2 ,

and m(ei,fj) =
∑d3

k=1 Mkij gk. For arbitrary x =
∑d1

i=1 xiei and y =
∑d2

j=1 yjfj we have

m(x,y) =

d3∑
k=1

d1∑
i=1

d2∑
j=1

Mkij xi yj gk = M
(
x⊗ y

)
. (2)

CP Decomposition for Tensor Product Approximation. To reduce time complexity and storage
cost of tensor product, we approximate the tensor M via CP decomposition [17] of rank R. The CP
decomposition writes the tensor product as sum of R rank-1 tensors by decomposing the three-way
tensor M such that

Mkij ≈
R∑

r=1

AkrBirCjr, (3)

where A ∈ Rd3×R, B ∈ Rd1×R, and C ∈ Rd2×R are factor matrices capturing the modes of the
tensor. Substituting Eq. (3) into Eq. (2) gives

m(x,y) ≈
d3∑
k=1

d1∑
i=1

d2∑
j=1

(
R∑

r=1

AkrBirCjr

)
xiyjgk.

Then we rearrange the summation to obtain
R∑

r=1

(
d1∑
i=1

Birxi

) d2∑
j=1

Cjryj

(d3∑
k=1

Akrgk

)
.

3

≈ +

𝒙

𝒚

𝒙⊗ 𝒚

… +

𝑴

𝑩𝟏

𝑪𝟏

𝑨𝟏

𝒛
≈

𝒛𝟏
+ … +

ℓ = 0ℓ = 1 ℓ = 2

CG Tensor
ℓ = 1 ℓ = 2

⊗

ℓ = 0

𝑩𝑹

𝑪𝑹

𝑨𝑹

𝒛𝑹

⊗

CP Decompositionℓ = 1

ℓ = 1

Figure 1: Illustration of approximating the CG tensor product using CP decomposition. The input
features x and y both consist of irreps with ℓ = 1, and the CG tensor product produces output feature
z containing irreps with ℓ = 0, 1, 2.

For clarity, the above approximation for the order-two tensor product m(x,y) can be expressed in
matrix form as

m(x,y) ≈ A
(
B⊤x⊙C⊤y

)
, (4)

where ⊙ denotes the Hadamard product. By the universal property that every bilinear map m : V1 ×
V2 → V3 factors uniquely as a linear map m̃ : V1 ⊗ V2 → V3, the tensor product covers important
instances used in equivariant learning, notably the CG tensor product [6] and the Gaunt tensor
product [16]. Therefore, the tensor product approximation can be employed for those specific cases.
In this paper, we primarily discuss CG tensor product approximation.

0 20 40 60 80
Rank R

1e-05

0.0001

0.001

0.01

0.1

1

Ap
pr

ox
im

at
io

n
Er

ro
r

L = 1
L = 2
L = 3

Figure 2: Approximation error for different
rank values R across various maximum an-
gular degrees L.

CP Decomposition for CG Tensor Product. Next,
we introduce the idea to make use of CP decomposi-
tion to accelerate the CG tensor product calculations.
Specifically, the CG coefficient tensor is a three-way
tensor concatenating CG coefficients Cℓ3

ℓ1,ℓ2
of all ad-

missible path (ℓ1, ℓ2, ℓ3) such that

M =

L⊕
ℓ1=0

L⊕
ℓ2=0

min(ℓ1+ℓ2, L)⊕
ℓ3=|ℓ1−ℓ2|

Cℓ3
ℓ1,ℓ2

.

The key idea of CP decomposition is to break down the
CG coefficient tensor M into low-rank matrices. We
demonstrate a simple example of CP decomposition
for TP with ℓ1, ℓ2 = 1 and ℓ3 ∈ {0, 1, 2}, as shown
in Fig. 1. Eq. (4) allows for the simple batch-wise use
of the Hadamard product with a global hyperparameter rank R instead of computing tensor product
per path. The higher R, the more accurate the tensor product result is. For acceleration, we do not
need full rank R and we can use a small R while keeping a low approximation error. We show the
rank-error curve in Fig. 2.

3.2 Path-Weight Sharing Tensor Product

In equivariant neural networks, the CG tensor product couples features that transform under irreducible
representations (irreps) of SO(3). For a maximal degree L, a fully connected CG tensor product
introduces O(L3) paths, each associated with a distinct weight matrix. This leads to a substantial
parameter count, which can hinder model efficiency. To mitigate this, we propose a path-weight
sharing mechanism to reduce the parameter count while retaining equivariance.

Concatenating Irreps into a Single Channel. We first unify the multiplicities across all degrees
ℓ by setting a common multiplicity k. Letting x(ℓ) ∈ Rk×(2ℓ+1) denote the multiplicity-k irrep of
degree ℓ, we concatenate the irrep axes into a single channel:

x̃ = concatLℓ=0 x
(ℓ) ∈ Rk×(L+1)2 .

4

All irreps now share a common multiplicity index within, so the linear projection and CG contraction
over irreps features are executed as batched matrix operations whose operands reside contiguously in
memory; this yields coalesced memory access on GPUs and improved cache locality on CPUs.

Path-Weight Sharing Tensor Product. We further reduce the parameter count by applying a
path-weight sharing scheme. Let W ℓ3

ℓ1,ℓ2
denote the multiplicity-space weight matrix associated with

the path (ℓ1, ℓ2, ℓ3), where 0 ≤ ℓ1, ℓ2, ℓ3 ≤ L and c is the parameter count of weight of each path.
Instead of assigning a unique matrix for each path, we set all such matrices equal to a single learnable
parameter W , i.e. W ℓ3

ℓ1,ℓ2
≡ W for every admissible path (ℓ1, ℓ2, ℓ3). This collapses the O(L3)

distinct weight tensors of the naïve implementation into one, reducing the parameter count from
O
(
cL3
)

to O
(
c
)
. Because the sharing operates exclusively on multiplicity indices, the irrep content

of each block and hence full SO(3) equivariance is retained. The resulting layer therefore retains the
classic CG tensor product structure while offering an order-of-magnitude reduction in parameters.
We also extend this scheme to equivariant linear layers and use it in our main experiments.

3.3 Complexity Analysis of Approximate Tensor Product

In this section, we analyze the computational complexity of the proposed approximate tensor product
using CP decomposition. We first investigate the rank of the tensor product. Let rankCP(M) denote
the CP rank of the three-way tensor M ∈ Rd3×d1×d2 , representing the minimal rank R such that
there is an equality for Eq. (3), i.e.

rankCP(M) = min
{
R ∈ N+

∣∣∣ Mkij =

R∑
r=1

AkrBirCjr

}
.

Determining rankCP(M) exactly is NP-hard [17]. In practice one specifies a rank R as a hyper-
parameter and optimizes the factor matrices A ∈ Rd3×R, B ∈ Rd1×R, C ∈ Rd2×R to minimize a
prescribed loss. A generic upper bound rankCP(M) ≤ min{d1d2, d1d3, d2d3} limits the choices
of R. Consequently, algorithmic pipelines treat R as an external choice, balancing approximation
accuracy against computational cost.

By using CP decomposition, the computational cost for evaluating the approximate tensor product
in Eq. (4) reduces to O

(
R(d1 + d2 + d3)

)
, a significant reduction compared to the full tensor

contraction cost of O(d1d2d3) using Eq. (2). Similarly, the space complexity decreases from
O(d1d2d3) to O(R(d1 + d2 + d3)), which provides substantial savings when R is small.

For the approximation of the CG tensor product, where d1, d2, d3 ∝ O(L2), the computational
complexity further reduces to O(RL2). In our experiments, we select R = 7L2. The error curve for
the CP decomposition with varying R is discussed in Section 4.1.

3.4 Error Bound and Universality Analysis

The error bound and universality analysis provide theoretical guarantees for the CP decomposition of
the tensor product in the proposed Tensor Decomposition Network (TDN). This section establishes the
error bound for both the approximation and equivariance, demonstrating how the approximation error
depends on the spectral tail of the tensor’s singular values. Additionally, we formalize the universality
property of the CP decomposition, showing that as the rank R increases, the CP-decomposition-based
tensor product can accurately approximate any SO(3)-equivariant bilinear map, thereby preserving
the expressive power of the tensor product while reducing computational complexity.

Error Bound of Approximate Tensor Product. Given a rank R ≤ rankCP(M), one seeks
CP-decomposition-based approximation M̂ by minimizing ∥M − M̂∥ in a chosen norm, typically
the Frobenius norm. Although the non-convex optimization may admit spurious local minima, the
optimization of CP decomposition possesses an essentially unique rank-R approximation under
Kruskal’s condition [17], and modern alternating least-squares or gradient methods converge to it
under mild coherence assumptions [31]. For error estimation in our setting, we specialize to the CG
tensor product, where we let all irreps have the same maximum degree and all dimensions equal such
that d = d1 = d2 = d3. Given the singular values σ(n)

k of the mode-n matricization M(n) of M and

5

truncating each M(n) to rank RT = ⌊R1/3⌋, a priori approximation error bound [32] gives

∥∥M −Mtruncated
∥∥
F

≤
(3∑
n=1

∑
k>RT

σ
(n)2
k

)1/2
.

To quantify the loss of SO(3)-equivariance incurred by CP decomposition, let R ∈ SO(3) with
representation the Wigner D-matrix D(R), and the SO(3)-equivariance error is estimated by

ε(R,x,y) = ∥M̂(D(R)x⊗D(R)y)−D(R)M̂(x⊗ y)∥.

The following result bounds this error uniformly over SO(3) with the proof in Appendix B.1.

Theorem 3.1 (Equivariance Error Bound of CP Decomposition): Let CG tensor M ∈ Rd×d×d

and M̂ be the rank-R CP-decomposition-based approximation obtained by Frobenius minimization.
For any rotation R ∈ SO(3) and any bounded representations x,y ∈ Rd, ∥x∥, ∥y∥ ≤ C, we have

ε(R,x,y) ≤ 2C2
(3∑
n=1

∑
k>RT

σ
(n)2
k

)1/2
,

where RT = ⌊R1/3⌋ and σ
(n)
k is the k-th singular value of mode-n matricization of M .

Empirical estimates of both the approximation and equivariance errors are provided in Section 4.1.

Universality of Approximate Tensor Product. Because the tensor product is universal for bilinear
maps, any SO(3)-equivariant bilinear operator can be expressed as a composition of a tensor product
followed by a suitable M onto an equivariant subspace. Consequently, the CP-decomposition-based
approximation developed above inherits this universality: for every equivariant tensor product there
exists a rank-R approximation that converges to it as R → rankCP(M). The following theorem
formalizes the expressivity of our approximation scheme with the proof in Appendix B.2.

Theorem 3.2 (Universality of CP Decomposition): Consider SO(3)-representations x ∈ V1
∼=

Rd1 , y ∈ V2
∼= Rd2 and co-domain V3

∼= Rd3 . For any SO(3)-equivariant bilinear map Φ, there
exist B ∈ Rd1×R, C ∈ Rd2×R, A ∈ Rd3×R such that Φ can be written as

Φ(x,y) = A(B⊤x⊙C⊤y) ∈ V3,

with R ≤ d1d2.

4 Experiments

The effectiveness of our method is assessed on two benchmarks: the PubChemQCR dataset, which
contains millions of molecular relaxation snapshots, and the established Open Catalyst Project (OCP)
datasets. Section 4.1 describes both benchmarks and model configurations. Section 4.2 compares our
model with several baselines on PubChemQCR and its subset PubChemQCR-S, while Section 4.3
and Section 4.4 report results of our model compared to several tensor-product baselines on OC20
and OC22 from OCP, respectively. Section 4.5 then analyses the computational efficiency of our
approach as the maximum angular degree in the tensor product is varied. Section 4.6 further reports
ablations of the proposed components across our model and a second widely used architecture.

4.1 Experimental Setup

Datasets. We use a newly curated dataset PubChemQCR [36], comprising high-fidelity molecular
trajectories derived from the PubChemQC database [37]. This dataset encompasses a diverse
range of molecular systems, capturing potential energy surfaces and force information critical
for understanding molecular interactions. The full dataset consists of 3,471,000 trajectories and
105,494,671 DFT-calculated molecular snapshots, with each snapshot containing molecular structure,
total energy, and forces. For training efficiency, we use the smaller subset, PubChemQCR-S,
comprising 40,979 trajectories and 1,504,431 molecular snapshots for model benchmarking. The

6

Table 1: Comparison of model performance on energy and force predictions for the PubChemQCR
and the PubChemQCR-S dataset. Our model is trained to compare against several baseline methods on
the PubChemQCR-S dataset, including SchNet [18], PaiNN [4], MACE [8], PACE [33], FAENet [10],
NequIP [9], SevenNet [34], Allegro [35], and Equiformer [7]. On the full PubChemQCR dataset, we
compare our model with SchNet [18] and PaiNN [4]. The best results are shown in bold.

VALIDATION TEST

DATASET MODEL
ENERGY MAE FORCE RMSE ENERGY MAE FORCE RMSE
(meV/atom) ↓ (meV/Å) ↓ (meV/atom) ↓ (meV/Å) ↓

S
M

A
L

L
S

U
B

S
E

T

SCHNET 5.30 56.55 5.55 56.22
PAINN 5.13 46.34 5.33 46.92
NEQUIP 7.37 54.78 8.27 55.59
SEVENNET 8.77 47.63 10.21 48.05
ALLEGRO 10.86 60.71 10.80 61.44
FAENET 7.28 60.24 8.70 60.51
MACE 7.54 51.46 7.47 45.70
PACE 6.24 50.54 6.53 51.43
EQUIFORMER 4.69 34.67 5.38 35.11
TDN 4.46 26.94 5.01 26.43

F
U

L
L SCHNET 7.14 65.22 7.71 67.38

PAINN 3.62 38.30 3.49 39.28
TDN 1.65 19.46 1.50 20.44

1 2 3 4 5 6
L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ap
pr

ox
im

at
io

n
Er

ro
r

7 L²
16 log²(L+1)
7 L
(L+1)

(a) Approximation error vs. L

1 2 3 4 5 6
L

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ui

va
ria

nc
e

Er
ro

r

7 L²
16 log²(L+1)
7 L
(L+1)

(b) SO(3)-equivariance error vs. L

1 2 3 4 5 6
L

1

10

100

Ru
nt

im
e

(m
s)

7 L²
16 log²(L+1)
7 L
(L+1)
CG baseline

(c) Runtime vs. L (log–scale)

Figure 3: Scaling behaviours of the CP-decomposition-based tensor product under different maximum
angular degree schedules: (a) approximation error, (b) SO(3)-equivariance error, and (c) runtime.
The error and runtime of the CP decomposition-based tensor product depend on the chosen rank,
multiplicities, and the maximum angular degree, and are not tied to a specific dataset.

subset is split into training, validation, and testing sets using a 60%-20%-20% ratio, while the full
dataset employs an 80%-10%-10% split to assess generalizability. To prevent data leakage, each
trajectory is assigned to only one split in both PubChemQCR and PubChemQCR-S.

The second dataset used in this study is the Open Catalyst Project (OCP) [38], which publishes exten-
sive open datasets of DFT relaxations for adsorbate–catalyst surfaces and hosts public leaderboard
challenges. The flagship releases, OC20 [39] and OC22 [40], encompass thousands of chemical
compositions, crystal facets, and adsorbates, serving as comprehensive benchmarks for surrogate
models aiming to replace computationally intensive calculations. Each release defines multiple tasks,
including Initial-Structure-to-Relaxed-Energy (IS2RE), which require accurate predictions of total
energies, per-atom forces, and relaxed geometries. We conduct experiments on OC20 IS2RE and
OC22 IS2RE, using the data splits and configurations specified in the official OCP repository.

CP Rank Selection. We approximate the fully connected CG tensor product using the rank-R
CP decomposition across various configurations of the maximum angular degree L. Four rank
schedules are evaluated: R = (L + 1)4, R = 16 log2(L + 1), R = 7L, and R = 7L2. For
each configuration we measure (i) Approximation Error: The relative CP tensor product error,
calculated as ∥M(x⊗ y)− M̂(x⊗ y)∥F /∥M(x⊗ y)∥F ; (ii) Equivariance Error: The expected
SO(3)-equivariance error, defined as ER,x,y

[
ε(R,x,y)

]
, where the expectation is averaged over

7

1000 random rotations R and random vectors x,y; and (iii) Execution Time: The runtime for the
CP-decomposition-based tensor product under each rank schedule. Among the tested schedules, the
quadratic schedule R = 7L2 consistently achieves the best accuracy-efficiency trade-off, while also
requiring significantly less computation time compared to the CG tensor product baseline. Thus, this
schedule provides the best balance between accuracy and computational cost and is adopted for all
subsequent experiments. Further rank ablations are described in Appendix D.

Model Design. Building on the capabilities of graph transformers, we develop the Tensor-
Decomposition Network (TDN) by modifying the publicly available Equiformer architecture [7].
Specifically, we replace every channel-wise linear projection, normalization layer, and activation
in Equiformer with batched matrix operations that act simultaneously on the multiplicity dimen-
sion of each irrep block, eliminating the need for costly slicing and reshaping between tensor and
vector representations. Additionally, the depth-wise tensor product mechanism is removed and
the core CG tensor products within the self-attention mechanism are substituted with our rank-R
CP-decomposition-based tensor product from Section 3.1, integrated with the path-weight-sharing
scheme from Section 3.2. This design preserves the expressive power of CG tensor product while
significantly improving memory and computational efficiency. Note that for each maximum degree L,
we precompute a rank-R CP decomposition of the CG coefficient tensor once and cache the factors.
These factors are treated as constants during all training runs. We further integrate the equivariant
linear layer with the path-weight-sharing scheme. For the OCP dataset, the same model architecture is
applied and a subset of experiments additionally incorporate initial node embeddings following [25].
The detailed model configurations for TDN are described in Appendix C.

Baseline Implementations. For the PubChemQCR benchmark, we reimplement each baseline
model based on its official repository. Hyperparameters are adopted from the best configurations
reported in the original papers or, if unspecified, are tuned using the PubChemQCR-S dataset. All
model configurations of baseline models are described in Appendix C.

4.2 Results on PubChemQCR

We evaluate our method on both PubChemQCR-S and the full PubChemQCR dataset. For the
small split we compare against nine state-of-the-art models: SchNet [18], PaiNN [4], MACE [8],
PACE [33], FAENet [10], NequIP [9], SevenNet [34], Allegro [35], and Equiformer [7]. On the full
PubChemQCR dataset, we benchmark against SchNet and PaiNN, the only baselines that scale to its
size within our hardware budget. Performance is reported as mean absolute error (MAE) for energies
and root-mean-square error (RMSE) for forces over the validation and testing splits. Note that all
results are selected based on the lowest validation energy error. The results are shown in Table 1, the
proposed TDN model achieves the lowest energy and force prediction errors across PubChemQCR-S
and the full PubChemQCR dataset, outperforming all baseline methods. In addition, the performance
of TDN improves further as the size of the dataset increases.

Training Setup. Across both the PubChemQCR and PubChemQCR-S benchmarks, we adopt a
uniform training protocol: a cutoff radius of 4.5 Å; the Adam optimizer with an initial learning rate
of 5× 10−4; and a REDUCELRONPLATEAU scheduler with a patience of 2 epochs. All models are
trained for up to 100 epochs on PubChemQCR-S and up to 15 epochs on the full PubChemQCR
dataset. Unless otherwise noted, experiments are executed on NVIDIA A100-80GB GPUs.

4.3 Results on OC20

Table 2 summarizes our performance on the principal OC20 task IS2RE-DIRECT, which predicts the
relaxed adsorption energy directly from the initial geometry (no noisy-node auxiliary loss). We bench-
mark against the widely-used baselines reported to date, including SchNet [18], DimeNet++ [41],
GemNet-dT [19], SphereNet [20], Equiformer [7] and EquiformerV2 [15]. Metrics follow the official
OC20 protocol: energy mean absolute error (MAE, eV) and energy within threshold (EwT, %) in
IS2RE-DIRECT for four validation sub-splits: distribution adsorbates and catalysts (ID), out-of-
distribution adsorbates (OOD-Ads), out-of-distribution catalysts (OOD-Cat), and out-of-distribution
adsorbates and catalysts (OOD-Both). The IS2RE-DIRECT results are presented in Table 2, demon-
strating that our model achieves performance comparable to Equiformer while being more efficient,

8

Table 2: Comparison of model performance on energy predictions for OC20 IS2RE-DIRECT
validation set without noisy-node auxiliary loss. Our model is trained to compare against several
baseline methods, including SchNet [18], DimeNet++ [41], GemNet-dT [19], SphereNet [20],
Equiformer [7] and EquiformerV2 [15]. The best results are shown in bold and the second best
results are shown with underlines.

ENERGY MAE (eV) ↓ EWT (%) ↑
MODEL ID OOD ADS OOD CAT OOD BOTH AVERAGE ID OOD ADS OOD CAT OOD BOTH AVERAGE

SCHNET 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 2.22 3.03 2.38 2.65
DIMENET++ 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.40 2.56 3.42
GEMNET-DT 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 2.24 4.37 2.38 3.38
SPHERENET 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
EQUIFORMER 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93
EQUIFORMERV2 0.5161 0.7041 0.5245 0.6365 0.5953 - - - - -

TDN 0.5085 0.6668 0.5104 0.5875 0.5683 5.21 2.54 5.04 2.98 3.94

as detailed in Section 4.5. This highlights the effectiveness of our architecture in maintaining accuracy
while significantly reducing computational costs.

Training Setup. For the IS2RE-DIRECT task, we follow Equiformer’s optimization setup [7] by a
maximum angular degree L = 1, an AdamW optimizer with a learning rate of 2× 10−4 and a weight
decay of 10−3, a batch size of 32, and a cosine-decay learning-rate schedule. A warm-up is employed
for 2 epochs on IS2RE-DIRECT, with a warm-up factor of 0.2; the cosine decay then runs over 30
training epochs. IS2RE-DIRECT experiments are run on a single NVIDIA RTX A6000-48GB GPU.

4.4 Results on OC22

Table 3: Comparison of model performance on en-
ergy predictions for OC22 IS2RE-DIRECT testing
set. We compare with several baseline methods, in-
cluding SchNet [18], DimeNet++ [41], PaiNN [4],
GemNet-dT [19], and coGN [42]. The best results
are shown in bold and the second best results are
shown with underlines.

MODEL
MAE (ID) MAE (OOD) AVERAGE

(eV) (eV) (eV)

SCHNET 2.00 4.85 3.42
DIMENET++ 1.96 3.52 2.74
PAINN 1.72 3.68 2.70
GEMNET-DT 1.68 3.08 2.38
COGN 1.62 2.81 2.21
TDN 1.49 2.92 2.20

Following the OC20 evaluation protocol, we
evaluate on the OC22 IS2RE-DIRECT test set,
which predicts relaxed energy directly from the
initial structure and omits the noisy-node aux-
iliary loss. We benchmark against strong base-
lines up to date as listed in Table 3 and re-
port mean absolute error (MAE, eV) for the in-
distribution (ID) and out-of-distribution (OOD)
splits by averaging across the four standard
OC22 sub-splits using the same split scheme
as OC20 IS2RE-DIRECT task. As summarized
in Table 3, TDN achieves the lowest ID MAE
and the best overall average MAE, and it attains
the second-best OOD MAE, validating the high
effectiveness of TDN.

Training Setup. On OC22 IS2RE, we use the
same optimization setup as OC20 by a maximum angular degree L = 1, an AdamW optimizer with
a learning rate of 2× 10−4, a weight decay of 10−3, a batch size of 32, and a cosine learning-rate
decay with a 2-epoch warm-up for 1000 epochs on a single NVIDIA A100-80GB GPU.

4.5 Efficiency of CP-Decomposition-Based Tensor Product

Table 4: Throughput and parameter count comparison be-
tween TDN and Equiformer across different values of maxi-
mum degree L.

MODEL THROUGHPUT (samples/sec) PARAMETERS

EQUIFORMER (L=1) 311.7 12.1M
TDN (L=1) 770.8 (× 2.47) 4.5M (× 0.37)
EQUIFORMER (L=2) 71.9 27.9M
TDN (L=2) 312.4 (× 4.34) 4.5M (× 0.16)
EQUIFORMER (L=3) 26.1 54.7M
TDN (L=3) 220.4 (× 8.44) 4.5M (× 0.08)

To evaluate the speed-up achieved
by our CP-decomposition-based ten-
sor product in Section 3.1, we bench-
mark its inference runtime against
the fully connected CG tensor prod-
uct implementation in e3nn. As
shown in Fig. 3c, the proposed ap-
proximation accelerates by factors of
4.0×, 4.8×, 15.0×, 26.7×, 47.6×,
and 83.6× for maximum degrees L =
1, 2, 3, 4, 5, and 6, respectively.

9

Since TDN is derived from Equiformer by replacing each CG block with CP decomposition and
incorporating path-weight sharing, and removing depth-wise tensor product mechanism, we further
benchmark end-to-end throughput and parameter count for both networks on a single NVIDIA A100-
80GB GPU and Xeon Gold 6258R processor with a batch size of 128; detailed model configurations
are provided in Appendix D. The results in Table 4 show that TDN processes 2.47× to 8.44× more
structures per second and uses 63%–92% fewer parameters than Equiformer. As the maximum degree
L increases, TDN achieves higher throughput and requires fewer parameters. A comprehensive time
ablation of CP decomposition and path-weight sharing mechanism is provided in Table 7.

4.6 Efficiency Ablation of CP-Decomposition-Based Tensor Product

Table 5: Efficiency ablation of the path-weight
sharing tensor product (PS) and CP-decomposition-
based tensor product (CP). Results are shown for
TDN and NequIP [9] on PubChemQCR-S dataset.

MODEL TRAINING TIME (min/epoch)

TDN w/o CP + PS 19.0
TDN 4.2 (× 0.22)

NEQUIP 7.5
NEQUIP + CP +PS 2.0 (× 0.26)

To further evaluate the efficiency contributions
of our proposed components, we perform ab-
lations on the PubChemQCR-S dataset by re-
moving the path-weight sharing tensor product
and the CP decomposition of TDN while hold-
ing all other components fixed. As shown in
Section 4.6, starting from TDN, enabling both
mechanisms reduces training time by roughly
78%. TDN is trained with a maximum degree
L = 2, four graph transformer layers, a hidden
dimension of 64. We also evaluate NequIP [9]
by augmenting the base model with path-weight sharing tensor product and CP decomposition.
This cuts computational cost nearly 74%. NequIP is trained with a maximum degree L = 2, four
interaction blocks, and multiplicity 64. All experiments are conducted on a single NVIDIA RTX
A6000-48GB GPU. A full table of ablation studies including accuracy results is presented in Table 9.

5 Limitations

Our approach accelerates SO(3)-equivariant tensor products by replacing the full CG tensor product
with a low-rank CP decomposition. We substantiate both its theoretical speed-up and its empirical
efficacy across multiple benchmarks. One limitation of our approach is rank selection: the minimal
CP rank needed to attain a given approximation error is unknown in general, and computing it
exactly is NP-hard [17]. We therefore employ an empirical rank scheduler; however, this scheduler
is tailored to the CG tensor and must be re-derived when extending to other equivariant tensor
products. A second limitation is that path-weight sharing mechanism, while reducing parameters
and memory, can introduce a small accuracy drop. In future work, we will (i) study broader families
of group-equivariant tensor products, e.g., SO(2) convolution [14], Gaunt tensor products [16], or
more complex tensor products [43], to characterize their optimal rank profiles and develop general
rank-selection criteria and adaptive rank selector, and (ii) design adaptive path-selection and grouping
strategies that preserve the efficiency benefits of weight sharing while recovering performance.

6 Summary

In this work, we present Tensor Decomposition Networks (TDNs), a novel framework designed to
accelerate the computationally intensive Clebsch-Gordan (CG) tensor product in SO(3)-equivariant
networks through low-rank tensor decomposition. By leveraging CANDECOMP/PARAFAC (CP)
decomposition and implementing path-weight sharing mechanism, TDNs effectively reduce both
parameter count and computational complexity while preserving the expressive power of conventional
CG tensor products. We also analyze time complexity, derive approximation error bounds, and
establish universality of our approach, providing theoretical guarantees. Extensive evaluations on a
newly curated PubChemQCR dataset and commonly used OC20 and OC22 benchmarks demonstrate
that TDNs achieve comparable predictive accuracy to state-of-the-art models while significantly
reducing runtime. The proposed framework provides a plug-and-play alternative to conventional CG
tensor products, making it a promising approach for large-scale molecular simulations.

10

Acknowledgments

SJ acknowledges support from ARPA-H under grant 1AY1AX000053, National Institutes of Health
under grant U01AG070112, and National Science Foundation under grant IIS-2243850. XQ acknowl-
edges support from the Air Force Office of Scientific Research (AFOSR) under grant FA9550-24-1-
0207. We acknowledge Lambda, Inc. and NVIDIA for providing the computational resources for this
project.

References
[1] Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, ..., and Shuiwang

Ji. Artificial intelligence for science in quantum, atomistic, and continuum systems. Foundations
and Trends® in Machine Learning, 18(4):385–912, 2025.

[2] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In International Conference on Learning Representations, 2019.

[3] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.

[4] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. In International Conference on
Machine Learning, pages 9377–9388. PMLR, 2021.

[5] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

[6] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[7] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d
atomistic graphs. In The Eleventh International Conference on Learning Representations, 2022.

[8] Ilyes Batatia, David Peter Kovacs, Gregor NC Simm, Christoph Ortner, and Gabor Csanyi.
Mace: Higher order equivariant message passing neural networks for fast and accurate force
fields. In Advances in Neural Information Processing Systems, 2022.

[9] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature communications,
13(1):2453, 2022.

[10] Alexandre Agm Duval, Victor Schmidt, Alex Hernandez-Garcia, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pages 9013–9033.
PMLR, 2023.

[11] Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant frames and the impossibil-
ity of continuous canonicalization. arXiv preprint arXiv:2402.16077, 2024.

[12] Yuchao Lin, Jacob Helwig, Shurui Gui, and Shuiwang Ji. Equivariance via minimal frame aver-
aging for more symmetries and efficiency. In Proceedings of the 41st International Conference
on Machine Learning, pages 30042–30079, 2024.

[13] Behrooz Tahmasebi and Stefanie Jegelka. Generalization bounds for canonicalization: A
comparative study with group averaging. In The Thirteenth International Conference on
Learning Representations.

[14] Saro Passaro and C Lawrence Zitnick. Reducing so (3) convolutions to so (2) for efficient
equivariant gnns. arXiv preprint arXiv:2302.03655, 2023.

11

[15] Yi-Lun Liao, Brandon M Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved
equivariant transformer for scaling to higher-degree representations. In The Twelfth International
Conference on Learning Representations, 2024.

[16] Shengjie Luo, Tianlang Chen, and Aditi S Krishnapriyan. Enabling efficient equivariant
operations in the fourier basis via gaunt tensor products. In The Twelfth International Conference
on Learning Representations, 2024.

[17] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[18] Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical
Physics, 148(24), 2018.

[19] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
graph neural networks for molecules. Advances in Neural Information Processing Systems,
34:6790–6802, 2021.

[20] Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji.
Spherical message passing for 3d molecular graphs. In International Conference on Learning
Representations, 2022.

[21] Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. ComENet: Towards complete
and efficient message passing for 3D molecular graphs. In The 36th Annual Conference on
Neural Information Processing Systems, pages 650–664, 2022.

[22] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for SO(3)-equivariant networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 12200–12209, 2021.

[23] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron
Dror. Learning from protein structure with geometric vector perceptrons. In International
Conference on Learning Representations, 2021.

[24] Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based
molecular potentials. In International Conference on Learning Representations, 2022.

[25] Eric Qu and Aditi S. Krishnapriyan. The importance of being scalable: Improving the speed and
accuracy of neural network interatomic potentials across chemical domains. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[26] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. Advances in neural information processing
systems, 33:1970–1981, 2020.

[27] Oliver Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess Smidt, and Klaus-Robert
Müller. Se (3)-equivariant prediction of molecular wavefunctions and electronic densities.
Advances in Neural Information Processing Systems, 34:14434–14447, 2021.

[28] Haiyang Yu, Zhao Xu, Xiaofeng Qian, Xiaoning Qian, and Shuiwang Ji. Efficient and equivari-
ant graph networks for predicting quantum Hamiltonian. In Proceedings of the 40th International
Conference on Machine Learning, pages 40412–40424, 2023.

[29] Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks.
arXiv preprint arXiv:2010.02449, 2020.

[30] Xiang Fu, Brandon M Wood, Luis Barroso-Luque, Daniel S Levine, Meng Gao, Misko Dzamba,
and C Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical
property prediction. arXiv preprint arXiv:2502.12147, 2025.

[31] Yuning Yang. On global convergence of alternating least squares for tensor approximation.
Computational Optimization and Applications, 84(2):509–529, 2023.

12

[32] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[33] Zhao Xu, Haiyang Yu, Montgomery Bohde, and Shuiwang Ji. Equivariant graph network
approximations of high-degree polynomials for force field prediction. Transactions on Machine
Learning Research, 2024. Featured Certification.

[34] Yutack Park, Jaesun Kim, Seungwoo Hwang, and Seungwu Han. Scalable parallel algorithm
for graph neural network interatomic potentials in molecular dynamics simulations. Journal of
chemical theory and computation, 20(11):4857–4868, 2024.

[35] Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale
atomistic dynamics. Nature Communications, 14(1):579, 2023.

[36] Cong Fu, Yuchao Lin, Zachary Krueger, Wendi Yu, Xiaoning Qian, Byung-Jun Yoon, Raymundo
Arróyave, Xiaofeng Qian, Toshiyuki Maeda, Maho Nakata, and Shuiwang Ji. A benchmark for
quantum chemistry relaxations via machine learning interatomic potentials, 2025.

[37] Maho Nakata and Tomomi Shimazaki. Pubchemqc project: a large-scale first-principles
electronic structure database for data-driven chemistry. Journal of chemical information and
modeling, 57(6):1300–1308, 2017.

[38] C Lawrence Zitnick, Lowik Chanussot, Abhishek Das, Siddharth Goyal, Javier Heras-Domingo,
Caleb Ho, Weihua Hu, Thibaut Lavril, Aini Palizhati, Morgane Riviere, et al. An introduction
to electrocatalyst design using machine learning for renewable energy storage. arXiv preprint
arXiv:2010.09435, 2020.

[39] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Mor-
gane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst
2020 (oc20) dataset and community challenges. Acs Catalysis, 11(10):6059–6072, 2021.

[40] Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M Wood, Siddharth Goyal, Ab-
hishek Das, Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, et al. The
open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts. ACS Catalysis,
13(5):3066–3084, 2023.

[41] Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and Stephan Günnemann. Fast and
uncertainty-aware directional message passing for non-equilibrium molecules. arXiv preprint
arXiv:2011.14115, 2020.

[42] R Ruff, P Reiser, J Stühmer, and P Friederich. Connectivity optimized nested graph networks
for crystal structures (2023). arXiv preprint arXiv:2302.14102.

[43] YuQing Xie, Ameya Daigavane, Mit Kotak, and Tess Smidt. The price of freedom: Exploring ex-
pressivity and runtime tradeoffs in equivariant tensor products. arXiv preprint arXiv:2506.13523,
2025.

[44] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In International conference on machine learning,
pages 2688–2697. PMLR, 2018.

13

A Multilinear Maps and Tensor Decomposition in Arbitrary Order

Tensor product in arbitrary order. Let N ≥ 2 and let Vi = Rdi for i = 1, . . . , N + 1 be
finite-dimensional real vector spaces equipped with fixed ordered bases {e(i)k }di

k=1. A multilinear
map

m : V1 × · · · × VN −→ VN+1

is uniquely represented by a linear map

m̃ : V1 ⊗ · · · ⊗ VN −→ VN+1, m(x(1), . . . ,x(N)) = m̃
(
x(1) ⊗ · · · ⊗ x(N)

)
.

With respect to the chosen bases, m̃ is encoded by an (N+1)-way tensor

M ∈ VN+1 ⊗ V∗
1 ⊗ · · · ⊗ V∗

N
∼= RdN+1×d1×···×dN ,

defined through

m
(
x(1), . . . ,x(N)

)
=

dN+1∑
iN+1=1

d1∑
i1=1

· · ·
dN∑

iN=1

MiN+1i1···iNx
(1)
i1

· · ·x(N)
iN

e
(N+1)
iN+1

. (5)

CP decomposition in arbitrary order. To lower computational cost, we can approximate M by a
rank-R CP decomposition

MiN+1i1···iN ≈
R∑

r=1

AiN+1r B
(1)
i1r

· · ·B(N)
iNr ,

where A ∈ RdN+1×R and B(i) ∈ Rdi×R (i = 1, . . . , N). Substituting into Eq. (5) and rearranging
the summation the we obtain

m
(
x(1), . . . ,x(N)

)
≈

R∑
r=1

(
d1∑

i1=1

B
(1)
i1r

x
(1)
i1

)
· · ·

(
dN∑

iN=1

B
(N)
iNrx

(N)
iN

) dN+1∑
iN+1=1

AiN+1re
(N+1)
iN+1

 ,

which can be expressed in matrix form

m
(
x(1), . . . ,x(N)

)
≈ A

(
B(1)⊤x(1) ⊙ · · · ⊙B(N)⊤x(N)

)
where ⊙ denotes the Hadamard product.

B CP-Based Tensor Product

B.1 Error Bound of CP-Based Tensor Product

Theorem B.1 (Equivariance Error Bound of CP Decomposition): Let CG tensor M ∈ Rd×d×d

and M̂ be the rank-R CP-decomposition-based approximation obtained by Frobenius minimization.
For any rotation R ∈ SO(3) and any bounded representations x,y ∈ Rd, ∥x∥, ∥y∥ ≤ C, we have

ε(R,x,y) ≤ 2C2
(3∑
n=1

∑
k>RT

σ
(n)2
k

)1/2
,

where RT = ⌊R1/3⌋ and σ
(n)
k is the k-th singular value of mode-n matricization of M .

Proof. Given any rotation R and SO(3)-representations x,y,

∥D(R)x∥ =
√
x⊤D(R)∗D(R)x =

√
x⊤Ix =

√
x⊤x = ∥x∥,

14

and

∥(D(R)⊗D(R))(x⊗ y)∥F =
√
Tr((x⊗ y)⊤(D(R)⊗D(R))∗(D(R)⊗D(R))(x⊗ y))

=
√

Tr((x⊗ y)⊤(D(R)∗D(R)⊗D(R)∗D(R))(x⊗ y))

=
√

Tr((x⊗ y)⊤(I ⊗ I)(x⊗ y))

=
√
Tr((x⊗ y)⊤(x⊗ y))

= ∥x⊗ y∥F
(6)

Since the tensor product Frobenius norm is equal to multiplication of Frobenius norms, we have

ε(R,x,y) = ∥M̂(D(R)x⊗D(R)y)−D(R)M̂(x⊗ y)∥

= ∥M̂(D(R)x⊗D(R)y)−M(D(R)x⊗D(R)y)

+D(R)M(x⊗ y)−D(R)M̂(x⊗ y)∥

≤ ∥M̂(D(R)x⊗D(R)y)−M(D(R)x⊗D(R)y)∥

+ ∥D(R)M(x⊗ y)−D(R)M̂(x⊗ y)∥

= ∥(M̂ −M)(D(R)x⊗D(R)y)∥

+ ∥D(R)(M − M̂)(x⊗ y)∥

= ∥(M̂ −M)(D(R)⊗D(R))(x⊗ y)∥

+ ∥D(R)(M − M̂)(x⊗ y)∥

≤ ∥M̂ −M∥F ∥(D(R)⊗D(R))(x⊗ y)∥F
+ ∥M − M̂∥F ∥x⊗ y∥F

= 2∥M̂ −M∥F ∥x⊗ y∥F
= 2∥M̂ −M∥F ∥x∥∥y∥

(7)

Let Mtruncated be the truncated Tucker approximation of M with multilinear ranks (RT , RT , RT). A
priori approximation error bound [32] gives

∥∥M −Mtruncated
∥∥
F

≤
(3∑
n=1

∑
k>RT

σ
(n)2
k

)1/2
.

CP-Decomposing the Tucker core with a size of (RT , RT , RT) yields CP rank at most R3
T . Therefore,

the truncated Tucker tensor Mtruncated can be written as a CP tensor M̂ with rank at most R3
T ; in

other words, there exists a CP tensor M̂ such that rankCP(M̂) ≤ R3
T and

∥∥M − M̂
∥∥
F

≤
∥∥M −Mtruncated

∥∥
F

≤
(3∑
n=1

∑
k>RT

σ
(n)2
k

)1/2
.

Inserting this to Eq. (7) yields

ε(R,x,y) ≤ 2C2
(3∑
n=1

∑
k>RT

σ
(n)2
k

)1/2
.

15

B.2 Universality of CP-Based Tensor Product

Theorem B.2 (Universality of CP Decomposition): Consider SO(3)-representations x ∈ V1
∼=

Rd1 , y ∈ V2
∼= Rd2 and co-domain V3

∼= Rd3 . For any SO(3)-equivariant bilinear map Φ, there
exist B ∈ Rd1×R, C ∈ Rd2×R, A ∈ Rd3×R such that Φ can be written as

Φ(x,y) = A(B⊤x⊙C⊤y) ∈ V3,

with R ≤ d1d2.

Proof. A bilinear map Φ is uniquely encoded by a third-order tensor T ∈ V3 ⊗ V ∗
1 ⊗ V ∗

2 via
Φ(x,y) = T (x⊗ y) and all equivariant tensors T form the subspace H = (V3 ⊗ V ∗

1 ⊗ V ∗
2)

SO(3) =

HomSO(3)(V1⊗V2, V3). For simplicity, we consider the multiplicity-free case Vi
∼=
⊕L

ℓ=0 H
(ℓ), and

the general case replaces the scalars below by linear maps on multiplicity spaces. Decomposing H
into irreps gives

H ∼=
⊕

ℓ1,ℓ2,ℓ3

HomSO(3)

(
H(ℓ1) ⊗H(ℓ2), H(ℓ3)

)
.

By the Clebsch-Gordan decomposition, HomSO(3)(H
(ℓ1) ⊗H(ℓ2), H(ℓ3)) is one-dimensional when

|ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 and zero otherwise. For each path (ℓ1, ℓ2, ℓ3), there is a unique map
Cℓ3

ℓ1,ℓ2
: H(ℓ1) ×H(ℓ2) → H(ℓ3) with matrix elements the Clebsch-Gordan coefficients Cℓ3,m3

ℓ1,m1,ℓ2,m2
,

as presented by Eq. (1). Therefore, any equivariant bilinear map Φ admits the expansion

Φ =
∑

ℓ1,ℓ2,ℓ3

αℓ3
ℓ1,ℓ2

Cℓ3
ℓ1,ℓ2

,

for some scalars αℓ3
ℓ1,ℓ2

. Now we index coordinates of V1, V2, V3 by i = (ℓ1,m1), j = (ℓ2,m2),
and k = (ℓ3,m3). Let the third-order tensor Tkij = αℓ3

ℓ1,ℓ2
Cℓ3,m3

ℓ1,m1,ℓ2,m2
and then Φ(x,y)k =∑

i,j Tkij xi yj . To write Φ in the CP decomposition form, we take R = d1d2 and index the column
dimension by pairs (i, j). Define B ∈ Rd1×R, C ∈ Rd2×R, and A ∈ Rd3×R by

Bi′,(i,j) = 1[i′ = i], Cj′,(i,j) = 1[j′ = j], Ak,(i,j) = Tkij .

with 1[·] the indicator function. Then (B⊤x)(i,j) = xi and (C⊤y)(i,j) = yj , (B⊤x⊙C⊤y)(i,j) =
xiyj , and therefore (

A(B⊤x⊙C⊤y)
)
k
=
∑
i,j

Tkij xi yj = Φ(x,y)k.

In practice, we approximate T by a lower-rank CP decomposition with computed A,B,C, and
R ≪ d1d2 ∝ (L+ 1)4, corresponding to Fig. 2.

C Model and Training Configurations

PubChemQCR baseline model configuration. Table 6 summarizes the configurations for all
other baseline models. SchNet [18] and PaiNN [4] are used as implemented in the FAIRChem
repository v1. FAENet follows their OC20 release with an O(3) stochastic frame and the “simple”
message-passing variant. For MACE [8], we include the real-agnostic residual interaction block.
For PACE [33], we retain its interaction block and set the edge-booster dimension to 256. For
NequIP [9], MACE, Allegro [35], SevenNet [34], and PACE, we adapt the official repositories to
PyTorch Geometric and use a Bessel basis with polynomial cutoff smoothing, keeping all numerical
settings at their defaults except the irrep settings. For these models, we set identical irrep-channel
dimensions according to Table 6 across irrep blocks. For Equiformer [7], each graph-transformer
layer uses 4 attention heads, and the irreps embedding comprises 128 scalars and 64 vectors. All
tensor-product-based methods, including NequIP, MACE, Allegro, SevenNet, PACE, and Equiformer,
only retain even-parity irreps and use Lmax = 2 except Equiformer for fast training. In addition, all
baseline models are trained with gradient-based force prediction except Equiformer for fast training.

16

Table 6: Configurations including layer counts, hidden (maximum irrep-channel) dimensions, and
batch sizes of baseline models including SchNet [18], PaiNN [4], MACE [8], Equiformer [7],
PACE [33], FAENet [10], NequIP [9], and Allegro [35] for PubChemQCR experiments.

MODEL LAYERS HIDDEN DIMENSION BATCH SIZE

SCHNET 4 128 128
PAINN 4 128 32
FAENET 4 128 64
NEQUIP 5 64 16
SEVENNET 5 128 16
MACE 2 128 8
PACE 2 128 8
ALLEGRO 2 128 8
EQUIFORMER 4 128 32

TDN model configuration. For PubChemQCR and PubChemQCR-S datasets, TDN employs
six graph-transformer layers with MLP attention, an irreps-channel dimension of 256, a maximum
angular degree L = 1, and a graph-transformer layer for the force output head. For the OC20
IS2RE-DIRECT task, TDN adopts the same model configuration and builds the radius graph on
the fly with a cutoff of 5.0 and 500 neighbors. For the OC22 IS2RE task, TDN also uses a similar
configuration with six graph-transformer layers, a cutoff of 12.0 with 20 neighbors, and an additional
degree-9 BOO feature [25] adding to the initial node embedding.

D Additional Ablation Studies

Time ablation of path-weight sharing and CP decomposition. Table 7 presents the time ablation
study of path-weight sharing and CP decomposition over the TDN model. As shown in the table,
CP decomposition significantly increases the GPU and CPU throughput while path-weight sharing
mechanism substantially reduces the parameter count of the model. Note that because TDN removes
the depth-wise tensor-product operator, a TDN without CP decomposition and without path-weight
sharing in the tensor-product and equivariant-linear layers is not identical to the vanilla Equiformer.
All experiments are run on a single NVIDIA A100-80GB GPU and Xeon Gold 6258R processor with
a batch size of 128. All experiments are conducted under identical irrep configurations across varying
L with 256 irrep-channel dimension, six graph transformer layers, and 8 attention heads of each layer.

Table 7: GPU Throughput and parameter count for Equiformer and TDN variants with or without CP
decomposition (CP), path-weight sharing tensor product (PS), path-weight sharing equivariant linear
layer (PS-Linear) across maximum degree L. Values in parentheses indicate CPU throughput.

L MODEL / VARIANT THROUGHPUT (samples/sec) PARAMS

1

EQUIFORMER 311.7 (7.5) 12.1
TDN 770.8 (20.2) 4.5

TDN w/o CP 328.1 4.5
TDN w/o CP + PS 320.6 5.0

TDN w/o CP + PS + PS-Linear 317.8 9.1

2

EQUIFORMER 71.9 (2.4) 27.9
TDN 312.4 (8.7) 4.5

TDN w/o CP 83.7 4.5
TDN w/o CP + PS 82.5 6.3

TDN w/o CP + PS + PS-Linear 82.1 14.6

3

EQUIFORMER 26.1 (0.6) 54.7
TDN 220.4 (5.8) 4.5

TDN w/o CP 26.2 4.5
TDN w/o CP + PS 25.6 8.9

TDN w/o CP + PS + PS-Linear 25.6 21.3

17

Ablation study of CP decomposition rank. To further demonstrate the practical implication of
CP-decomposition-based tensor product and the adopted scheduler, we conduct the ablation study
of ranks over n-body system dataset [44]. In Table 8 of the n-body system experiment, the TDN is
trained with a maximum angular degree L = 2, three interaction blocks, and a hidden dimension
of 72 in 5000 epochs over a single NVIDIA RTX 2080Ti-11GB GPU. As shown in the table, our
adopted schedule uses much smaller ranks yet matches the accuracy obtained with the largest ranks,
corresponding to the results of rank schedule selection in. Note that the largest rank is deduced from
the upper bound in Section 3.3.

Table 8: TDN Rank-sweep table of the n-body system experiment. The last line is TDN without CP
decomposition (CP) and path-weight sharing tensor product (PS).

R n-BODY TESTING MSE EQUIVARIANCE ERROR

10 0.0081 0.60
15 0.0064 0.42
20 0.0051 0.21
28 (OUR SCHEDULER) 0.0040 0.02
81 (HIGHEST RANK) 0.0039 < 0.01
TDN w/o CP + PS 0.0038 -

Ablation of CP-Decomposition-Based Tensor Product for TDN and NequIP. Under the settings
described in Section 4.6, Table 9 shows that for TDN trained for 60 epochs, enabling both mechanisms
yields slightly higher validation energy MAE and force RMSE while reducing training time by roughly
78%, suggesting only a minor effect on predictive accuracy. We also evaluate NequIP [9] trained
for 100 epochs. Adding the path-weight sharing tensor product and CP decomposition preserves
downstream accuracy while cutting computational cost nearly 74%. Note that accuracy metrics are
reported from abbreviated training runs intended only to assess relative trends; the fully tuned and
converged results are reported in Table 1.

Table 9: Ablation study of the path-weight sharing tensor product (PS) and CP-decomposition-based
tensor product (CP). Results are shown for TDN and NequIP [9] on PubChemQCR-S dataset.

MODEL
VALIDATION

ENERGY MAE FORCE RMSE TRAINING TIME

(meV/atom) ↓ (meV/Å) ↓ (min/epoch) ↓
TDN w/o CP + PS 12.74 92.74 19.0
TDN 12.95 96.53 4.2 (× 0.22)

NEQUIP 11.22 90.09 7.5
NEQUIP + CP + PS 11.15 92.49 2.0 (× 0.26)

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are detailed in the
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

19

Justification: We present the complete proofs of our theoretical results in Appendix B.1
and Appendix B.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details of our method for the reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]

Justification: We include the code repository link in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details including data splits, opti-
mization hyperparameters, and model hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: All the datasets we employ are large enough for statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state the computational resources in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly describe the societal impacts in Section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is not relevant to this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all relevant datasets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use the existing datasets to train and evaluate our method.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not use crowdsourcing in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

24

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLM only for grammar editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries and Related Work
	Tensor Decomposition Networks
	Tensor Product and Its Approximation
	Path-Weight Sharing Tensor Product
	Complexity Analysis of Approximate Tensor Product
	Error Bound and Universality Analysis

	Experiments
	Experimental Setup
	Results on PubChemQCR
	Results on OC20
	Results on OC22
	Efficiency of CP-Decomposition-Based Tensor Product
	Efficiency Ablation of CP-Decomposition-Based Tensor Product

	Limitations
	Summary
	Multilinear Maps and Tensor Decomposition in Arbitrary Order
	CP-Based Tensor Product
	Error Bound of CP-Based Tensor Product
	Universality of CP-Based Tensor Product

	Model and Training Configurations
	Additional Ablation Studies

