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Abstract

Training modern LLMs is extremely resource in-
tensive, and customizing them for various deploy-
ment scenarios characterized by limited compute
and memory resources through repeated training
is impractical. In this paper, we introduce FLEX-
TRON, a network architecture and post-training
model optimization framework supporting flexi-
ble model deployment. The FLEXTRON architec-
ture utilizes a nested elastic structure to rapidly
adapt to specific user-defined latency and accu-
racy targets during inference with no additional
fine-tuning required. It is also input-adaptive,
and can automatically route tokens through its
sub-networks for improved performance and effi-
ciency. We present a sample-efficient training
method and associated routing algorithms for
systematically transforming an existing trained
LLM into a FLEXTRON model. We evaluate
FLEXTRON on the GPT-3 and LLama-2 fam-
ily of LLMs, and demonstrate superior perfor-
mance over multiple end-to-end trained variants
and other state-of-the-art elastic networks, all with
a single pretraining run that consumes a mere
7.63% tokens compared to original pretraining.

1. Introduction
Large language models (LLMs) have revolutionized real-
world natural language processing applications and have
showed impressive proficiency in understanding difficult
contexts (Brown et al., 2020; OpenAI et al., 2023; Wei
et al., 2022; Touvron et al., 2023). Nonetheless, the sub-
stantial size of these models, typically running into several
billion parameters, imposes significant constraints on their
utilization in scenarios characterized by limited memory and
computational resources. To address this limitation, model
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Figure 1. High-level overview of the FLEXTRON framework. The
top half of the figure demonstrates how we convert a trained LLM
into an elastic network with input-adaptive routing. As shown in
the bottom half of the Figure, FLEXTRON enables fast, zero-shot
generation of hardware and input-adaptive sub-networks targeting
various accuracy, latency and parameter constraints.

providers typically train multiple model variants for users to
choose from (depending on system memory and computa-
tional constraints) before trying to find model(s) satisfying
the trade-off between efficiency and accuracy. For instance,
the Llama-2 model family (Touvron et al., 2023) includes
three different variants with 7 billion, 13 billion, and 70
billion parameters, while the Pythia family (Biderman et al.,
2023) offers a selection of eight models with sizes ranging
from 80 million to 12 billion parameters.

Training multiple multi-billion parameter models is demand-
ing in time, data, and resources. Adopting a single, cus-
tomizable model with multiple sub-networks for varied
budgets, as seen in Once-for-all (Cai et al., 2019), Sort-
edNet (Valipour et al., 2023), Matformer (Kudugunta et al.,
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2023) and (Stamoulis et al., 2019), simplifies this. These
models typically use a supernet with elastic, nested compo-
nents, but require non-standard, costly architectures with
even longer training than a single model.

Mixture-of-Expert (MoE) networks, while more efficient
than dense models (Fedus et al., 2022; Riquelme et al., 2021;
Jiang et al., 2024), are generally restricted to feedforward
layers and fixed budgets. The Pathways architecture (Dean,
2021; Zhou et al., 2022) highlights the potential of hetero-
geneous expert networks. We advocate for input-adaptive
sub-network selection of different sizes to maximize perfor-
mance and efficiency.

In this paper, we present FLEXTRON, a network architec-
ture and a post-training model optimization framework that
takes the best from MoEs, elastic models and dynamic infer-
ence. The architecture extends the idea of MoE to attention
and feed forward layers. Experts are heterogeneous and
have different sizes via a nested elastic structure to support
efficient model storage, memory bandwidth savings and
ease-of-use. Particular experts are selected via a router con-
ditioned on input data and target deployment constraints.
FLEXTRON is a single model that provides Multiple Models
in One during deployment with no additional finetuning.
Finally, we present a framework where a standard trained
LLM such as GPT-3 and Llama-2 can be efficiently con-
verted to FLEXTRON while using a small fraction of the
training time. Figure 1 provides a high-level overview.

We found that training a router that allows adaptive com-
putation is challenging due to gradient vanishing. Similar
issues arise in normal MoE training, known as expert col-
lapse (Chi et al., 2022), where routers constantly pick the
same path or learns similar experts. To address this issue,
we propose to train a Surrogate Model (SM) that predicts
an LLM’s language loss value given only router choices;
once trained, we freeze it and tune routers to minimize the
language loss solely on SM feedback.

This paper makes the following contributions:

• A novel architecture, called FLEXTRON, that flexibly
adapts to different latency and accuracy targets during
inference with no additional fine-tuning.

• A post-training optimization framework for systemati-
cally transforming existing trained LLMs into dynamic
(input-adaptive) elastic networks.

• New static and dynamic routing algorithms that auto-
matically select the optimal sub-network given a la-
tency target and/or input token. We introduce a novel
surrogate model for effective training of our routers.

• An efficient sampling-based training method for elastic
networks that requires significantly less compute than
existing methods.

2. Background and Notation
Given a model with N layers, each layer can be formal-
ized as Yi = fi(Xi,W i), where i ∈ [1, N ] refers to the
layer index, Xi denotes the layer input, with dimensions of
B × C representing batch × embedding dimension, and
W i denotes the parameters of the layer. We define an elas-
tic network as one that can flexibly adapt its layers to target
specific user-defined objectives such as latency, memory,
accuracy, etc. In this paper, we define each layer of an
elastic network as follows: Yi = fi(Xi,W

j
i ) where each

W j
i , j ∈ [1,K] represents a different parameter matrix for

the same operation fi for layer i. By substituting the original
layer with a candidate layer, we are able to generate an ex-
ponential number of elastic sub-networks (KN choices for
the formulation above, assuming K candidates per layer),
each with different runtime and accuracy characteristics.

Elastic Multi-Layer Perceptron (MLP). FLEXTRON
models utilize a nested structure for elastic MLP layers,
inspired by the Matformer work (Kudugunta et al., 2023).
Nesting enables hidden neurons to be shared between layer-
wise candidates using simple indexing operations, saving
memory and improving efficiency. Formally, elastic MLP
candidates with 2 linear layers have the following format:

MLPj(x) = σ

(
X ·

(
Idj

W (1)
)T) ·

(
Idj

W (2)
)
, (1)

where, Idj
is a diagonal matrix of size D×D where the first

dj diagonal elements being 1 and the rest being 0, with D
being the maximum hidden dimension. In this way, the jth

MLP candidate will only utilize the first dj hidden neurons
from the corresponding shared matrices W . W (1) and
W (2) are the associated two weight matrices in MLP layers,
with W (1),W (2) ∈ RD×C ; σ(·) refers to the non-linear
activation function. For implementation, the diagonal matrix
I can be replaced with a slicing operator that selects only
the first dj rows: Idj

W (1) = W (1)[0 : dj , :]. We constrain
d1 < d2 < ... < dK , where dK = D, to formulate the
nested structure of K experts. Note that the MLP can take a
more complex form when employing SwiGLU activation.

Elastic Multi-Head Attention (MHA). MHA layers con-
stitute a significant proportion of LLM runtime and memory
usage (for KV cache), and making them elastic will improve
overall efficiency. To the best of our knowledge, FLEXTRON
is the first work that supports both elastic MLP and elastic
MHA layers, enabling a richer candidate operation search
space. An elastic MHA candidate uses a subset of attention
heads. Formally, given hidden states X, we define elastic
MHA as follows:

MHAj(x) = Concat(head1, ...headdj ) ·
(
IdjHWO

)
,

headi = Attn(XWQ,i,XWK,i,XW V,i),
(2)
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where, IdjH is a diagonal matrix with the first djH ele-
ments being 1, and the rest are 0s; dj - number of heads
selected, H - size of a single head, L - total number of heads
; WQ,i,WK,i,W V,i ∈ RH×C and WO ∈ RLH×C . Dif-
ferent heads can be computed/selected via weight slicing.

3. FLEXTRON Framework
We now describe the elastic network continued-tuning pro-
cess, and provide more details on automatic sub-network
selection from the trained elastic network.

3.1. Elastic Network Continued-Tuning

We start the elastic continued-tuning process by taking an
existing trained LLM and performing importance ranking
for each neuron/head. Here, using a small set of data sam-
ples, we compute the importance of each neuron/head based
on the accumulated magnitude of activations. For MHA
layers, the importance of each head is calculated as

F
(i)
head =

∑
X

∥Attn(XWQ,i,XWK,i,XW V,i)∥1. (3)

For MLP layers:

F (i)
neuron =

∑
X

∥X
(
W (1),r

)T ∥1, (4)

here W (1),r refers to the rth row of the weight matrix W (1).
In practice, only a small dataset comprising 512 samples is
sufficient (see Section 4 for more details). Once importance
is computed, we permute the respective weight matrices in
the MLP and MHA layers such that neurons/heads are stored
in decreasing order of importance for every individual layer.
Sub-networks can now be constructed by simply indexing
the first several neurons/heads in each layer, thus preserving
essential knowledge encoded in important channels. In
this way, we construct nested elastic layers with parameter
sharing, with channels/heads sorted by importance, such
that the first channels are the most important.

Next, we train all elastic network candidates simultaneously
using a combined loss term as in (Kudugunta et al., 2023).
Since the number of such candidates can be prohibitively
large (for example, there are 464 possible combinations for
the 32-layer LLaMa2-7B model (Touvron et al., 2023)), we
randomly sample a smaller subset of k networks from the
candidate pool to keep the total pretraining time tractable.
Specifically, we randomly generate a one-hot vector si for
each layer i and use it to construct a candidate network Mj ;
here, si ∈ RKi and Ki represents the number of candidate
MLP/MHA operations in layer i. Mj is the random model
indexed by j, where j ∈ [0,K − 1]. The training loss is:

Ljoint =

k−1∑
j=0

L(Mj(x),y), (5)

Elastic MHA

Elastic MLP 25% Width 50% Width 75% Width 100% Width

Heads

Random Selection: 50% Width

Random Selection: 75% # Heads

Heads Heads Heads

Figure 2. Illustration of the elastic continued-tuning phase.

Figure 2 provides an overview of elastic continued-tuning
with random sampling. We provide additional details on
pretraining, including choice of hyper-parameter values and
datasets, in Section 4.

3.2. Automatic Network Selection

Given a large number of possible sub-networks to choose
from, each with different latency, parameter, and accuracy
trade-offs, a natural question arises: can we automatically
determine Pareto-optimal sub-networks given specific con-
straints? In this section, we introduce FLEXTRON’s router
architecture and describe how it helps us automatically se-
lect optimal sub-networks for a given constraint.

The problem can be formalized as follows:

min
St

∑
t

LCE(Mst), s.t.Latency(Mst) ≤ Tt,

Mst = G(M,STt
),

(6)

where M is original network topology, Tt refers to a latency
constraint of index t, and STt

denotes the related selection
matrix; Mst defines the selected topology based on latency
constraint, G(·) is a function for selecting network topology;
LCE refers to the cross-entropy loss. We use a Lagrange
multiplier and impose a constraint to convert the aforemen-
tioned optimization problem into directly minimizing the
following loss term:

L =
∑
t

LCE(Mst) + λ · TT (Mst), (7)

where TT represents the target constraint loss. In what
follows as an example, we explain latency loss between the
constraint Tt and actual model latency Latency(Mst):

TT (Mst) =
∑
t

max(Latency(Mst)− Tt, 0) (8)

Note that the loss can also be extended to other constraints
such as GPU memory as we show later in our experiments.

The model requires an architecture selection mechanism to
support multiple budgets with maximized accuracy. Inspired
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Figure 3. Illustration of how routers are trained via a Surrogate Model (SM). The Surrogate Model is trained to approximate the LLM
language loss value given only routers logits. If the error of the SM is smaller than a predefined threshold, the routers are updated. Updates
are based on (i) the latency loss, ensuring the requested latency matches the real overall latency via a Lookup Table (LUT), and (ii) the loss
from minimization of the SM output. The SM serves as a proxy for the full model’s language loss and allows for simpler backpropagation
due to its smaller size. Once the routers are trained, we discard the SM and finetune the LLM and routers jointly.

by MoEs, we use routers. We define two routing scenarios:
static, where the output depends only on the input latency;
and dynamic, where it is additionally conditioned on the
hidden state. We observe that training routers, even after
the elastic continued-tuning stage, is challenging due to
limited gradient propagation from the final model’s output
loss. As a remedy, we propose using a surrogate model
to predict the LLM’s performance based solely on router
outputs. Given this prediction, routers can be trained to
minimize the expected LM loss of the surrogate model. We
provide additional details on the surrogate model in the
following sections.

FLEXTRON-Static: Static Model Selection. We first
tackle the problem of static model selection, which refers
to automatically selecting sub-networks given only a target
latency T (no input-adaptivity). Here, we insert layer-wise
learnable routers; each router takes the latency requirement
T as input and outputs the choice hi for layer i, thereby
deciding the number of channels/heads to be used for that
layer via expert groups. The router picks the expert with the
following formulation:

si = argmax(Ri(T )), (9)

where R is a small MLP that embeds a scalar value T
(latency) into logits of the size of the predefined set of expert
candidates (in our paper selected to be 4).

To provide a strong and stable signal to the router, we pro-
pose to use a Surrogate Model (SM). Its task is to predict the
value of the full LLM language loss given only logits at the
outputs of the routers. It becomes a proxy for the full model
output error. Once it is learned, we can optimize routers to
minimize the output of the SM. The basic idea is to use the
SM as a loss term that can be minimized. The SM is defined

as a two layer MLP:

r =Concat(R0(T ),R1(T ), ...RN−1(T )),

S(r) = σ(rW T
S1
)W S2

,
(10)

where W S1
and W S2

are weights of size W S1
∈ RP×K·N

and W S2
∈ RP×1; P is an internal hidden dimension.

FLEXTRON-Adaptive: Dynamic Model Selection. Re-
cent work on sparsely-activated MoE networks has demon-
strated that an ensemble of different sub-networks (“ex-
perts”), each specializing in particular input domains, per-
forms better and more efficiently than dense baselines (Fe-
dus et al., 2022; Zhou et al., 2022). Drawing inspiration
from previous studies, FLEXTRON introduces an input-
adaptive routing mechanism to dynamically select optimal
sub-networks based on latency and input, reducing memory
and communication overheads through weight sharing and
array-based indexing.

For input adaptivity, we modify the router design to also
incorporate the current hidden states hi as follows:

si =argmax(Ri(T, hi)),

where Ri(T, hi) = σ(T ·W + hiW
T
Hi

)WRi

(11)

Here, the current hidden features hi are projected into the
embedding space of dimension U by an MLP layer param-
eterized by WHi. Similarly, T is projected via simple
scaling of the matrix W . We limit U to 128. Token-wise
routing decisions are generated by aggregating the latency
embedding vector with the hidden feature embedding vector,
and passing them through a linear layer.

We also extend the surrogate model format described in Eq.
(10) to additionally incorporate the final hidden states hN .
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Hidden states are projected to the dimension of P using
a linear matrix. This projection is then summed with the
latency embedding before applying the activation function.

Training. Figure 3 provides an overview of training routers
via SM. Initially, the main LLM is frozen. Routers are al-
ways updated with gradients from the latency loss defined
in Eq. (8). The Surrogate Model is updated to minimize the
predicted LM loss (via the MSE objective). If the MSE is
below a predefined threshold, then routers are additionally
updated with gradients from the output of the SM to min-
imize the predicted LM loss. In this way, routers learn to
minimize the LM loss in an indirect way, via SM. Once the
routers are trained, we disregard the SM and fine-tune both
the routers and the LLM parameters.

4. Experiments
4.1. Experimental Settings

Model and Dataset. We perform our evaluation on the
GPT-3 and Llama-2 (Touvron et al., 2023) model fami-
lies. GPT-3 is a representative multilingual model fam-
ily (Shoeybi et al., 2019) with 2 and 8 billion parameter
variants (among others); these are pretrained with the NeMo
framework (Kuchaiev et al., 2019). The total number of
trainable parameters for GPT-3-2B is 2 billion, with 1.2
billion non-embedding parameters. The model contains
24 layers, with a hidden dimension of 2048. Each MHA
layer possesses 16 heads. GPT-3-8B comprises 8 billion
parameters, of which 6.4 billion are non-embedding param-
eters. The model contains 32 layers, each with a hidden
dimension of 4096. Each MHA layer possesses 32 heads.
Both models are trained on 1.1 trillion tokens, where data is
obtained from publicly available data sources, comprising
53 languages and code. Both models support a maximum
context length of 4096. We further validate our approach
using the Llama2-7B model (Touvron et al., 2023), a widely
used open-source pre-trained model with 6.5 billion non-
embedding parameters. This model employs a 32-layer
transformer architecture with a hidden dimension of 4096,
incorporating 32 attention heads for each Multi-Head Atten-
tion (MHA) mechanism. We perform neuron/head sorting,
elastic continued-training and automatic network selection
with the same domain data, unless otherwise specified.

Baselines. We compare our method to Mat-
former (Kudugunta et al., 2023), which adopts a
nested structure on MLPs, obtaining 4 variants per MLP
layer by training once. Instead of training the Matformer
models from scratch, we adopt the pretraining strategy
described in Section 3.1. We also compare our method
with smaller pretrained models obtained with the same data
and training recipe. We choose GPT3-2B and GPT3-8B,
our base model, and GPT3-843M, a smaller version of

GPT3 with embedding size of 1024, 24 layers and 16 heads.
We additionally compare our method with representative
open-source model families, including Pythia (Biderman
et al., 2023), OpenLLaMA (Geng & Liu, 2023), and models
generated by post-hoc compression methods, including
Sheared-LLaMA (Xia et al., 2023), Compresso (Guo et al.,
2023), LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos
et al., 2024), and LaCo (Yang et al., 2024).

Training. As described in Section 3.1, during elastic net-
work pretraining, we first perform importance sorting of
each head/neuron in MHA/MLP layers using a tiny fraction
(512 samples) of the full training set . We then perform
training of the sorted and permuted elastic model. We use a
batch-size of 256, and tune the model for 80000 steps. At
each step, we randomly construct 3 sub-models together
with the full model; perform gradient accumulation for all 4
models for a single update. We perform lightweight tuning
for automatic network selection: we freeze the backbone
parameters and only tune the routers and surrogate models
for 1000 steps using a batch size of 256. For static router
tuning, we observe a consistent performance ranking over
multiple data domains for sub-models, and thus use only
single domain data (Wikipedia (Foundation)). During the
input-adaptive router training, which is harder, we use the
subset of pretraining dataset.

4.2. Results

FLEXTRON Performance. We validate the effectiveness
of FLEXTRON framework on multiple representative down-
stream tasks in Table 1. These tasks include: ARC-
easy (Clark et al., 2018), LAMBADA (Paperno et al.,
2016), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2021), MMLU(Hendrycks et al., 2020), and Hel-
laSwag (Zellers et al., 2019). We follow the practice in Xia
et al. (2023) and report the 5-shot and 10-shot performance
for MMLU and Hellaswag, respectively. We report zero-
shot performance for other tasks. In Table 1, FLEXTRON-
8B and FLEXTRON-Llama2-7B denote the Flextron models
built upon GPT3-8B and Llama2-7B, respectively. “Dy-
namic” refers to the model with input-adaptive router while
“static” represent the static case where all tokens select the
same sub-network given the latency/memory requirements.
× suffix indicates the remaining latency of the model.

Additionally, we measure the latency of FLEXTRON mod-
els in Table 2, with latency measured using TensorRT-
LLM (NVIDIA, 2023). It’s worth noting that FLEXTRON-
8B models are multi-lingual models with a vocabulary size
of 320, 000, and the embedding operation incurs a latency
of 1.82s, constituting 17.4% of full latency. For comparison,
the embedding layer of Llama2-7B incurs a latency of 0.69s,
constituting 7.2% of the full latency. All results are tested
on the NVIDIA A100 80GB GPU, with latency measured
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Table 1. Downstream task evaluation of FLEXTRON family models and comparison with representative open-source models and compres-
sion methods. We report the zero-shot performance of ARC-easy (Clark et al., 2018), LAMBADA (Paperno et al., 2016), PIQA (Bisk
et al., 2020), and WinoGrande (Sakaguchi et al., 2021). We also report the 5-shot performance of MMLU(Hendrycks et al., 2020), and the
10-shot performance of HellaSwag (Zellers et al., 2019). Here, #params refers to the number of non-embedding parameters. Note that
for dynamic FLEXTRON models, we use the averaged number of activated non-embedding parameters.

# Params ARC-E LAMBADA PIQA Winogrande MMLU (5) Hellaswag (10) Avg.

Full 6.4 B 71.7% 69.7% 79.4% 68.8% 35.4% 75.9% 66.8%

Static-0.7× 4.1 B 66.7% 62.9% 75.1% 63.9% 28.7% 70.6% 61.3%
Dynamic-0.7× 4.3 B 67.0% 64.8% 75.9% 64.1% 30.0% 70.4% 62.0%

Static-0.6× 3.9 B 66.2% 62.8% 75.6% 62.7% 28.8% 68.8% 60.8%
Dynamic-0.6× 3.9 B 66.2% 63.7% 76.1% 62.7% 29.1% 69.2% 61.2%

Static-0.5× 3.4 B 64.2% 62.0% 74.9% 61.7% 25.1% 66.8% 59.1%

FLEXTRON-8B

Dynamic-0.5× 3.3 B 65.0% 62.5% 75.8% 61.8% 27.1% 67.8% 60.0%

Full 6.5 B 75.1% 71.5% 77.5% 69.1% 43.0% 78.1% 69.1%

Static-0.7× 4.2 B 65.8% 64.2% 75.6% 62.3% 32.5% 67.1% 61.3%
Dynamic-0.7× 4.1 B 68.6% 65.1% 76.1% 63.7% 35.9% 69.4% 63.1%

Static-0.6× 4.0 B 66.1% 63.8% 75.0% 62.1% 31.9% 68.0% 61.2%
Dynamic-0.6× 3.9 B 67.1% 63.8% 74.9% 62.2% 34.5% 69.7% 62.0%

Static-0.5× 3.5 B 65.9% 61.7% 74.8% 61.9% 30.3% 67.6% 60.4%

FLEXTRON-Llama2-7B

Dynamic-0.5× 3.4 B 66.5% 62.9% 74.1% 62.0% 33.4% 68.5% 61.2%

Llama2-7B 6.5 B 75.2% 68.2% 78.8% 69.2% 45.3% 78.6% 69.2%
OpenLLaMA-3Bv2 3.2 B 63.7% 59.1% 78.1% 63.3% 25.7% 71.6% 60.3%
OpenLLaMA-7Bv2 6.5 B 69.5% 63.8% 79.9% 66.0% 40.4% 76.6% 66.0%
GPT3-8B 6.4 B 70.1% 70.5% 79.7% 69.8% 40.2% 77.7% 68.0%
Pythia-1.4B 1.2 B 53.9% 46.8% 70.6% 57.1% 25.6% 52.2% 51.0%
Pythia-2.8B 2.5 B 57.9% 50.1% 73.8% 58.6% 26.8% 60.0% 54.5%

Open-Source

Pythia-6.9B 6.4 B 60.2% 47.1% 75.2% 59.9% 25.5% 64.4% 55.4%

Sheared-LLaMA-1.3B 1.2 B 61.5% 61.0% 73.4% 57.9% 25.7% 60.7% 56.7%

Compressed

Sheared-LLaMA-2.7B 2.5 B 67.0% 68.4% 75.8% 64.2% 26.4% 70.8% 62.1%
NutePrune 3.2 B 51.7% - 71.0% 57.5% - 55.9% -
LLM-Pruner 4.5 B 59.2% - 73.4% 64.2% 23.9% 56.5% -
Compresso 4.5 B 66.0% - 72.9% 63.4% 25.9% - -
LaCo 4.7 B - - 69.8% - 26.5% 55.7% -
SliceGPT 4.8 B - - 66.2% - 28.9% 50.3% -

when the prompting length and generation length is set to 8
and 512, respectively. We use the batch size of 1.

Table 2. Latency of FLEXTRON family models. The latency is
measured based on TensorRT-LLM (NVIDIA, 2023) and NVIDIA
A100 80GB GPU. We measure the latency when the prompting
length and generation length is set to 8 and 512, respectively. We
use the batch size of 1. The reported numbers present (# non-
embedding params) / (latency).

Full 0.7× 0.6× 0.5×
FLEXTRON-8B 6.4B / 10.43s 4.1B / 8.02s 3.9B / 6.39s 3.4B / 5.48s
FLEXTRON-Llama2-7B 6.5B / 9.64s 4.1B / 7.09s 3.9B / 5.41s 3.4B / 4.91s

Neural Scaling Laws. Recent work (Kaplan et al., 2020;
Hoffmann et al., 2022) has empirically demonstrated scaling
laws for LLMs with respect to model size. Specifically,
model capacity scales as follows:

L(N) = (N/Nc)
−αN + EN , (12)

here, N denotes the number of non-embedding model pa-
rameters, and Nc, αN , and EN are model-dependent coeffi-

cients. This curve typically utilizes multiple independently
trained models to capture the correlation between model
size and validation loss. For FLEXTRON, we extend the
model scaling law along two dimensions: (1) we observe
that the model’s capacity, which grows with the number of
sub-model parameters, follows the existing model scaling
law, and (2) we establish a power law relationship between
the model’s capacity and the input latency.

Figure 5 plots the trade-off between validation loss and
latency (left) / number of non-embedding parameters (right)
for both FLEXTRON-Static and input-adaptive FLEXTRON-
Adaptive routing of the trained elastic model. MHA layers
typically introduce fewer parameters but incur high latency;
as such, elastic MHA is favorable in the higher latency
regimes. This is evident when comparing FLEXTRON’s
performance to Matformer (Kudugunta et al., 2023), which
only leverages elastic MLP. In Figure 5, we fit the data
points of sub-networks with Equation 12, and provide the
fitted parameters for the scaling equation in Table 3; this
suggests a useful guideline for model practitioners to choose
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Figure 4. The Flextron-Llama2-7B model family demonstrates su-
perior MMLU (Hendrycks et al., 2020) performance compared to
both open-source models and existing post-hoc compression meth-
ods. Specifically, we compare against models from the Pythia (Bi-
derman et al., 2023) family and the OpenLLaMA-v2 (Geng &
Liu, 2023) family. Additionally, our method is compared with
Sheared-LLaMA (Xia et al., 2023), Compresso (Guo et al., 2023),
LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024),
and LaCo (Yang et al., 2024). × suffix indicates the remaining
number of non-embedding parameters of the model.

the proper model that simultaneously meets latency, number
of parameters, and model capacity constraints.

Table 3. Fitted parameters for Equation 12.
NC αN EN

Matformer (Kudugunta et al., 2023) 1.680 52.74 1.729
FLEXTRON (Static) 1.465 38.57 1.733
FLEXTRON (Input-adaptive) 1.289 25.52 1.729

Training Efficiency. FLEXTRON demonstrates excellent
training efficiency, as detailed in Table 4. During elastic
continued-training, we utilize only 89.9 billion tokens for
both the GPT-3 and LLama2 models, while for router tuning,
we use 1.049 billion tokens.

Table 4. Flextron training costs compared to pretraining cost. We
report the number of tokens to illustrate the training cost.

Flextron Training Cost Pretraining Cost
Elastic Continued-Tuning Router Tuning

GPT-3 89.9 B (7.54%) 1.049 B (0.09%) 1.1T
Llama2 89.9 B (4.50%) 1.049 B (0.05%) 2T

5. Analysis
5.1. FLEXTRON Learnings & Insights

Routers Assign More Computation to Deeper MLP lay-
ers. During inference, MHA and MLP layers have similar
latency, despite having different sizes in terms of parameters.
For instance, in the GPT3-2B model, processing each MHA
and MLP layer requires 3.830 ms and 3.016 ms, respec-
tively. In practical scenarios where low latency is crucial,
understanding how to distribute compute and the number of
model parameters among MLP and MHA layers becomes

essential. FLEXTRON provides us with a test-bed. In Fig-
ure 6, for GPT3-2B model, we replace the full MHA/MLP
layer with elastic candidates and calculate the performance
degradation in terms of averaged LM loss. We compute the
averaged LM loss over 7 data domains, similar to previous
sections. Two conclusions can be drawn: (1) replacing the
full MLP layers results in higher performance degradation;
(2) replacing deep layers, especially deep MLP layers, sig-
nificantly hurts performance. Additionally, we visualize two
Llama2-7B-based models with different latency targets, op-
timized by learnable static routers in Figure 14. We observe
that the learned structure aligns with the previous conclu-
sions. We visualize other optimized architectures in the
Appendix D and provide guidelines of architecture designs.

Input-adaptive Routers Assign More Computation to
Hard Samples. The necessity of input-adaptive routing
naturally comes from data diversity. Typically, “easy”
datasets only need small-scale models for good perfor-
mance, while “hard” datasets require large-scale models.
This observation motivated us to include support for input-
adaptive routing in FLEXTRON. We evaluate this hypothesis
in Figure 8. Here, we evaluate the sub-networks optimized
by routers, with different latency, across multiple data do-
mains. We mainly test on three categories: (1) English
datasets: Arxiv, Books3 (Gao et al., 2020), Wikipedia (Foun-
dation), (2) multilingual datasets: Korean, German, and
(3) code data: HTML, JAVA. On GPT3-2B, we visualize
the performance degradation of networks, calculated by
(PPLsub/PPLfull), and plot their correlation with latency. As
a concrete example, notice that the curves for code datasets
are much flatter than others, indicating that the task only re-
quires a relatively small number of parameters. Conversely,
multilingual datasets require more model parameters.

The input-adaptive models exhibit similar behavior. In Fig-
ure 9, we selected the model with 61.8% latency and ob-
tained the router decision statistics for the first layer. For
the HTML dataset, almost half of the tokens select the
smallest elastic candidate, while tokens from the Books3
dataset (Gao et al., 2020) tend to choose the full layer.

5.2. Effectiveness of Learned Routers

To demonstrate the effectiveness of our learned routers, we
compare the learned sub-models with randomly picked ones.
In Figure 10, we first randomly sample sub-models at differ-
ent latencies from GPT3-2B, and measure their performance.
We use box plots to visualize the distributions of their LM
loss. As seen from the Figure, the majority of randomly
selected sub-models have unpredictable performance. For
instance, sub-models at 65% latency have averaged LM
loss ranging from 2.32 to 3.06. We compare them to sub-
models found by routers (blue and yellow lines in the Fig-
ure), demonstrating that FLEXTRON effectively identifies
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Figure 5. Pareto curves for language modeling loss vs latency (left) and # non-embedding parameters (right). The curve is fitted by the
model scaling equation. FLEXTRON achieves superior performance to Matformer and even end-to-end-trained smaller models (843M).
The performance of the model is evaluated by language modeling validation loss and averaged over 7 representative datasets: (1) English
datasets:Arxiv, Books3 (Gao et al., 2020), Wikipedia (Foundation), (2) multilingual datasets: Korean, German languages, and (3) code
data: HTML, JAVA. We measure model latency with the Megatron framework (Shoeybi et al., 2019) using a batch size of 2 and sequence
length of 4096 in the context prefilling stage on NVIDIA A100 GPU.

Figure 6. Performance degradation introduced by replacing the full
MHA/MLP layer with elastic candidates; specifically, the effect
of replacing the full layer with 75% and 50% of the layer width.
We observe that (1) using lightweight MHA layers could preserve
more model performance, and (2) it’s crucial to use full MLP
layers deeper in the network. The experiment is based on GPT3-
2B model.

optimal sub-models.

6. Related Work
Elastic Inference. The idea of obtaining multiple models
from a single trained model has been explored extensively
in the convolutional neural network (CNN) literature; in
particular, Yu et al. (2018); Yu & Huang (2019) introduced
slimmable neural networks, which support deployment of
the same model with varying numbers of convolutional fil-
ters. Li et al. (2021) leverage a gating mechanism to dynam-
ically identify sample difficulty and adjust the percentage
of activated filters accordingly. Finally, Cai et al. (2019)
generalized pruning methods to derive a single model adapt-
able to different configurations. Recent work has explored
the application of slimmable models to Transformer-derived
architectures; specifically, Rao et al. (2021) and Yin et al.
(2022) explore the mechanism of slimmable token removal
for adaptive token dropping. Kusupati et al. (2022) intro-
duce a nested weight structure for Transformer networks,

50% latency 70% latency

# heads Hidden size expansion

8     16      24     32 1       2       3       4
# heads Hidden size expansion

8     16      24     32 1       2       3       4

Figure 7. Obtained architectures for 50% and 70% latency targets.

and Kudugunta et al. (2023) use this formalization in the
Matformer architecture. Valipour et al. (2023) additionally
utilize a sampling-based training strategy to train multiple
models via gradient accumulation. While FLEXTRON shares
Matformer’s nested weight structure, it uniquely extends
it by offering elasticity in both MLP and MHA layers, a
larger pool of operations, efficient pretraining for sub-linear
training times, and automatic input-adaptive sub-network
selection based on latency for enhanced efficiency.

Input Adaptivity. Sparse Mixture-of-Expert networks
(MoEs) utilize input adaptivity to achieve efficient model
scaling by collectively utilizing multiple specialized sub-
networks (Fedus et al., 2022; Riquelme et al., 2021; Zhou
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Figure 8. Performance degradation on sub-networks of different
latency, on different data domains.
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Figure 9. Router allocation vs data domain. The y-axis depicts
elastic operator remaining computations and horizontal axis de-
picts the frequency of the operator being chosen. On GPT3-2B,
we observe that “hard data” (such as data from Books3 (Gao et al.,
2020), with a PPL of 11.64 on GPT3-2B) tend to utilize full layers
more frequently. Almost half of the tokens on “easy data” (e.g.,
HTML dataset, with a PPL of 1.571) select the smaller layers.

et al., 2022; Jiang et al., 2024), to handle data from diverse
domains (Li et al., 2022; Zhang et al., 2023). Tokens in MoE
networks only pass through the most relevant sub-networks,
identified by learnable routers. Recent work has started chal-
lenging the traditional definition of MoEs by introducing
heterogeneous experts (Wang et al., 2020; Dean, 2021; Zhou
et al., 2022) and in-situ adaptiveness (Chen et al., 2023; Cai
et al., 2023). However, all existing MoE designs that we are
aware of store expert weights separately, with no notion of
weight sharing. This design introduces significant memory
and communication overheads, especially at larger batch
sizes with higher expert utilization. In FLEXTRON, all the
“experts” in a layer share the same weight matrix, and differ-
ent sub-networks are selected through simple array indexing,
thus relieving most of the pressure from the memory and
networking interconnect. Additionally, FLEXTRON includes
provisions for routing decisions to be dictated by a latency
target, a feature absent from most existing MoE networks.

Static Acceleration. A vast body of work has also
demonstrated the efficacy of static acceleration methods
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Figure 10. Effectiveness of our automatic network selection algo-
rithm. The box-plot visualizes the performance distribution of
randomly selected models. The blue and yellow lines denote per-
formance of FLEXTRON’s routers. Performance is evaluated on
Wikipedia (Foundation) and GPT3-2B Flextron models.

on transformers, including weight and activation quantiza-
tion Lin et al. (2023); Frantar et al. (2022), patterned 2:4
sparsity Mishra et al. (2021), neural architecture search
(NAS) Wang et al. (2020); Wu et al. (2021), token evic-
tion Zhang et al. (2024), and hardware-aware structural
pruning Yang et al. (2023). Besides, Ma et al. (2023); Xia
et al. (2023); Wang et al. (2023a;b) aim to re-use pre-trained
checkpoints to avoid repeated computation. These methods
are orthogonal to the dynamic inference literature and can
provide further opportunities for performance improvement.

7. Conclusion
This paper has presented FLEXTRON, a novel network ar-
chitecture and post-training optimization framework. FLEX-
TRON models flexibly adapt to different latency and accu-
racy targets during inference with no additional fine-tuning,
and come with built-in support for input-adaptive routing
to maximize performance. We have also presented a post-
training framework for systematically converting standard
trained LLMs such as GPT-3 and Llama2 into FLEXTRON
models using a sample-efficient training procedure. FLEX-
TRON demonstrates superior zero-shot performance over
multiple smaller end-to-end trained variants on the GPT-
3 family and Llama-2-7B model; FLEXTRON also outper-
forms the state-of-the-art Matformer framework (Kudugunta
et al., 2023). FLEXTRON achieves this through a single pre-
training run that consumes a mere 7.63% of training tokens
of full pretraining cost.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Training Trajectory of elastic continued-tuning.

0 20000 40000 60000 80000
# Iteration

1.6

1.8

2.0

2.2

Va
lid

at
io

n 
Lo

ss

46% Latency
52% Latency
58% Latency
64% Latency
Full Model

Figure 11. Visualization of validation loss for sub-models
of varying sizes during elastic continued-tuning.

In Figure 11, we visualize the validation loss of sub-models of
different sizes, during the elastic continued-tuning process. We
draw the following observations: (1) elastic continued-tuning does
not negatively impact the performance of the full model (i.e., em-
ploying all attention heads in MHA and full hidden size in MLP),
as demonstrated by the purple curve. (2) Throughout training,
all sub-networks converge synchronously, while the larger sub-
models lead to smaller validation losses overall. To validate, we
depict validation loss of randomly selected sub-networks using
the blue, orange, green, and red curves, incurring 46%, 52%, 58%,
64% of the full latency, respectively. Note that the sub-models are
randomly picked independently at each validation step. (3) The
middle-sized sub-models converge more stably, as indicated by
the smoother curves of the green and orange compared to the blue
and red ones. This stability could potentially be attributed to the
fact that middle-sized models are sampled more frequently during
elastic continued-tuning.

We additionally depict the validation loss trajectory of models
employing a uniform elastic selection strategy in Figure 12. For instance, in the first sub-figure, the “50%#Heads
75%#Channels” refers to the model selecting the first half of the attention heads and 75% of the Channels for all layers.
The figure echos the observation in Section 5.1 that adopting lightweight MHAs, characterized by a reduced number of
heads, is more advantageous in limited resources.

Figure 12. Training trajectory of models performing uniform elastic selection strategy.

B. Router Training Dynamics.
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Figure 13. Router training dynamics. We visualize the curve of
losses (“L2 Loss” and “LM Loss”) during the router training.

During router training, we introduce the surrogate model
(SM), to estimate the language modeling loss (LM Loss)
based on router logits, providing a stable signal for router
training. As detailed in Figure 3, when the SM is not accurate
enough, the “L2 Loss” is utilized, where “L2 Loss” refers to
the MSE loss between the “ground truth” language modeling
loss and the estimated LM loss via SM. When the SM error is
smaller than the threshold, the router will be optimized based
on the estimated LM loss. The dynamics of router training are
depicted in Figure 13. Router training can be roughly divided
into three stages: (1) SM tuning: the “L2 Loss” quickly drops,
during which the LM Loss slightly increases; (2) Joint tuning:
both losses decrease simultaneously; (3) Router tuning: the
LM Loss continues to decrease while the ”L2 Loss” remains
below the threshold.
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C. Necessity of Weight Permutation
Table 5. Ablation on permuting the base model by channel/neuron
importance score (Equation 3 and Eqn 4 in Section 3.1) as the ini-
tialization. Numbers correspond to the Wikipedia perplexity of pre-
trained models cut to the first half neurons/heads. Note that we report
the zero-shot performance of the permuted model.

Setup MHA MLP

Full (baseline) 9.144 9.144

50% Operator w/o Elastic Sorting 184.5 1902.0
50% Operator w/ Elastic Sorting (ours) 179.9 193.6

We assess the effectiveness of weight permutation by
testing the performance of the original and permuted
models using their first-half (50%) MLP neurons/MHA
heads as is. As Table 5 demonstrates, the perplexity
on Wikipedia (Foundation) significantly improves post-
permutation, with the un-permuted model’s perplexity
exceeding 1000, while the permuted model’s perplexity
was 193.6. We observe a similar enhancement for MHA
modules.

D. Architecture Visualization
We provide searched architectures in Figure 14, based on two variants of GPT3 family. The observation validates our
previous heuristic entailed in Sec 5.1.
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Figure 14. Obtained architectures for 50% and 70% latency targets based on GPT-3 family.
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