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Abstract

The increasing prevalence of Al-generated content on the internet raises a critical
and timely question: What happens when generative machine learning models
are pretrained on web-scale datasets containing data created by earlier generative
models? Recent studies have highlighted a phenomenon termed “model collapse,”
whereby model performance degrades over iterations, rendering newer generative
models unusable. However, other recent research questioned the practical relevance
of model collapse by providing evidence that (1) model collapse was caused by
deleting past data en masse and then training largely (or entirely) on purely synthetic
data from the latest generative model, and (2) model collapse is avoided if new
synthetic data are instead added to existing real and synthetic data. These two
claims are particularly important in forecasting likely futures of deep generative
models pretrained on web-scale data because, in practice, web-scale data is not
deleted en masse and new synthetic data accumulates alongside existing real and
synthetic data. In this work, we test whether these two claims hold on three new
prominent settings for studying model collapse: multivariate Gaussian modeling,
supervised finetuning of language models and kernel density estimation. In all three
new settings, we find that the two claims hold: model collapse is indeed caused by
deleting past data en masse, and model collapse is avoided by accumulating new
synthetic data alongside past data.

1 Introduction

With each day, the internet contains increasingly more Al-generated contenﬂ What does this
observation imply for the future of deep generative models pretrained on web-scale datasets containing
data generated by their predecessors? Previous work forewarned that such model-data feedback loops
exhibit model collapse, a phenomenon whereby model performance degrades with each model-fitting
iteration such that newer models trend towards useless [Hataya et al.,|2023, Martinez et al.,|[2023a,
Shumailov et al.| 2023| |Alemohammad et al., [2023| Martinez et al.,|2023b, Bohacek and Farid, 2023
Bertrand et al., 2023} |Briesch et al., 2023, [Dohmatob et al., | 2024albl Marchi et al., 2024, \Guo et al.|
2023]]. However, more recent work has challenged this narrative |Gerstgrasser et al.||2024} |Seddik
et al.| 2024} Marchi et al., [2024]]. Of particular interest to us is|Gerstgrasser et al.|[2024]], which made
two claims:
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1. Many previous model collapse papers induced model collapse by deleting past data en masse
and training largely (or solely) on synthetic data from the latest generative model, and

2. If new synthetic data are instead added to real data, i.e., data accumulate over time, then
model collapse is avoided.

These two claims are relevant to forecasting the future of deep generative models because, if correct,
model collapse is significantly less likely to pose a realistic threat since accumulating data over time
is a more faithful model of reality; as a partner at Andreessen Horowitz elegantly explained, deleting
data en masse is “not what is happening on the internet. We won’t replace the Mona Lisa or Lord of
the Rings with Al generated data, but the classics will continue to be part of the training data set and
exist along with it.'P} We emphasize that when discussing deleting past data en masse, we mean that
(almost) all previous data are deleted. In the context of pretraining on web-scale data, the correct
mental picture is that the entirety of the internet is deleted, not that a single minor website disappears.

Howeyver, a recent prominent paper [Shumailov et al.,2024] introduced three new settings for studying
model collapse that were not studied by (Gerstgrasser et al.|[2024]. The three new settings are:

1. Multivariate Gaussian Modeling: Multivariate Gaussians are repeatedly fit to data and
then used to sample new synthetic data for future Gaussian fitting.

2. Supervised Finetuning of Language Models: Language models are finetuned in a super-
vised manner and then used to sample new synthetic text for future finetuning.

3. Kernel Density Estimation: Kernel density estimators are repeatedly fit to data and then
used to sample new synthetic data for future kernel density estimators.

In this work, we ask whether the two model collapse claims hold in these three new settings. We
find both claims do. In multivariate Gaussian modeling, we find that model collapse is caused by
deleting past data en masse, and mitigated by instead accumulating synthetic data with previous
real and synthetic data. In supervised finetuning of language models and kernel density estimation,
we again find consistent results. The consistency of these results across different model types and
datasets suggests that this distinction is a general phenomenon, and is not specific to any particular
model or dataset or learning algorithm.

Interestingly, we discover in kernel density estimation that training on real and accumulating synthetic
data can yield lower loss on real test data than training on real data alone. This result matches
the language model pretraining results of |Gerstgrasser et al.| [2024]], but is significantly faster to
experiment with and significantly easier to study mathematically. We leave answering the questions
of under what conditions, and why, synthetic data can lead to lower loss on real test data to future
work.

2 Model Collapse in Multivariate Gaussian Modeling

Recent prominent work [Shumailov et al.,|2024]] introduced a simplified setting for studying model
collapse: repeatedly fitting multivariate Gaussians to data and sampling from the fit Gaussians. In
this setting, one begins with n real data drawn from a multivariate Gaussian with mean 1(%) and
covariance %(0):
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To study model-data feedback loops, we alternate two stages: model-fitting and sampling. For model
fitting, one computes the unbiased mean and covariance of the most recent data:
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For model sampling, one samples m new synthetic data using the fit Gaussian parameters:
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Figure 1: Model Collapse in Multivariate Gaussian Modeling. Top: Previous work [[Shumailov
et al., [2024]] proves model collapse occurs if one iteratively fits means and covariances to data and
then samples new data from a Gaussian with the fitted parameters (left). We demonstrate that if one
doesn’t delete all data after each model-fitting iteration - i.e., if data accumulate - then model
collapse does not occur (right). Number of Samples Per Iteration: 316. Note: We visualize the fit
Gaussians as zero-mean for easy comparison of the fit covariances across model-fitting iterations.
Middle: If data are replaced, then the empirically fit means drift away from the original data’s mean
with increasing model-fitting iterations, but if data instead accumulate, then the empirically fit means
stabilize. Bottom: If data are replaced, then the empirically fit covariances collapse compared to the
original data’s covariance, but if past data are not discarded, then the fit covariances solidify quickly
and collapse is avoided.

Under the above data-model feedback loop, Shumailov et al.|[2024]] prove that
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where W, denotes the Wasserstein-2 distance. This result states that the fit covariance will collapse
to 0 and that the Wasserstein-2 distance will diverge as this model-data feedback loop unfoldﬂ
However, this result assumes that all data are deleted after each model-fitting iteration. As discussed
in Sec. [T} we consider this assumption unrealistic. Following Gerstgrasser et al|[2024]], we instead
ask: what happens if data instead accumulate across model-fitting iterations? To study this, we
instead consider Gaussian parameters fit using data across all t + 1 iterations with n samples per

*Note: the Wasserstein-2 distance diverges not because the covariance collapses to 0 but because the distance
between the t-th fit mean /lé?placc and the true mean p() diverges.
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Figure 2: Model Collapse in Supervised Finetuning of Language Models. Finetuning Google’s
Gemma?2 2B on Nvidia’s HelpSteer 2 dataset demonstrates that model collapse occurs if previous
data are replaced after each model-fitting iteration (left), whereas model collapse is avoided if new
synthetic data instead accumulate with previous real and synthetic data (right).
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Empirically, we find that deleting all data after each model-fitting iteration causes model collapse
(Fig. [T} left), whereas accumulating data across model-fitting iterations prevents model collapse (Fig.
[1] right). More specifically, we find that if data are deleted the squared error between the fit mean

/ll({;;lace and the initial mean ;(°) diverges (Fig. |1} middle left) and the fit covariance ﬁl}({;;]ace relative

to the initial covariance %(®) collapses to 0 (Fig. |1} bottom left), whereas if data accumulate, the
squared error between the fit mean and the initial mean plateaus quickly (Fig. |1} middle right), as
does the fit covariance relative to the initial covariance (Fig. [I] bottom right). Thus, deleting data
causes model collapse, and accumulating data avoids model collapse.

Mathematically, in the univariate case, we are additionally able to characterize the limit distribution
learned by the process described above:

Theorem 1. For notational efficiency, for a univariate Gaussian, let (i'Y) and &) denote /:Lf‘x?cumulate

and i(i.)wmulme. Suppose that the mean and covariance are updated as in Eqns. Hand Then
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See App. Sec.[A]for the proof. This reveals two key differences when data accumulate: the covariance
no longer collapses, and the mean no longer diverges, meaning model collapse is mitigated.

3 Model Collapse in Supervised Finetuning of Language Models

We next turn to the second setting for studying model collapse introduced by [Shumailov et al.| [2024]:
supervised finetuning of language models. We begin with an instruction following dataset — Nvidia’s
HelpSteer2 [Wang et al [2024]] — and repeatedly finetune a language model then sample new text
data from it. For the language model, we use Google’s Gemma 2 [Team et al., 2024] because it is
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Figure 3: Model Collapse in Kernel Density Estimation. Left: We consider 4 standard datasets
from sklearn: Blobs, Circles, Moons and Swiss Roll. Center: For all four datasets, deleting data en
masse causes the negative log likelihoods (NLL) of real test data to increase with each model-fitting
iteration. Right: For all four datasets, accumulating data avoids model collapse. Interestingly, for
specific pairs of datasets and number of samples per iteration, training on real and accumulating
synthetic data can yield lower loss on real test data than training on real data alone.

both high performing and relatively small. We again compare the two settings of interest: Replace
and Accumulate. For Replace, we fine-tune the n-th language model only on data generated by the
(n — 1)-st language model. In Accumulate, we fine-tune the n-th language model on the original
real data plus all the synthetic data sampled by all previously finetuned language models; thus, the
amount of data that the nth model is finetuned on for Replace is constant ~ 20k, whereas the amount
of data for Accumulate grows linearly ~ 20k * n.

We again find results consistent with multivariate Gaussian modeling and with (Gerstgrasser et al.
[2024]: deleting data after each iteration leads to collapse, whereas accumulating data avoids
collapse.

4 Model Collapse in Kernel Density Estimation

We finally turn to the third setting for studying model collapsed introduced by [Shumailov et al.,
2024]): kernel density estimation. Similar to multivariate Gaussian modeling, we begin with n
real data points drawn from an initial probability distribution p(®): X {0), . X,(LO) ~iia PO, We
then iteratively fit kernel density estimators to the data and sample new synthetic data from these
estimators, again comparing Replace and Accumulate. In the Replace setting, we fit the kernel density
estimator to n data samples from the most recently fit model, whereas in the Accumulate setting, we
fit the estimator to all data points from all previous iterations, with the number of points growing



linearly as n(t + 1):
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where K is the kernel function and h is the bandwidth parameter. We consider two kernel functions:
Gaussian and Top Hat. For sampling, at each iteration, we draw n new synthetic data points from the
fitted kernel density estimators. We evaluate the performance using the negative log-likelihood (NLL)
on real held-out test data; lower NLL indicates better performance. For data, we use four standard
synthetic datasets from sklearn [Buitinck et al.;2013]]: blobs, circles, moons, and swiss roll.

As in our previous experiments with multivariate Gaussian modeling and supervised finetuning of
language models, we yet again observe the same result between replacing data and accumulating
data (Fig.[3): replacing data causes a rapid increase in NLL as the number of model-fitting iterations
increases, indicating that the kernel density estimators are becoming increasingly poor at modeling the
true underlying distribution. This trend is consistent across both Gaussian and Top Hat kernels, and
for different numbers of samples per iteration. In contrast, when data accumulate across model-fitting
iterations, we observe that the NLL remains relatively stable, suggesting that accumulating data helps
maintain the quality of the kernel density estimators.

Interestingly, for specific combinations of datasets and number of samples per iteration, training on
real plus accumulating synthetic data yields lower loss than training on real data alone (Fig. 3] right
column). Specifically, for Circles and Moons, sampling 10 synthetic data per model-fitting iteration
and training on accumulating data yields lower test loss on real data, and for Swiss Roll, sampling
316 synthetic data per model-fitting iteration and training on accumulating data does so too. This
is consistent with the language modeling results of (Gerstgrasser et al.| [2024], but we know of no
mechanism or theory to explain why performance can sometimes be improved with synthetic data.
We leave that investigation to future work.

5 Discussion

Our findings support the claim that deleting data en masse after each iteration leads to model collapse,
whereas accumulating data mitigates this issue. The consistency of these results across different
model types and datasets suggests that this distinction is a general phenomenon, and is not specific to
any particular model or dataset or learning algorithm.

The implication of these results is that under real-world dynamics, where new synthetic data is added
to existing real and synthetic data, model collapse is unlikely. Our experiments are pessimistic, in the
sense that real world practitioners filter data based on various indicators of data quality, e.g., [Brown
et al., 2020, |Wettig et al.,[2024, |[Penedo et al.,|[2024, |L1 et al., [2024]; for a review, see|Albalak et al.
(2024].

An especially interesting future direction is how to combine synthetic data generation with filtering
techniques to enable performant and efficient pretraining at scale using synthetic data. As we saw in
Sec.[] training on accumulating real and synthetic data can improve performance on real test data.
Identifying under what conditions, and why, this is possible is a tantalizing prospect.
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A Gaussian Model Fitting: Mathematical Results and Proofs
A.1 Setup
Lemma 2. Using the notation of Theorem we can express [y = Zizl Or_1 ? + po.

Proof. Note that X; ; = p;_1 + 0¢—12;,4, where z; 4 ~ N (0,1). Therefore,
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Lemma 3. Under the setup described in Theorem IE[Z—Z] = szl (1- #) 1oeo, %
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Proof. Using the recursive expression for ji; in Lemma 2] we can rewrite
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In the last line, we define 52 = 37" | (2 — Z). The term
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Jt2 = E E 03_133 -+ <0T12’T — E Jk1k>
r=1 k=r
t 1 t - 2
_ k
= totz = E Uf_lsf + (Jr_lz,, <1 — 7“> — E Uk_1k>
r=1 k=r+1

We now compute the conditional expectations of the terms in this sum. Where F; denotes the ith
filtration,

Elo7 1 S7|Fi-1]

_ o2 |52 r<t
Uf 1("—*1) r=t.

n

For r = t, we find that

1 : 7\ 1\ 1
Z
E (Jrlzr' (1 - ’I") - E Ok—1 " ]j) |J—'.t71 = at271 (]. — t) . ﬁ



On the other hand, when r < ¢,

1 1 % %\
_ % ¢
El|llor1z- |1—=]— k=1~ — 01— | |Fim1
r k t
k=r+1

Therefore,

1 t—1 1 1\? /1
Bl Fial = (= of oty (1= 7)ot (50 ) - (3) +eta (1-1)

It follows that

1
Bloti ] = ot (1- ) <o

for all t. Thus, {02}, is a supermartingale, and

2 a.s. 2
Ot 0o

because o7 is bounded below by 0. Therefore, we still have convergence. Next, letting m; = E[o?],
we have

o)
O 1
Elo7] =og [] (1 - k%) : )
By a theorem of Euler, this is equal to

(10)

Observe that by performing a variable replacement and using L'Hospital’s rule, it is clear that
lim,, 00 E[0?] = 03.

Finally, we are able to compute E[(u; — p0)?].

Corollary 4. The expected error in the mean

El(pe — po)*] = o <1 - 11 (1 - kiﬂ)) : (11)

k=1

10

)



Proof. Using the recursion from Lemma[2]and the expression for the variance in Lemmaf] we can
rewrite

I
=
=
N
i

E[(ps — MO)Q]

k=1
t k—1
1 1
2
=) jan (1 - zn)
k=1 /=1
t k—1 1 1
2
=) (“‘m)‘ﬂ(l‘ezn»
k=1 \/¢=1 =1
¢ 1
k=1

Therefore,

11
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