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Abstract. Graph Contrastive Learning (GCL) has emerged as a power-
ful framework for graph representation learning. GCL typically employs
separate masking strategies for edges and node features. However, the
stochastic Masking Node Feature (MF) method, which masks a portion
of the columns in the node feature matrix, results in irrecoverable fea-
ture information loss at high masking rates. In other words, MF harms
the uniformity of representations. To address this, we introduce a novel
augmentation strategy called Random Feature Masking (RFM) for GCL.
Unlike MF, RFM applies random masking across the entire set of node
features for each individual node. Experiments on three widely used
datasets for node classification demonstrate that RFM enables GCL to
outperform the MF method, achieving higher accuracy, and greater ro-
bustness, even at high masking rates (e.g., 0.7, 0.8, and 0.9). Since RFM
does not mask a fixed fraction of the entire node feature matrix, it in-
herently preserves more feature information. To our best knowledge, this
is the first study to introduce and comprehensively evaluate Random
Feature Masking in GCL.
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1 Introduction

Graph Contrastive Learning (GCL) learns graph representations by maximizing
the agreement between augmented views of a graph through contrastive objec-
tives like InfoNCE, by leveraging graph encoders and augmentations for tasks
such as node and graph classification [1, 5, 7]. GCL follows a specific pipeline.
First, it generates multiple views of a graph using various augmentation strate-
gies. Next, two views derived from the same node are treated as a positive pair,
while views derived from different nodes are treated as negative pairs. The opti-
mization objective of contrastive learning is to maximize the agreement between
jointly sampled positive pairs while minimizing the agreement between indepen-
dently sampled negative pairs.

Augmentation strategies are crucial in GCL. Feature-based augmentation
modifies the node feature matrix using techniques such as masking [4, 8] and
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shuffling [3]. Typically, these augmentations rely on stochastic Masking Node
Feature (MF) methods, which mask a fraction of attributes in the node feature
matrix, as seen in approaches like GRACE [10] and CCA-SSG [9]. However, MF
suffers from inherent drawbacks: masking a portion of the feature matrix results
in irreversible feature information loss at high masking rates, leading to perfor-
mance degradation, which is not compatible with conclusions from contrastive
learning in other modalities [2, 6].

To address these challenges, we introduce a feature-based augmentation method
in GCL: Random Feature Masking (RFM). RFM is a simple yet effective strat-
egy which is widely used in graph generation models but not used in graph
contrastive learning. Unlike MF, RFM applies random masking across the entire
set of node features for each individual node. Theoretically, 1 −

(∏N
i=1 pi

)e

of
the feature information can be preserved in one view during RFM, where N
denotes the number of nodes, p denotes the mask rate and e denotes the number
of epochs.

We compare our method to the Masking Node Feature (MF) method on the
widely adopted GCL task of node classification, using three benchmark datasets.
As can be seen from Figure 1: 1. It shows that RFM outperforms existing MF
methods, achieving superior performance at high masking rates. Notably, our
approach attains state-of-the-art results on the PubMed dataset for node clas-
sification when mask rate reaches 0.7. 2. As the masking rate increases, the
performance of GCL with MF initially improves at low masking rates but de-
creased after mask rate larger than 0.4. In contrast, the performance of GCL
with RFM consistently improves, even at masking rates as high as 0.7. Addi-
tionally, RFM consistently achieves the highest results across all scenarios.3.
RFM is more tolerant to variations in temperature, with RFM generally achiev-
ing higher performance than MF across different temperature settings.
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(a) Masking Rate: Citeseer
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(b) Masking Rate: Pubmed
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(c) Temperature: Citeseer
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(d) Temperature: Pubmed

Fig. 1: Comparison of Masking Rate (Top Row) and Temperature (Bottom Row)
Across Datasets (Citeseer and Pubmed).
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