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ABSTRACT

Practical and ethical constraints often dictate the use of observational data for
causal inference, particularly in medicine and social sciences. Yet, observational
datasets are prone to confounding, potentially compromising the validity of con-
clusions. While adjusting for all available covariates is a common corrective strat-
egy, this approach can introduce bias, especially when post-treatment variables
are present or some variables remain unobserved—a frequent scenario in prac-
tice. Avoiding this bias often requires detailed knowledge of the underlying causal
graph, a challenging and often impractical prerequisite. In this work, we propose
RAMEN, an algorithm that tackles this challenge by leveraging the heterogene-
ity of multiple data sources without the need to know the complete causal graph.
Notably, RAMEN achieves doubly robust identification: we identify the treatment
effect if either the causal parents of the treatment or those of the outcome are
observed. Empirical evaluations across synthetic, semi-synthetic, and real-world
datasets show that our approach significantly outperforms existing methods.

1 INTRODUCTION

Estimating treatment effects is a key objective in fields such as medicine and social sciences, as
it helps determine the impact of interventions like novel treatments or policies. To achieve this
goal, researchers often use randomized controlled trials since randomizing the treatment assignment
guarantees unbiased treatment effect estimates under mild assumptions. However, methods relying
on randomized data face several issues, such as small sample sizes, sample populations that do not
reflect those seen in the real world, and ethical or financial constraints. As a result, there is growing
interest in using observational data to infer causal relationships when randomized data is scarce.

A fundamental challenge in using observational data is selecting a valid adjustment set, i.e. a set of
covariates that can be used to correctly identify the treatment effect (Hernán & Robins, 2010, Chap-
ter 7). Practitioners often adjust for all available covariates (Austin, 2011), but this approach runs the
risk of including bad controls—covariates that open backdoor paths between the treatment (T ) and
the outcome (Y ), thereby introducing bias into the treatment effect estimate (Rosenbaum, 1984). For
instance, consider the causal graphs illustrated in Figure 1. Is {X1, X2} always a valid adjustment
set? In Figure 1a, {X1, X2} blocks all backdoor paths, allowing for treatment effect identification,
whereas including X1 in Figure 1b opens a backdoor path, introducing bias in the treatment effect
estimate. Hence, blindly including all covariates in the adjustment set is not always a valid strategy.

Although the example above might seem artificial, bad controls pose a significant challenge, es-
pecially in the social sciences, where the causal ordering of the observed covariates is often not
clear (King, 2010; Montgomery et al., 2018). For instance, Acharya et al. (2016) found that up to
two-thirds of empirical studies in political science that make causal claims inadvertently include
bad controls in their analysis, leading to biased estimates of the treatment effects. In a first attempt
to address this challenge in a data-driven manner, Shi et al. (2021) leverage access to multiple het-
erogeneous data sources—a common scenario in practice, e.g. think of observational studies from
different countries—to develop a method that identifies the treatment effect in the presence of post-
treatment variables. However, their approach fails when not all the variables in the causal graph are
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(a) {X1, X2} is a valid adjustment set

X2

YT

X1

U

(b) {X1, X2} is not a valid adjustment set

Figure 1: Two causal graphs illustrating when the set of all covariates is or is not a valid adjustment
set: (a) {X1, X2} blocks all backdoor paths between T and Y , making it a valid adjustment set;
(b) X1 opens a backdoor path between T and Y , introducing bias in the treatment effect estimate if
adjusted for. Unobserved variables are dashed and colored in white, bad controls are colored in red,
and good controls are colored in green.

observed, and the distribution of the unobserved variables shifts across environments, e.g. in the
setting of Figure 1b.

In this work, we propose Robust ATE identification from Multiple ENvironments (RAMEN), an
algorithm that addresses this challenge by leveraging the heterogeneity of multiple data sources
without the need to know or learn the complete causal graph. Notably, our algorithm achieves
doubly robust identification: we identify the treatment effect if either the causal parents of the
treatment or those of the outcome are observed. In particular, our approach combines two iden-
tification strategies—one based on the parents of the treatment and the other on the parents of the
outcome—allowing identification even when some variables remain unobserved, as in Figure 1b,
where previous methods fail. Our key contributions are outlined below.

• We introduce a novel double robustness property, which targets identification rather than
estimation. We then provide the first, to our knowledge, doubly robust identification guar-
antees for treatment effect in the presence of both post-treatment and unobserved variables.

• We propose two novel algorithms that satisfy our double robustness property. The first
uses a combinatorial search over subsets of covariates, while the second uses the Gumbel
trick to enable a scalable optimization procedure. Additionally, we introduce a novel kernel
invariance loss, which may be of independent interest for domain generalization.

• We demonstrate that our algorithms significantly outperform existing approaches for treat-
ment effect estimation in the presence of post-treatment variables on synthetic and semi-
synthetic datasets. We further evaluate our method on a real-world example, showing that
our results align with established epidemiological knowledge.

2 RELATED WORK

Various criteria and methods have been proposed for the purpose of covariate selection, often in the
form of necessary and sufficient conditions for a given causal graph, such as the backdoor criterion
and its variations (Pearl, 1995; Shpitser et al., 2010; Vander Weele & Shpitser, 2011; Maathuis
& Colombo, 2015; Perković et al., 2018). However, since the causal graph is rarely known in
real-world applications, the most common approach assumes that all observed covariates are pre-
treatment and includes all of them (Austin, 2011, p. 414). Yet, this strategy has several drawbacks:
including certain pre-treatment covariates can introduce M-bias (Entner et al., 2013; Gultchin et al.,
2020; Cheng et al., 2022b; Shah et al., 2022), and even when bias is not an issue, selecting a smaller
subset of covariates leads to more efficient estimates (Hahn, 2004; White & Lu, 2011; De Luna
et al., 2011; Rotnitzky & Smucler, 2020; Witte et al., 2020; Henckel et al., 2022; Guo et al., 2023).

The problems described above are orthogonal to our focus in this paper, which is on scenarios where
both post-treatment and unobserved variables are present (see Appendix B for a more comprehen-
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sive literature review). In this context, previous works have achieved partial identification, albeit
with significant computational costs (Hyttinen et al., 2015; Malinsky & Spirtes, 2017). More re-
cently, Cheng et al. (2022a) achieved exact identification using an anchor variable. However, anchor
variables and multiple environments are distinct settings, each applicable under different conditions
and not directly comparable. To our knowledge, our work is the first to achieve point identification
in the presence of both post-treatment and unobserved variables using multiple environments.

Finally, our double robustness property significantly differs from most classic results in the existing
literature (Robins et al., 1994; Vansteelandt et al., 2008; Chernozhukov et al., 2018). The key dis-
tinction is that our property targets identification rather than estimation. Some previous work has
achieved similar robust identification results in the context of panel data (Arkhangelsky & Imbens,
2022) and instrumental variables (Kang et al., 2016; Hartwig et al., 2017; Guo et al., 2018; Kuang
et al., 2020; Hartford et al., 2021)—usually by assuming that only a fraction of the available instru-
ments are valid. However, to our knowledge, we are the first to achieve doubly robust identification
in the context of post-treatment and unobserved variables when valid instruments are not available.

3 PROBLEM SETTING

We assume the data is collected under different experimental conditions, represented by envi-
ronments e ∈ E , with |E| = ne. For each environment e ∈ E , we have access to a dataset
De = {(Xi, Ti, Yi)}ni=1 which contains n i.i.d. tuples sampled from the marginal induced by the
joint distribution (X,U, T, Y ) ∼ Pe, where X ∈ Rd are the observed covariates, U ∈ Rk are unob-
served covariates, T ∈ {0, 1} is a binary treatment assignment variable and Y ∈ R is the observed
outcome. We denote by P = 1

|E|
∑

e∈E Pe the joint distribution of the pooled environments.

3.1 CAUSAL INFERENCE PRELIMINARIES

For a fixed directed acyclic graph (DAG) G, we denote the complete set of its nodes by Z̃ and only
the observed nodes by Z. We denote the index set of parents, ancestors, and descendants for any
node Z̃i by Pa(Z̃i), An(Z̃i), and De(Z̃i), respectively. Additionally, for any subset S ⊆ [p], Z̃S

denotes the subvector of Z̃ corresponding to the indices in S. In what follows, we formally assume
that, for all the experimental settings, the joint distribution Pe is generated according to a structural
causal model (Aldrich, 1989) induced by a DAG G.
Assumption 3.1 (Data distribution). For each environment e ∈ E , the distribution Pe is induced
by a structural causal model (SCM), defined as a tupleMe = (G, {fe

i }pi=1,Pe
ϵ) on p = d + k + 2

variables (Z̃1, . . . , Z̃p), where the observed covariates are X = Z̃[d], the unobserved covariates
are U = Z̃d+[k], the treatment variable is T = Z̃p−1, and the outcome variable is Y = Z̃p, with
p /∈ An(T ). The SCM defines the probability distribution Pe by setting for each j ∈ [p]

Z̃j ← fe
j (Z̃Pa(Z̃j)

, ϵj), j = 1, . . . , p,

where fe
j : Rp×R→ R is a measurable function and ϵ ∈ Rp is an exogenous noise vector following

the joint distribution Pe
ϵ over p independent variables.

Further, along the lines of the existing methods in the literature (Shi et al., 2021; Wang et al., 2023),
we require the absence of observed mediators between T and Y in the structural causal model.
Assumption 3.2 (Absence of Mediators). We assume that no observed mediators exist between T
and Y , i.e. it holds that

De(T ) ∩An(Y ) ∩ [d] = ∅.

We remark that Assumption 3.2 is falsifiable using statistical tests to determine whether a covariate
is a mediator between T and Y (see, e.g. Baron & Kenny (1986); Preacher & Hayes (2004)).
Further, note that when this assumption is violated, the identified causal quantity corresponds to
the natural direct effect (Pearl, 2022), which is still a quantity of separate interest in fields like
epidemiology (Tchetgen & VanderWeele, 2014) and social sciences (Imai et al., 2011).
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3.2 TREATMENT EFFECT IDENTIFICATION

Our goal is to identify the treatment effects for different environments in the presence of unob-
served and post-treatment variables. More specifically, we are interested in the average treatment
effects (ATEs) for all environments e ∈ E , defined as

θe = EPe

[
Y do(T=1) − Y do(T=0)

]
.

A common approach for identifying the ATE is to find a valid adjustment set (Shpitser et al., 2010),
that is, a subset S ⊆ [d] of the covariates that satisfies both the classic outcome and treatment
identification formulae, i.e. for all environments e ∈ E and t ∈ {0, 1} it holds that

EPe

[
Y do(T=t)

]
=EPe [EPe [Y | XS , T = t]] and EPe

[
Y do(T=t)

]
=EPe

[
Y I{T = t}

Pe(T = t | XS)

]
. (1)

Several criteria have been proposed in the literature to find valid adjustment sets, with the backdoor
criterion being the most prominent—see Peters et al. (2017, Sec. 6.6) for a detailed discussion.
However, these criteria crucially rely on knowledge of the underlying causal graph—a challenging
and often impractical prerequisite. Therefore, it is commonly assumed among practitioners that the
set S of all covariates is a valid adjustment set, which is a reasonable assumption only in settings
where all the observed covariates are pre-treatment.

In contrast, our work focuses on settings where both post-treatment and unobserved covariates are
present. To identify the ATE in such settings, we need to introduce two key assumptions. More
formally, we allow each environment to have a different joint distribution Pe over (X,U, Y, T ).
However, we assume that there exists an invariant node, either T or Y , such that its parents are fully
observed and the conditional mean of the node given its parents is invariant across environments.

Assumption 3.3 (Invariant node). We assume that one of the following holds for all e ∈ E:

(a)Pa(T ) are observed and EPe

[
T | ZPa(T )

]
= EP

[
T | ZPa(T )

]
, Pe − a.s.

(b)Pa(Y ) are observed and EPe

[
Y | ZPa(Y )

]
= EP

[
Y | ZPa(Y )

]
, Pe − a.s.

We denote the node V ∈ {T, Y } for which the above holds as the invariant node Vinv.

It is worth emphasizing that each of the above assumptions can provide identification of the ATE
on its own. Here, we combine these two identification assumptions to obtain doubly robust identi-
fication: we only require that either (a) or (b) in Assumption 3.3 holds. This is similar in spirit to
the double robustness literature (Robins & Rotnitzky, 1995; Chernozhukov et al., 2018), where only
one of two assumptions about model specification needs to hold to obtain valid ATE estimates. We
discuss the differences with the classic double robustness literature in Section 4.

Further, the invariance assumptions (a) and (b) are closely related to the conditions in the invariance-
based domain generalization literature, such as Peters et al. (2016); Rojas-Carulla et al. (2018); Gu
et al. (2024). While these settings are included in Assumption 3.3 (as we discuss in Appendix A.1),
our setting does not require full independence of the noise variable1, unlike Peters et al. (2016), nor
is it limited to the additive noise case, as in Gu et al. (2024), which is does not hold in the case of
binary treatment variables.

Finally, we comment on the observability part of Assumption 3.3: assuming Pa(Vinv) are observed
is strictly weaker than causal sufficiency, where the full causal graph is assumed to be observed.
Specifically, we allow for some unobserved variables, such as the path U → Y in Figures 1a and 1b,
for which Assumption 3.3 still holds. In contrast, Shi et al. (2021) assume that there are no unob-
served variables to identify the treatment effect, and if some parents of Y remain unobserved, the
treatment effect estimates from their algorithm would not be valid.

1Although we require independence of exogenous noise variables in Assumption 3.1 for the full graph, here,
we refer to the graph limited to the observed nodes, where the noise variables ϵV can be dependent on Pa(V ).
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4 METHODOLOGY

In this section, we introduce RAMEN, our method to identify the ATE by leveraging the heterogene-
ity in the observed data. First, we present a doubly robust population-level estimator and discuss
under which conditions it equals to the ATE. Then, we show how to compute this estimator tractably
by minimizing a novel invariance loss and propose two algorithms to do so: a combinatorial search
over subsets and a more scalable differentiable approach for high-dimensional covariate settings.

4.1 POPULATION-LEVEL ESTIMATOR

In what follows, we denote by I = [d] ∪ {p − 1, p} the index set corresponding to the observed
variables Z := (X[d], T, Y ). For any node V ∈ {T, Y } and any observed subset S ⊆ I \ V , we
define the conditional means over the pooled and individual environments

mS(Z;V ) := EP [V | ZS ] and me
S(Z;V ) := EPe [V | ZS ] .

We begin by observing that, by Assumption 3.3, there exists an invariant node Vinv ∈ {T, Y } and
a subset of covariates S (given by, e.g, Pa(Vinv)), for which the following conditional moment
constraint holds for all environments e ∈ E

∃S ⊆ I \ Vinv : me
S(Z;Vinv) = mS(Z;Vinv), Pe − a.s. (2)

The set S is not necessarily unique: besides the (observed) parents of Vinv for instance, the invari-
ance could also hold for certain supersets of Pa(Vinv). Denote as L0(Rd) the space of measurable
functions over Rd. By observing that the conditional moment constraint above is equivalent to the
following infinite set of unconditional moment constraints

EPe [(Vinv −mS(Z;Vinv))h(ZS)] = 0, for all h ∈ L0
(
R|S|

)
, (3)

any set S that satisfies the invariance constraint Equation (2) is also contained in

argmin
S⊆I\Vinv

max
e∈E


 sup

h∈L0(R|S|)
EPe [(Vinv −mS(Z;Vinv))h(ZS)]




2

:= argmin
S⊆I\Vinv

JS(Z;Vinv).

However, since the invariant node Vinv is not known beforehand, we search for a set of observed
nodes that satisfy the invariance with respect to either T or Y , that is, we want to find

Sopt ∈ argmin
S⊆I\V

min
V ∈{T,Y }

JS(Z;V ). (4)

Let us define the pooled conditional outcome and treatment functions as µ̄t(XSopt
) := EP[Y |

XSopt
, T = t] and π̄(XSopt

) := EP[T | XSopt
]. For a minimizer Sopt, we then define the corre-

sponding population-level RAMEN estimator for all environments e ∈ E as

θe (Sopt) := EPe

[
µ̄1(XSopt

)−µ̄0(XSopt
)+

(Y −µ̄1(XSopt
))T

π̄(XSopt
)

− (Y −µ̄0(XSopt))(1−T )
1−π̄(XSopt

)

]
. (5)

We remark here that using θe allows us to estimate the treatment and outcome functions from the
pooled data and—in the finite sample setting—benefit from a much larger sample size. In the fol-
lowing Section 4.2, we show that under sufficient data heterogeneity, detailed in Assumption 4.1,
our population-level estimator θe is equivalent for all Sopt in Equation (4) and equal to the true treat-
ment effect. In Sections 4.3 and 4.4, we then discuss how we can use (5) to find a good finite-sample
ATE estimate in a computationally efficient way.

4.2 DOUBLY ROBUST IDENTIFICATION

Without further assumptions, finding the minimizer of Equation (4) is not sufficient for identifying
the ATE via (5): for instance, if there is no variability between distributions Pe, our objective could
be trivially minimized by any observed subset S. Only when there is “enough” heterogeneity in
the observed environments, will θe result in an unbiased estimate of the ATE. We formalize this
condition in the following assumption.
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Assumption 4.1 (Identification condition). For all V ∈ {T, Y } and S ⊂ I \ V , it holds that:

P
(
mS(Z;V ) ̸= mPa(V )(Z;V )

)
> 0 =⇒ ∃e ∈ E : Pe (me

S(Z;V ) ̸= mS(Z;V )) > 0.

Assumption 4.1 can be understood as ensuring that the environments present sufficient heterogene-
ity. This heterogeneity guarantees that conditioning on any set S with invariant outcome or treatment
functions across environments (i.e., a set identified by our method) is equivalent to conditioning on
the parents. Conversely, this assumption prevents the discovery of “bad” sets S during our mini-
mization procedure in Equation (4). Although our environment variability assumption is relatively
strict, it is a common requirement in the invariance literature (cf. Peters et al. (2016); Arjovsky et al.
(2019)). For example, in the simultaneous noise intervention setting described in Peters et al. (2016,
Section 4.2.3), Assumption 4.1 can be satisfied with as few as two environments. Further, in the
case of single-node interventions, Assumption 4.1 requires approximately O(p) environments.

We now present our formal identification result for the ATE.
Theorem 1 (Doubly robust identification). Let Sopt be any minimizer of the invariance loss, i.e.

Sopt ∈ argmin
S⊆I\V

min
V ∈{T,Y }

JS(Z;V ). (6)

Then, under Assumptions 3.2,3.3, 4.1, if positivity holds, that is e ∈ E
∀e ∈ E : Pe(T = t | XSopt

= x) > 0, ∀t ∈ {0, 1} and ∀x ∈ supp (Pe
X) ,

we can identify the treatment effect, i.e. ∀e ∈ E : θe = θe (Sopt).

The positivity assumption is standard in the literature—see e.g. Hernán & Robins (2010, Sec. 3.2)—
and widely known to be necessary for identifying the treatment effect in observational studies. The-
orem 1 states that any solution to our invariance loss is a valid adjustment set in the sense that it is
sufficient to identify the average treatment effect in all the environments. In contrast, classical dou-
ble robustness literature (Robins et al., 1994; Vansteelandt et al., 2008; Chernozhukov et al., 2018)t
assumes prior knowledge of a valid adjustment set S that makes the ATE identifiable, whereas our
goal in this paper is to find such a set S.

4.3 KERNELIZED INVARIANCE LOSS

A major problem of the loss function in Equation (4) is that it is computationally infeasible to search
over the entire space of measurable functions. However, we can simplify the problem by restricting
h to be in a reproducing kernel Hilbert space (RKHS), and as long as the reproducing kernel of the
RKHS is universal (e.g. Gaussian kernel), the two formulations are equivalent (Gretton et al., 2012).
More formally, for any subset S ⊆ I \ V and environment e ∈ E , we can write


 sup

h∈L0(R|S|)
EPe


(V −mS(Z;V ))︸ ︷︷ ︸

:=δS(Z,V )

h(ZS)







2

=

(
sup

∥h∥H≤1

EPe [δS(Z, V )h(ZS)]

)2

= ∥EPe [δS(Z, V )k(·, ZS)]∥2H
= EPe [δS(Z, V )k (ZS , Z

′
S) δS(Z

′, V ′)] ,

where k is a uniformly bounded reproducing kernel corresponding to a universal RKHS H (Stein-
wart, 2001, Definition 4), and (V ′, Z ′) is an independent copy of (V,Z) following the same distri-
bution. Hence, we can rewrite our loss in a closed-form solution as

JS(Z;V ) = max
e∈E

EPe [δS(Z, V )k (ZS , Z
′
S) δS(Z

′, V ′)] . (7)

Relation to existing invariance losses Starting from the work of Peters et al. (2016), there is
considerable literature proposing methods to estimate invariant predictors, especially when the op-
timal predictor is linear. These methods broadly fall into two categories: hypothesis test-based
methods (Peters et al., 2016; Heinze-Deml et al., 2018; Pfister et al., 2019) and optimization-based
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methods (Arjovsky et al., 2019; Ghassami et al., 2017; Rothenhäusler et al., 2019; 2021; Pfister
et al., 2021; Yin et al., 2024; Shen et al., 2023; Gu et al., 2024). Our approach falls in the latter
category, with a fundamental distinction. While all these works utilize the invariance principle to
improve prediction in unseen environments and generalize to new settings, our goal is to identify a
treatment effect in known environments. This is reflected in our loss function, as it does not measure
the quality of the predictor in any way—e.g. using a least squares loss. Nonetheless, our invariance
loss could also be of interest in the domain generalization literature as it retains the benefits of the
invariance loss in Gu et al. (2024) while significantly simplifying their optimization procedure.

4.4 A FULLY DIFFERENTIABLE LOSS

In some cases, searching over all possible subsets of covariates is computationally infeasible. To
address this, we propose a continuous relaxation of the optimization problem that can be efficiently
solved using gradient descent. Specifically, we select the nodes as Zw := B(w) ⊙ Z, where the
j-th component of B(w) ∈ {0, 1}d+1 is sampled independently from a Bernoulli distribution with
success probability sigmoid(wj). We then aim to solve the following optimization problem:

wopt ∈ argmin
w∈Rd+1

min
θ∈Rd+1,V ∈{T,Y }

max
e∈E

EPe,B(w) [(V − fθ(Zw))k (Zw, Z
′
w) (V

′ − fθ(Z
′
w))] ,

where fθ is a neural network parametrized by θ. Since the weights are discrete, direct differentiation
is not possible. To overcome this, we use a Gumbel approximation (Jang et al., 2017; Maddison
et al., 2017), where the j-th component of B(w) is approximated as:

Bj(w) ≈ sigmoid

(
wj +G1,j −G2,j

τ

)
, as τ → 0+,

with G1,j and G2,j being Gumbel(0, 1) random variables. This approximation makes B(w) dif-
ferentiable (where it was previously discontinuous in wj), allowing us to optimize using gradient
descent while gradually annealing the hyperparameter τ . Finally, we construct the subset of covari-
ates Sopt by including Zi only if the weights are positive, that is Sopt = {i : wopt

i > 0}. We refer
the reader to Appendix A.3 for the complete implementation details of our algorithms.

5 EXPERIMENTS

In this section, we evaluate our method through experiments on synthetic, semi-synthetic, and real-
world data. We first present experiments on several known DAGs, where the invariances are known
and satisfy our assumptions. In line with our theory, RAMEN correctly identifies the ATE, resulting
in a low estimation error, whereas other methods tend to fail. We also test RAMEN on a more
challenging benchmark by uniformly sampling DAGs using the Erdős–Rényi model—a standard
approach for testing causal methods across a wide variety of graph topologies (Huang et al., 2020).
Finally, we validate our estimator beyond purely synthetic data: first in a semi-synthetic setting
with real-world covariates and then in a real-world setting where we compare the conclusions from
RAMEN with established epidemiological findings.

In our experiments, we focus on the statistical task of estimating the average treatment effect (ATE)
θe for each environment e ∈ E . To evaluate the performance of an estimator θ̂e, we compute the
mean absolute error (MAE) averaged across environments: 1

|E|
∑

e∈E |θe − θ̂e|. We evaluate two

implementations of RAMEN: (i) θ̂ , based on combinatorial subset search (Section 4.3), and (ii)
θ̂insta− , based on the Gumbel trick (Section 4.4). We compare our algorithms against three base-
lines: θ̂irm, the IRM approach for treatment effect estimation proposed by Shi et al. (2021); θ̂all,
which adjusts for all available covariates; and θ̂null, which does not adjust for any covariates.

5.1 SYNTHETIC EXPERIMENTS WITH KNOWN DAGS

We start with data generated from distributions with simple underlying DAGs that satisfy our invari-
ance assumptions, as illustrated in Figure 2 (Row 2). Most importantly, we consider three distinct

7
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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and numbers of available environments, our method significantly outperforms existing baselines.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.

10

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-

8

collider descendant noise
0

0.2

0.4

0.6

0.8

1

1.2
M
AE

collider descendant noise
0

0.2

0.4

0.6

0.8

1

1.2

M
AE

collider descendant noise
0

0.2

0.4

0.6

0.8

1

1.2

M
AE

Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 3, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

scenarios2: (a) Y and T-invariances, i.e. both (a) and (b) in Assumption 3.3 hold; (b) Y-invariance,
i.e. only Assumption 3.3 (b) holds; (c) T-invariance, i.e. only Assumption 3.3 (a) holds. For each of
the three different invariance scenarios, we further consider three variants: where Xc is either a de-
scendant of Y , a collider between T and Y , or independent noise. For each of these cases, treatment
effects are fixed, and coefficients are sampled from a standard normal distribution. For a description
of the complete data-generating process, please refer to Appendix D.1. From theory, we expect that:
θ̂null should always be biased since there is a confounder between T and Y ; θ̂all should be biased
only when Xc is a collider or a descendant; θ̂irm should be biased only in the T-invariance case; θ̂
and θ̂insta− should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, θ̂ and θ̂insta− , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of θ̂irm
deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

We randomly draw a graph from the Erdös-Rényi random graph model with a total num-
ber of nodes p = 20. We do rejection sampling to exclude graphs that either contain
mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We then

2In Appendix C.2, we also present experiments for cases when none of the invariances hold.
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sample data from the resulting DAG via a linear structural causal model, with the only ex-
ception being the treatment variable T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Xc = Y + T and making unobserved either the par-
ents of T or Y (except common parents), depending on the invariance we want to preserve.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We apply a random uniform mean and variance shift to all
the nodes in the graph except for T and Y to obtain het-
erogeneous environments, see Appendix D.1 for further
details.

We present here the results for the setting where the par-
ents of T (that are not parents of Y ) are unobserved,
please refer to Appendix C.3 for additional experiments
with the other invariances. We sample 100 different
DAGs and vary the number of available environments
while keeping the sample size fixed. In Figure 8, we
plot the empirical MAE averaged across environments.
Notably, we observe that across all settings and numbers
of available environments, θ̂insta− significantly outper-
forms all the other baselines. Expectedly, θ̂irm fails to sur-
pass all trivial baselines, even with many environments,
as it lacks the double robustness property.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
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variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.

10

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

The IHDP dataset contains covariates from n = 748 low-
birth-weight, premature infants enrolled in a home visita-
tion program designed to improve their cognitive scores
(Hill, 2011). Instead of using the commonly adopted syn-
thetic functions from Dorie (2016), we simulate a more
challenging non-linear version of the dataset inspired by
Kang & Schafer (2007), better reflecting real-world sce-
narios. Specifically, we retain the 6 continuous features
from the original dataset and simulate the outcome Y and
treatment assignment T by randomly sampling complex
functional forms, such as exponentials and polynomials.
In addition, we introduce a 2-dimensional synthetic col-
lider, Xc, as a linear function of T and Y . We generate
environments using Gaussian mean shifts in both pre-and
post-treatment features, as well as in either Y or T , and
set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one par-
ent from either Y or T—specifically, from the one that is
not invariant. Please refer to Appendix D.2 for additional
experimental details.

Figure 4 presents the results. The increased complexity of the non-linear setup leads to reduced
performance across all methods compared to the linear experiments. Despite this, θ̂ and θ̂insta−
continue to outperform the baselines. Consistent with previous experiments, θ̂irm exhibits higher
MAE when Y is not invariant across environments, and adjusting for all features (θ̂all) generally
results in poor performance. Interestingly, θ̂null performs competitively since the confounders have
a limited impact on the outcome and treatment assignment in this dataset. Additional experiments
where the post-treatment feature is either a descendant of the outcome, independent noise, or where
neither T nor Y remains invariant are provided in Appendix C.2, along with experiments including
mediators between the treatment and the outcome in Appendix C.1.
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5.4 REAL-WORLD EXPERIMENT: EFFECT OF MATERNAL SMOKING ON BIRTH WEIGHT

A classic example of bad controls in epidemiology is the birth-weight paradox: researchers observed
higher mortality rates among infants born to smokers compared to non-smokers, but this relation-
ship reversed for low birth-weight infants (Wilcox, 2001). The paradox was resolved by excluding
the post-treatment covariate “birth weight” from the adjustment set, which had introduced collider
bias (Hernández-Dı́az et al., 2006). In our experiments, we analyze data from the same context but
instead focus on the effect of smoking on birth weight, as the mortality data is not publicly available.

Table 1: ATE estimates for the Cattaneo2
dataset using different baselines. We report
the mean and standard deviation over 100 ini-
tializations of the random seed.

Method ATE (mean ± std)

θ̂null −275.25± 10−5

θ̂all −157.55± 10−5

θ̂irm −182.65± 48.32

θ̂insta− −214.60± 25.20

We evaluate our method on the observational dataset
from Cattaneo (2010), which studies the effect of
maternal smoking during pregnancy on birth weight
(n = 4642). We consider 21 covariates from the
original dataset, using as treatment T a binary fea-
ture indicating whether the mother smoked and, as
the outcome Y , the birth weight in grams. The envi-
ronment is defined by the trimester of birth, and thus
|E| = 4. Given the nature of the treatment, we expect
that some features are post-treatment, i.e. measured
after the mother started smoking, as noted in Wilcox
(2001). We provide complete experimental details in
Appendix D.3.

Table 1 presents the results of the differentiable version of our method, alongside various baselines.
While the ground truth ATE is unknown, the effect estimated by adjusting for the set selected by
θ̂insta− aligns with existing epidemiological literature: both observational and interventional stud-
ies (Meyer & Comstock, 1972; Sexton & Hebel, 1984) as well as statistical analyses (Almond et al.,
2005; Cattaneo, 2010) estimate a decrease of 200 to 250 grams in birth weight for infants born
to smoking mothers compared to non-smoking mothers. In contrast, θ̂null overestimates the ATE,
whereas both θ̂all and θ̂irm underestimate it.

6 DISCUSSION AND FUTURE WORK

In this work, we proposed Robust ATE identification from Multiple ENvironments (RAMEN), a
method that leverages multiple environments to identify the ATE in the presence of post-treatment
and unobserved variables. To the best of our knowledge, we present the first ATE identification
guarantees in this highly relevant, but previously unexplored setting. We introduce a new version
of double robustness which concerns identification instead of estimation: we identify the treatment
effect if either the causal parents of the treatment or those of the outcome are observed.

Nevertheless, our method presents several limitations. First, like other kernel-based methods, our
approach suffers from the curse of dimensionality and the computational complexity associated
with kernel matrix computation. Additionally, the requirement for sufficient heterogeneity across
environments may be too stringent in some practical cases. Finally, the combinatorial subset is
computationally demanding, and the Gumbel trick remains a heuristic solution. Addressing any of
these shortcomings would constitute interesting avenues for future work.
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APPENDICES

The following appendices provide deferred proofs, experiment details, and ablation studies.
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A METHODOLOGY

A.1 DISCUSSION OF ASSUMPTION 3.3

Figure 5: Although neither full
set of parents is observed, one
can still find a valid adjustment
set {X1, X2} (in green).

First, we observe here that Assumption 3.3 is not a minimal “ob-
servability” condition on the parents of Y and T : in some cases,
it might still be possible to find a valid adjustment set via the ob-
served parents of either T or Y (or both), although no full set of
parents was observed (see e.g. Figure 5). However, in such cases,
the valid adjustment set or the corresponding regression function
cannot be recovered via invariance methods, since neither T nor Y
are invariant across environments. Thus, in a way, Assumption 3.3
is a minimal assumption on the DAG if one wants to recover the
ATE via invariance of conditional expectations.

Further, we remark that our assumption is neither stronger nor
weaker than the commonly used ignorability assumption with re-
spect to X (Rosenbaum & Rubin, 1983; Robins & Greenland,
1992). For example, if parents of both T and Y are unobserved,
Assumption 3.3 will not hold, but ignorability could still apply if
no common parent of T and Y is unobserved. Conversely, in graphs with M-bias structures and
colliders, the ignorability assumption will not hold.

Below, we give some examples of settings in which Assumption 3.3 holds, including scenarios in
the existing invariance literature (Peters et al., 2016; Gu et al., 2024):

Fully observed DAG In Peters et al. (2016), we are given multi-environment data {Pe : e ∈
E}, where each distribution Pe is induced by an SCM Me = (G, {fe

i }pi=1,Pe
ϵ), all variables

(X1, ..., Xd, Y ) are observed, and for all Pe ∈ E it is satisfied that

Y e = g(Xe
Pa(Y ), ϵ

e), ϵe ∼ Fϵ and ϵe ⊥⊥ Xe
Pa(Y ).

In particular, the independence condition implies equality of conditional distributions Pe(Y |Xe
Pa(Y ))

across environments and thus Assumption 3.3(b).

General DAG with additive noise In Gu et al. (2024), the target variable follows the following
data generating process for all e ∈ E :

Y e = g(Xe
S⋆) + ϵe; E[ϵe|Xe

S⋆ ] = 0,

where S⋆ is the ”true important variable set”. This setting is, in a way, more general than Peters
et al. (2016), since the noise variable is not required to be independent of the parent variables—
instead, the only condition is on the first conditional moment of ϵe. Due to the additivity of the
noise, Assumption 3.3(b) follows immediately.

General DAG with multiplicative noise We can define a similar setting for multiplicative noise,
setting for all e ∈ E :

Y e = g(Xe
S⋆)ϵe; E[ϵe|Xe

S⋆ ] = c,

where S⋆ is, again, the true parent/important variable set, and c is independent of the environment.
We observe that Assumption 3.3(b) follows since it holds that

Ee[Y |XS⋆ ] = Ee[g(XS⋆)ϵ|XS⋆ ] = g(XS⋆)Ee[ϵ|XS⋆ ] = cg(XS⋆).

General DAG with polynomial noise From the above two examples, it becomes clear that for
any Y = g(XS⋆)pk(ϵ), where p is a polynomial of degree k, we have that Assumption 3.3(b) holds
if for all e ∈ E it holds that

Ee[ϵk
′ | XS⋆ ] = cl, for all k′ ≤ k.

where S⋆ is the important variable/parent set. This condition is strictly weaker than the indepen-
dence condition since k is finite.
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A.2 PROOF OF THEOREM 1

First, we establish that the loss function in Equation (6) attains a value of zero at any minimizer
Sopt. By Assumption 3.3, there exists an invariant node V ∈ {T, Y } whose parents are observed.
Since it holds that JPa(V )(Z;V ) = 0 and Pa(V ) ⊆ I, we conclude that there exists a subset S ⊆ I
such that min{JS(Z;T ), JS(Z;Y )} = 0. Additionally, since the loss function is non-negative, any
global minimizer of Equation (6) must have a corresponding loss value of zero.

We now consider two cases, depending on whether the minimum is attained for the node Y or T .
We prove our statement for EPe

[
Y do(T=1)

]
; the reasoning is analogous for the control group.

Case 1: JSopt
(Z;T ) = 0. Since we assume that the kernel belongs to a universal RKHS (Stein-

wart, 2001, Def. 4), it follows from Gretton et al. (2012, Theorem 5), that

∀e ∈ E : EPe [T | XSopt
] = π̄

(
XSopt

)
, Pe − a.s. (8)

Then, by Assumption 4.1, it holds that

π̄(XSopt) = π̄(ZPa(T )), P− a.s.

We can now identify the treatment effect using the minimizer of the invariance loss as an adjustment
set. First, observe that from Equation (8), for any environment e ∈ E , we have

EPe

[
TY

π̄(XSopt
)
+

(
1− T

π̄(XSopt
)

)
µ̄1(XSopt)

]
= EPe

[
TY

π̄(ZPa(T ))

]
+ EPe

[(
1− T

π̄(ZPa(T ))

)
µ̄1(XSopt)

]
.

Now, under the positivity assumption and Assumption 3.3, since the parents of T satisfy the back-
door criteria, we can identify the treatment effect, that is, it holds that

EPe

[
TY

π̄(ZPa(T ))

]
= EPe

[
Y do(T=1)

]
.

It remains to show that the second term is equal to zero:

EPe

[(
1− T

π̄(XSopt)

)
µ̄1(XSopt)

]
= EPe

[
µ̄1(XSopt)

]
− EPe

[
T

π̄(XSopt)
µ̄1(XSopt)

]

= EPe

[
µ̄1(XSopt

)
]
− EPe

[
EPe

[
T

π̄(XSopt)
| XSopt

]
µ̄1(XSopt

)

]

= EPe

[
µ̄1(XSopt

)
]
− EPe

[
µ̄1(XSopt

)
]

= 0,

where we use the invariance of the conditional expectation πe(XSopt
) for e ∈ E to show that

EPe

[
T

π̄(XSopt)
µ̄1(XSopt

) | XSopt

]
= µ̄1(XSopt

).

Thus, we conclude that

EPe

[
Y do(T=1)

]
= EPe

[
TY

π̄(XSopt
)
+

(
1− T

π̄(XSopt
)

)
µ̄1(XSopt

)

]
.

Case 2: JSopt
(Z;Y ) = 0. Again, by the universal property of the kernel k and Gretton et al.

(2012, Theorem 5) it follows that

∀e ∈ E : EPe [Y | T = t,XSopt
] = µ̄t

(
XSopt

)
, Pe − a.s., ∀t ∈ {0, 1}.

By Assumption 4.1, we have

µ̄t(XSopt) = µ̄t(ZPa(Y )), P− a.s.
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First, observe that

EPe

[
µ̄1(XSopt

)
]
= EPe

[
µ̄1(ZPa(Y ))

]
= EPe

[
Y do(T=1)

]
,

since ZPa(Y ) is a valid adjustment set.

We then show that the second term in our estimand is zero

EPe

[
(Y − µ̄1(XSopt

))T

π̄(XSopt
)

]
= EPe

[
EPe

[
(Y − µ̄1(XSopt

))T

π̄(XSopt
)

| XSopt

]]

= EPe

[
1

π̄(XSopt
)
EPe

[
(Y − µ̄1(ZPa(Y )))T | XSopt

]]

= EPe

[
1

π̄(XSopt)

(
EPe

[
Y T | XSopt

]
− EPe

[
µ̄1(ZPa(Y ))T | XSopt

])]

= EPe

[
1

π̄(XSopt)

(
µ̄1(XSopt)EPe

[
T | XSopt

]
− µ̄1(XSopt

)EPe

[
T | XSopt

])]
= 0,

where we have used the invariance of conditional expectations µe
1(XSopt

) for e ∈ E to show that

EPe

[
Y T | XSopt

]
= EPe

[
Y | XSopt , T = 1

]
Pe(T = 1 | XSopt)

= EPe

[
EPe [Y | T = 1] | XSopt

]
Pe(T = 1 | XSopt

)

= µe
1(XSopt

)Pe(T = 1 | XSopt
) = µe

1(XSopt
)EPe [T | XSopt

]

= µ̄1(XSopt
)EPe [T | XSopt

],

as well as the fact that for all e ∈ E , µ̄1(XSopt) = µ̄1(ZPa(Y )), Pe-a.s. We now proceed similarly
with the remaining two terms: it holds that

EPe

[
µ̄0(XSopt)

]
= EPe

[
µ̄0(ZPa(Y ))

]
= EPe

[
Y do(T=0)

]
,

since ZPa(Y ) is a valid adjustment set. We now show that the last remaining term is equal to zero.
First, we compute

EPe

[
(Y − µ̄0(XSopt

)(1− T )

1− π̄(XSopt
)

]
= EPe

[
EPe

[
(Y − µ̄0(XSopt

)(1− T )

1− π̄(XSopt
)

| XSopt

]]

= EPe

[
1

1− π̄(XSopt
)
EPe

[
Y − µ̄0(XSopt)− Y T + µ̄0(XSopt)T | XSopt

]]
.

We compute for the inner term that

EPe

[
Y − µ̄0(XSopt

)− Y T + µ̄0(XSopt
)T | XSopt

]

= EPe

[
Y | XSopt

]
− µ̄0(XSopt

)− EPe

[
Y | XSopt

, T = 1
]
Pe(T = 1 | XSopt

) + µ̄0(XSopt
)Pe(T = 1 | XSopt

)

= EPe

[
Y | XSopt , T = 1

]
Pe(T = 1 | XSopt) + EPe

[
Y | XSopt , T = 0

]
Pe(T = 0 | XSopt)

− EPe

[
Y | XSopt

, T = 0
]
− EPe

[
Y | XSopt

, T = 1
]
Pe(T = 1 | XSopt

)

+ EPe

[
Y | XSopt

, T = 0
]
Pe(T = 1 | XSopt

) = 0,

where again we have used the invariance of the conditional expectations µe
0(XSopt

) and µe
1(XSopt

)
across environments.

Combining all four terms, we finally obtain

θe = EPe

[
Y do(T=1)

]
− EPe

[
Y do(T=0)

]
.

A.3 IMPLEMENTATION DETAILS

In this section, we describe all the implementation details for our methodology.
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Estimation of the loss function We have several choices when it comes to estimating our loss
function, as there is a trade-off between statistical and computational efficiency. For instance, one
can choose the linear time estimator proposed in Gretton et al. (2012, Section 6) or the efficient
estimator proposed in Kim & Ramdas (2024) that runs in quadratic time. In this paper, we estimate

H2
e(S) := EPe

[
δS(Z;V )k

(
ZS , Z̃

os
S

)
δS(Ṽ , Z̃os)

]

using the cross U-statistic from Kim & Ramdas (2024), defined as

Ĥ2
e(S) :=

2

n

n/2∑

i=1

hS(Zi, Vi),

with hS(Zi, Vi) :=
2

n

n∑

j=n/2+1

δS(Zi, Vi)k(Zi,S , Zj,S)δS(Zj , Vj).

Moreover, we would like the two loss functions, i.e., JY and JT , to be on the same scale to avoid
any finite sample issues. Therefore, we standardize the cross U-statistic by dividing the empirical
variance σ̂

(
Ĥ2

e(S)
)

, i.e. the finite sample estimate of the variance term

σ2
(
Ĥ2

e(S)
)
:= EPe

[
(hS(Z)− EPe [hS(Z)])

2
]
.

Choice of kernel An important issue in practice is the selection of the kernel parameters. We used
a Gaussian kernel in all of our experiments. We set the bandwidth of the kernel σ to be the median
distance between points X in the pooled sample—this remains a heuristic similar to those described
in Takeuchi et al. (2006), and the optimum kernel choice is an ongoing area of research.

A.3.1 ALGORITHM 1: COMBINATORIAL SEARCH OVER SUBSETS

We now describe the concrete implementation of our first algorithm.

Since we know that T is a parent of Y , we can simplify our loss function to incorporate this knowl-
edge. Let us define the quantity δy,t(XS , Y ) := Y −µ̄t(XS), where µ̄t(XS) := EP[Y | XS , T = t].
We can rewrite the Y-invariance loss function as follows

min
S⊆[d]

max
e∈E,t∈{0,1}

EPe [δy,t(Y,XS)k (XS , X
′
S) δy,t(Y

′, X ′
S) | T = t] .

Similarly, we define π̄(XS) := EP[T | XS ] and minimize the T-invariance loss function

min
S⊆[d]

max
e∈E

EPe [δt(T,XS)k (XS , X
′
S) δt(T

′, X ′
S)] .

where δt(XS , T ) := T − π̄(XS).

We explain how to compute the adjustment set explicitly in Algorithm 1, assuming oracle access to
the nuisance functions. In practice, nuisance functions can be estimated using the pooled data from
all environments.

A.3.2 ALGORITHM 2: GUMBEL TRICK

To deal with the computational infeasibility of searching over all possible subsets of covariates,
we propose a continuous relaxation of the optimization problem that can be efficiently solved using
gradient descent. The method involves using Gumbel sampling to create differentiable binary masks
for covariate selection, which allows optimization via gradient descent. We present the continuous
relaxation in Algorithm 2 for obtaining the invariance loss with respect to the node T ; the algorithm
can be extended analogously to minimize the invariance loss for Y1 and Y0.
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Algorithm 1 Combinatorial search over subsets (θ̂ )

1: Input: Data {(Xe, Ye, Te)}ne
i=1, Nuisance functions: π̄, µ̄0, µ̄1

2: for each subset S ⊆ [d] do
3: for each environment e ∈ E do
4: Compute T-invariance loss using dataset De:

ĴS(D
e;T )← 4

n2

n/2∑

i=1

n∑

j=n/2+1

(Ti − π̄(Xi))k(Xi,S , Xj,S)(Tj − π̄(Xj))

ĴS(D
e;T )← ĴS(D

e;Y0)

V̂ar
(
ĴS(De;T )

)

5: Compute Y-invariance loss using dataset De for T = 1:

ĴS(D
e;Y1)←

4

n2

n/2∑

i=1

n∑

j=n/2+1

(Yi − µ̄1(Xi))k(Xi,S , Xj,S)(Yi − µ̄1(Xi))

ĴS(D
e;Y1)←

ĴS(D
e;Y1)

V̂ar
(
ĴS(De;Y1)

)

6: Compute Y-invariance loss using dataset De for T = 0:

ĴS(D
e;Y0)←

4

n2

n/2∑

i=1

n∑

j=n/2+1

(Yi − µ̄0(Xi))k(Xi,S , Xj,S)(Yi − µ̄0(Xi))

ĴS(D
e;Y0)←

ĴS(D
e;Y0)

V̂ar
(
ĴS(De;Y0)

)

7: end for
8: Compute the worst environment losses:

ĴS(T )← max
e∈E

JS(D
e;T ), ĴS(Y1)← max

e∈E
JS(D

e;Y1), ĴS(Y0)← max
e∈E

JS(D
e;Y0)

9: end for
10: Return: Sopt ← argminS min(ĴS(T ), ĴS(Y1), ĴS(Y0))
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Algorithm 2 Gumbel trick for subset selection (θ̂insta− )

1: Input: Data {(Xe, Ye, Te)}e∈E , initial temperature τinit, final temperature τfinal, anneal interval
k, annealing rate α, learning rates ηgate, ηnn, number of epochs nepochs

2: Initialize the weights wπ̄, wµ̄0
, wµ̄1

and neural networks θπ̄, θµ̄0
, θµ̄1

3: Set temperature τ ← τinit
4: for epoch = 1 to nepochs do
5: if epoch mod k = 0 then
6: Update temperature: τ ← max(τfinal, τ · α)
7: end if
8: for each environment e ∈ E do
9: for each component j do

10: Generate mask: G1,j , G2,j ∼ Gumbel(0, 1)

11: Bj(wπ̄) = sigmoid
(

wπ̄,j+G1,j−G2,j

τ

)

12: end for
13: Compute invariance loss for T :

Ĵwπ̄
(De;T )← 4

n2

n/2∑

i=1

n∑

j=n/2+1

(Ti − fθπ̄ (Xi,wπ̄))k (Xi,wπ̄
, Xj,wπ̄

) (Tj − fθπ̄ (Xj,wπ̄
))

Ĵwπ̄
(De;T )← Ĵwπ̄

(De;T )

V̂ar
(
Ĵwπ̄

(De;T )
)

14: end for
15: Aggregate environment losses:

Ĵwπ̄
(T )← 1

ne

∑

e∈E
Ĵwπ̄

(De;T )

16: Update gate parameters using gradient descent:

wπ̄ ← wπ̄ − ηgate∇wπ̄
Ĵwπ̄

(T )

17: Update neural network parameters using gradient descent:

θπ̄ ← θπ̄ − ηnn∇θπ̄ Ĵwπ̄ (T )

18: end for
19: Return: Sopt ← {i : wπ̄,i > 0}
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B EXTENDED RELATED WORK

We discuss here the different challenges associated with the problem of selecting covariates for
treatment effect identification. Our focus is to highlight differences and similarities with our
methodology—we leave out the orthogonal problem of statistical efficiency for the sake of clarity,
and we refer the reader to Guo et al. (2022); Cheng et al. (2024) for a complete survey of methods.

Covariate selection with pre-treatment covariates Several works have relaxed the causal suffi-
ciency assumption, allowing for unobserved variables—as long as they are not confounders—while
constraining all observed covariates to be pre-treatment. In this setting, the main challenge is M-
bias (Sjölander, 2009), which makes adjusting for the full set of covariates not a viable solution. For
instance, EHS (Entner et al., 2013) was one of the first methods to obtain partial identification of
treatment effects in this setting, however, at the cost of computational inefficiency. Gultchin et al.
(2020) propose a more efficient relaxation for EHS to circumvent the computational inefficiency.
Further, several more recent works leverage anchor variables to obtain point identification in a com-
putationally efficient way (Cheng et al., 2020; 2022b; Shah et al., 2022). In contrast, our setting is
different since we do not assume that all observed covariates are pre-treatment.

Covariate selection under causal sufficiency When all the variables in the causal graph are
observed, the only challenge towards identifiability is the presence of post-treatment covariates
that can introduce collider bias. Several methods have been proposed to tackle this setting—e.g.
IDA (Maathuis et al., 2009) and its variants (Perković et al., 2017; Fang & He, 2020) aim to learn
a complete graph from data and then infer a valid adjustment set from it to achieve identifiability.
However, they suffer from computational inefficiency since they must first learn the entire causal
graph, and they only achieve partial identification. More recently, Shi et al. (2021) consider the
setting where multiple environments are available and apply invariant risk minimization (IRM) (Ar-
jovsky et al., 2019) for treatment effect estimation. However, it is widely known that IRM re-
quires many environments—linear in the number of covariates—to generalize well even in the linear
regime (Rosenfeld et al., 2021). Finally, Wang et al. (2023) recently proposed a reinforcement learn-
ing approach to identify the treatmente effect. In contrast, our approach achieves point identification
while being computationally efficient and not requiring causal sufficiency.

Identifiability in linear Gaussian SCMs When the causal graph is a linear Gaussian SCM, the
structure of the causal graph (including the hidden variables) imposes algebraic relations between
the entries in the covariance matrix and these relations allow or prevent certain aspects of the ob-
servable causal model to be recovered. In this regard, several graphical criteria have been identified
for deciding whether, in a given causal graph, a specific causal effect can be identified from the co-
variance for almost all linear Gaussian SCMs compatible with the graph (Drton et al., 2011; Foygel
et al., 2012; Weihs et al., 2018; Barber et al., 2022). In contrast, here we are not assuming neither
linearity nor gaussianity, and instead rely on multiple heterogeneous data sources for identification.

Combining data from multiple environments Given the challenges associated with estimating
treatment effects using non-randomized data, several works propose to detect bias in the treatment
effect estimated from observational data by leveraging randomized trials (Yang et al., 2023; Morucci
et al., 2023; Hussain et al., 2022; 2023; Demirel et al., 2024; De Bartolomeis et al., 2024b;a), and
multiple observational studies (Karlsson & Krijthe, 2023; Mameche et al., 2024). Further, another
line of work combines data estimate the bias and correct for it, ultimately leading to a more accurate
treatment effect estimate (Kallus et al., 2018; Rosenman et al., 2022; Wu & Yang, 2022; Yang et al.,
2020; Oberst et al., 2022).
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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(b) Y-invariance
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 6: Mean absolute error averaged across environments for the IHDP dataset with a descendant
of the outcome Y when different invariances are preserved (T or Y ). We consider the setting with
(a) a mediator between T and Y and (b) without a mediator. We consider five environments with
n = 748 points each; mean and standard error are reported over 20 runs.

C ADDITIONAL EXPERIMENTS

C.1 ROBUSTNESS TO MEDIATORS

We study here the robustness of our method to violations of Assumption 3.2. More concretely, we
show how the inclusion of a mediator between T and Y affects the ATE estimate for our method and
the baselines in several settings. We consider the semi-synthetic experiment setup from Section 5.3,
using a 2-dimensional descendant of Y as the post-treatment variable. In Figure 6, we present results
for two settings: when the treatment or the outcome is invariant across environments (complete
experimental details in Appendix D.2). All baselines show slightly worse performance when a
mediator is included. When T is invariant, our method remains competitive and outperforms the
baselines, as the parents of T still form a valid adjustment set despite the mediator. However, both
θ̂ and θ̂insta− experience a significant drop in performance in the Y -invariance setup, i.e. when
T -invariance is violated. This is expected, as in this scenario, we recover the parents of Y , which
unfortunately also includes the mediator. A closer inspection of the selected subsets reveals that they
usually include the mediator, thus failing to estimate the full effect of T on Y . Instead, our method
recovers the natural direct effect of T on Y (Pearl, 2022).
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
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dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
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(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
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Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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(✓̂all) generally results in poor performance. Interestingly,
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limited impact on the outcome and treatment assignment
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 7: Mean absolute error averaged
across environments for the IHDP dataset
when no invariance is preserved. We con-
sider five environments with n = 748 points
each; mean and standard error are reported
over 20 runs.

Next, we examine the robustness of our method to vio-
lations of the invariance in Assumption 3.3. Specifically,
we consider again the semi-synthetic experiments of Sec-
tion 5.3 in the scenario where neither T - nor Y -invariance
holds and there are post-treatment variables (i.e. not the
independent noise setting). We provide the results in Fig-
ure 7. The performance of our method significantly wors-
ens in this setting, with performance close to the θ̂null
baseline, as it often recovers the empty set when no in-
variant node is present. Nonetheless, our method still out-
performs θ̂irm in all the settings considered.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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(b) Y-invariance
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
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We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
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Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 8: (Row 1) We plot the mean absolute error averaged across environments when: (a) no
unobserved variables and both invariance w.r.t T and Y are preserved; (b) the parents of T are
unobserved but the invariance w.r.t. Y is preserved; (c) the parents of Y are unobserved but the
invariance w.r.t T is preserved. For all plots, we sample n = 2000 points for each environment; we
report mean and standard error over 100 runs. (Row 2) Complete experimental results for the semi-
synthetic setup described in Section 5.3 using the IHDP dataset. The plots show the mean absolute
error averaged across environments for: (a) both T - and Y -invariance, (b) Y -invariance only, (c)
T -invariance only.We consider five environments with n = 748 points each; mean and standard
error are reported over 20 runs.

C.3 ADDITIONAL RANDOM GRAPHS EXPERIMENTS

In Figure 8 (Row 1), we report the MAE averaged across environments for all the invariance set-
tings. First, we observe that across all settings and numbers of available environments, our method
significantly outperforms existing baselines. Most notably, θ̂insta− achieves relatively small errors
even with a limited number of environments. In contrast, θ̂irm requires a much larger number of
environments to outperform the trivial baselines θ̂null and θ̂all. Further, when the parents of Y are
unobserved, θ̂irm fails to surpass all trivial baselines, even with many environments—this outcome
is expected, as the Y -invariance is broken in this case and θ̂irm lacks the double robustness.

C.4 ADDITIONAL SEMI-SYNTHETIC EXPERIMENTS

We present the complete experimental results using the IHDP dataset (see Section 5.3) in Fig-
ure 8 (Row 2). Specifically, we evaluate our proposed method and the baselines under three con-
ditions, where the two-dimensional variable Xc acts as a collider (as described in the main text),
descendant, or independent noise. For T -, Y -, and T, Y - invariance, the results align with those
obtained in previous sections for linear synthetic experiments. Both θ̂ and its differentiable ap-
proximation, θ̂insta− , outperform the baselines in most settings. The sole exception is when the
post-treatment variables are independent noise, where θ̂all achieves the best performance. In the
case of T -invariance, both our method and θ̂irm exhibit slightly worse performance. θ̂irm gener-
ally underperforms, showing the highest error even under the independent noise setting. The θ̂null
baseline demonstrates competitive performance overall, likely due to the relatively low influence of
confounders in this setup.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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features from the original dataset and simulate the outcome Y and treatment assignment T by
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dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
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Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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(b) Y-invariance
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 9: (Row 1) For all the plots: n = 250, d = 3, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y is
preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20 runs.
(Row 2) For all the plots: n = 2500, d = 3, |E| = 5, and only the invariant w.r.t Y is preserved.
We plot the mean absolute error averaged across environments for different levels of heterogeneity
in the data (higher ϵ corresponds to more heterogeneous data).

C.5 ROBUSTNESS TO SMALL SAMPLE SIZE

In Figure 9 (a–c), we report the MAE averaged across environments for the three graphical models
introduced in Figure 2 (Row 2). We can observe that our method remains competitive even in the
small sample size regime: our method consistently outperforms all baselines when a collider or
descendant is present. However, its performance declines in the edge case where the post-treatment
variable is independent noise.

C.6 ROBUSTNESS TO VIOLATIONS OF ASSUMPTION 4.1

We evaluate here the robustness of our method against violations of our identification condition (i.e.
Assumption 4.1). To do so, we slightly modify the synthetic experiments presented in Figure 2:
We introduce a parameter ϵ2 to control environment heterogeneity. If ϵ2 = 0, X has the same
distribution across environments. Therefore, there is no heterogeneity across environments, and
Assumption 4.1 is violated. On the other hand, if ϵ2 > 0 , the mean and variance of X will shift
across environments, with larger shifts as the parameter ϵ2 increases. Therefore, the heterogeneity
across environments increases with ϵ2, and Assumption 4.1 is more likely to be satisfied.

Example C.1 (Post-treatment variables). Let E be the collection of environment indices. For each
environment e ∈ E , we first sample U ∼ N (0, ϵ2Id+2). Then, the data is given by

Xp,i ∼ N (Ui, 0.5 + U2
i ), for i = 1, . . . , d;

T ∼ Ber
(
σ
(
β⊤
t Xp + ϵt

))
, with βt ∼ N (0, Id) and ϵt ∼ N (Ud+1, 0.5 + U2

d+1);

Y = T + β⊤
y Xp + ϵy, with βy ∼ N (0, Id) and ϵy ∼ N (0, 1);

Xc = a · T + b · Y + ϵc, with ϵc ∼ N (Ud+2, 0.5 + U2
d+2).
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In Figure 9 (d–f), we plot the MAE for different levels of heterogeneity in the data. We can observe
that both θ̂ and θ̂irm suffer significantly when there is no heterogeneity (ϵ = 0.0). Nevertheless,
our method θ̂ consistently outperforms θ̂irm, even under strong violations of the identification con-
dition. Moreover, θ̂ remains competitive against all baselines when Assumption 4.1 is only weakly
satisfied (ϵ = 0.3).
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D EXPERIMENTAL DETAILS

Given an adjustment set, we estimate the ATE for each environment e ∈ E as follows

θ̂eS =
1

n

∑

(Xi,Ti,Yi)∈De

µ̂e
S(Xi, 1)− µ̂e

S(Xi, 0) +
(Yi − µ̂e

S(Xi, 1))Ti

π̂e
S(Xi)

− (Yi − µ̂e
S(Xi, 0))(1− Ti)

1− π̂e
S(Xi)

,

where µ̂e
S(x, t) = ÊPe [Y | T = t,XS = x] and πe

S(x) = ÊPe [T | XS = x].

For θ̂irm, since the algorithm only learns the outcome function, we estimate the ATE as

θ̂irm =
1

n

∑

(Xi,Ti,Yi)∈De

µ̂e
S(Xi, 1)− µ̂e

S(Xi, 0).

D.1 SYNTHETIC EXPERIMENTS

We describe here the data generating process for our synthetic experiments and all the implementa-
tion details for the methods.

Example D.1 (Post-treatment variables). Let E be the collection of environment indices. For each
environment e ∈ E , we first sample U ∼ N (0, Id+2). Then, the data is given by

Xp,i ∼ N (Ui, U
2
i ), for i = 1, . . . , d;

T ∼ Ber
(
σ
(
β⊤
t Xp + ϵt

))
, with βt ∼ N (0, Id) and ϵt ∼

{N (0, 1) if T is invariant
N (Ud+1, U

2
d+1) else

;

Y = T + β⊤
y Xp + ϵy, with βy ∼ N (0, Id) and ϵy ∼

{N (0, 1) if Y is invariant
N (Ud+1, U

2
d+1) else

;

Xc = a · T + b · Y + ϵc, with ϵc ∼ N (Ud+2, U
2
d+2).

Further, observe that for each choice of invariance, the post-treatment variable Xc can either be a
descendant of Y (a = 0 and b = 1), a collider between T and Y (a = 1 and b = 1), or independent
noise (a = 0, b = 0). Finally, under this data-generating process, the average treatment effect is
constant across the environments, and it is given by θe = 1, for all e ∈ E .

Random graph data generating process We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a density equal to 0.5 and consider graphs with a total number of observed
nodes p = 20. We do rejection sampling to exclude graphs that either contain mediators (since
they violate Assumption 3.2) or do not contain at least a confounder (to make the setting more chal-
lenging). We then sample data from the resulting DAG via a linear structural causal model with
Gaussian weights using the causaldag python library, with the only exception being the treat-
ment variable T , which is generated by additionally applying a sigmoid function and then sampling
from a Bernoulli distribution. We further post-process the graph, adding a post-treatment variable
Xc = Y + T and removing at random some parents of T or Y depending on which invariance we
want to preserve. Therefore, we consider a challenging scenario with both a collider and unobserved
variables. To sample data from multiple environments e ∈ E , within each environment e, we apply
a random uniform mean and variance shift to all the nodes in the graph, except for T and Y .

Implementation details We implement our method, θ̂insta− , by performing a hyperparameter
search over the following parameters at each iteration: learning rate in the range [0.001, 0.01, 0.1],
initial temperature values of [0.5, 0.8, 1.0], and annealing rates of [0.9, 0.95, 0.99]. The optimal
combination of these hyperparameters is selected based on minimizing both T-invariance and Y-
invariance loss. The outcome functions for θ̂all, θ̂ , θ̂insta− and θ̂irm are estimated using a linear
regression model. Logistic regression is used for propensity score estimation.
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D.2 INFANT HEALTH AND DEVELOPMENT PROGRAM (IHDP) DATASET

The Infant Health and Development Program (IHDP) dataset is a randomized controlled trial fo-
cusing on low-birth-weight, premature infants. For our analysis, we keep six continuous covariates
from Dorie (2016), representing the child’s birth weight, head circumference at birth, number of
weeks pre-term, birth order, neonatal health index, and mother’s age at birth.

Instead of adopting the treatment and outcome functions from Dorie (2016), we simulate a more
challenging scenario inspired by Kang & Schafer (2007). In this setting, each covariate assigned
to the treatment (T ) or outcome (Y ) undergoes a transformation using a predefined set of com-
plex functions similar to those encountered in real-world applications. We introduce the following
relationships:

• Confounders: Three of the six covariates are randomly selected to act as confounders,
affecting both T and Y .

• Other pre-treatment covariates: The remaining covariates are assigned to affect either T or
Y , but not both.

• Post-treatment covariates: We include a two-dimensional post-treatment covariate, denoted
as Z, whose generation is detailed below.

• Environmental variation: To introduce variation across environments, we (i) randomly omit
a parent of either T or Y and (ii) introduce environment-specific shifts, as detailed below.
We apply both to the same node (T or Y ) so that the other remains invariant.

• We set ATE = 2.0 for all environments.

Modeling of T and Y For each covariate Xi affecting T , we apply a randomly chosen transfor-
mation g

(i)
T (x) from the following set:

g
(i)
T (x) ∈

{
0.5 log(|x|+ 1),

(x
2

)2
, x+ 0.2, exp

(x
2

)}
.

We then compute the logits for the treatment assignment as:

Tlogits =
∑

i

β
(i)
T g

(i)
T (Xi),

where β(i)
T are coefficients sampled independently from a uniform distribution β

(i)
T ∼ U(−0.5, 0.5).

The binary treatment T is obtained by applying a sigmoid function to Tlogits and sampling from a
Bernoulli distribution:

P (T = 1) = σ(Tlogits), T ∼ Bernoulli(P (T = 1)),

where σ(x) = 1
1+e−x is the sigmoid function.

Similarly, for each covariate Xj affecting Y , we apply a randomly chosen transformation g
(j)
Y (x)

from the set:

g
(j)
Y (x) ∈

{
2 log(|x|),

(x
2

)2
, x+ 1, exp

(x
2

)}

The outcome Y is then computed as:

Y =
∑

j

β
(j)
Y g

(j)
Y (Xj),

with coefficients β(j)
Y sampled from β

(j)
Y ∼ U(−2, 2).
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Incorporating environment-specific shifts To introduce environment-specific variability, we de-
fine a hidden variable U that modifies the pre-treatment and post-treatment covariates, outcome,
and treatment assignment across different environments. The environments are indexed by u =
0, 1, 2, 3, 4. For each environment, we introduce shifts dependent on u.

We first sample coefficients:

βinv ∼ U(0.5, 1.0), βX ∼ U(0.5, 1.0).

For each environment u, the shifts are generated as:

∆inv = u · βinv + ϵinv, ∆X = u · βX + ϵX , ∆post = u · βX + ϵpost,

where all ϵinv, ϵX , ϵpost are independently sampled from N (0, 1).

Then, for each environment, the covariates are modified:

X = X0 +∆X ,

where X0 represents the original covariate values.

Either Y or T is also shifted, depending on the invariance we aim to preserve:

If invariance in T : Y = Y 0 +∆inv, else if invariance in Y : Tlogits = T 0
logits +∆inv,

while we add N (0, 1) to the invariant node.

Generation of post-treatment variables Xc For each environment, we generate a two-
dimensional post-treatment variable Xc as follows:

• Collider:
Xc = Y + T + ϵpost, ϵpost ∼ N (∆post, I2).

• Descendant:
Xc = Y + ϵpost, ϵpost ∼ N (∆post, I2).

• Independent Noise:
Xc = ϵpost, ϵpost ∼ N (∆post, I2).

Inclusion of mediators In some settings, we introduce an additional mediator variable influenced
by T :

Mediator = βmed · T + ϵmed, βmed ∼ U(−1.0, 1.0), ϵmed ∼ N (0, 1).

The outcome Y is then adjusted:
Y = Y + Mediator.

Summary of data generation process For each environment:

1. Modify covariates: X = X0 +∆X .

2. Compute treatment: Tlogits =
∑

i β
(i)
T , g

(i)
T (Xi) T ∼ Bernoulli(σ(Tlogits)).

3. Compute outcome: Y =
∑

j β
(j)
Y , g

(j)
Y (Xj).

4. Apply environmental shift to Y or T and hide a parent of Y or T (we hide the same parent
for all environments).

5. Include the ATE = 2.0 in the outcome Y

6. If applicable, generate mediator and adjust Y .

7. Generate post-treatment variables Z.
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Implementation details We implement our method, θ̂insta− , by performing a hyperparameter
search over the following parameters at each iteration: learning rate in the range [0.001, 0.01, 0.1],
initial temperature values of [0.5, 0.8, 1.0], and annealing rates of [0.9, 0.95, 0.99]. The optimal
combination of these hyperparameters is selected based on the minimization of both T-invariance
and Y-invariance loss. The outcome and treatment assignment functions for both θ̂all and θ̂insta−
are estimated using XGBoost. For these models, we set the number of estimators to 1,000, the
learning rate to 0.01, and the maximum tree depth to 6. For the non-linear IRM baseline, we employ
the TARNet architecture (Shalit et al., 2017), which consists of a shared representation with a single
hidden layer of 200 neurons, followed by two hypothesis-specific hidden layers, each with 100
neurons. Logistic regression is used for propensity score estimation.

D.3 CATTANEO2

The Cattaneo2 dataset (Cattaneo, 2010) studies the effect of maternal smoking on newborn birth
weight. We consider 21 covariates, including maternal and paternal age and education, marital
status, maternal foreign status, Hispanic origin, alcohol consumption, receipt of prenatal care and
the number of prenatal visits, whether the mother had previous children who died, an indicator for
low birth weight, months since last birth by the mother, birth month, indicator for whether the baby
is first-born, and other variables for which full details are unavailable. The treatment is a binary
indicator of smoking status, with 864 mothers in the treatment group and 3,778 in the control group.
The outcome is a continuous variable representing birth weight, which we normalize to the interval
[0, 1]. We exclude the month of birth from the observed features and instead use it to define the
environments, creating four environments corresponding to the four quarters of the year.

Implementation details We implement our method, θ̂insta− , using the following hyperparame-
ters: the number of epochs is set to 700, patience to 100, learning rate to 0.1, initial temperature
to 1.0, and annealing rate to 0.9. This configuration was chosen because it provided robust and fa-
vorable results across experiments, specifically in minimizing T- and Y-invariance losses. All other
hyperparameters are kept from previous experiments. The outcome and treatment assignment func-
tions for both θ̂all and θ̂insta− are estimated using XGBoost, with the number of estimators set to
1,000, learning rate to 0.01, and maximum depth to 6. For the non-linear IRM implementation, we
use the TARNet architecture, as in the IHDP experiments.

31


	Introduction
	Related work
	Problem setting
	Causal inference preliminaries
	Treatment effect identification

	Methodology
	Population-level estimator
	Doubly robust identification
	Kernelized invariance loss
	A fully differentiable loss

	Experiments
	Synthetic experiments with known DAGs
	Synthetic experiment with random high dimensional DAGs
	Semi-synthetic experiments: the IHDP dataset
	Real-world experiment: effect of maternal smoking on birth weight

	Discussion and future work
	Methodology
	Discussion of asm:model
	Proof of thm:doubleid
	Implementation details
	Algorithm 1: Combinatorial search over subsets
	Algorithm 2: Gumbel trick


	Extended related work
	Additional experiments
	Robustness to mediators
	Robustness to lack of invariance
	Additional random graphs experiments
	Additional semi-synthetic experiments
	Robustness to small sample size
	Robustness to violations of asm:identification-condition

	Experimental details
	Synthetic experiments
	Infant Health and Development Program (IHDP) Dataset
	Cattaneo2


