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Abstract

Building upon the SALT benchmark for relational prediction [Klein et al., 2024],
we introduce SALT-KG, a benchmark for semantics-aware learning on enterprise
tables. SALT-KG extends SALT by linking its multi-table transactional data with a
structured Operational Business Knowledge represented in a Metadata Knowledge
Graph (OBKG) that captures field-level descriptions, relational dependencies, and
business object-types. This extension enables evaluation of models that jointly
reason over tabular evidence and contextual semantics—an increasingly critical
capability for foundation models on structured data. Empirical analysis reveals that
while metadata-derived features yield modest improvements in classical prediction
metrics, these metadata features consistently highlight gaps in models’ ability
to leverage semantics in relational context. By reframing tabular prediction as
semantics-conditioned reasoning, SALT-KG establishes a benchmark to advance
tabular FMs grounded in declarative knowledge, providing the first empirical step
toward semantically linked tables in structured data at enterprise scale

1 Introduction

We introduce SALT-KG, a benchmark for semantics-aware learning on enterprise tables. The SALT
dataset [Klein et al.,|2024]] established a standardized setting for learning multi-table enterprise data
through attribute autocompletion tasks, but was limited to relational structure, focusing on how mod-
els infer missing attributes from transactional evidence. SALT-KG extends this foundation by linking
the same relational schema to a structured OBKG that captures field-level semantics, declarative
business knowledge, and hierarchical object types. Declarative metadata describes what entities and
attributes mean, beyond how they are joined, enabling models to condition tabular prediction on
contextual semantics instead of mere statistical correlations.

Despite remarkable progress in language, vision, and multimodal learning, tabular data—particularly
multi-table, relational datasets typical of enterprise environments—remain among the most challeng-
ing modalities for machine learning [Grinsztajn et al.| 2022, [Bodensohn et al.,2024]. Recent advances
in tabular foundation models, such as CARTE [Kim et al.,2024]], TABPFN [Hollmann et al., 2025/
2023]], TABICL [Qu et al.| 2025]], PORTAL [Spinaci et al.l [2024] and CONTEXTTAB [Spinaci
et al., 2025]], have improved data efficiency and in-context reasoning. However, these models are
typically trained and evaluated on benchmarks that represent relational structure but lack explicit
semantic grounding or declarative context. Conversely, enterprise data encodes rich dependencies
between attributes—such as Shipping Point, Plant, and Payment Terms—yet the semantics of these
relationships are implicit, buried in metadata descriptions or business logic. As a result, even strong

lThe data set, benchmark splits, and scripts to reproduce all results are publicly available at: https://github.com/SAP-samples/salt-kg.
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tree-based or neural predictors rely on the memorization of local correlations rather than reasoning.
Existing benchmarks such as RELBENCH [Robinson et al., [2024]], TALENT [Liu et al., [2024],
SALT [Klein et al., 2024]], and TABARENA [Erickson et al.| [2025]] have advanced evaluation for
structured prediction on relational data. Yet, they do not expose the metadata layer where domain
meaning and declarative knowledge reside. In parallel, knowledge graph (KG) and data integra-
tion communities have explored connecting tables to semantic graphs through systems such as
JENTAB [Abdelmageed et al.| [2024], CORECOLUMNMATCH [Qiu et al.| [2024], and LL.M-based
table-to-KG alignment methods [[Vandemoortele et al.|[2024]. These advances have yet to be systemat-
ically incorporated into tabular learning benchmarks, leaving a gap between relational representation
learning and semantics-aware reasoning. SALT-KG bridges this gap by enriching enterprise rela-
tional data with an explicit semantic layer that links tables, fields, and business object types through
declarative relationships in a coherent OBKG. This integration enables controlled evaluation of
models that combine relational reasoning with declarative schema semantics for contextual under-
standing beyond feature-level learning. Empirical results show that metadata features yield only
modest gains in classical prediction metrics but reveal consistent differences in the models’ ability to
exploit semantic alignment and contextual relationships. This work operationalizes the declarative
layer of the broader Foundation Models for Semantically Linked Tables (FMSLT) framework [Klein
and Hoffart, [2025[], which envisions integrating declarative, procedural, and operational knowledge;
SALT-KG focuses solely on the declarative dimension—capturing what entities and attributes mean
through structured metadata rather than how they behave in processes or systems.

Related Work: The prediction of tabular data has traditionally been dominated by tree-based
ensemble methods such as XGBoost [[Chen and Guestrin, 2016], LightGBM [Ke et al., 2017], and
CatBoost [Prokhorenkova et al., 2018]]. Recently, this landscape has shifted with the emergence
of deep learning approaches tailored to relational databases, including CARTE [Kim et al.| 2024,
AutoGluon [Erickson et al.,|2020], and GraphSAGE [Hamilton et al.| |2017]], evaluated on benchmarks
such as RelBench [Robinson et al., [2024]] and TabArena [Erickson et al.,2025]]. The rise of tabular
foundation models—including transformer-based in-context learners such as TabPFN [Hollmann
et al.|, [2025] [2023]], TabICL [Qu et al.l 2025]], and ContextTab [Spinaci et al.| [2025]—marks a
significant shift toward generalizable tabular learning. In parallel, knowledge graphs (KGs) have
gained prominence for their ability to contextualize data for deep learning [Mulang’ et al.| 2020].
Based on this, systems such as JenTab [[Abdelmageed et al.| 2024] have taken initial steps toward
bridging the gap between raw tables and semantic graphs. Nevertheless, more progress is needed
to ground tabular foundation models in operational business semantics [Klein and Hoffart, [2025],
enabling models that jointly reason over relational evidence and contextual knowledge. SALT-KG is
designed to catalyze this research direction by providing a benchmark to evaluate how contextual
knowledge of KG can improve tabular learning and representation.

2 Dataset Design

Background: SALT-KG extends SALT [Klein et al.,[2024]] by enriching multi-table enterprise data
with a structured layer of KG-metadata. The dataset captures a representative sales-order creation
process from a real-world transactional system, where each order consists of a document header
and multiple line items linked through foreign keys. This reflects enterprise data characteristics:
multi-relational dependencies, temporal dynamics, categorical imbalance, and hierarchical structure.

Task Definition: The SALT-KG benchmark defines a suite of predictive tasks designed to as-
sess semantics-aware tabular learning. Aligned with SALT setup [Klein et al., 2024], the
benchmark simulates missing-field autocompletion in transactional records, to infer key attributes
given partial table information. Twenty-one features are provided as inputs, and eight vari-
ables serve as multiclass targets, including sales indicators such as SalesO0ffice, SalesGroup,
CustomerPaymentTerms, ShippingCondition, Plant, ShippingPoint, and both header- and
item-level IncotermsClassification.

The OBKG data infused with the tabular SALT is obtained from an underlying RDF-Based Enterprise
Metadata KG. The KG models the ontological concepts for business data, and instances of these
concepts are represented in a hierarchical network beginning with metadata about the underlying
tables (e.g., table names, descriptions, column descriptions, type, length) and other metadata such as
property domains and ranges that define RDF classes to which these objects belong. For example,
in the table "I_SALESDOCUMENT" will be represented as a node in the graph as an instance of
the class for tables. The fields are independent one-hop nodes, allowing for more expressivity at
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Figure 1: Construction of semantically linked tables. A sample OBKG (blue) aligned with its
relational schema. Graph context is encoded and merged with tabular features.
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the table and field levels. Further metadata includes value help data and the business application
area from where the table has been derived. The next layer in the network involves inter-table
relationships, specifically those involving foreign keys and joins within the network. Core Data
Services Views (known as CDS VIEWS )are projections of other entities, like tables, to capture
specific data needs. In the OBKG, these are data abstraction nodes with associated fields, labels,
associations, data classes, reference fields, and other elements. Intrinsically, every underlying table
has a matching view in the KG. To align OBKG with the underlying tabular data, metadata context is
fetched using SPARQL queries in which KG nodes corresponding to each of the tables in SALT are
subjects of the first triple patterns in the SPARQL basic graph pattern. Triple patterns for one-hop
triples that link to two major business objects, namely: The Fields and the Object Node Types are
fetched. Fig. [T]illustrates three types of interconnected information. First, the CDS Views provides
data model abstractions (semantic definitions without actual tabular instances. Second, the fields
augment the columns in the SALT table, e.g., I_SALESDOCUMENT in our example has a column
ACCOUNTINGDOCEXTERNALREFERENCE and the OBKG triples provide descriptions or data type
information for this column. column. All tabular columns have a corresponding field in the KG.
Third, Object Node Types provide further semantic metadata through technical definitions, busi-
ness object descriptions, and additional information such as the application area of the business object.

The overall dataset comprises exact tabular statistics in SALT [Klein et al., [2024]]. These tables
are normalized through foreign-key joins and flattened to the item level for supervised learning.
Approximately 990 schema fields are explicitly mapped to corresponding tabular columns, along
with their associated business object nodes and textual descriptions. Additionally, 1,954 semantic
object types enrich the metadata layer. Connectivity varies across schema elements: object nodes
related to address entities exhibit higher out-degree, as address views connect to numerous other
schema components across diverse contexts. These nodes reference a shared set of higher-level
objects. Details of extracted semantic information available in appendix [B] This semantic overlay
transforms the relational dataset into a graph-linked benchmark, enabling contextual representation
learning and semantics-aware evaluation across tabular and graph modalities.

Data Insights and Challenges: SALT-KG inherits the same real-world properties of SALT
2024]]: high cardinality, class imbalance, and temporal drift. Several categorical attributes, such
as SalesOffice and ShippingPoint, are dominated by few frequent classes, whereas others (e.g.,
Customer or ProductID) contain tens of thousands distinct values. Temporal drift is evident across
the three-year window, as organizational structures and categorical hierarchies evolve with time.
Introducing the KG layer opens new opportunities to address these challenges. By linking tabular
fields to their semantic object types and descriptive definitions, models can leverage graph-based
regularization, hierarchical grouping, or transfer between semantically related columns. E.g. graph re-
lations connecting address-related entities across schema components like Customer, AddressLine,
PostalLocation can facilitate domain adaptation or infer meaningful join paths between related
tables. This design encourages research on semantics-informed learning strategies that transcend
feature engineering, emphasizing generalization through contextual and relational understanding.

2 https://help.sap.com/docs/SAP_HANA_PLATFORM/09b6623836854766b682356393c6c416/b4080c0883c24d2dae38a60d7fbf07c8.html



Table 1: Effect of KG context on baseline models (AMRR). Blue values indicate improvement due
to KG context; red values indicate degradation; black values denote no change.

Method \ Target Plant ShipPt ItemInc. Hdr Inc. Sales Off. Sales Grp. PayTrm ShipCond Avg

Random Classifier +0.03  +0.02 0.00 0.00 +0.01 -0.01 -0.02 +0.01 +0.01
Majority Class Baseline +0.03 -0.05 0.00 0.00 +0.01 -0.01 0.00 0.00 +0.00
XGBoost ( [Chen and Guestrin,[2016]) 0.00 0.00 +0.01 +0.01 +0.01 0.00 0.00 +0.01 +0.01
LightGBM ( [Ke et al.}[2017]) +0.01  0.00 +0.03 +0.04 +0.01 +0.01 +0.08 -0.31 +0.00
CatBoost ( [Prokhorenkova et al.{2018])  0.00 -0.09 -0.02 0.00 +0.01 0.00 0.00 0.00 -0.01
CARTE ( [Kim et al.}2024]) 0.00  +0.01 +0.02 +0.02 +0.01 -0.01 +0.03 +0.04 +0.02
AutoGluon ( [Erickson et al.2020]) 0.00 0.00 +0.02 +0.03 +0.01 +0.02 -0.04 0.00 +0.03
GraphSAGE ( [Hamilton et al.,[2017]) 0.00 +0.01 0.00 -0.01 +0.01 -0.02 +0.01 -0.10 -0.01

3 Experiments and Results

We evaluate SALT-KG using standard tabular baselines trained on the joined relational schema,
similar to the setup in SALT |Klein et al.|[2024]. Since OBKG provides schema rather than record
level information, we independently encode the information (concatenated in the order: CDS View,
Fields, objNodeTypes), using TEXT-EMBEDDING-3-LARGE model, which we chose as baseline
method for simplicity of implementation. The encoded descriptors are then projected into a compact
latent space via PCA. We perform early fusion of the two representations, where tabular features
are encoded into unified row vectors by retaining both the numerical and categorical features for
tree based methods, while relying on intrinsic representations for the neural models. The resultant
reduced-dimensional semantic representation is concatenated with tabular features for every row.
This final representation is then used to train all eight benchmark models. Empirically, retaining
between 16 and 64 components provides a stable trade-off for expressiveness and generalization,
while higher dimensions may lead to noise amplification, weak signal utilization, and increased
feature space complexity that hinders robust learning leading to degraded performance.

Deep learning baselines benefit modestly from this semantic context, while graph-based models, such
as GRAPHSAGE [Hamilton et al.| 2017]], show inconsistency, highlighting the need for architectures
that directly integrate declarative schema semantics. Across all baselines, incorporating metadata-
derived features rarely changes overall ranking metrics but consistently alters the relative performance
of different model families, as shown by the slight deviations in Tab. [T} Tree-based methods naturally
handle heterogeneous data types and can split on categorical features without requiring heavy
embedding hence, they remain relatively stable, whereas neural baselines exhibit greater sensitivity to
this alignment with operational data. Deep learning on tabular data often struggles when the number
of samples is moderate, when features vary in type and scale, and when the target function is irregular
(non-smooth) Shwartz-Ziv and Armon|[[2022]]. This pattern suggests that semantic grounding modifies
inductive biases rather than raw predictive accuracy. The magnitude of these effects also reveals a
structural limitation of the underlying dataset: while SALT-KG introduces declarative semantics
through OBKG, the relational scaffold inherited from SALT provides limited ontological depth
(where the data exhibits only direct relationships between tables and fields, but does not capture
higher-order abstractions such as class hierarchies, class-instance relationships, and rich expressivity
through transitivity, inverse, reflexivity) and cross-entity abstraction. As a result, available semantics
cannot fully propagate through the relational topology, constraining the degree to which current
models can internalize and exploit higher-order context. The modest gains observed indicate that
semantics-aware learning also demands intrinsically structured datasets with a relational design that
supports the emergence of semantic generalization.

4 Conclusion

By explicitly linking relational schema elements to declarative metadata in the OBKG, SALT-KG
closes a critical gap between purely structural benchmarks for tabular learning and the semantics-
grounded evaluation needed for the next generation of tabular foundation models. Empirical results,
proffer a need for future work on architectures that unify relational, semantic, and linguistic under-
standing. The declarative semantics encoded in SALT-KG remain bounded by the descriptive depth
of the underlying SALT dataset, where the OBKG semantics are defined using existing enterprise
schema and glossary, limiting the extent of cross-domain or hierarchical reasoning. SALT-KG
thus provides the first benchmark for semantics-aware tabular learning and offers a foundation for
systematically studying how contextual knowledge shapes predictive behavior.
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A Model Parameters

Table 2: Hyperparameters Used by Each Model

Model Parameter Value Model Parameter Value
NN_TORCH Hyperparameters epochs 1000
num_epochs 100 patience 5
batch_size 8192 num_layers 2
learning_rate 0.001 channels 128
dropout_prob 0.1 GraphSAGE  aggregation sum
num_gpus 1 normalization ~ batch_norm

AutoGluon learning_rate 0.0001

optimizer_eps  le-8
FASTAI Hyperparameters tune_metric miIr
epochs 50
batch_size 4096
layers [800, 400] num_model 1
num_gpus 1 random_state 42
n_jobs 1
loss categorical_
General Training Parameters Cross-entropy
time_limit 7200s (2 hrs) CARTE val_size 0.10
holdout_frac 0.1 batch_size 4
num_bag_folds 3 early_stopping
presets best_quality _patience 5
learning_rate 0.0006
num_layers 3
dropout 0.1
max_epoch 200
chunk_size 2048

B Dataset Statistics

This hybrid relational-graph structure supports new learning paradigms that jointly reason over
transactional evidence and semantic context, combining tabular embeddings with graph-based
reasoning. Table 3] summarizes the composition and semantic augmentation introduced in SALT-KG.



Table 3: Summary of CDS Views infused in SALT-KG.

CDS View Fields Obj Node Types
I_SalesDocument 286 1
I_SalesDocumentItem 412 1
I_Customer 132 1
I_Address_2 94 1,954
I_AddrOrgPostalAddress 66 1,954

C Sample KG Context: I_SALESDOCUMENT

1 Ao
"I_SALESDOCUMENT": {
"name": "I_SALESDOCUMENT",
"description": "Sales Document",
"shortDescription": "This CDS view provides the prerequisites

for answering questions about all relevant aspects of
sales documents. Example business questions could include:
What is the net value of a given sales document? Based on
which document is a given sales order created? Which
sales area does a given sales document belong to? Who is
the sold-to party of a given sales document? When is a
given sales order requested to be delivered? What is the
overall processing status of a given sales document?",
6 "details": "",
"fields": [
{
"fieldName": "SALESDOCUMENT",
"fieldDescription": "Sales Document",
11 "fieldType": "abap.char",
"fieldDetails": "",
"dataElementDescription": "The number that uniquely
identifies the sales document.",
"targetColumn" : "SALESDOCUMENT"

"fieldName": "SALESDOCUMENTTYPE",
"fieldDescription": "Sales Document Type",
"fieldType": "abap.char",

"fieldDetails": "",

21 "dataElementDescription": "A classification that
distinguishes between different types of sales
documents.",

"targetColumn" : "SALESDOCUMENTTYPE"

"fieldName": "SALESORGANIZATION",

26 "fieldDescription": "Sales Organization",

"fieldType": "abap.char",

"fieldDetails": "",

"dataElementDescription": "An organizational unit
responsible for the sale of certain products or
services.",

"targetColumn" : "SALESORGANIZATION"

31

-~

"fieldName": "DISTRIBUTIONCHANNEL",
"fieldDescription": "Distribution Channel",
"fieldType": "abap.char",

36 "fieldDetails": "",



41

46

51

56

61

66

71

76

81

86

91

"dataElementDescription": "The way in which products
or services reach the customer.",
"targetColumn" : "DISTRIBUTIONCHANNEL"

"fieldName": "ORGANIZATIONDIVISION",
"fieldDescription": "Division",
"fieldType": "abap.char",
"fieldDetails": "",

"dataElementDescription": "A way of grouping materials

, products, or services.',
"targetColumn" : "ORGANIZATIONDIVISION"

"fieldName": "CREATIONDATE",
"fieldDescription": "Record Creation Date",
"fieldType": "abap.dats",

"fieldDetails": "",
"dataElementDescription": "",
"targetColumn" : "CREATIONDATE"

"fieldName": "CREATIONTIME",

"fieldDescription": "Time at Which Record Was Created"

"fieldType": "abap.tims",
"fieldDetails": "",
"dataElementDescription": "The time of day at which

the document was posted and stored in the system."

H

"targetColumn" : "CREATIONTIME"

"fieldName": "TRANSACTIONCURRENCY",

"fieldDescription": "SD Document Currency",

"fieldType": "abap.cuky",

"fieldDetails": "",

"dataElementDescription": "The currency that applies
to the document.",

"targetColumn" : "TRANSACTIONCURRENCY"

"fieldName": "CUSTOMERPAYMENTTERMS",
"fieldDescription": "Terms of Payment Key",
"fieldType": "abap.char",

"fieldDetails": "",

"dataElementDescription": "Key for defining payment
terms composed of cash discount percentages and
payment periods.",

"targetColumn" : "CUSTOMERPAYMENTTERMS"

"fieldName": "SHIPPINGCONDITION",
"fieldDescription": "Shipping Conditions",
"fieldType": "abap.char",

"fieldDetails": "",

"dataElementDescription": "General shipping strategy
for the delivery of goods from the vendor to the
customer.",

"targetColumn" : "SHIPPINGCONDITION"

"fieldName": "INCOTERMSCLASSIFICATION",
"fieldDescription": "Incoterms (Part 1)",
"fieldType": "abap.char",



96

101

106

111

116

121

126

131

136

141

146

]’

"fieldDetails": "",

"dataElementDescription": "Commonly used trading terms
that comply with the standards established by the
International Chamber of Commerce (ICC).",

"targetColumn" : "INCOTERMSCLASSIFICATION"

"fieldName": "BILLINGCOMPANYCODE",

"fieldDescription": "Company Code to Be Billed",

"fieldType": "abap.char",

"fieldDetails": "",

"dataElementDescription": "The company code represents
an independent accounting unit.",

"targetColumn" : "BILLINGCOMPANYCODE"

"fieldName": "SALESGROUP",

"fieldDescription": "Sales Group",

"fieldType": "abap.char",

"fieldDetails": "",

"dataElementDescription": "A group of sales people who

are responsible for processing sales of certain

products or services.",

"targetColumn" : "SALESGROUP"

"fieldName": "SALESOFFICE",

"fieldDescription": "Sales 0ffice",

"fieldType": "abap.char",

"fieldDetails": "",

"dataElementDescription": "A physical location that
has responsibility for the sale of certain
products or services within a given geographical
area.",

"targetColumn" : "SALESOFFICE"

}’
"... [Status Fields - Collapsed for brevity]",
"OVERALLSDPROCESSSTATUS, TOTALBLOCKSTATUS,
OVERALLDELIVERYSTATUS",
"OVERALLDELIVERYBLOCKSTATUS, OVERALLBILLINGBLOCKSTATUS",
"OVERALLORDRELTDBILLGSTATUS, TOTALCREDITCHECKSTATUS",
"CENTRALCREDITCHECKSTATUS , SALESDOCAPPROVALSTATUS",
"... [Customer Fields - Collapsed for brevityl",
"SOLDTOPARTY, CUSTOMERGROUP, CUSTOMERPRICEGROUP",
"ADDITIONALCUSTOMERGROUP1 -5, RETAILADDITIONALCUSTOMERGRP6
_10n,
"CUSTOMERTAXCLASSIFICATION1-9",
"... [Contract Fields - Collapsed for brevityl",
"AGRMTVALDTYSTARTDATE , AGRMTVALDTYENDDATE",
"SALESCONTRACTCANCLNREASON, SALESCONTRACTCANCLNPARTY",
"SALESCONTRACTFOLLOWUPACTION, CONTRACTMANUALCOMPLETION",
"... [Financial Fields - Collapsed for brevityl",
"TOTALNETAMOUNT , CONTROLLINGAREA, COSTCENTER",
"PRICEDETNEXCHANGERATE , ACCOUNTINGEXCHANGERATE",
"SDPRICINGPROCEDURE, PRICINGDATE, PRICELISTTYPE",
"... [Reference Fields - Collapsed for brevityl",
"REFERENCESDDOCUMENT , REFERENCESDDOCUMENTCATEGORY",
"PURCHASEORDERBYCUSTOMER , CUSTOMERPURCHASEORDERDATE",
"EXTERNALDOCUMENTID, ACCOUNTINGDOCEXTERNALREFERENCE"

"objNodeTypes": [
{

"objNodeTypeName": "SalesDocument",
"objNodeTypeLabe": "Sales Document",
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