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ABSTRACT

Many natural dynamic processes -such as in vivo cellular differentiation or disease
progression- can only be observed through the lens of static sample snapshots.
While challenging, reconstructing their temporal evolution to decipher underlying
dynamic properties is of major interest to scientific research. Existing approaches
enable data transport along a temporal axis but are poorly scalable in high dimen-
sion and require restrictive assumptions to be met. To address these issues, we
propose Multi-Marginal temporal Schridinger Bridge Matching (MMtSBM)
for video generation from unpaired data, extending the theoretical guarantees and
empirical efficiency of Diffusion Schrodinger Bridge Matching (Shi et al., 2023)
by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a
novel factorized fashion. Experiments show that MMtSBM retains theoretical
properties on toy examples, achieves state-of-the-art performance on real world
datasets such as transcriptomic trajectory inference in 100 dimensions, and for
the first time recovers couplings and dynamics in very high dimensional image
settings, effectively generating temporally coherent videos from purely unpaired
data. Our work establishes multi-marginal Schrodinger bridges as a practical and
theoretically principled approach for recovering hidden dynamics from static data.
code: github.com/ICLRMMtDSBM/MMDSBM_ILCR | website: mmdsbm.notion.site

1 INTRODUCTION

The observation of many natural processes yields partial information, resulting in limited time reso-
lution and unpaired snapshots of data. Common examples of this are single-cell sequencing and in
vivo biological imaging, where existing methods are destructive and thus cannot link two observa-
tions coming from the same cell at different timestamps. The ability to recover the true underlying
dynamic from time-unpaired data samples is a key motivation for developing improved methods of
trajectory inference.

The modelization of this problem is inherently probabilistic, given both the variability occurring in
complex natural processes and the uncertainty of the observation. We thus ask the question: ”What
is the most probable evolution of an existing data point, given uncoupled samples of the same process
acquired across different times?”. This point of view has notably been developed in the Schrédinger
Bridge (SB) theory (Schrodinger, 1931). The SB is the unique stochastic process whose marginals
at start and end times match given probability distributions while minimizing the Kullback-Leibler
(KL) divergence w.r.t. a given reference process. The SB also happens to solve a regularized Op-
timal Transport (OT) problem (Léonard, 2014). Some recent works such as Chen et al. (2019);
Lavenant et al. (2024) have explored the theoretical setting of multiple marginals. Recent major
advances in statistical learning of SBs have allowed using this framework between complex empir-
ical distributions (De Bortoli et al., 2021; Wang et al., 2021), achieved important improvements in
their efficiency (Shi et al., 2023; Bortoli et al., 2024), extended it to the multi-marginal setting and
explored various additional constraints such as smooth trajectories (Chen et al., 2023a; Hong et al.,
2025), and spline-valued trajectories (Theodoropoulos et al., 2025). A few methods have been pro-
posed to solve the SB problem in an applied machine learning setting. De Bortoli et al. (2021) use
iterative proportional fitting (IPF) (Kullback, 1968), the general continuous analogue of the renown
Sinkhorn algorithm (Cuturi, 2013). Subsequent works have explored alternative training schemes
based on likelihood bounds (Chen et al., 2023b) or on the dual algorithm of IPF: Iterative Markovian
Fitting IMF) (Shi et al., 2023).
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A closely related line of work is flow matching (Lipman et al., 2023; Liu et al., 2022; Albergo &
Vanden-Eijnden, 2023). These methods have explored OT variants since their inception and have
been extended to the multi-marginal setting as well as connected to the Schrodinger Bridge theory
(Tong et al., 2024a;b; Kapusniak et al., 2024).

Concurrent to our work is Park & Lee (2025); we note that they do not scale to video experiments.

Existing multi-marginal methods do not scale to very high dimensions such as image space. Further-
more we believe that existing multi-marginal approaches either make use of modeling assumptions
that strongly restrict the class of problems they can solve, such as using spline-valued trajectories,
or lack a fully theoretically sound approach.

Contributions This paper makes the following contributions:

1. We define the multi-marginal temporal Schrodinger Bridge problem and demonstrate its funda-
mental properties (existence and uniqueness of the solution).

2. We introduce a novel factorized extension of the IMF algorithm presented in Shi et al. (2023)
to multiple iterative marginals in a way that is efficient —because parallelized along times, and
principled —because mathematical sound and with a concrete algorithm closely following theory.

3. We produce a convergence analysis of the algorithm under asymptotic hypotheses.

4. We demonstrate the soundness of the method on low-to-medium-dimensional examples, and
achieve state-of-the-art results against comparable methods on 2 widely reported single-cell tran-
scriptomic benchmarks (Moon et al., 2019; Burkhardt et al., 2022).

5. We scale up to 7 iterative marginals in a very high-dimensional image setting, presenting for the
first time a coherent video generation algorithm from purely time-unpaired data samples.

Notations We adopt the notations from Shi et al. (2023). We denote by P(C) the space of
path measures, with P(C) = P(C(]0,T],R%)), where C([0,T],R?) is the space of continuous
functions from [0, 7] to R%. The subset of Markov path measures associated with the diffusion
dX: = v (X)dt + 0,dBy, with o, v locally Lipschitz, is denoted M. We denote (B;);>¢ the d-
dimensional Brownian motion. For a process Q, the reciprocal class of Q is R(Q). For P € P(C),
we denote by IP; its marginal at time ¢, by s, the joint law at times s, ¢, and by P,; the con-
ditional law at s given t. We write P, ;. € P(C) for the path distribution on (t;,¢;) given the
endpoints ¢; and ¢;; e.g., Q¢ ¢, is a scaled Brownian bridge. Unless otherwise specified, V refers
to gradients w.r.t. x; at time ¢. For a joint law IIp 7 on R? x RY, the mixture of bridges measure
is IT = Iy 7Pjor € P(C) with II(-) =[G4, pa Pjo,7(-|Z0, 21 )dIlo 1 (20, 7). The entropy of a
process w.r.t. the Brownian motion is denoted #. Finally, for o, 7 € P(X), the Kullback—Leibler

divergence is KL(mo||mr) = [ log(d’ro (:c)) dmo ().

d‘ITT

2 BACKGROUND

2.1 THE SCHRODINGER BRIDGE PROBLEM

The Schrodinger Bridge problem (Schrodinger, 1931) seeks the most likely stochastic evolution
between marginals pg, up under a reference law Q. It admits both a dynamic formulation:

P* = argmin KL(P || Q) s.t. Py = po, Pr = pr, (1)
PEP(C)

and a static formulation on couplings IT € P(R? x R9):

I = argénin KL(II || Qo,r) s.t. Iy = po, gy = pp. 2)

Note: Connection to Quadratic OT. If QQ is Brownian motion, equation 2 is precisely entropy-
regularized quadratic OT with cost ¢(zo, 27) = 3|9 — @7||* and regularization e = ¢2. In the
limit ¢ — 0, this recovers classical OT, which motivates our interpolation framework.
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2.2 ITERATIVE MARKOVIAN FITTING (IMF)

The SB solution is the unique path measure that is both Markovian and belongs to the reciprocal
class of Q while matching marginals (Léonard, 2014). This motivates the Iterative Markovian Fit-
ting (IMF) algorithm (Shi et al., 2023; Peluchetti, 2023), which alternates between reciprocal and
Markov projections:

P2n+1 _ prOjM(PQn), P2n+2 _ prOjR(Q) (]P;2n+1) (3)
These projections admit KL variational characterisations (A.1) and the iterations converge to P*.

In practice, IMF is implemented by learning the drift of the Markovian projection via a bridge-
matching loss (see A.1). Compared to Iterative Proportional Fitting (IPF), IMF preserves both
marginals simultaneously and is more efficient (details in A.1).

3  MULTI-MARGINAL TEMPORAL SCHRODINGER BRIDGE MATCHING
All proofs can be found in the Appendix A.6.

3.1 MULTI-MARGINAL TEMPORAL SCHRODINGER BRIDGE PROBLEM

In the present work, we considered the time-ordered Multi-Marginal Schrodinger Bridge, where the
marginals are associated with an underlying temporal axis. In this setting, the goal is not simply
to fit an arbitrary number of marginals, but to recover the law of a stochastic process that evolves
consistently over time.

Let0) =ty < t; < --- < txg = T be a fixed time grid, and let pg, ..., ft, ..., ur € P(R?)
denote prescribed marginals at times (¢ )k=o,... k. assuming u;, < Qq, for all k. Given a reference
process Q on C([0, T], R?%), the multi-marginal Schrodinger Bridge problem (MMSB) is defined as

P* = argminKL(P|| Q) subjectto Xy ~ pug, k=0,...,K 4
PeP(C)

Note: Connection to multi-marginal Optimal Transport If Q is associated with a Brownian
motion, the induced reference coupling Q... +, is characterized by independent Gaussian incre-
ments X;,,, — Xy, ~ N(0,02(t;41 — t;)). By evaluating the KL term, 4 can be rewritten as:

K—-1
1
I = i Ex~ Xy = X P - 20 THM) 2 TL = ey, Vi
argnepr%&)w){ X~I ;ti-&-l_ti 1 Xt tl o (II) Hi;s V2

This is precisely an entropy-regularised multi-marginal OT problem with a time-structured quadratic
K-1
cost c(zg, ..., TN) =D ;g

Mﬁ 711 — 2;||* and entropy-regularisation parameter € = 20°2.
This formulation is particularly interesting when no better prior is available, and because of the clear
interpretation it allows: when using a Brownian motion as prior, we are approaching quadratic OT.
Note however that we do not rely on this assumption at all for theoretical results.

Classical properties of the multi-marginal temporal Schrodinger bridge We first demonstrate
a set of classical properties that characterize MMSB (4) and guide the construction of our method.

,,,,, ity be the jointlaw of Qat0 =ty < --- <tg =1T.
The static problem is
™ = arg min KL(m | Qt,....tx ),

7T€H(7Tto ,‘..,mK)
where I(my,, . .., ¢, ) denotes couplings on (R)E+Y with marginals 7y,
The MMSB is therefore a projection of the reference law onto the set of couplings with prescribed

marginals. The following results ensure that this problem is well posed and that the solution has a
convenient structure.

Proposition 3.1 (Existence and uniqueness). The MMSB admits a unique solution P*.
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This guarantees that the iterative algorithms we design later target a well-defined object. Moreover,
the solution can be described equivalently in both static and dynamic terms.

Proposition 3.2 (Dynamic—static equivalence). The dynamic solution P* is determined by the static
one T*:
:Pt’;,.“,t}(7 P*:ﬂ-*®@( |Xto7"'7XtK)'

This equivalence highlights that solving the static problem is enough to recover the full path measure.
In addition, the structure of QQ plays a key role in the nature of the solution.
Proposition 3.3 (Markovianity). If Q is Markov, then the MMSB solution P* is Markov.

These properties ensure that we can restrict our search to Markovian (and therefore reciprocal A.1)
measures, which will be central to the projection algorithms introduced later. Finally, the explicit
form of the solution further clarifies its structure.

Proposition 3.4 (Form of the solution). Under mild assumptions:
. N dm*
Pr=m"@Q( | Xiy, .-, Xixe), d(@i(mo;-namK):Hﬁ(%)-
to, -

where the f;’s are functions of the Lagrange multipliers for the marginal constraints (see A.6.6).
This factorized form motivates the use of alternating projections and parametric families of poten-
tials in the iterative algorithm that we develop in the next section.

3.2 ITERATIVE MARKOVIAN FITTING FOR MULTI MARGINAL TEMPORAL SCHRODINGER
BRIDGE

3.2.1 MULTI-MARGINAL MARKOV AND RECIPROCAL PROJECTIONS

To construct an algorithm for MMSB, we first extend the notions of reciprocal and Markovian pro-
jections to the multi-marginal setting. The idea is to approximate the global bridge by a sequence of
independent sub-bridges, and to alternate between reciprocal and Markovian structures.

Definition 3.2 (Factorized reciprocal class and projection). For each interval [t;,t;11] and end-
points (z;, T;+1), let Q[t”r’“] denote the bridge of Q between x; and x; 1. Given a coupling ™ on

(RHEH+L define

/ ® Qﬁi:t:j:;] dl'(), .. ,d.’,CK)
The factorized reciprocal class, denoted R® (Q), is the set of all such measures P.

Moreover, for any P € P(C([0, T],R%)), the reciprocal projection onto R®(Q) is defined as

II* = projre o) (P) = Puo,tre @) QiritY,

i.e. we keep the marginals Py . ¢, at the grid points and fill the dynamics between them with
independent bridges of Q conditioned on the endpoints (x;,x;y1).

Equivalently, IT* admits the variational characterization

IT* = argmin KL(P | 1I).
IIER®(Q)
Proposition 3.5 (Local reciprocal structure of the factorized class). Let Q be a reference Markov
process and let P € R®(Q) belong to the factorized reciprocal class. Then, for each subinterval
[ti_1,t;), the restriction of P to C([t;_1,t;],RY) is in the reciprocal class of Q over [t;_1,t;]. In
particular, conditionally on the endpoints (X, |, Xy,), the law of P coincides with the bridge of Q
between t;_1 and t;.

i—17

This class provides a tractable approximation: each sub-interval is filled with the bridge of QQ, while
the global coupling ensures consistency across marginals. Hence, factorized bridges inherit local
reciprocity, which justifies their use as a relaxation of the true reciprocal class.
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This projection enforces the prescribed marginals while completing the dynamics with local bridges.
In contrast, the Markovian projection seeks a single Markov diffusion with consistent marginals.

Definition 3.3 (Markovian projection in the factorized setting). Let II be the factorized mixture
of independent Brownian bridges. For any t € [0,T), let i(t) be the unique index such that t €
[tice)s ticr)+1)- We employ a slight abuse of notation and subsequently write i instead of i(t).

The Markovian projection of II, denoted M* = proj ,,(II), is the unique diffusion process
dX; = {ft(Xt*) + v;‘(Xt*)} dt + o, dBy,
with effective drift
XtiJrl | Xt :.’17] — T

]EH‘i+1|t[

isli B ni
v (@) = 0P En, ,, [V108 Q" (X, | X0) | X, = o] Pz e
3

By the Markovian projection theorem of Gyongy (1986), and as further developed in Peluchetti
(2023); De Bortoli et al. (2021), the process M* is Markov and matches the one-dimensional
marginals of the original factorized law 11.

Proposition 3.6 (Variational characterization of the factorized Markovian projection). Assume that
oy > 0. Let M™* = proj o, (II) be the Markovian projection of I1 as in Definition 3.3. Then:

M* = arg]\?leif\l/t {KL(II| M)},

and
1 1

T 2
tist;
KL(I|| M*) = §/0 En,, L?Hafﬁntmlt[wog@g (X | X0 | Xi X ] —vt*(Xt)H ]dt

In addition, for any t € [0, T, the time marginal of M* coincides with that of 1L: M} = II,.
In particular, My, = 11y, for all grid points t;.

Together, these results allow us to alternate between reciprocal and Markovian structures in the
multi-marginal setting. Importantly, the Markovian projection admits explicit forward and backward
formulations.

Proposition 3.7. Let II € R®(Q). Under mild regularity conditions, the Markovian projection
M* = proj \,(I) is associated with the forward SDE

dX; = { Fi(X0) + 0P En, 1 [V9og Q" (X, | X0) | X4 } dt + 0,dBy, Xy, ~ pr, (5)
and with the backward SDE

aYy = { =i (0402, En, o [VIog @ (v, | ) [Vi) b dtbor,, 0dBr, Vi, ~ i
(6)

This key result highlights that the Markovian projection can be expressed both in the forward and in

the backward direction, allowing us to design an algorithm that jointly leverage both dynamics.

Conjecture 3.1 (Analogue of Léonard (2014) Theorem 2.12). Let Q be a Markov reference process.
Suppose that P is a Markov path measure such that

PeR(@Q), P,=pm, i=0,...,K.

Then P coincides with the unique solution P* of the multi-marginal Schrodinger bridge problem
(MMSB) with reference Q.

3.2.2 ITERATIVE MARKOVIAN FACTORIZED FITTING

Based on Conjecture 3.1, we propose a novel algorithm called Iterative Markovian Factorized Fitting

(IMFF) to solve multi-marginal Schrédinger Bridges. We consider a sequence (P™),,cn such that
P2"+1 — pI‘OjM(PQH), IP)Qn—i-Q — prOjR®(@)(P2"+1), (7)

with PV such that P9 = p,, foralli = 0,..., K, and P° € R®(Q). These updates correspond

to alternatively perfo;*ming Markovian projections and factorized reciprocal projections in order to
enforce all prescribed marginals.
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Lemma 3.1 (Pythagorean identities in the factorized setting). Under mild assumptions, if M € M,
T € R®(Q) and KL(II|| M) < +o0, we have

KL(I|[M) = K L(I]| proj o, (T1)) + K L(proj (1) [[ M)

Similarly, if K L(M||II) < 400, we have
KL(MI[II) = KL(M|[ projre q)(M)) + K L(projre q) (M)|[1I)
Proposition 3.8. Under mild assumptions, we have

KL(P™' | P*) < KL(P"|P*)<oo and lim KL(P"||P*)=0
n—oo

Hence, for the IMFF sequence (P"),,cn, the Markov path measures (P?"*1), oy are getting closer
to the factorized reciprocal class R® (Q), while the reciprocal path measures (P2"+2),,cy are getting
closer to the set of Markov measures. This mirrors the situation in the classical IMF setting, but now
in the multi-marginal framework.

Theorem 3.2. Under mild assumptions, the IMFF sequence (P™),,cn admits at least one fixed point
P*, and we have:
lim KLP"||P*)=0
n——+00

Moreover, denoting by PMMSB the solution of (MMSB) and by PP** the collage of pairwise
Schrodinger Bridges, the limit of the IMFF sequence satisfies the inequality:

KL(PY™SB||Q) = KL(P*|Q) < KL(P*|Q)

where Q is the chosen reference process. Thus, P* is the multi-marginal Schrodinger Bridge.

3.2.3 THEORETICAL ALGORITHM
The Markovian projection necessitates learning one neural drifts per direction. Concretely, we solve
o = argemin Ebatch MUH(Xt, t) —o? E[V log (@I[f’(”’t"(‘”l](Xti(t>+1 | X31) ’ Xt] HQ} ¥
for the forward drift vy, and
¢" = argmin Enuen los(Vest) = o2, - E[VIog @ O v, 1 v) [¥]°] - ©

for the backward drift vg.

We summarize in Algorithm 1 our method and provide a practical implementation of IMFF in A.3.

Algorithm 1 Iterative Markovian Factorized Fitting (IMFF)

1: Input: time grid 0 = tg < --- < tx = T, marginals (,th,i)f{:o, reference process Q, number of iterations
N

2: Init: choose P° € R¥(Q) with P}, = yu, for all i

3: forn=0,...,N —1do

4:  Backward Markovian step: learn drift v, via SDE equation 6, yielding P2"*! with ¢; updated and
tit1 fixed from (p, ).

5: Forward reciprocal projection: P?"+1 projR®<Q)(]P’2"+1) (cf. Def. 3.2), filling bridges with Q

using ¢; from P?" ! and ¢;1; from the dataset.
6: Forward Markovian step: learn drift vy via SDE equation 5, yielding P>" 2 with ¢, updated and
t; fixed from (g, ).
7: Backward reciprocal projection: P72 Projr® (@) (P27 +2) (cf. Def. 3.2), filling bridges with Q
using t;,1 from P?"*2 and ¢; from the dataset.
: end for
9: Output: learned drifts (vg, vg)

e

Proposition 3.9. Suppose the families of functions {vg : 0 € ©} and {vy4 : ¢ € ®} are rich enough
to represent the optimal forward and backward drifts. Let (P™, M™),en be the sequence produced
by Algorithm 1. Then, as n — o0, we have convergence towards an approximate multi-marginal
Schrodinger bridge. Moreover, the Markov law M™ coincides in the limit with the intermediate
approximate MMSB solution lying between the true multi-marginal Schrodinger bridge and the
pairwise construction.
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4 EXPERIMENTS

For all experiments, we employ Brownian motion (0yB;)o<i<7 for the reference measure Q and
T = N — 1 where N is the number of marginals. All trainings start after a warmup phase like in
Shi et al. (2023), detailed in A.3.

4.1 MMTSBM RECOVERS THE EXACT OT BETWEEN GAUSSIAN MIXTURES

In this 2D experiment akin to Liu et al. (2022), we used
N = 3 mixtures of two standard Gaussian as marginals.
In this configuration the optimal transport between each
pair of marginals can be computed exactly: it is a pure
translation of each Gaussian components inside the mix-
tures, as we verified with POT (see Figure 6). After
only the warm-up phase (akin to flow matching (Lipman
et al., 2023)), we can see that the learned transport maps
mix the Gaussian components of the mixtures, resulting
in intersecting trajectories as can be seen in the top row
of Figure 1. However, after the SB learning phase of
MMtSBM, we can see in the bottom row that the learned
trajectories do not intersect each other anymore and that
MMtSBM yields the expected exact optimal transport
map: pure translations between Gaussian components.

A

This observation is consistent with the theory: the warm-
up phase preserves only the Markov property, while the
final learned coupling additionally also preserves the re-
ciprocal property, thus corresponding to the true SB. We
empirically observe that the optimality emerges gradu-
ally along MMtSBM training epochs: trajectories get
rectified from epoch 1, become optimal around epoch
5, and consistently remain so after. We will now confirm

Figure 1: Top row: epoch O (only noisy
flow matching). Bottom row: epoch 5 (after
MMItSBM training). From left to right: snap-
shots at times (0, 0.5, 1, 1.3). True marginal
times (to,t1,t2) = (0,1,2). The order of
the 3 true marginals is: to = dark blue; ¢; =
red; to = light blue. Generated samples are
in green. In the background is the quiver plot
of the learned score network.

these visual findings with quantitative metrics in 4.2.

4.2 MMTSBM ACHIEVES GOOD USUAL SB METRICS

To quantitatively verify that MMtSBM recovers the correct multi-marginal SB in terms of both 1)
static coupling and 2) energy minimization, we extended the now classical "Moons” and ”8Gaus-
sians” experiments found in Tong et al. (2024a) and Shi et al. (2023) to our temporal multi-marginal
setting in Table 1 (see Figure 7). Choosing N = 4, we considered (N' — Moons — A/ — Moons),
and (N — 8Gaussians — N — 8Gaussians). To assess 1) we report the W, distance of genera-
tions vs test set data at target marginal time(s), averaging along the N — 1 = 3 target times for
MMtSBM and comparing this to the single bridge setting. To assess 2) we report the full path

energy E [ fOT llv(t, Z¢)||? dt] where Z; is the process simulated along the ODE drift 10.

Model W Path Energy Te?.ble 1: Comparison in terms of static cou-
= Single bridge 0.144x0.024  1.580+0.03s  Pling "V27) and energy minimization ("Path
S Single bridge x3 _ 4.740 Energy”). The rows marked “x3” correspond
S  MMtSBM (ours) 0.148+0.041  5.35040.085 to the hypothetical case where the energy of

- - : : a single bridge is simply tripled, and are in-
= S}ngle br}dge 0.338+0.001  14.810+0255  cluded as an ideal baseline for comparison
oo Single bridge x3 - 44.430 with our actual multi-bridge setting. All met-

MMtSBM (ours) 0.352+0.084 46.920+0.285 rics apart from ours are from Shi et al. (2023).

We observe that despite a much more complex time-varying true transport map to be learned,
MMILtSBM achieves almost as low W, distances than the simple single-bridge setting (3% to 4%),
and that our full path energy is within 13% to 6% of the ideal extrapolation of the single bridge
result. This validates that MMtSBM manages to approach the true SB in practice.

"Videos for most experiments can be found at mmdsbm.notion.site.
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4.3 MMTSBM SCALES TO 50D GAUSSIAN TRANSPORT

We next proceed to scaling our method to dimension d = 50. We follow the setting of (Shi
et al., 2023) and consider a Gaussian-to-Gaussian transport experiment, extended to our multi-
marginal case. Specifically, we prescribe four Gaussian marginals at times t = 0,1,2,3: po =
N(*Ol . ld,Id),ul = N(O]. . ]—d,Id)aNZ = N(*Ol . ]_d,Id),,u;; = N(O]. . ]_d,.[d) where
1, € R4 denotes the vector of all ones, and I is the d x d identity matrix.

Evolution of Mean E[X_t] 12 Evolution of Variance Var[X_t] 08 Evolution of Covariance
04 ’ ’ — CoV(X_0,X_1)
' ] — COV(X_1, X_2)
I
[ 1.1 w— COV(X_2, X_3)
02 ) 807
a3 < W c
] > 8
- 0.0 8 1.0 -~ 5
>
3 02 — Ex0]| § — Var[x_0] 206
=0 — EX1]| 'S 09 = Varixi] ©
w— E[X_2] § w—\ar[X_2]
-0.4 — E[X_3] — Var[X_3]
0.8 0.5
0 10 20 30 0 10 20 30 0 10 20 30
Iteration Iteration Iteration

Figure 2: Evolution of mean, variance, and covariance in the multi-marginal 50d Gaussian transport. Dash
lines are the theoretical true values.

Since no closed-form solution is available for the static multi-marginal SB, we compare our method
to the sequence of theoretical results for each pairwise SB (Bunne et al., 2023). As shown in Fig-
ure 2, the mean converges rapidly to the prescribed values (0.1 or —0.1) across all four marginals.
The variance is slightly more difficult to match: for interior marginals the process tends to over-
estimate the standard deviation. In contrast, the covariance is consistently well reproduced by our
method and remains stable across all three transitions. Interestingly, the covariance converges only
after the warmup stage, confirming the added value of the subsequent OT phases. Overall, these
results show that MMtSBM scales effectively to the multi-marginal Gaussian setting in d = 50.

4.4 MMTSBM ACHIEVES SOTA RESULTS ON 100D TRANSCRIPTOMIC BENCHMARKS

We next evaluate our method on the the Embryoid Body (EB) (Moon et al., 2019) and MULTI
(Lance et al., 2022) benchmarks, two trajectory inference tasks on real single-cell RNA-seq data. We
project RNA counts to their first d = 100 principal components for each of the N = 5and N = 4
marginals, respectively.” We report the Maximum Mean Discrepency (MMD) and Sliced Wasser-
stein Distance (SWD) for EB in Table 2, and the Wasserstein-1 distance for MULTI in Table 3. For
the EB benchmark we train on all marginals, while for the MULTI benchmark we leave-out one of
either intermediate times (t = 1 or ¢ = 2) during training.

DMSB (Chen et al., 2023a) MMtSBM (ours)

Time MMD | SWD | MMD | SWD |
t1 0.021 0.114 0.016 0.104
to 0.029 0.155 0.020 0.139
ts 0.038 0.190 0.020 0.127
ty 0.034 0.155 0.020 0.143

Average | 0.032 £3¢c-3  0.160 +2e-2 | 0.019 +dc—4  0.130 £2c-3

Algorithm | MMD | SWD |
NLSB (Koshizuka & Sato, 2023) | 0.66 0.54
MIOFlow (Huguet et al., 2022) 0.23 0.35

DMSB (Chen et al., 2023a) 0.032 +3¢-3  0.16 +2¢-2
MMtSBM (ours) 0.019 +4e—4  0.130 +2¢-3

Table 2: MMD and SWD of generations vs test set for the d = 100 EB benchmark. Our generations start
from . Top table: per-marginal metrics. Bottom table: average over all marginals. Others’ results are from

Chen et al. (2023a). Our error margins are over 10 evaluations while DMSB’s are over 3. Best value in bold.

2We actually reuse preprocessed data from Tong et al. (2020) and Tong et al. (2024b).
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Method Wi () Method wi ()
Schrodinger Bridge Wasserstein Gradient Flows

WLF-SB (Neklyudov et al., 2024) 55.065 +5.499  WLF-SB (Neklyudov et al., 2024) 55.065 +£5.499

[SF]?M-Exact (Tong et al., 2024b) 52.888 +1.986  WLF-OT (Neklyudov et al., 2024) 55.416 +6.097

[SF]?M-Geo (Tong et al., 2024b) 52.203 +1.957  WLF-UOT (Neklyudov et al., 2024) 54.222 +5.827

MMtSBM (ours) 44.542 +0.637  WLF-(OT+potential) (Neklyudov et al., 2024)  47.365 +0.051

No precomputed OT conditioning

WLF-(UOT+potential) (Neklyudov et al., 2024)  45.231 +o.010

I-CFM (Tong et al., 2024a) 57.262 +3.855 Flow Matching with exact OT conditioning
I-MFMRggr (Kapusniak et al., 2024) 54.197 +1.408 OT-CFM (Tong et al., 2024a) 54.814 +5.858
MMtSBM (ours) 44.542 +0.637  OT-MFMRgpp (Kapusniak et al., 2024) 50.906 +4.627

Metric-aware interpolation with exact OT conditioning

GAGA (Sun et al., 2025) 27.04 £2.95

Table 3: W; of generations vs left-out test set for the d = 100 MULTI benchmark. Generations start from

e, where i is the left-out time. Reported figures are the average between left-out t = 1 and t = 2 marginals.

Our error margin is over 3 training runs. Best value in bold, second best underlined. See A.5.5 for details &
comments.

On the EB benchmark, our method consistently outperforms baselines on all marginals, reducing the
average MMD from 0.032+3¢-3 to 0.019+4e—4 and the SWD from 0.16+2¢—2 to 0.130+2¢—3. On the
MULTI benchmark, we reach significantly better average ¥V; distances than the directly comparable
literature®, beating the previous state-of-the-art by -15% with a high statistical significance. This
demonstrates the applicability of MMtSBM on pure cellular trajectory inference, despite the absence
of restrictive modeling such as spline-valued trajectories, explicitly precomputed OT plan, or start
and end true points trajectory pinning.

4.5 MMTSBM RECOVERS CONTINUOUS VIDEO DYNAMICS FROM UNPAIRED DATA

We now evaluate our method on image-space datasets, where the goal is to recover continuous
trajectories (ie videos) from completely unpaired temporal snapshots.

4.5.1 MNIST DIGIT MORPHING EXPERIMENT

We conducted experiments on the MNIST dataset of hand-written digits, transporting digits in de-
creasing order: 4 — 3 — 2 — 1 — 0. The algorithm was trained directly in image space, in
dimension 28 x 28 = 784. As shown in Figure 3, MMtSBM exhibits clear digit morphing, some-
times reusing pixel structures (e.g., the top of the 3 to form the top of the 2), which is what is
expected from OT in pixel space. This experiment thus demonstrates that MMtSBM manages to
learn a complex temporal OT map in image space directly.

qlal3lzlelelele]e

Figure 3: Video generated by MMtSBM on MNIST, backward direction. Starting image is from the test set.
From left to right: generation at time ¢t = 4, 3.5, 3,2.5,2,1.5,1,0.5, 0. Integer times are marginal times.

4.5.2 BIOTINE CELL CULTURE EXPERIMENT

The (in-house) “biotine” dataset consists of 3-channel fluorescence images (GFP, membrane, nu-
cleus) of A549 lung epithelial cells cultured in 384-well plates, treated with biotin, and imaged at 7
discrete time steps.

Figure 4 shows the unpaired dynamic we have at hand. We can clearly observe fluorescence loss
in the cytoplasmic area, corresponding to the green channel. Interestingly, contrary to the above
MNIST experiment, a mostly static positional evolution is observed here.

3Comparable literature: mainly methods computing the Schrodinger Bridge —but also methods performing
trajectory inference, instead of interpolation.
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Figure 5: Video generated by MMtSBM on biotine, forward direction. To be read in reading order: top left —
top right, then bottom left — bottom right. Generations at times ¢t = 0,0.5,1,1.5, ..., 5.5, 6. Top-left starting
image is from the test set.

This actually stems from the fact that cell position is
not a statistically varying information on the biotine
dataset, and this (non-existing) signal is thus simply not t=0 11.1+0.23
seen by our purely unpaired method, resulting in non- t=1 13.0+0.20

moving cells. MMtSBM rather reconstructs the OT tra- t=2 20102
t=3 23.5+0.25

Time KID ({)

jectory in pixel space, yielding very close cellular posi- =4 26.0

. . . . . . = .U+0.29
tion while still accurately matching the time-varying phe- t=5 97 71031
notype (mainly: the fluorescence loss in the cytoplasm). -
We report in Table 4 the KID (Birikowski et al., 2021) val- all times  17.1+o0.32

ues of true vs generated samples, obtained with DINOv2 _
(Oquab et al., 2024) as a feature extractor as a baseline Table 4: KIDs for each marginal and all
reference for future works. marginals together, using dinov2-vit-b-14.

To the best of our knowledge, this is the first demonstration of any method performing video gen-
eration from purely unpaired data. Together, this provides evidence for both the scalability to very
high-dimensional data and for the fidelity to the underlying biological process of MMtSBM.

5 DISCUSSION

In this work we introduce MMtSBM, a novel method that solves the multi-marginal temporal
Schrodinger Bridge problem, adapting Bridge Matching (Shi et al., 2023) to our setting. We demon-
strate the theoretical soundness of both our modeling and algorithm. We show that MMtSBM indeed
produces transport maps that are close to the true OT plan in toy experiments and verify its correct
behavior in low-dim experiments. We achieve state-of-the-art results in 2 widely reported single-
cell transcriptomic benchmarks, and for the first time demonstrate a method producing temporarily
coherent videos from purely unpaired data, hoping to lead to many future scientific applications.

In future works we would like to investigate other regularizations, such as lifting the process to ac-
celeration space to obtain smoother interpolation trajectories, or exploring other empirical reference
processes than the Brownian motion. We also intend to investigate learning the transport map in a
latent space. We would also like to explore using the single network theory developed in Bortoli
et al. (2024) for efficiency gains, as well as simulation-free methods.

10
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LLM USAGE DISCLOSURE

LLMs have been used in this work for translation and redaction help, for web search of relevant
references and existing literature, and for some annex coding tasks like help on visualizations.
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A APPENDIX

A.1 ADDITIONAL BACKGROUND

Reciprocal projection. The reciprocal class R(Q) consists of mixtures of Q-bridges. For P €
P(C),

projzq)(P) = Po,r Qjo,7-

Markovian projection. The Markov class M consists of diffusions dX; = v(¢, X;) dt + o dB;.
The projection proj ,,(II) has drift

Eu[Xr | X/ — X,

T ¢ dt + o dB;.

dXt[

Variational formulations. Both projections solve KL problems:

Projg g (P) = arg min KL(P || II), proj v (IT) = arg min KL(IT || M).
IIeR(Q) MeM

Bridge matching. In practice, the Markov drift is learned by minimising
T
Xr—X; 2
L(0) = /O E(x0.x0)~10, 7, X~ X0, x7) | [06(Xe, 1) = S5=52 (7] dt.

Iterative Proportional Fitting (IPF). IPF alternately enforces marginals by KL minimisation:

P2+ — argmin KL(P || P?"), P?"™2 = arg min KL(P || P?"+1).
P:Pr=pr P:Po=po

Unlike IMF, this requires caching full trajectories.

A.2 OTHER PROPERTIES ON IMFF OR MMSB

Proposition A.1 (Markov implies reciprocal). Any Markov measure on C([0, T, R?) is reciprocal.
Hence P* € R(Q). See Proposition 2.3 in Léonard (2012).

Proposition A.2 (Sampling with ODE probability flow). Given the forward and backward drifts
of the multi-marginal Schrodinger bridge, one can simulate trajectories using the probability flow
ODE ((Song et al., 2021)):

dX,

at = fi(Xy) — %UEVIOgPt(Xt)-

Although the score function V log p; is not directly available, (De Bortoli et al., 2021) show that it
can be equivalently recovered by averaging the forward and backward drifts:

v(@) = (oM@ + (@) (10)

Simulating the ODE with drift v, thus yields a deterministic sampling procedure that preserves the
marginals of the stochastic bridge, providing an efficient and numerically stable alternative to direct
SDE simulation.
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A.3 CONCRETE ALGORITHMS

We always start trainings with a warmup phase, akin to Shi et al. (2023). It allows MMtSBM to start
rectifying the trajectories from a non-random state, which could be complicated because the IMFF
phase uses the forward/backward network to train the backward/forward one.

Algorithm 2 Warmup (our algorithm)

1: Input: Subdivision {0 =ty < t; < --- < t, = T}, datasets {7, }, networks vy, vy, initial
params 0, ¢, batch size B, warmup steps Nyarmup

> cf. equation 11
13, else ¢ with £°*¢ equation 14

2: Define bridges B = {(t;,t;+1)}, b < B/|B]

3: for direction € {forward, backward} do

4: for n € [0, Nyarmup] do

5: for all (¢;,t,11) € B in parallel do

6: Sample (X, X¢,,,) ~ (m, @ 71,1 ) %P, by ~ Uniflt;, ti41]%°
7 end for

8: Aggregate Xinit, Xfinal, t; Sample Z ~ N(0,1)®8
9: Xt + IIlteI'pt (Xinitv Xﬁnah Z)
10: Update 6 if forward with /¢ equation
11: end for
12: end for

13: Output: Warmup parameters 6, ¢

Algorithm 3 Iterative Markovian Factorized Fitting (IMFF) (our algorithm)

1: Input: Subdivision {0 = tg < t1 < -+ <ty

= T}, datasets {m, }, networks vy, v4, warmup

params 6, ¢, batch size B, finetune steps Ngpetune, inner steps Ninner

2: Define bridges B = {(t;,t;+1)}, b« B/|B]
3: for N € [0, Ninewne] do
4: for all (¢;,t;,+1) € B in parallel do

5 Sample (X;,, Xy, ) from (7, @ 7,
6: Sample ¢(;) ~ Unift;, tig1)®P
7: end for
8: Aggregate Xinit, Xfinal, ¢
9: for direction € {backward, forward} do
10: for n € [0, Nipner] do
11: if direction = forward then
12: Xinit SDE(Xﬁnal, ’U¢)
13: X, + Interp, (Xinit; Xfnal, Z)
14: Update # with ¢™¢ equation 13
15: else
16: Xfinal SDE(Xinit,Ug)
17: X Interpt (Xinit; Xﬁna], Z)
18: Update ¢ with £°V4 equation 14
19: end if
20: end for
21: end for
22: end for

23: Qutput: Finetuned parameters 6, ¢

)®b

> cf. equation 12
> cf. equation 11

> cf. equation 12
> cf. equation 11
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A.4 CRITICAL IMPLEMENTATION CONSIDERATIONS

A naive implementation of the algorithm quickly led to the forgetting of paths between marginals as
training progressed. To overcome this, we developed a fully vectorized implementation that ensures
stable learning across all intervals. This design is essential for the quality of our solution. Key
components are detailed below.

A.4.1 SCALABILITY WITH HIGH DIMENSIONS AND MANY MARGINALS

Both Markovian and reciprocal projections are implemented in a fully vectorized manner. Instead
of looping over intervals, all pairs are aggregated into global vectors and processed simultaneously
on GPU.

At iteration n, for interval [¢;, ¢;11], pairs are sampled as
Zi (]\4%),51.7 Zi+1 ~ Mi+1 (fOI’WZi.I‘d)7 Zi+1 ™~ (Mn)ti+1, Zi ~ g (backward).

Pairs from all intervals form two batched vectors (Zi, Zana). Each bridge is then simulated in
parallel as

b b
X" = (1= 8) oyl + s 2 T on/s(1=5)€®, €O~ N, D),
This parallelization makes multl—marglnal training feasible at scale.

A.4.2 MASKING AND TIME DISCRETIZATION

The horizon [0, T'] is discretized into Ny, steps, allocated proportionally to interval length:

tigt1—t; i
Ni = \‘Ntotal +§1 J, dt = j: AT AT = Lmax—Tmin .

L+1 t ’ Ntma]

This ensures consistent integration with bounded cost.
Since N; varies across intervals, all trajectories are embedded into a common tensor of shape
(num_bridges, max_N) with binary masks:

z;ilﬁ1 = Z;E;b) + U(Zl(cb)7 t](qb)) dt® 4 Ty V dt® f(b)7

updated only where mask=1. This allows heterogeneous bridges to evolve in a single GPU loop.

A.4.3 INTERPOLATION OPERATOR AND LOSSES

For each bridge (t;,t;+1) and batch B, define
t — Tinit B
s=——m_ <o, 1
tfinal — Tinit [0,1]
Then the interpolation is

Interpg (Xinit, Xfinat, Z) = (1 = 8) © Xinit +8 © Xpina + /(1 —8) ©s 0 Z, (11)
with ® the elementwise product.

We also define a generic simulation operator for SDEs. Given an initial condition Xj,;; and a drift
Vdirection (€1ther forward or backward), we denote

SDE(Xinih vdirection) : dXt = Udirection<t; Xt) dt + oy dBta Xtinh = Xinit~ (12)
This operator returns a trajectory (X¢)se [, tom]-
Forward/backward losses enforce vectorized drift consistency:
fwd (. X — X [|2
(05 t, Xfinal, Xt) = BHUG (t, Xi) — %H (13)
%6, Xinie, Xp) = 1 [ (t, Xp) — KXo )2 (14)

A.4.4 TIME-DEPENDENT DRIFT NETWORKS

The drifts vg, v4 are parameterized by networks with explicit time encodings (sinusoidal, Gaussian
Fourier, FILM). This enables (i) generalization across intervals through parallel training, and (ii)
sensitivity to local temporal position, ensuring bridge consistency and global coherence.

18



Under review as a conference paper at ICLR 2026

A.5 EXPERIMENTS DETAILS

The Adam (Kingma & Ba, 2017) or AdamW (Loshchilov & Hutter, 2019) optimizer is used with a
learning rate of 2 x 10~%, and SiL.U activations are applied on each layers unless stated otherwise.

A.5.1 EXACT OT BETWEEN GAUSSIAN MIXTURES

In Figure 6 we can see the (exact) “glued” OT plan empirically computed with POT. Observe how
the global trajectory transports each Gaussian component of the mixture to a single other Gaussian
component of the next marginal, yielding paths without any crossing. Note that the true multi-
marginal transport plan remains unknown even in this simple Gaussian mixture setting.

© Mixture 1
Mixture 2
©  Mixture 3

Figure 6: Here we computed the OT plan between each pair of adjacent marginals empirically, in red and
black lines. This plan can serve as a good proxy for the true multi-marginal plan.

A.5.2 8GAUSSIANS AND MOONS EXPERIMENT

We used the same experimental setting as (Shi et al., 2023), except that we increase the batch size
proportionally to the number of intermediate bridges. The 2-Wasserstein distance are computed

with pot and the integrated path energy are computed with E { fOT llv(t, Z)||? dt} where Z, is the
process simulated along the ODE drift 10.

-
-
-

Figure 7: Third marginal fitting for the moons and 8-Gaussian trajectories. Blue vectors indicate the drift
direction, with gradient intensity showing vector field strength; green points denote moving samples, and pink
highlights the Gaussian fitted along the trajectory.

A.5.3 50D GAUSSIAN EXPERIMENTS

On an NVIDIA A100 GPU, the full training took approximately 300 minutes for 30 outer iterations,
each with 10,000 training steps and 20 diffusion steps per bridge.
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A.5.4 100D TRANSCRIPTOMIC EXPERIMENTS: EMBRYOID BODY

The dataset comprises 5 timepoints (Day 0 to Day 24) covering the progression from a homogeneous
stem-cell population toward mesoderm, endoderm, and ectoderm precursors. The Embryoid Body
dataset thus constitutes a realistic and challenging testbed for Schrédinger bridge methods, combin-
ing high dimensionality, non-Gaussian distributions, and branching lineages. We preprocessed the
data following (Tong et al., 2020).

All datasets were standardized (zero mean and unit variance), and from each dataset 1000 samples
were withheld to form a test set used for evaluating the Maximum Mean Discrepancy (MMD) and
the Sliced Wasserstein Distance (SWD) between test set and generated samples.

We trained a network of about 300k parameters for 20 outer iterations with 20,000 inner iterations.

We show in Table 5 the performance advantage of our method compared to an iterative algorithm
such as Chen et al. (2023a).

DSBM (Chen et al., 2023a) | MMtSBM (ours)
number of marginals 4 5 4 5
Train time 33min 44 min 20 min 32 min
Sampling time 2.00s 2.02s 2.00s 2.00s

Table 5: Training and sampling times for Chen et al. (2023a) and MMtSBM (ours) in dimension
100.

A.5.5 100D TRANSCRIPTOMIC EXPERIMENTS: MULTI

We reused the preprocessed data from Tong et al. (2024b). We do not whiten it. We conducted a
minimal sweep to select the best o (0.3). The network is a simple 3-layers MLP with around 500k
parameters and we employ 150 discretization time steps in total. Metrics are computed over 1k true
test samples vs 1k generated samples, where these generations themselves come from the previous
test marginal. We trained 3 models with different seeds for each left-out time (either ¢ = 1 or ¢ = 2,
corresponding to days 3 and 4). Our reported standard deviation is the pooled variance of the best
same-hyperparameters ¢ = 0.3 models over 2 groups, each group corresponding to a left-out time.
Other papers seem to have reported the overall variance, which we think makes less sense given the
structure of the problem.

Group Number of runs ~ Mean Std

Leave-out & testt = 1 3 37.026 0.822
Leave-out & testt = 2 3 52.059 0.367
Global 6 44.542  0.637

Table 6: Per-group statistics with pooled standard deviation spooled = /(s — 1)s2 / >_(n; — 1), where
n; and s; are the sample size and standard deviation of each group.

Group

About other methods reported in Table 3: only I-CFM, I-MFMggr, and MMtSBM (ours) do not
rely on a precomputed OT plan, be it exact or approximate. GAGA (Sun et al., 2025) performs
interpolation between 2 true pinned endpoints in the latent space of a metric-aware autoencoder
trained with the true exact OT plan; we thus still claim SOTA, either within methods solving the SB,
or within methods doing “pure” trajectory inference (without a pinned true endpoint).

A.5.6 MNIST DIGIT MORPHING EXPERIMENT

We experimented 2 approaches for the MNIST dataset: a MLP with flattened image vectors of
dimension (28 x 28 = 784, and a UNet with image-shape data of shape (28, 28).

A.5.7 BIOTINE CELL CULTURE EXPERIMENT

We perform learning directly in image space at 3 128 x 128 definition with a 3M parameters UNet.
We also experimented with learning in a VAE latent space but produced images were more blurry.
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Dataset Biotine
Dimension 128 x 128 x 3 = 49,152
Number of marginals 6
Training time 5h
Number of epochs 5
Sampling time 32s
Generated frames 602

Table 7: Training and sampling statistics for video generation on the Biotine dataset.

The model trains in only 5 hours and subsequently generates an entire 602-frame trajectory in just
32 seconds, demonstrating both low training cost and highly efficient sampling.

A.6 PROOFS

A.6.1 DEFINITION 3.2

Proof of variational proposition in Definition 3.2 (variational characterization). By the additive
property of the KL divergence (Léonard, 2014), for any P € P(C([0,7T],R%)) and IT € R®(Q),
we can write

KL(P|[T) = KL(Py.. e | Tag,otic) + By o [KI( ﬁﬂanéb@?ﬁ:)}

where P[OO%]'"IK denotes the conditional law of P given its values at the grid points (o, ..., tx).

Restricting to IT such that IT;
uniquely obtained by replacing the conditional path law of P with the tensor product of ()-bridges
between each (x;, ;+1).

tx = Pi,.... t, cancels the first KL term, and then the minimizer is

.....

Hence the optimal projection is

K—1
* TisTit1
I = P @ Q0
i=0
which is exactly the definition of the factorized reciprocal projection. O

A.6.2 DEFINITION 3.3
Proof of proposition in the Definition 3.3 in the Brownian case. By Definition 3.3, the effective
drift is
ti,ti
v (@) = 0P Bn, ,, [V10g QL (X, | X0)
For a Brownian reference process, the transition kernel is Gaussian,

|ti.ta _ 1 lly—=]>
Q" (y | w) = (2702 (tis1 — 1))4/2 exp(—m) ’

Xt:m]

so that
V., log Q{"" =T
0og Qt (y | 17) O'2<ti+1 _ t)
Plugging this into the definition yields
* Xt =%
Ut(if) = U?E{m Xt :.’L':| .
In the Brownian case O'tQ = o2, which simplifies to
E Xi=z|—=x
() = Pt | X2 2T
i+1 =
as claimed. ]
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A.6.3 PROPOSITION 3.1
Proof of Proposition 3.1. The feasible set
A:{PP<<Q7 Pti = Mt Z:0a7K}

is convex. Since the functional P — Dx1,(P||Q) is strictly convex, there is at most one minimizer.

To show existence, observe that .4 is non-empty. Indeed, consider any coupling 7y of (¢, - - - 5 fht )-
For each pair (x;, z;+1), let Qw“ ‘“ denote the Brownian bridge of () conditioned on X;, = z;

and Xy, , = x;41. Then the measure

P = /®Q€;1t:j:ll dW Loy oy L K)

belongs to .A. Hence the admissible set is non-empty.

Therefore, (MMSB) admits a unique solution P*. O

A.6.4 PROPOSITION 3.2
Proof of Proposition 3.2. The argument is identical to Proposition 2.10 in Léonard (2014), extended

to the multi-marginal setting. For any admissible path measure P < @, the additivity property of
the relative entropy gives

KL(P” Q) = KL(Pto ----- ti ” Qto ,,,,, K)+EPtO,...,tK [KL(P( ‘ Xtoa o 7XtK) ” Q( | Xto?’ . 7XtK))]'

Since the second term is always nonnegative, minimizing the dynamic problem is equivalent to
minimizing the static one. Moreover, the inequality becomes an equality if and only if

P( | Xto, e 7XtK) = Q( ‘ Xto, e ,XtK), Ptov__”tK-a.s.

Hence the optimal dynamic solution P* is uniquely obtained from the optimal static solution 77* by
gluing the conditional bridges of (), which establishes the equivalence. O

A.6.5 PROPOSITION 3.3

Proof of Proposition 3.3. We follow the argument of (Léonard, 2014, Prop. 2.10). Fix an interme-
diate time ¢, with 0 < k < n. Forany Q) € P(f2) and z € X, set

Qf{;’tk] : Q(X[&tk] €1 Xy, =2), fok g Q(X[th] €| Xy, =2).

Let 1 € P(X) and for each z € X prescribe Q5 € P(Qo,¢,) N { Xz, = 2}), Q7 € P(Qp,.11 N
{X:, = z}). By the entropy additivity property (see formula (A.8) in Léonard (2014)), the measure
P = [ @5 eQz )

b'e
is the unique minimizer of H(- | R) under these constraints, and it satisfies
PG Xpong) = P, (| Xty )
This is exactly the Markov property at time ¢y,.

Now apply this to Q) = P, the solution of the multi-marginal Schrodinger problem. If P were
not Markov, one could construct a measure P* with the same time-marginal constraints but strictly

smaller entropy, a contradiction with the definition of a minimizer. Since ¢; was arbitrary, P must
be Markov at all grid times ¢, . . . , t,, hence Markov on [0, 1]. O

22



Under review as a conference paper at ICLR 2026

A.6.6 PROPOSITION 3.4

Proof of Proposition 3.4. The argument is a direct extension of Theorem 2.8 and Proposition 2.10
in Léonard (2014).

Assume that the reference law @)y, ... ¢, satisfies the usual regularity conditions: (i) each one-time
marginal coincides with a reference measure m; (ii) there exists a nonnegative function A such that

Qto.....tx (dzo, ..., drg) > exp( ZA xz> (dxg) - - - m(drk);

(iii) there exists B such that

K
/XK‘H exp(—ZB(mi)) Qto.... 1 (dzo, ... drg) < 00;

=0

(iv) either m®E+D < @Q, ;. or the converse holds. Suppose further that the prescribed
marginals (7, ..., 7, ) satisfy H (7, | m) < oo,

Z/(A + B)(x) dmy, () < o0

and that they are internal in the sense of Proposition 2.6 of (Léonard, 2014).

Under these assumptions, the dual problem is well posed. Introducing Lagrange multipliers (¢;) X,
for the marginal constraints, convex duality shows that the minimizer 7* of the static problem is
absolutely continuous with respect to Q...+, With density

N K
Clei“’tK(aso, C L TE) = exp(;%(mi)).

Defining f;(x;) := e¥:(¥:) yields the factorized form

dm* ’
— (0, ..., TK) = i\Ti)-
thO,...,tK( 0 ) E)f( :

A.6.7 PROPOSITION 3.6

Proof of Proposition 3.6. The argument is the same as in the two-marginal case (Shi et al., 2023,
Prop. 2), except that all computations must now be performed interval by interval along the grid
to < --- < tg. Under Assumptions A1-A3, the Doob-h transform is well-defined on each interval
[ti, ti+1] and Lemma 11 of Shi et al. (2023) applies verbatim. The only change is that the terminal
conditioning in the backward equation is at ¢, ; instead of 7. This yields the drift

of(@) = o B [Vlog Q)5 (X, | X0 | X, Xe| o t€ [istisa].

Hence the dynamics of II is piecewise independent: its increment on [t;, t;+1] depends only on the
local bridge Q% ti+1,

The same interval-wise independence holds for any Markov M € M, whose SDE also factorizes
on the grid. Thus both IT and M have product decompositions over the intervals, and their Radon—
Nikodym derivative factorizes multiplicatively,

an_
daM L dM )T

Taking logarithms and integrating with respect to II gives the additivity of the relative entropy,

L(II|| M) = ZKL IO || M @),
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For each interval [t;,t;11], using the conditional expectation identity as in the proof of Shi et al.
(2023), we have for every t € [t;, tit1],

En,,. 07 En,,,, 0 [V 108 Q1 (Xeuys | X) | X0, Xo] = 0u(X0)|]

i+1 * 2
2 ]Enti,t, |:||O-t2EHti+]\t[v log Qf +1‘-:: (th:+1 | X¢) | Xt’Xti] — Y (Xt)H :| )

where the optimal drift is defined by the orthogonal projection

it

Ut( ) = Ut E]‘[t it [VIOthhtHrl(tirl ‘ Xt) | X = l‘t:| .

Using Léonard (2012), Theorem 2.3 on each interval and summing the contributions gives

tit1
LM = z / En, [l (X0) — o7 (X0)|2/0?] dt

Finally, the same Fokker—Planck uniqueness argument as in Shi et al. (2023) ensures that M;" = II;
for all ¢ € [t;,t;11] and all . Since the grid points are included, this implies M* = II, which
concludes the proof. O

A.6.8 LEMMA 3.1

Proof of Lemma 3.1. For the Markovian part, the equality follows analogously to the proof of (Shi
et al., 2023).

For each interval [t;, t;11], the same quadratic expansion gives
M) =2K2(1 () + 2K L (proj (1)

Summing this identity over ¢ = 0, ..., K — 1, using the interval-wise independence, yields

2KL (HU’)

‘M@) .

2 KL(IT|M) = 2 K L(IT || proj y,(IT)) + 2 K L(proj 5, (1) [| M) ,
which is the desired result.
For the factorized reciprocal part :

Let IT € R®(Q) and denote by

II* = projre ) (P) = Pry,...tx Qicy' Qi rirs)

We have the Radon—Nikodym factorization
dp _ dP dII*
dil — dII* dIl

By integrating w.r.t. P and applying Csiszar’s Pythagorean identity (Csiszar, 1975, Eq. 2.6), we
obtain

(Xtgy -y Xty )

*

dl
KL(P|T) :KL(IP||H*)+/log (205 5) dPry. .. 1.

dll

Since Py, 1, =117, the second term equals

Ik

dIT* . .
/log i (mo,...,xK)dHto ..... ¢ = K L(IT||II).

Thus
KL(P|II) = K L(P|[II*) + K L(IT*[[II),

which concludes the proof. O
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A.6.9 PROPOSITION 3.7

Proof of Proposition 3.7. It follows from the fact that the time-reversal map 7 : 2 — ) is a bijec-
tion, and by reversibility of the reference process Q we have, for any probability measure P € P(C)),

KLP|Q)=KLPoT||QoT)=KLPoT|Q).

To prove the direction “==", assume > € R®(Q) is the minimizer of the forward problem. Then,
for any I € R®(Q) we have ITo T € R®(Q), and

KLI|Q) =KL(IIoT||QoT) > KLPoT|QoT)=KL(P| Q).

The reverse direction follows by symmetry, replacing P with P o 7. Thus, working with forward
or backward processes is equivalent up to the bijection 7, and the KL minimization problem is
unchanged. In particular, this justifies that alternating forward and backward steps in the IMFF
algorithm is well-defined and analogous to IPF. O

A.6.10 PROPOSITION 3.8

Proof of Proposition 3.8, first claim. As a reminder, we follow the same argument as in (Shi et al.,
2023) and (De Bortoli et al., 2021). Applying Lemma 3.1, for any N € N we obtain

KL(P°||P*) = KL(P° | P') + KL(P' | P?) + - -- + KL(PN || P*).
Since each term is nonnegative, we deduce the monotonicity
KLP" | P*) < KL(P"|PY),

and boundedness K L(P" || P*) < K L(P° || P*) < oo. This proves the first claim. O

Proof of Proposition 3.8, second claim. We proceed by induction, adapting the argument of
(De Bortoli et al., 2021, Appendix C.8).

At initialization, we choose P € R®(Q) with P) = p,, forall i. We also define M = proj ,((P?).
By construction (Algorithm 1), the IMFF sequence alternates:

P2n+1 P27L+2 2n+1)

= PTOJM(PZn)7 = prOjR@)(Q)(P

Suppose now that P?" satisfies the claim. By definition, P2"*! € M and P?"*2? € R®(Q). From
Lemma 3.1, we then have

KL(]PQnJrl ||P*) < KL(]P;Zn H ]3*)7 KL(IF;2n+2 HP*) < KL(IPQnJrl ”P*)

Hence, (K L(P™ || P*))nen is a nonincreasing sequence bounded below by 0, and is therefore con-
vergent. Moreover, by induction we have P" € M N R®(Q) for all n, so the limit must coincide
with P*, the unique measure in this intersection with prescribed marginals.

Finally, note that in Algorithm 1 the forward and backward Markovian steps are time-reversals of
each other (they follow the same law under the change of variable ¢ — 7" —t). Therefore, alternating
a backward step with a forward reciprocal projection, or a forward step with a backward reciprocal
projection, is equivalent from the viewpoint of convergence analysis. All the arguments above apply
symmetrically in both directions, and the resulting sequence (IP™),, ¢y still converges.

We conclude that

lim KL(P" || P*) =0,
n—oo

and P* is indeed the weak solution produced by the IMFF algorithm, proving the second claim. [
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A.6.11 THEOREM 3.2

Proof of Theorem 3.2. As a reminder, the argument is the same as in (Shi et al., 2023) and (De Bor-
toli et al., 2021), but adapted to the multi-marginal setting.

By Proposition 3.8, the sequence (P"),,¢n is bounded in KL divergence with respect to P*, hence rel-
atively compact under weak convergence. Thus, it admits a subsequence (P"7); converging weakly
to some limit P>. By construction, P> € M N R®(Q) and matches the marginals (p,)X , so by
uniqueness of the weak MMSB solution we must have P> = P*.

By lower semicontinuity of KL, this implies

lim KL(P" || P*) = 0.

n—o0

Finally, the inequality

KL(PM™8)|Q) < KL(P*| Q) < KL(F™ | Q)

is justified because PMMSB ig the global minimizer (hence gives the smallest KL), while P* is

the best Markovian candidate in M N R®(Q), and therefore lies below the pairwise construction
obtained by gluing local bridges. O
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