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ABSTRACT

Many natural dynamic processes -such as in vivo cellular differentiation or disease
progression- can only be observed through the lens of static sample snapshots.
While challenging, reconstructing their temporal evolution to decipher underlying
dynamic properties is of major interest to scientific research. Existing approaches
enable data transport along a temporal axis but are poorly scalable in high dimen-
sion and require restrictive assumptions to be met. To address these issues, we
propose Multi-Marginal temporal Schrödinger Bridge Matching (MMtSBM)
for video generation from unpaired data, extending the theoretical guarantees and
empirical efficiency of Diffusion Schrödinger Bridge Matching (Shi et al., 2023)
by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a
novel factorized fashion. Experiments show that MMtSBM retains theoretical
properties on toy examples, achieves state-of-the-art performance on real world
datasets such as transcriptomic trajectory inference in 100 dimensions, and for the
first time recovers couplings and dynamics in very high dimensional image set-
tings. Our work establishes multi-marginal Schrödinger bridges as a practical and
principled approach for recovering hidden dynamics from static data.1

1 INTRODUCTION

The observation of many natural processes yields partial information, resulting in limited time reso-
lution and unpaired snapshots of data. Common examples of this are single-cell sequencing and in
vivo biological imaging, where existing methods are destructive and thus cannot link two observa-
tions coming from the same cell at different timestamps. The ability to recover the true underlying
dynamic from time-unpaired data samples is a key motivation for developing improved methods of
trajectory inference.

The modelization of this problem is inherently probabilistic, given both the variability occurring in
complex natural processes and the uncertainty of the observation. We thus ask the question: ”What
is the most probable evolution of an existing data point, given uncoupled samples of the same process
acquired across different times?”. This point of view has notably been developed in the Schrödinger
Bridge (SB) theory (Schrödinger, 1931). The SB is the unique stochastic process whose marginals
at start and end times match given probability distributions while minimizing the Kullback–Leibler
(KL) divergence w.r.t. a given reference process. The SB also happens to solve a regularized Optimal
Transport (OT) problem (Léonard, 2014). Recent major advances in statistical learning of SBs have
allowed using this framework between complex empirical distributions (De Bortoli et al., 2021;
Wang et al., 2021), achieved important improvements in their efficiency (Shi et al., 2023; Bortoli
et al., 2024), extended it to the multi-marginal setting and explored various additional constraints
such as smooth trajectories (Chen et al., 2023a; Hong et al., 2025), and spline-valued trajectories
(Theodoropoulos et al., 2025). A few methods have been proposed to solve the SB problem in an
applied machine learning setting. (De Bortoli et al., 2021) uses iterative proportional fitting (IPF)
(Kullback, 1968), the general continuous analogue of the well known Sinkhorn algorithm (Cuturi,
2013). Subsequent works have explored alternative training schemes based on likelihood bounds

1code: github.com/ICLRMMtDSBM/MMDSBM ILCR | website: mmdsbm.notion.site
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(Chen et al., 2023b) or on the dual algorithm of IPF: Iterative Markovian Fitting (IMF) (Shi et al.,
2023).

Existing multi-marginal methods do not scale to very high dimensions such as image space. Further-
more we believe that existing multi-marginal approaches either make use of modeling assumptions
that strongly restrict the class of problems they can solve, such as using spline-valued trajectories,
or lack a fully theoretically sound approach.

Contributions This paper makes the following contributions: 1) We define the multi-marginal tem-
poral Schrödinger Bridge problem and demonstrate its fundamental properties 2) We introduce a
novel factorized extension of the IMF algorithm presented in Shi et al. (2023) to multiple itera-
tive marginals in an efficient and principled way. 3) We produce a convergence analysis of the
algorithm under asymptotic hypotheses. 4) We demonstrate the soundness of the method on low-to-
medium-dimensional examples, achieving state-of-the-art results on the widely reported Embryoid
Body (EB) dataset (Moon et al., 2019). 5) We scale up to 7 iterative marginals in a very high-
dimensional image setting, presenting for the first time a coherent video generation algorithm from
purely time-unpaired data samples.

Notations We adopt the notations from Shi et al. (2023). We denote by P(C) the space of
path measures, with P(C) = P(C([0, T ],Rd)), where C([0, T ],Rd) is the space of continu-
ous functions from [0, T ] to Rd. The subset of Markov path measures associated with the diffu-
sion dXt = vt(Xt)dt + σtdBt, with σ, v locally Lipschitz, is denoted M. For Q induced by
(
√
εBt)t∈[0,1], ε > 0, where (Bt)t≥0 is a d-dimensional Brownian motion, the reciprocal class of Q

isR(Q) (see Def 3.2) For P ∈ P(C), we denote by Pt its marginal at time t, by Ps,t the joint law at
times s, t, and by Ps|t the conditional law at s given t. We write P|ti,tj ∈ P(C) for the path distribu-
tion on (ti, tj) given the endpoints ti and tj ; e.g., Q|ti,tj is a scaled Brownian bridge. Unless other-
wise specified,∇ refers to gradients w.r.t. xt at time t. For a joint law Π0,T on Rd×Rd, the mixture
of bridges measure is Π = Π0,TP|0,T ∈ P(C) with Π(·) =

∫
Rd×Rd P|0,T (·|x0, xT )dΠ0,T (x0, xT ).

The entropy of a process w.r.t. the Brownian motion is denoted H. Finally, for π0, πT ∈ P(X), the
Kullback–Leibler divergence is KL(π0∥πT ) =

∫
X
log

(
dπ0

dπT
(x)

)
dπ0(x).

2 BACKGROUND

2.1 THE SCHRÖDINGER BRIDGE PROBLEM

The Schrödinger Bridge problem (Schrödinger, 1931) seeks the most likely stochastic evolution
between marginals µ0, µT under a reference law Q. It admits both a dynamic formulation,

P⋆ = argmin
P∈P(C)

KL(P ∥Q) s.t. P0 = µ0, PT = µT , (1)

and a static formulation on couplings Π ∈ P(Rd × Rd):

Π⋆ = argmin
Π

KL(Π ∥Q0,T ) s.t. Π0 = µ0, ΠT = µT . (2)

Connection to Quadratic OT. If Q is Brownian motion, equation 2 is precisely entropy-
regularized quadratic OT with cost c(x0, xT ) = 1

2∥x0 − xT ∥2 and regularization ε = σ2. In
the limit ε→ 0, this recovers classical OT, which motivates our interpolation framework.

2.2 ITERATIVE MARKOVIAN FITTING (IMF)

The SB solution is the unique path measure that is both Markovian and belongs to the reciprocal
class of Q while matching marginals (Léonard, 2014). This motivates the Iterative Markovian Fit-
ting (IMF) algorithm (Shi et al., 2023; Peluchetti, 2023), which alternates between reciprocal and
Markov projections:

P2n+1 = projM(P2n), P2n+2 = projR(Q)(P2n+1). (3)

These projections admit KL variational characterisations (App. B), and the iteration converges to
P⋆.

2
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In practice, IMF is implemented by learning the drift of the Markovian projection via a bridge-
matching loss (see App. B). Compared to Iterative Proportional Fitting (IPF), IMF preserves both
marginals simultaneously and is more efficient (details in App. B).

3 MULTI-MARGINAL TEMPORAL SCHRÖDINGER BRIDGE MATCHING

All proofs can be found in the Appendix B.5.

3.1 MULTI-MARGINAL TEMPORAL SCHRÖDINGER BRIDGE PROBLEM

In the present work, we considered the time-ordered Multi-Marginal Schrödinger Bridge, where the
marginals are associated with an underlying temporal axis. In this setting, the goal is not simply
to fit an arbitrary number of marginals, but to recover the law of a stochastic process that evolves
consistently over time.

Let 0 = t0 < t1 < · · · < tN = T be a fixed time grid, and let µ0, ..., µk, ..., µT ∈ P(Rd)
denote prescribed marginals at times (tk)k=0,...,N . Given a reference process Q on C([0, T ],Rd),
the multi-marginal Schrödinger Bridge problem (MMSB) is defined as

P⋆ = argmin
P∈P(C)

KL(P ∥Q) subject to Xtk ∼ µk, k = 0, . . . , N (4)

Connection to Multi-marginal Optimal Transport If Q is associated with a Brownian mo-
tion, the induced reference coupling Qt0,...,tN is characterized by independent Gaussian increments
Xti+1

−Xti ∼ N (0, σ2(ti+1 − ti)). By evaluating the KL term, 4 can therefore be rewritten as

Π⋆ = arg min
Π∈P((Rd)N )

{
EX∼Π

[
N−1∑
i=0

1

ti+1 − ti
∥Xti+1

−Xti∥2
]
− 2σ2TH(Π) : Πi = µti , ∀i

}
This is precisely an entropy-regularised multi-marginal OT problem with a time-structured quadratic
cost c(x0, . . . , xN ) =

∑N−1
i=0

1
ti+1−ti

∥xi+1 − xi∥2 and entropy-regularisation parameter ε = 2σ2.2

Classical properties of the multi-marginal temporal Schrödinger bridge We first demonstrate
a set of classical properties that characterize MMSB (4) and guide the construction of our method.
Definition 3.1 (Static formulation). Let Qt0,...,tK be the joint law of Q at 0 = t0 < · · · < tK = T .
The static problem is

π⋆ = arg min
π∈Π(πt0

,...,πtK
)
KL(π ∥Qt0,...,tK ),

where Π(πt0 , . . . , πtK ) denotes couplings on (Rd)K+1 with marginals πti .

The MMSB is therefore a projection of the reference law onto the set of couplings with prescribed
marginals. The following results ensure that this problem is well posed and that the solution has a
convenient structure.
Proposition 3.1 (Existence and uniqueness). The MMSB admits a unique solution P ⋆.

This guarantees that the iterative algorithms we design later target a well-defined object. Moreover,
the solution can be described equivalently in both static and dynamic terms.
Proposition 3.2 (Dynamic–static equivalence). The dynamic solution P ⋆ is determined by the static
one π⋆:

π⋆ = P ⋆
t0,...,tK , P ⋆ = π⋆ ⊗Q(· | Xt0 , . . . , XtK ).

This equivalence highlights that solving the static problem is enough to recover the full path measure.
In addition, the structure of Q plays a key role in the nature of the solution.
Proposition 3.3 (Markovianity). If Q is Markov, then the MMSB solution P ⋆ is Markov.

2This formulation is particularly interesting in practice: in many applications we only observe static snap-
shots µti without any coupling between them, and the multi-marginal Schrödinger Bridge not only provides a
consistent path modeling but also induces the most natural coupling between the observed distributions.

3
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These properties ensure that we can restrict our search to Markovian (and therefore reciprocal B.1)
measures, which will be central to the projection algorithms introduced later. Finally, the explicit
form of the solution further clarifies its structure.

Proposition 3.4 (Form of the solution). Under mild assumptions,

P ⋆ = π⋆ ⊗Q(· | Xt0 , . . . , XtK ),
dπ⋆

dQt0,...,tK

(x0, . . . , xK) =

K∏
i=0

fi(xi).

This factorized form motivates the use of alternating projections and parametric families of poten-
tials in the iterative algorithm that we develop in the next section.

3.2 ITERATIVE MARKOVIAN FITTING FOR MULTI MARGINAL TEMPORAL SCHRÖDINGER
BRIDGE

3.2.1 MULTI-MARGINAL MARKOV AND RECIPROCAL PROJECTIONS

To construct an algorithm for MMSB, we first extend the notions of reciprocal and Markovian pro-
jections to the multi-marginal setting. The idea is to approximate the global bridge by a sequence of
independent sub-bridges, and to alternate between reciprocal and Markovian structures.

Definition 3.2 (Factorized reciprocal class and projection). For each interval [ti, ti+1] and end-
points (xi, xi+1), let Qxi,xi+1

[ti,ti+1]
denote the bridge of Q between xi and xi+1. Given a coupling π on

(Rd)K+1, define

P =

∫ K−1⊗
i=0

Qxi,xi+1

[ti,ti+1]
π(dx0, . . . , dxK).

The factorized reciprocal class, denotedR⊗(Q), is the set of all such measures P .

Moreover, for any P ∈ P(C([0, T ],Rd)), the reciprocal projection ontoR⊗(Q) is defined as

Π⋆ = projR⊗(Q)(P ) = Pt0,...,tK

K−1⊗
i=0

Qxi,xi+1

[ti,ti+1]
,

i.e. we keep the marginals Pt0,...,tK at the grid points and fill the dynamics between them with
independent bridges of Q conditioned on the endpoints (xi, xi+1).

Equivalently, Π⋆ admits the variational characterization

Π⋆ = argmin
Π∈R⊗(Q)

KL(P ∥Π).

Proposition 3.5 (Local reciprocal structure of the factorized class). Let Q be a reference Markov
process and let P ∈ R⊗(Q) belong to the factorized reciprocal class. Then, for each subinterval
[ti−1, ti], the restriction of P to C([ti−1, ti],Rd) is in the reciprocal class of Q over [ti−1, ti]. In
particular, conditionally on the endpoints (Xti−1

, Xti), the law of P coincides with the bridge of Q
between ti−1 and ti.

This class provides a tractable approximation: each sub-interval is filled with the bridge of Q, while
the global coupling ensures consistency across marginals. Hence, factorized bridges inherit local
reciprocity, which justifies their use as a relaxation of the true reciprocal class.

This projection enforces the prescribed marginals while completing the dynamics with local bridges.
In contrast, the Markovian projection seeks a single Markov diffusion with consistent marginals.

Definition 3.3 (Markovian projection in the factorized setting). Let Π be the factorized mixture
of independent Brownian bridges. For any t ∈ [0, T ], let i(t) be the unique index such that t ∈
[ti(t), ti(t)+1]. We employ a slight abuse of notation and subsequently write i instead of i(t).

The Markovian projection of Π, denoted M⋆ = projM(Π), is the unique diffusion process

dX⋆
t =

{
ft(X

⋆
t ) + v⋆t (X

⋆
t )
}
dt+ σt dBt,

4
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with effective drift

v⋆t (x) = σ2
t EΠti+1|t

[
∇ logQ |ti,ti+1

t (Xti+1 | Xt)
∣∣∣ Xt = x

]
Brownian
=

EΠti+1|t [Xti+1 | Xt = x]− x

ti+1 − t

By the Markovian projection theorem of Gyöngy (1986), and as further developed in Peluchetti
(2023); De Bortoli et al. (2021), the process M⋆ is Markov and matches the one-dimensional
marginals of the original factorized law Π.
Proposition 3.6 (Variational characterization of the factorized Markovian projection). Assume that
σt > 0. Let M⋆ = projM(Π) be the Markovian projection of Π as in Definition 3.3. Then we work
under the assumption that the variational characterization still holds in the factorized setting ((Shi
et al., 2023; Gyöngy, 1986; Peluchetti, 2023)), i.e.

M⋆ = arg min
M∈M

{
KL(Π ∥M)

}
,

and

KL(Π ∥M⋆) =
1

2

∫ T

0

EΠti,t

[
1

σ2
t

∥∥∥σ2
t EΠti+1|t

[
∇ logQ |ti,ti+1

t (Xti+1
| Xt)

∣∣Xt

]
− v⋆t (Xt)

∥∥∥2] dt
In addition, for any t ∈ [0, T ], the time marginal of M⋆ coincides with that of Π: M⋆

t = Πt.
In particular, M⋆

ti = Πti for all grid points ti.

Together, these results allow us to alternate between reciprocal and Markovian structures in the
multi-marginal setting. Importantly, the Markovian projection admits explicit forward and backward
formulations.
Proposition 3.7. Let Π ∈ R⊗(Q). Under mild regularity conditions, the Markovian projection
M⋆ = projM(Π) is associated with the forward SDE

dXt =
{
ft(Xt) + σ2

t EΠti+1
|t
[
∇ logQ[ti,ti+1]

t (Xti+1
| Xt)

∣∣Xt

]}
dt+ σtdBt, Xti ∼ µti (5)

and with the backward SDE

dYt =
{
−fti+1−t(Yt)+σ2

ti+1−t EΠti
|t
[
∇ logQ[ti,ti+1]

t (Yti | Yt)
∣∣Yt

]}
dt+σti+1−tdBt, Yti+1 ∼ µti+1

(6)

This key result highlights that the Markovian projection can be expressed both in the forward and in
the backward direction, allowing us to design an algorithm that jointly leverage both dynamics.
Conjecture 3.1 (Analogue of Léonard (2014) Theorem 2.12). Let Q be a Markov reference process.
Suppose that P is a Markov path measure such that

P ∈ R(Q), Pti = µti , i = 0, . . . ,K.

Then P coincides with the unique solution P ⋆ of the multi-marginal Schrödinger bridge problem
(MMSB) with reference Q.

3.2.2 ITERATIVE MARKOVIAN FACTORIZED FITTING

Based on Conjecture 3.1, we propose a novel algorithm called Iterative Markovian Factorized Fitting
(IMFF) to solve multi-marginal Schrödinger Bridges. We consider a sequence (Pn)n∈N such that

P2n+1 = projM(P2n), P2n+2 = projR⊗(Q)(P2n+1), (7)

with P0 such that P0
ti = µti for all i = 0, . . . ,K, and P0 ∈ R⊗(Q). These updates correspond

to alternatively performing Markovian projections and factorized reciprocal projections in order to
enforce all prescribed marginals.
Lemma 3.1 (Pythagorean identities in the factorized setting). Under mild assumptions, if M ∈M,
Π ∈ R⊗(Q) and KL(Π∥M) < +∞, we have

KL(Π∥M) = KL(Π∥ projM(Π)) +KL(projM(Π)∥M)

Similarly, if KL(M∥Π) < +∞, we have

KL(M∥Π) = KL(M∥ projR⊗(Q)(M)) +KL(projR⊗(Q)(M)∥Π)

5
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Proposition 3.8. Under mild assumptions, we have

KL(Pn+1 ∥P ⋆) ≤ KL(Pn ∥P ⋆) <∞, lim
n→∞

KL(Pn ∥P ⋆) = 0

Hence, for the IMFF sequence (Pn)n∈N, the Markov path measures (P2n+1)n∈N are getting closer
to the factorized reciprocal classR⊗(Q), while the reciprocal path measures (P2n+2)n∈N are getting
closer to the set of Markov measures. This mirrors the situation in the classical IMF setting, but now
in the multi-marginal framework.

Theorem 3.2. Under mild assumptions, the IMFF sequence (Pn)n∈N admits at least one fixed point
P⋆, and we have

lim
n→+∞

KL(Pn ∥P⋆) = 0

Moreover, denoting by PMMSB the true multi-marginal Schrödinger bridge and by Ppair the classical
Schrödinger bridge constructed pairwise, the limiting solution satisfies the inequality

KL(PMMSB ∥Q) ≤ KL(P⋆ ∥Q) ≤ KL(Ppair ∥Q)

where Q is the chosen reference process. Thus, P⋆ can be interpreted as an approximate multi-
marginal Schrödinger Bridge, lying between the optimal multi-marginal solution and the pairwise
construction.

3.2.3 THEORETICAL ALGORITHM

The Markovian projection necessitates learning one neural drifts per direction. Concretely, we solve

θ⋆ = argmin
θ

Ebatch

[∥∥vθ(Xt, t)− σ2
t E

[
∇ logQ[ti(t),ti(t)+1]

t (Xti(t)+1
| Xt)

∣∣Xt

]∥∥2] (8)

for the forward drift vθ, and

ϕ⋆ = argmin
ϕ

Ebatch

[∥∥vϕ(Yt, t)− σ2
ti(t)+1−t E

[
∇ logQ[ti(t),ti(t)+1]

t (Yti(t) | Yt)
∣∣Yt

]∥∥2] (9)

for the backward drift vϕ. We summarize in Algorithm 1 our method.

Algorithm 1 Iterative Markovian Factorized Fitting (IMFF)
1: Input: time grid 0 = t0 < · · · < tK = T , marginals (µti)

K
i=0, reference process Q, number of iterations

N
2: Init: choose P0 ∈ R⊗(Q) with P0

ti = µti for all i
3: for n = 0, . . . , N − 1 do
4: Backward Markovian step: learn drift vϕ via SDE equation 6, yielding P2n+1 with ti updated and

ti+1 fixed from (µti+1).
5: Forward reciprocal projection: P2n+1 ← projR⊗(Q)(P

2n+1) (cf. Def. 3.2), filling bridges with Q

using ti from P2n+1 and ti+1 from the dataset.
6: Forward Markovian step: learn drift vθ via SDE equation 5, yielding P2n+2 with ti+1 updated and

ti fixed from (µti).
7: Backward reciprocal projection: P2n+2 ← projR⊗(Q)(P

2n+2) (cf. Def. 3.2), filling bridges with Q

using ti+1 from P2n+2 and ti from the dataset.
8: end for
9: Output: learned drifts (vϕ, vθ)

A practical implementation of IMFF is provided in Appendix B.2.

Proposition 3.9. Suppose the families of functions {vθ : θ ∈ Θ} and {vϕ : ϕ ∈ Φ} are rich enough
to represent the optimal forward and backward drifts. Let (Pn,Mn)n∈N be the sequence produced
by Algorithm 1. Then, as n → ∞, we have convergence towards an approximate multi-marginal
Schrödinger bridge. Moreover, the Markov law Mn coincides in the limit with the intermediate
approximate MMSB solution lying between the true multi-marginal Schrödinger bridge and the
pairwise construction.

6
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4 EXPERIMENTS

For all experiments, we employ Brownian motion (σtBt)0≤t≤T as the reference measure Q and
T = N − 1 where N is the number of marginals.3

4.1 MMTSBM RECOVERS THE KNOWN EXACT OT BETWEEN GAUSSIAN MIXTURES

Figure 1: Top row: epoch 0, (only noisy
flow matching). Bottom row: epoch 5, (af-
ter MMtSBM training). From left to right:
snapshots at times (0, 0.5, 1, 1.3). True
marginal times (t0, t1, t2) = (0, 1, 2). The
order of the 3 true marginals is: t0 = dark
blue; t1 = red; t2 = light blue. Generated
samples are in green. In the background is
the quiver plot of the learned score network.

In this 2D experiment, we used N = 3 mixtures of two
standard Gaussian as marginals. In this configuration
the optimal transport between each pair of marginals is
known exactly: it is a pure translation of each Gaussian
components inside the mixtures [CITE]. After only the
warm-up phase (akin to flow matching [CITE], as said be-
fore), we can see that the learned transport maps mix the
Gaussian components of the mixtures, resulting in inter-
secting trajectories as can be seen in the top row of Figure
1. However, after the SB learning phase of MMtSBM,
we can see in the bottom row of Figure 1 that the learned
trajectories do not intersect each other anymore and that
MMtSBM yields the exact static optimal transport map:
pure translations between Gaussians.
This observation is consistent with the theory: the warm-
up phase preserves only the Markov property, while the
final learned coupling additionally also preserves the re-
ciprocal property, thus corresponding to the true SB. We
empirically observe that the optimality emerges gradually
along MMtSBM training epochs: trajectories get recti-
fied from epoch 1, become optimal around epoch 5, and
consistently remain so after. We will now confirm these
visual findings with quantitative metrics in 4.2.

4.2 MMTSBM ACHIEVES GOOD USUAL SB METRICS

To quantitatively verify that MMtSBM recovers the correct multi-marginal SB in terms of both 1)
static coupling and 2) energy minimization, we extended the now classical ”Moons” and ”8Gaus-
sians” experiments found in Tong et al. (2024) and Shi et al. (2023) to our temporal multi-marginal
setting in Table 1. Choosing N = 4, we considered (N → Moons → N → Moons), and (N →
8Gaussians → N → 8Gaussians). To assess 1) we report the W2 distance of generations vs test
set data at target marginal time(s), averaging along the N − 1 = 3 target times for MMtSBM
and comparing this to the single bridge setting. To assess 2) we report the full path energy
E
[∫ T

0
∥v(t,Zt)∥2 dt

]
where Zt is the process simulated along the ODE drift 10.

Setting W2 Path Energy
Moons (single bridge) 0.144±0.024 1.580±0.036

Moons ×3 – 4.740
Moons (MMtSBM) 0.148±0.041 5.350±0.085

8 Gaussians (single bridge) 0.338±0.091 14.810±0.255

8 Gaussians ×3 – 44.430
8 Gaussians (MMtSBM) 0.352±0.084 46.920±0.285

Table 1: Comparison of static coupling (W2

column) and energy minimization (Path En-
ergy column). The rows marked “×3” corre-
spond to the hypothetical case where the en-
ergy of a single bridge is simply tripled, and
are included as an ideal baseline for compari-
son with our actual multi-bridge setting.

We observe that despite a much more complex time-varying true transport map to be learned,
MMtSBM achieves almost as low W2 distances than the simple single-bridge setting (3% to 4%),
and that our full path energy is within 13% to 6% of the ideal extrapolation of the single bridge
result. This validates that MMtSBM manages to approach the true SB in practice.

3More examples for each experiment can be found at mmdsbm.notion.site.
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4.3 MMTSBM SCALES TO 50D GAUSSIAN TRANSPORT

We next proceed to scaling our method to dimension d = 50. We follow the setting of (Shi et al.,
2023) and consider a Gaussian-to-Gaussian transport experiment, extended to our multi-marginal
case. Specifically, we prescribe four Gaussian marginals at times t = 0, 1, 2, 3: µ0 = N (−0.1 ·
1d, Id), µ1 = N (0.1 ·1d, Id), µ2 = N (−0.1 ·1d, Id), µ3 = N (0.1 ·1d, Id) where 1d ∈ Rd denotes
the vector of all ones, and Id is the d× d identity matrix.

Figure 2: Evolution
of mean, variance,
and covariance in the
multi-marginal 50d
Gaussian transport.
Dash lines are the the-
oretical true values.

Since no closed-form solution is available for the static multi-marginal SB, we compare our method
to the sequence of theoretical results for each pairwise SB ((Bunne et al., 2023)). As shown in Figure
2, the mean converges rapidly to the prescribed values (0.1 or −0.1) across all four marginals. The
variance is slightly more difficult to match: for interior marginals the process tends to overestimate
the standard deviation. In contrast, the covariance is consistently well reproduced by our method
and remains stable across all three transitions. Interestingly, the covariance converges only after the
warmup stage, confirming the added value of the subsequent OT phases. Overall, these results show
that MMtSBM scales effectively to the multi-marginal Gaussian setting in d = 50.

4.4 MMTSBM ACHIEVES SOTA RESULTS ON 100D TRANSCRIPTOMIC BENCHMARK

We next evaluate our method on the the TrajectoryNet benchmark (Tong et al., 2020) which uses
real single-cell RNA-seq embryoid body differentiation data from Moon et al. (2019). We project
RNA counts to their first 100 principal components for each of the N = 5 marginals. We report in
Table 2 the Maximum Mean Discrepency (MMD) and Sliced Wasserstein Distance (SWD).

DMSB MMtSBM (ours)
Time MMD ↓ SWD ↓ MMD ↓ SWD ↓

t1 0.021 0.114 0.016 0.104
t2 0.029 0.155 0.020 0.139
t3 0.038 0.190 0.020 0.127
t4 0.034 0.155 0.020 0.143

Average 0.030 0.160 0.019 0.130

Algorithm MMD ↓ SWD ↓

NLSB 0.66 0.54
MIOFlow 0.23 0.35
DMSB 0.03 0.20
MMtSBM (ours) 0.02 0.13

Table 2: Results on test set of embryoid body RNA-seq data (d = 100). Left table: per-marginal metrics.
Right table: average over all target marginals; results from Chen et al. (2023a).

Our method consistently outperforms baselines on all marginals, reducing the average MMD from
0.03 to 0.02 and the SWD from 0.20 to 0.13. This demonstrates that enforcing all marginal con-
straints simultaneously as we do yields sharper and more consistent interpolations across develop-
mental stages, setting a new state of the art on this benchmark.

4.5 MMTSBM RECOVERS CONTINUOUS VIDEO DYNAMICS FROM UNPAIRED DATA

We now evaluate our method on image-space datasets, where the goal is to recover continuous
trajectories (ie videos) from completely unpaired temporal snapshots.

4.5.1 MNIST EXPERIMENT

We conducted experiments on the MNIST dataset, transporting digits in decreasing order: 4→ 3→
2 → 1 → 0. The algorithm was trained directly in image space, in dimension 28 × 28 = 784.
As shown in Figure 3, MMtSBM exhibits clear digit morphing, sometimes reusing pixel structures
(e.g., the top of the 3 to form the top of the 2), which is what is expected from OT in pixel space.
This experiment thus demonstrates that MMtSBM manages to learn a complex temporal OT map in
image space directly.

8
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Figure 3: Video generated by MMtSBM on MNIST, backward direction. Starting image is from the test set.
From left to right: generation at time t = 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5, 0. Integer times are marginal times.

4.5.2 BIOTINE EXPERIMENT

The (in-house) ”biotine” dataset consists of 3-channel fluorescence images (GFP, membrane, nu-
cleus) of A549 lung epithelial cells cultured in 384-well plates, treated with biotin, and imaged at
19 discrete time steps. Figure 4 shows the unpaired dynamic we have at hand.

Figure 4: Ground truth biotine examples at training marginal times t = 0, 1, 2, 3, 4, 5, 6, from left to right.

Figure 5: Video generated by MMtSBM on biotine, forward direction. To be read in reading order: top left→
top right, then bottom left→ bottom right. Generations at times t = 0, 0.5, 1, 1.5, ..., 5.5, 6. Top-left starting
image is from the test set.

In Figure 5 we can see that MMtSBM successfully recovers a plausible generative coupling be-
tween exsting timestamps, preserving both spatial and temporal coherence and yielding smooth,
low-noise dynamics that extends the starting test image into a continuous video that respects the
global phenotype seen in ground truth data (see Figure 4). To the best of our knowledge, this is
the first demonstration of a multi-marginal Schrödinger Bridge performing video generation from
purely unpaired data. This provides evidence for both the scalability to very high-dimensional data
and for the fidelity to the underlying biological process of MMtSBM.

5 DISCUSSION

In this work we introduce MMtSBM, a novel method that solves the multi-marginal temporal
Schrödinger Bridge problem, adapting Bridge Matching (Shi et al., 2023) to our setting. We demon-
strate its theoretical soundness as well as it efficiency. We achieve state-of-the-art results in a com-
mon literature benchmark and present for the first time an algorithm that produces temporarily co-
herent videos from purely unpaired data, hoping to lead to many future applications in the scientific
domain.

In future works we would like to investigate other regularizations, such as lifting the process to ac-
celeration space to obtain smoother interpolation trajectories, or exploring other reference processes
than the Brownian motion. We also intend to investigate learning the transport map in a VAE latent
space, as well as definitively proving our theoretical conjectures. We would also like to explore
using the single network theory developed in Bortoli et al. (2024) for efficiency gains.

9
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A APPENDIX

B ADDITIONAL BACKGROUND

Reciprocal projection. The reciprocal class R(Q) consists of mixtures of Q-bridges. For P ∈
P(C),

projR(Q)(P) = P0,T Q|0,T .

Markovian projection. The Markov classM consists of diffusions dXt = v(t,Xt) dt + σ dBt.
The projection projM(Π) has drift

dXt =

[
EΠ[XT | Xt]−Xt

T − t

]
dt+ σ dBt.

Variational formulations. Both projections solve KL problems:

projR(Q)(P) = argmin
Π∈R(Q)

KL(P ∥Π), projM(Π) = argmin
M∈M

KL(Π ∥M).

Bridge matching. In practice, the Markov drift is learned by minimising

L(θ) =
∫ T

0

E(X0,XT )∼Π0,T , Xt∼Q(·|X0,XT )

[
∥vθ(Xt, t)− XT−Xt

T−t ∥
2

]
dt.

Iterative Proportional Fitting (IPF). IPF alternately enforces marginals by KL minimisation:

P2n+1 = argmin
P:PT=µT

KL(P ∥P2n), P2n+2 = argmin
P:P0=µ0

KL(P ∥P2n+1).

Unlike IMF, this requires caching full trajectories.

B.1 OTHER PROPERTIES ON IMFF OR MMSB

Proposition B.1 (Markov implies reciprocal). Any Markov measure on C([0, T ],Rd) is reciprocal.
Hence P ⋆ ∈ R(Q). See Proposition 2.3 in Léonard (2012).

Proposition B.2 (Sampling with ODE probability flow). Given the forward and backward drifts
of the multi-marginal Schrödinger bridge, one can simulate trajectories using the probability flow
ODE ((Song et al., 2021)):

dXt

dt
= ft(Xt)− 1

2σ
2
t∇ log pt(Xt).

Although the score function ∇ log pt is not directly available, (De Bortoli et al., 2021) show that it
can be equivalently recovered by averaging the forward and backward drifts:

vt(x) = 1
2

(
vfwd
t (x) + vbwd

t (x)
)

(10)

Simulating the ODE with drift vt thus yields a deterministic sampling procedure that preserves the
marginals of the stochastic bridge, providing an efficient and numerically stable alternative to direct
SDE simulation.

12
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B.2 CONCRETE ALGORITHMS

Algorithm 2 Warmup Phase (our algorithm)
1: Input: Subdivision {0 = t0 < t1 < · · · < tn = T}, datasets {πti}, networks vθ, vϕ, initial

params θ, ϕ, batch size B, warmup steps Nwarmup
2: Output: Warmup parameters θ, ϕ
3: Define bridges B = {(ti, ti+1)}, b← B/|B|
4: for direction ∈ {forward, backward} do
5: for n ∈ J0, NwarmupK do
6: for all (ti, ti+1) ∈ B in parallel do
7: Sample (Xti , Xti+1

) ∼ (πti ⊗ πti+1
)⊗b, t(i) ∼ Unif[ti, ti+1]

⊗b

8: end for
9: Aggregate Xinit, Xfinal, t; Sample Z ∼ N (0, I)⊗B

10: Xt ← Interpt(Xinit, Xfinal, Z) ▷ cf. equation 11
11: Update θ if forward with ℓfwd equation 13, else ϕ with ℓbwd equation 14
12: end for
13: end for

Algorithm 3 MM-IMF Phase (our algorithm)
1: Input: Subdivision {0 = t0 < t1 < · · · < tn = T}, datasets {πti}, networks vθ, vϕ, warmup

params θ, ϕ, batch size B, finetune steps Nfinetune, inner steps Ninner
2: Output: Finetuned parameters θ, ϕ
3: Define bridges B = {(ti, ti+1)}, b← B/|B|
4: for N ∈ J0, NfinetuneK do
5: for all (ti, ti+1) ∈ B in parallel do
6: Sample (Xti , Xti+1

) from (πti ⊗ πti+1
)⊗b

7: Sample t(i) ∼ Unif[ti, ti+1]
⊗b

8: end for
9: Aggregate Xinit, Xfinal, t

10: for direction ∈ {backward, forward} do
11: for n ∈ J0, NinnerK do
12: if direction = forward then
13: X̂init ← SDE(Xfinal, vϕ) ▷ cf. equation 12
14: Xt ← Interpt(X̂init, Xfinal, Z) ▷ cf. equation 11
15: Update θ with ℓfwd equation 13
16: else
17: X̂final ← SDE(Xinit, vθ) ▷ cf. equation 12
18: Xt ← Interpt(Xinit, X̂final, Z) ▷ cf. equation 11
19: Update ϕ with ℓbwd equation 14
20: end if
21: end for
22: end for
23: end for

B.3 CRITICAL IMPLEMENTATION CONSIDERATIONS

A naive implementation of the algorithm quickly led to the forgetting of paths between marginals as
training progressed. To overcome this, we developed a fully vectorized implementation that ensures
stable learning across all intervals. This design is essential for the quality of our solution. Key
components are detailed below.

B.3.1 SCALABILITY WITH HIGH DIMENSIONS AND MANY MARGINALS

Both Markovian and reciprocal projections are implemented in a fully vectorized manner. Instead
of looping over intervals, all pairs are aggregated into global vectors and processed simultaneously
on GPU.

13
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At iteration n, for interval [ti, ti+1], pairs are sampled as

zi ∼ (Mn)ti , zi+1 ∼ µi+1 (forward), zi+1 ∼ (Mn)ti+1 , zi ∼ µi (backward).

Pairs from all intervals form two batched vectors (Zinit, Zfinal). Each bridge is then simulated in
parallel as

X
(b)
t = (1− s) z

(b)
init + s z

(b)
final + σt

√
s(1− s) ξ(b), ξ(b) ∼ N (0, I).

This parallelization makes multi-marginal training feasible at scale.

B.3.2 MASKING AND TIME DISCRETIZATION

The horizon [0, T ] is discretized into Ntotal steps, allocated proportionally to interval length:

Ni =
⌊
Ntotal

ti+1−ti
T

⌋
, dti = ± ∆τ

ti+1−ti
, ∆τ = Tmax−Tmin

Ntotal
.

This ensures consistent integration with bounded cost.

Since Ni varies across intervals, all trajectories are embedded into a common tensor of shape
(num bridges,max N) with binary masks:

z
(b)
k+1 = z

(b)
k + v(z

(b)
k , t

(b)
k ) dt(b) + σ

t
(b)
k

√
dt(b) ξ(b),

updated only where mask=1. This allows heterogeneous bridges to evolve in a single GPU loop.

B.3.3 INTERPOLATION OPERATOR AND LOSSES

For each bridge (ti, ti+1) and batch B, define

s =
t− tinit

tfinal − tinit
∈ [0, 1]B .

Then the interpolation is

Interpt(Xinit, Xfinal, Z) = (1− s)⊙Xinit + s⊙Xfinal +
√
ε(1− s)⊙ s⊙ Z, (11)

with ⊙ the elementwise product.

We also define a generic simulation operator for SDEs. Given an initial condition Xinit and a drift
vdirection (either forward or backward), we denote

SDE(Xinit, vdirection) : dXt = vdirection(t,Xt) dt+ σt dBt, Xtinit = Xinit. (12)

This operator returns a trajectory (Xt)t∈[tinit,tfinal].

Forward/backward losses enforce vectorized drift consistency:

ℓfwd(θ; t, Xfinal, Xt) =
1
B

∥∥vθ(t, Xt)− Xfinal−Xt

tfinal−t

∥∥2 (13)

ℓbwd(ϕ; t, Xinit, Xt) =
1
B

∥∥vϕ(t, Xt)− Xinit−Xt

t−tinit

∥∥2 (14)

B.3.4 TIME-DEPENDENT DRIFT NETWORKS

The drifts vθ, vϕ are parameterized by networks with explicit time encodings (sinusoidal, Gaussian
Fourier, FiLM). This enables (i) generalization across intervals through parallel training, and (ii)
sensitivity to local temporal position, ensuring bridge consistency and global coherence.

B.4 EXPERIMENTS DETAILS

The Adam optimizer is used with a learning rate of 2 ∗ 10−4, and SiLU activations are applied on
each layers unless stated otherwise. All experiments are executed on computing clusters that utilize
GPU resources.
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Figure 6: Third marginal fitting for the moons and 8-Gaussian trajectories. Blue vectors indicate
the drift direction, with gradient intensity showing vector field strength; green points denote moving
samples, and pink highlights the Gaussian fitted along the trajectory.

B.4.1 8GAUSSIANS AND MOONS EXPERIMENT

We used the same experimental setting as (Shi et al., 2023), except that we increase the batch size
proportionally to the number of intermediate bridges. The 2-Wasserstein distance are computed
with pot and the integrated path energy are computed with E

[∫ T

0
∥v(t,Zt)∥2 dt

]
where Zt is the

process simulated along the ODE drift 10.

B.4.2 50D GAUSSIAN EXPERIMENTS

On an NVIDIA A100 GPU, the full training took approximately 300 minutes for 30 outer iterations,
each with 10,000 training steps and 20 diffusion steps per bridge.

B.4.3 100D TRANSCRIPTOMIC EXPERIMENTS

The dataset comprises 5 timepoints (Day 0 to Day 24) covering the progression from a homogeneous
stem-cell population toward mesoderm, endoderm, and ectoderm precursors. The embryoid body
dataset thus constitutes a realistic and challenging testbed for Schrödinger bridge methods, combin-
ing high dimensionality, non-Gaussian distributions, and branching lineages. We preprocessed the
data following (Tong et al., 2020).

All datasets were standardized (zero mean and unit variance), and from each dataset 1000 samples
were withheld to form a test set used for evaluating the Maximum Mean Discrepancy (MMD) and
the Sliced Wasserstein Distance (SWD) between test set and generated samples.

We trained a network of about 3×105 parameters for 20 outer iterations with 20,000 inner iterations.

B.4.4 MNIST EXPERIMENTS

We experimented 2 approaches for the MNIST dataset: a MLP with flattened image vectors of
dimension (28× 28 = 784, and a UNet with image-shape data of shape (28, 28).

B.4.5 BIOTINE EXPERIMENTS

We perform learning directly in image space at 3×128×128 definition with a 3M parameters UNet.
We also experimented with learning in a VAE latent space but produced images were more blurry.

B.5 PROOFS

Proof of variationnal proposition in Definition 3.2 (variational characterization). By the additive
property of the KL divergence (Léonard, 2014), for any P ∈ P(C([0, T ],Rd)) and Π ∈ R⊗(Q),
we can write

KL(P ∥Π) = KL(Pt0,...,tK ∥Πt0,...,tK ) + EPt0,...,tK

[
KL

(
P x0,...,xK

[0,T ] ∥
K−1⊗
i=0

Qxi,xi+1

[ti,ti+1]

)]
,

where P x0,...,xK

[0,T ] denotes the conditional law of P given its values at the grid points (t0, . . . , tK).
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Restricting to Π such that Πt0,...,tK = Pt0,...,tK cancels the first KL term, and then the minimizer is
uniquely obtained by replacing the conditional path law of P with the tensor product of Q-bridges
between each (xi, xi+1).

Hence the optimal projection is

Π⋆ = Pt0,...,tK

K−1⊗
i=0

Qxi,xi+1

[ti,ti+1]
,

which is exactly the definition of the factorized reciprocal projection.

Proof of proposition in the Definition 3.3 in the Brownian case. By Definition 3.3, the effective
drift is

v⋆t (x) = σ2
t EΠti+1|t

[
∇ logQ

|ti,ti+1

t (Xti+1
| Xt)

∣∣∣Xt = x
]
.

For a Brownian reference process, the transition kernel is Gaussian,

Q
|ti,ti+1

t (y | x) = 1

(2πσ2(ti+1 − t))d/2
exp

(
− ∥y−x∥2

2σ2(ti+1−t)

)
,

so that
∇x logQ

|ti,ti+1

t (y | x) = y − x

σ2(ti+1 − t)
.

Plugging this into the definition yields

v⋆t (x) = σ2
t E

[
Xti+1

−x

σ2(ti+1−t)

∣∣∣Xt = x
]
.

In the Brownian case σ2
t = σ2, which simplifies to

v⋆t (x) =
E[Xti+1

| Xt = x]− x

ti+1 − t
,

as claimed.

Proof of Proposition 3.1. The feasible set

A = {P : P ≪ Q, Pti = µti , i = 0, . . . ,K}
is convex and closed under the weak topology. Since the functional P 7→ DKL(P∥Q) is strictly
convex, there is at most one minimizer.

To show existence, observe thatA is non-empty. Indeed, consider any coupling γ of (µt0 , . . . , µtK ).
For each pair (xi, xi+1), let Qxi,xi+1

[ti,ti+1]
denote the Brownian bridge of Q conditioned on Xti = xi

and Xti+1
= xi+1. Then the measure

P =

∫ K−1⊗
i=0

Q
xi,xi+1

[ti,ti+1]
dγ(x0, . . . , xK)

belongs to A. Hence the admissible set is non-empty.

Therefore, (MMSB) admits a unique solution P ⋆.

Proof of Proposition 3.2. The argument is identical to Proposition 2.10 in Léonard (2014), extended
to the multi-marginal setting. For any admissible path measure P ≪ Q, the additivity property of
the relative entropy gives

KL(P ∥Q) = KL(Pt0,...,tK ∥Qt0,...,tK )+EPt0,...,tK
[KL(P (· | Xt0 , . . . , XtK ) ∥Q(· | Xt0 , . . . , XtK ))] .

Since the second term is always nonnegative, minimizing the dynamic problem is equivalent to
minimizing the static one. Moreover, the inequality becomes an equality if and only if

P (· | Xt0 , . . . , XtK ) = Q(· | Xt0 , . . . , XtK ), Pt0,...,tK -a.s.

Hence the optimal dynamic solution P ⋆ is uniquely obtained from the optimal static solution π⋆ by
gluing the conditional bridges of Q, which establishes the equivalence.
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Proof of Proposition 3.3. We follow the argument of (Léonard, 2014, Prop. 2.10). Fix an interme-
diate time tk with 0 < k < n. For any Q ∈ P(Ω) and z ∈ X , set

Qtk,z
[0,tk]

:= Q(X[0,tk] ∈ · | Xtk = z), Qtk,z
[tk,1]

:= Q(X[tk,1] ∈ · | Xtk = z).

Let µ ∈ P(X) and for each z ∈ X prescribe Q<
z ∈ P(Ω[0,tk] ∩ {Xtk = z}), Q>

z ∈ P(Ω[tk,1] ∩
{Xtk = z}). By the entropy additivity property (see formula (A.8) in Léonard (2014)), the measure

P ∗ =

∫
X

Q<
z ⊗Q>

z µ(dz)

is the unique minimizer of H(· | R) under these constraints, and it satisfies

P ∗
[tk,1]

(· | X[0,tk]) = P ∗
[tk,1]

(· | Xtk).

This is exactly the Markov property at time tk.

Now apply this to Q = P̂ , the solution of the multi-marginal Schrödinger problem. If P̂ were
not Markov, one could construct a measure P ∗ with the same time-marginal constraints but strictly
smaller entropy, a contradiction with the definition of a minimizer. Since tk was arbitrary, P̂ must
be Markov at all grid times t0, . . . , tn, hence Markov on [0, 1].

Proof of Proposition 3.4. The argument is a direct extension of Theorem 2.8 and Proposition 2.10
in Léonard (2014).

Assume that the reference law Qt0,...,tK satisfies the usual regularity conditions: (i) each one-time
marginal coincides with a reference measure m; (ii) there exists a nonnegative function A such that

Qt0,...,tK (dx0, . . . , dxK) ≥ exp
(
−

K∑
i=0

A(xi)
)
m(dx0) · · ·m(dxK);

(iii) there exists B such that∫
XK+1

exp
(
−

K∑
i=0

B(xi)
)
Qt0,...,tK (dx0, . . . , dxK) <∞;

(iv) either m⊗(K+1) ≪ Qt0,...,tK or the converse holds. Suppose further that the prescribed
marginals (πt0 , . . . , πtK ) satisfy H(πti |m) <∞,

K∑
i=0

∫
(A+B)(x) dπti(x) <∞,

and that they are internal in the sense of Proposition 2.6 of (Léonard, 2014).

Under these assumptions, the dual problem is well posed. Introducing Lagrange multipliers (φi)
K
i=0

for the marginal constraints, convex duality shows that the minimizer π⋆ of the static problem is
absolutely continuous with respect to Qt0,...,tK with density

dπ⋆

dQt0,...,tK

(x0, . . . , xK) = exp
( K∑

i=0

φi(xi)
)
.

Defining fi(xi) := eφi(xi) yields the factorized form

dπ⋆

dQt0,...,tK

(x0, . . . , xK) =

K∏
i=0

fi(xi).

Proof of Lemma 3.1. For the Markovian part, the equality follows analogously to the proof of (Shi
et al., 2023).
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For the factorized reciprocal part :

Let Π ∈ R⊗(Q) and denote by

Π⋆ = projR⊗(Q)(P) = Pt0,...,tK ⊗K−1
i=0 Q

xi,xi+1

[ti,ti+1]
.

We have the Radon–Nikodym factorization
dP
dΠ

=
dP
dΠ⋆

· dΠ
⋆

dΠ
(Xt0 , . . . , XtK ).

By integrating w.r.t. P and applying Csiszár’s Pythagorean identity (Csiszár, 1975, Eq. 2.6), we
obtain

KL(P∥Π) = KL(P∥Π⋆) +

∫
log

dΠ⋆

dΠ
(x0, . . . , xK) dPt0,...,tK .

Since Pt0,...,tK = Π⋆
t0,...,tK , the second term equals∫

log
dΠ⋆

dΠ
(x0, . . . , xK) dΠ⋆

t0,...,tK = KL(Π⋆∥Π).

Thus
KL(P∥Π) = KL(P∥Π⋆) +KL(Π⋆∥Π),

which concludes the proof.

Proof of Proposition 3.7. It follows from the fact that the time-reversal map T : Ω → Ω is a bijec-
tion, and by reversibility of the reference process Q we have, for any probability measure P ∈ P(C),

KL(P ∥Q) = KL(P ◦ T ∥Q ◦ T ) = KL(P ◦ T ∥Q).

To prove the direction “=⇒”, assume P ∈ R⊗(Q) is the minimizer of the forward problem. Then,
for any Π ∈ R⊗(Q) we have Π ◦ T ∈ R⊗(Q), and

KL(Π ∥Q) = KL(Π ◦ T ∥Q ◦ T ) ≥ KL(P ◦ T ∥Q ◦ T ) = KL(P ∥Q).

The reverse direction follows by symmetry, replacing P with P ◦ T . Thus, working with forward
or backward processes is equivalent up to the bijection T , and the KL minimization problem is
unchanged. In particular, this justifies that alternating forward and backward steps in the IMFF
algorithm is well-defined and analogous to IPF.

Proof of Proposition 3.8. As a reminder, we follow the same argument as in (Shi et al., 2023) and
(De Bortoli et al., 2021). Applying Lemma 3.1, for any N ∈ N we obtain

KL(P0 ∥P⋆) = KL(P0 ∥P1) +KL(P1 ∥P2) + · · ·+KL(PN ∥P⋆).

Since each term is nonnegative, we deduce the monotonicity
KL(Pn+1 ∥P⋆) ≤ KL(Pn ∥P⋆),

and boundedness KL(Pn ∥P⋆) ≤ KL(P0 ∥P⋆) <∞. This proves the claim.

Proof of Theorem 3.2. As a reminder, the argument is the same as in (Shi et al., 2023) and (De Bor-
toli et al., 2021), but adapted to the multi-marginal setting.

By Proposition 3.8, the sequence (Pn)n∈N is bounded in KL divergence with respect to P⋆, hence rel-
atively compact under weak convergence. Thus, it admits a subsequence (Pnj )j converging weakly
to some limit P∞. By construction, P∞ ∈ M∩R⊗(Q) and matches the marginals (µti)

K
i=0, so by

uniqueness of the weak MMSB solution we must have P∞ = P⋆.

By lower semicontinuity of KL, this implies
lim
n→∞

KL(Pn ∥P⋆) = 0.

Finally, the inequality

KL(PMMSB ∥Q) ≤ KL(P⋆ ∥Q) ≤ KL(Ppair ∥Q)

is justified because PMMSB is the global minimizer (hence gives the smallest KL), while P⋆ is
the best Markovian candidate in M∩ R⊗(Q), and therefore lies below the pairwise construction
obtained by gluing local bridges.
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Proof of Proposition 3.8. We proceed by induction, adapting the argument of (De Bortoli et al.,
2021, Appendix C.8).

At initialization, we choose P0 ∈ R⊗(Q) with P0
ti = µti for all i. We also define M0 = projM(P0).

By construction (Algorithm 1), the IMFF sequence alternates:

P2n+1 = projM(P2n), P2n+2 = projR⊗(Q)(P2n+1).

Suppose now that P2n satisfies the claim. By definition, P2n+1 ∈ M and P2n+2 ∈ R⊗(Q). From
Lemma 3.1, we then have

KL(P2n+1 ∥P ⋆) ≤ KL(P2n ∥P ⋆), KL(P2n+2 ∥P ⋆) ≤ KL(P2n+1 ∥P ⋆).

Hence, (KL(Pn ∥P ⋆))n∈N is a nonincreasing sequence bounded below by 0, and is therefore con-
vergent. Moreover, by induction we have Pn ∈ M ∩ R⊗(Q) for all n, so the limit must coincide
with P ⋆, the unique measure in this intersection with prescribed marginals.

Finally, note that in Algorithm 1 the forward and backward Markovian steps are time-reversals of
each other (they follow the same law under the change of variable t 7→ T −t). Therefore, alternating
a backward step with a forward reciprocal projection, or a forward step with a backward reciprocal
projection, is equivalent from the viewpoint of convergence analysis. All the arguments above apply
symmetrically in both directions, and the resulting sequence (Pn)n∈N still converges.

We conclude that
lim
n→∞

KL(Pn ∥P ⋆) = 0,

and P ⋆ is indeed the weak solution produced by the IMFF algorithm.
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