
Adjusting Model Size in Continual Gaussian Processes:
How Big is Big Enough?

Guiomar Pescador-Barrios 1 Sarah Filippi 1 Mark van der Wilk 2

Abstract
Many machine learning models require setting
a parameter that controls their size before train-
ing, e.g. number of neurons in DNNs, or inducing
points in GPs. Increasing capacity typically im-
proves performance until all the information from
the dataset is captured. After this point, compu-
tational cost keeps increasing, without improved
performance. This leads to the question “How big
is big enough?” We investigate this problem for
Gaussian processes (single-layer neural networks)
in continual learning. Here, data becomes avail-
able incrementally, and the final dataset size will
therefore not be known before training, prevent-
ing the use of heuristics for setting a fixed model
size. We develop a method to automatically ad-
just model size while maintaining near-optimal
performance. Our experimental procedure fol-
lows the constraint that any hyperparameters must
be set without seeing dataset properties, and we
show that our method performs well across di-
verse datasets without the need to adjust its hy-
perparameter, showing it requires less tuning than
others.

1. Introduction
Continual learning aims to train models when the data ar-
rives in a stream of batches, without storing data after it has
been processed, and while obtaining predictive performance
that is as high as possible at each point in time (Ring, 1997).
Selecting the size of the model is challenging in this set-
ting, since typical non-continual training procedures do this
by trial-and-error (cross-validation) using repeated training
runs, which is not possible under our requirement of not
storing any data. This is a crucial parameter to set well,

1Department of Mathematics, Imperial College London, UK
2Department of Computer Science, University of Oxford, UK.
Correspondence to: Guiomar Pescador-Barrios <glp22@ic.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

since if the model is too small, predictive performance will
suffer. One solution could be to simply make all continual
learning models so large, that they will always have enough
capacity, regardless of what dataset and what amount of data
they will be given. However, this “worst-case” strategy is
wasteful of computational resources.

A more elegant solution would be to grow the size of the
model adaptively as data arrives, according to the needs of
the problem (see Figure 1 for an illustration). For exam-
ple, if data were only ever gathered from the same region,
there would be diminishing novelty in every new batch. In
this case, one would want the model size to stabilise, with
growth resuming once data arrives from new regions. In
this paper, we investigate a principle for determining how
to select the size of a model so that it is sufficient to obtain
near-optimal performance, while otherwise wasting a min-
imal amount of computation. In other words, we seek to
answer the question of “how big is big enough?” for setting
the size of models throughout continual learning.

We investigate this question for Gaussian processes, since
excellent continual learning methods exist that perform very
similarly to full-batch methods, but which assume a fixed
model capacity that is large enough. We provide a criterion
for determining the number of inducing variables (analo-
gous to neurons) that are needed whenever a new batch of
data arrives. We show that our method is better able to
maintain performance close to optimal full-batch methods,
with a slower growth of computational resources compared
to other continual methods, which either make models too
small and perform poorly, or too large and waste computa-
tion. One hyperparameter needs to be tuned to control the
balance between computational cost and accuracy. However,
a single value works similarly across datasets with differ-
ent properties, allowing all modelling decisions to be made
before seeing any data.

Our approach benefits from Bayesian nonparametric per-
spectives, by separating the specification of the capacity of
the model, which should be able to learn from an unbounded
amount of data, from the specification of the approximation,
which determines how much computational effort is needed
to represent the solution for the current finite dataset. Our
approach relies on the variational inducing variable approx-

1

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

0 1 2
x

2

0

2

y
Dataset 1

0 5 10
x

Dataset 2

0 5 10
x

Dataset 3

2 4 6 8 10
Batch

10

20

30

In
du

ci
ng

 P
oi

nt
s

2 4 6 8 10
Batch

2 4 6 8 10
Batch

Exact GP Mean Past batch Current batch Future batch VIPS

Figure 1. Three continual learning scenarios with different capacity requirements. Top: Three consecutive batches for 1) a growing input
space, 2) i.i.d. samples from a uniform distribution, and 3) narrow-range samples with occasional outliers. Bottom: Number of inducing
points selected using the VIPS algorithm at each batch. When selecting model size with our method, we observed: 1) a linear increase, 2)
after initial training, we see a halt in growth, and 3) a low model size until it encounters outliers.

imation of Titsias (2009), which leads to an interpretation
that our method automatically adjusts the width of a single-
layer neural network. Our hope is that such perspectives
will be useful for the development of adaptive deep neural
networks, which would allow models to be trained on large
amounts of data beyond the limitations of storage infras-
tructure, or learning from streams of data that come directly
from interaction with an environment.

2. Related Work
The foundational problem that makes training with gradient
descent insufficient for continual learning is catastrophic
forgetting, where previously acquired knowledge is lost in
favour of recent information (McCloskey & Cohen, 1989;
Goodfellow et al., 2013). Many solutions have been pro-
posed in the literature, such as encouraging weights to be
close to values that were well-determined by past data (Kirk-
patrick et al., 2017; Schwarz et al., 2018), storing subsets or
statistics of past data to continue to train the neural network
in the future (Li & Hoiem, 2017; Lopez-Paz & Ranzato,
2017), and approximate Bayesian methods that balance un-
certainty estimates of parameters with the strength of the
data (Bui et al., 2017; Nguyen et al., 2018; Rudner et al.,
2022; Chang et al., 2023b). Within continual learning, many
different settings have been investigated, which vary in dif-
ficulty (Farquhar & Gal, 2018). Across these tasks, the gap
in performance to a full-batch training procedure therefore
also varies, but despite progress, some gap in performance

remains.

Bayesian continual learning methods have been developed
because the posterior given past data becomes the prior for
future data, making the posterior a sufficient quantity to
estimate (Murphy, 2023, §19.7). For the special case of
linear-in-the-parameters regression models, the posterior
and updates can be calculated in closed form, leading to
continual learning giving exactly the same result as full-
batch training. In most cases (e.g. for neural networks), the
posterior cannot be found exactly, necessitating the afore-
mentioned approximations that use an approximate posterior
as the sufficient quantity (Nguyen et al., 2018; Rudner et al.,
2022; Chang et al., 2023b).

Even with a perfect solution to catastrophic forgetting
(e.g. in the case of linear-in-the-parameters regression mod-
els), continual learning methods face the additional diffi-
culty of ensuring that models have sufficient capacity to
accommodate the continuously arriving information. In
continual learning, it is particularly difficult to determine a
fixed size for the model, since the number of data or tasks
are not yet known, and selecting a model that is too small
can significantly hurt performance. Growing models with
data can fix this problem. For example, Rusu et al. (2016)
extend hidden representations by a fixed amount for each
new batch. Yoon et al. (2018) argue that extension by a fixed
amount is wasteful and should instead be data dependent,
specifically by copying neurons if their value changes too
much, and adding new neurons if the training loss doesn’t

2

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

reach a particular threshold. Kessler et al. (2021) propose
to use the Indian Buffet Process as a more principled way
to regularise how fast new weights are added with tasks.
Maile et al. (2022); Mitchell et al. (2023) develop similar
ideas of automatically adjusting model size to the normal
batch-learning setting. We agree with the aims of these
papers, but note that they rely on thresholds that need to be
tuned to the dataset characteristics, e.g. tolerances on the
training error which depend on the amount of intrinsic noise
in the dataset. We seek a unifying training principle that
is broadly applicable to a wide range of datasets, without
knowing their properties a priori.

Growing model capacity with dataset size was one of
the main justifications for research into (Bayesian) non-
parametric models (Ghahramani, 2013; 2015). This ap-
proach defines models with infinite capacity, with Bayesian
inference naturally using an appropriate finite capacity to
make predictions, with finite compute budgets. Gaussian
processes (GPs) (Rasmussen & Williams, 2005) are the most
common Bayesian non-parametric model for supervised
learning, and are equivalent to infinitely-wide deep neural
networks (Neal, 1996; Matthews et al., 2018) and linear-in-
the-parameters models with an infinite feature space (Mer-
cer, 1909). Their infinite capacity allows them to recover
functions perfectly in the limit of infinite data (van der Vaart
& van Zanten, 2008), and their posterior can be computed
in closed form. These are strong principles for providing
high-quality solutions to both catastrophic forgetting and
ensuring appropriate capacity, and therefore make GPs an
excellent model for studying continual learning.

However, developing a practical continual learning in GPs
is not as straightforward as it is in finite dimensional linear
models, because (for N datapoints) the posterior requires
1) an intractable O(N3) computation to compute it exactly,
and 2) storing the full training dataset, which breaks the re-
quirements of continual learning. Sparse variational induc-
ing variable methods solve these problems (Titsias, 2009),
by introducing a small number of M inducing points that
control the capacity of the posterior approximation. In cer-
tain settings (e.g. bounded inputs), this approximation is
near-exact even when M ≪ N (Burt et al., 2019; 2020).
This property has allowed continual learning methods to be
developed for GPs that perform very closely to full-batch
methods (Bui et al., 2017; Maddox et al., 2021; Chang et al.,
2023a), provided M is large enough.

As in neural network models, automatically selecting the
capacity M is an open problem, with several proposed so-
lutions. Kapoor et al. (2021) acknowledge the need for
scaling the capacity with data size, and propose VAR-GP
(Variational Autoregressive GP) which adds a fixed number
of inducing points for every batch. However, this number
may be too small, leading to poor performance, or too large,

leading to wasted computation. Galy-Fajou & Opper (2021)
propose OIPS (online inducing point selection), which de-
termines M through a threshold on the correlation with
other inducing points, and is currently the only adaptive
method for GPs, although we show that it still relies on
tuned hyperparameters to work.

In this work, we propose to select the capacity of the vari-
ational approximation by selecting an appropriate toler-
ance in the KL gap to the true posterior. This criterion
works within the same computational constraints as exist-
ing GPs continual learning methods, adapts the capacity
to the dataset to minimise computational waste while re-
taining near-optimal predictive performance. Our method
has a single hyperparameter that we keep fixed to a sin-
gle value, which produces similar trade-offs between size
and performance across benchmark datasets with different
characteristics.

3. Background
3.1. Sparse Variational Gaussian Processes

We consider the typical regression setting, with training
data consisting of N input/output pairs {xn, yn}Nn=1,xn ∈
RD, yn ∈ R. We model yn by passing xn through a func-
tion followed by additive Gaussian noise yn = f(xn) +
ϵn, ϵn ∼ N (0, σ2), and take a Gaussian process prior on
f ∼ GP(0, kθ(·, ·)) with zero mean, and a kernel k with
hyperparameters θ. We wish to find the posterior (for pre-
diction) and marginal likelihood (for finding θ). We need
approximations, despite these quantities being available in
closed form (Rasmussen & Williams, 2005), since they have
a computational cost of O(N3) that is too high, and require
all training data (or statistics greater in size) to be stored,
both of which are prohibitive for continual learning. Varia-
tional inference requires a lower O(NM2) computational
and O(NM) memory cost by selecting an approximation
from a set of tractable posteriors:

q(f(·)) =
∫

p(f(·)|u, θ)q(u)du (1)

= N
(
f(·);k·uK

−1
uum,

k(·, ·)− k·uK
−1
uu(Kuu − S)K−1

uuku·
)
, (2)

with [Kuu]ij = k(zi, zj), [k·u]i = [kT
u·]i = k(·, zi),Z =

{zm}Mm=1, and q(u) = N (u;m,S). The variational pa-
rameters m,S,Z and hyperparameters θ are selected by
maximising the Evidence Lower Bound (ELBO) (Hensman
et al., 2013). This simultaneously minimises the KL gap
KL[q(f) || p(f |y, θ)] between the approximate and true GP
posteriors (Matthews et al., 2016; Matthews, 2017), and
maximises an approximation to the marginal likelihood of

3

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

the hyperparameters:

LELBO =

N∑
i=1

Eq(f(xi))[log p(yi|f(xi), θ)]

−KL [q(u) ∥ p(u|θ)] . (3)

The variational approximation has the desirable properties
(van der Wilk, 2019) of 1) providing a measure of discrep-
ancy between the finite capacity approximation, and the
true infinite capacity model, 2) arbitrarily accurate approx-
imations if enough capacity is added (Burt et al., 2019;
2020), and 3) retaining the uncertainty quantification over
the infinite number of basis functions. In this work, we will
particularly rely on being able to measure the quality of the
approximation to help determine how large M should be.

3.2. Sparse Gaussian Processes are Equivalent to
Single-Layer Neural Networks

The equations of the predictor (eq. (2)) show the strong con-
nection between Sparse Gaussian processes and neural net-
works. The kernel k(·, zi) forms the nonlinearity, with the
weights being parameterised as K−1

uum. For inner product
kernels k(x,Z) = σ(Zx) like the arc-cosine kernel (Cho
& Saul, 2009), the connection becomes stronger, with Z as
the input weights. This construction also arises from other
combinations of kernels and inter-domain inducing vari-
ables (Dutordoir et al., 2020; Sun et al., 2020), and has also
showed equivalences between deep Gaussian processes and
deep neural networks with activations similar to the ReLU
(Dutordoir et al., 2021). As a consequence, our method for
determining the number of inducing variables in a sparse
GP, equivalently finds the number of neurons needed in a
single-layer neural network. As such, we hope the ideas
presented in this work can inspire similar mechanisms for
adaptive neural networks.

3.3. Online Sparse Gaussian Processes

In this work, we use the extension of the sparse variational
GP approximation to the continual learning case developed
by Bui et al. (2017). Here, we present a modified derivation
that clarifies 1) how the online ELBO provides an estimate
to the full-batch ELBO, and 2) when this approximation is
accurate.

We update our posterior and hyperparameter approxima-
tions after each batch of new data {Xn,yn}. While we do
not have access to data from older batches {Xo,yo}, the
parameters specifying the approximate posterior qo(f) =
p(f ̸=a|a, θo)qo(a) are passed on. We construct this approx-
imate posterior as in eq. (1) but with a = f(Zo) and the old
hyperparameters θo. Given the “old” qo(f), online sparse
GPs construct a “new” approximation qn(f) of the posterior
for all observed data p(f |yo,yn, θn), which can be written

as:

p(f |yo,yn, θn) =
p(f |θn)p(yn|f)p(yo|f)

p(yn,yo|θn)

=
p(f |θn)p(yn|f)
p(yn,yo|θn)

p(f |yo, θo)p(yo|θo)
p(f |θo)

.

We denote the new variational distribution as qn(f) =
p(f ̸=b|b, θn)qn(b) where b = f(Zn) and θn is the new
hyperparameter setting. The KL divergence between the
exact and approximate posterior at the current batch is given
by:

KL[qn(f) || p(f |yo,yn, θn)]

= log
p(yn,yo|θn)
p(yo|θo)

−
∫

qn(f) log
p(f |θn)p(yn|f)p(f |yo, θo)

qn(f)p(f |θo)
df .

The posterior distribution p(f |yo, θo) is not available, how-
ever by multiplying its approximation qo(f) in both sides
of the fraction inside the log, we obtain:

KL[qn(f) || p(f |yo,yn, θn)]

= log
p(yn,yo|θn)
p(yo|θo)

−
∫

qn(f) log
p(f |θn)p(yn|f)qo(f)

qn(f)p(f |θo)
df︸ ︷︷ ︸

=L̂

+Φ

(4)

where Φ = −
∫
qn(f) log

p(f |yo,θo)
qo(f)

df . We cannot com-
pute Φ due to its dependence on the exact posterior, so we
drop it and use the remaining term as our “online ELBO”
training objective, which simplifies as:

L̂ :=

∫
qn(f)

[
log

p(b|θn)qo(a)p(yn|f)
qn(b)p(a|θo)

]
df, (5)

since qo(f) = p (f̸=a | a, θo) qo(a) and similarly for qn(f).

Maximising L̂ will accurately minimise the KL to the true
posterior when Φ is small, which is the case when the old
approximation is accurate, i.e. qo(f) ≈ p(f |yo, θo) for all
values of f(Xo) (with Φ = 0 in the case of equality). In our
continual learning procedure, we will keep our sequence of
approximations accurate by ensuring they all have enough
inducing points, which will keep Φ small.

To get our final bound, we perform a change of variables for
the variational distribution qo(a) = N (a;ma,Sa) to use
the likelihood parametrisation (Panos et al., 2018):

qo(a) =
N (a; m̃a,Da)N (a; 0,K′

aa)∫
N (a; m̃a,Da)N (a; 0,K′

aa)da

=
l(a)p(a | θo)

N (a; 0,Da +K′
aa)

,

(6)

4

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

where Da =
(
S−1
a −K′−1

aa

)−1
and m̃a = K′−1

aa ma are the
variational parameters, K′

aa is the covariance for the prior
distribution p(a | θo) and l(a) := N (a; m̃a,Da). In this
formulation, the variational parameters m̃a,Da effectively
form a dataset that produce the same posterior as the original
dataset, but which we have chosen to be smaller in size,
M < N . This makes our online ELBO from eq. (5)

L̂ = Eqn(f) [log p(yn|f)] + Eqn(f) [log l(a)]

−KL [qn(b) || p(b|θn)]− logN (a; 0,K′
aa +Da) , (7)

which has the nice interpretation of being the normal ELBO,
but with an additional term that includes the approximate
likelihood l(a) which summarises the effect of all previous
data.

While L̂ is all that is needed to train the online approxi-
mation, it differs from the true marginal likelihood by the
term log p(yo|θo). To approximate it, we could drop the
term logN (a; 0,K′

aa +Da) from L̂, since this term also
approximates log p(yo|θo), with equality when the posterior
is exact, but with no guarantee of being a lower bound.

Although L̂ is a useful training objective for general likeli-
hoods, the regression case we consider allows us to analyti-
cally find q(b) (Bui et al., 2017) (see App. E), resulting in
the lower bound

L̂ = logN
(
ŷ;0,Kf̂bK

−1
bbKbf̂ +Σŷ

)
+∆

− 1

2
tr
[
D−1

a (Kaa −Qaa)
]
− 1

2σ2
tr(Kff −Qff) (8)

where Kf̂b = [Kfb Kab]
⊤, Σŷ = diag([σ2

yI, Da]), ŷ =[
yn DaSa

−1ma

]⊤
, and

∆ = −1

2
log

|Sa|
|K′

aa||Da|
+

Ma

2
log(2π)

− 1

2
mT

aS
−1
a ma +

1

2
mT

aS
−1
a DaS

−1
a ma,

with Qff = KfbK
−1
bbKbf , Qaa = KabK

−1
bbKba. All

covariances are computed using the new hyperparameters
θn, except for K′

aa which is the covariance for the prior
distribution p(a | θo). Finally, Ma = |a| is the number of
inducing points used at the previous batch. For calculating L̂
in each batch, the computational complexity is O(NnM

2
b +

M3
b) and the memory requirements are O(M2

b) where Mb

is the total number of inducing points for the current batch.

To create a fully black-box solution, we still need to specify
how to select the hyperparameters θn, the number of in-
ducing variables Mb, and the inducing inputs Zn. We will
always select θn by maximising L̂ using L-BFGS. To select
the locations Zn, we use the “greedy variance” criterion
(Fine & Scheinberg, 2001; Foster et al., 2009; Burt et al.,
2020). This leaves only the number of inducing variables
Mb to be selected.

4. Automatically Adapting Approximation
Capacity

We propose a method for adjusting the capacity of the ap-
proximation Mb to maintain accuracy. We propose to keep
inducing points from old batches fixed, and select new induc-
ing points from each incoming batch, with their locations
set using the “greedy variance” criterion (Fine & Schein-
berg, 2001; Foster et al., 2009; Burt et al., 2020). While
optimising all inducing points does lead to a strictly better
approximation, we avoid this for the sake of simplicity. The
question remains: To achieve a level of accuracy, “how big
is big enough?” To answer this, we consider the online
ELBO as a function of the capacity L̂(Mb), and propose a
threshold after which to stop adding new inducing variables.

4.1. Online Log Marginal Likelihood (LML) Upper
Bound

The problem of selecting a sufficient number of inducing
variables is also still open in the batch setting. One possible
strategy is to use an upper bound to the marginal likelihood
(Titsias, 2014) to bound KL[q(f)||p(f |y)] ≤ U − L, and
stop adding inducing variables once this is below a tolerance
α. To extend this strategy to online learning, we begin by
deriving an online upper bound, as a counterpart to the
online ELBO from eq. (8). We follow the same strategy as
Titsias (2014), by considering the highest possible value that
our lower bound can attain. While in full-batch inference
this is equal to the true LML, in our case this is obtained by
keeping the inducing inputs from the previous iteration, and
adding each new datapoint to the inducing set:

L∗ := L̂(Nn+Ma) = logN
(
ŷ; 0 ,Kf̂ f̂ +Σŷ

)
+∆a (9)

with Kf̂ f̂ =

[
Kff Kfa

Kaf Kaa

]
. Using properties of posi-

tive semi-definite matrices, we derive an upper bound Û(M)
to eq. (9):

logN
(
ŷ; 0 ,Kf̂ f̂ +Σŷ

)
≤ − (N +Ma)

2
log(2π)− 1

2
log |Kf̂bK

−1
bbKbf̂ +Σŷ|

− 1

2
ŷT
(
Kf̂bK

−1
bbKbf̂ + t+Σŷ

)−1
ŷ

:= Û(M),

where t = tr(Kf̂ f̂ − Qf̂ f̂) and Qf̂ f̂ = Kf̂bK
−1
bbKbf̂ and

M is the number of inducing points used to calculate the
bound (which can be unequal to Mb).

4.2. Approximation Quality Guarantees

Adding inducing points will eventually increase L̂ until it
reaches L∗ (Bauer et al., 2016; Matthews, 2017; Burt et al.,

5

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Algorithm 1 Vegas Inducing Point Selection (VIPS)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, µ̂, σ̂, θn, kernel k(·, ·|θn), threshold parameter δ.
Output: Updated set Zn = Zo ∪ {xm′}M ′

m′=1, where |Zn| = Mb.
Initialise Zn = Zo.
while Û(M)− L̂(Mb) ≤ δ|Û(M)− Lnoise(µ̂, σ̂)| do

Select x = argmaxx∈Xn
k(x,x)− kb(x)

⊤K−1
bbkb(x).

Add x to the set of inducing points: Zn = Zn ∪ {x}.
end while

2020). If we add inducing points until Û(M)−L̂(Mb) ≤ α
we can guarantee the following:

Guarantee. Let M be a fixed integer and Mb be the number
of selected inducing points such that Û(M)− L̂(Mb) ≤ α.
Assuming that θn = θo, we have two equivalent bounds:

KL[qn(f) || p(f |yo,yn, θo)] ≤ α+Ψ (10)
KL[qn(f) || q∗n(f)] ≤ α (11)

where Ψ =
∫
qn(f) log

q∗n(f)
p(f |yn,yo)

df and q∗n(f) =

Z−1qo(f)p(yn | f) represents the variational distribution
associated with the optimal lower bound L∗ = L̂(Nn+Ma),
with Z denoting the marginal likelihood that normalises
q∗n(f).

Proof. We cease the addition of points when L̂(Mb) >

Û(M)−α. Given that Û(M) ≥ L∗, and assuming θn = θo,
the rest follows from algebraic manipulation of eq. (4). See
App. C for the complete proof.

The first bound shows that if Ψ is near zero, the KL to the
true posterior is bounded by α. While Ψ depends on the true
posterior and therefore cannot be computed, if the posterior
in the previous iteration was exact, Ψ would be equal to zero.
The second bound shows that we are guaranteed to have
our actual approximation qn(f) be within α nats of the best
approximation that we can develop, given the limitations of
the approximations made in previous iterations.

4.3. Selecting a Threshold

In this final step of our online learning method, we must
specify a heuristic for selecting α that does not require know-
ing any data in advance, while also working in a uniform
way across datasets with different properties. A constant
value for α does not work well, since the scale of the LML
depends strongly on properties such as dataset size, and ob-
servation noise. This means that a tolerance of 1 nat (Cover,
1999) may be appropriate for a small dataset, but not for a
large one.

As a principle for selecting the threshold, we take loose
inspiration from compression and MDL (Grünwald & Roos,
2019), which takes the view of the ELBO being proportional

to negative the code length that the model requires to encode
the dataset. Intuitively, our desire to select an α such that
our method captures a high proportion (e.g. 95%) of all the
information in each batch, so that we can compress to within
a small fraction of the optimal variational code. By itself,
this is not well-defined since the code length depends on
the quantisation tolerance for our continuous variables. To
avoid this, we take an independent random noise code as our
baseline, and select α to be within some small fraction of the
optimal variational code, relative to the random noise code.
We want to capture a high proportion of all the additional
information that our model provides, relative to the noise
model, i.e. we want our threshold to be:

α = δ(L∗ − Lnoise) , Lnoise =

Nn∑
n=1

logN (yn; µ̂, σ̂
2)

where µ̂ and σ̂2 are the average and variance of the obser-
vations for up to the current task and δ is a user-defined
hyperparameter. We validate that this approach leads to
values of δ giving consistent behaviour across a wide range
of datasets, which allows it to be set in advance without
needing much prior knowledge of the dataset characteris-
tics.

Calculating this threshold is intractable for large batch sizes
Nn. However, if we change our stopping criterion to the
more stringent upper bound

ᾱ = δ(Û(M)− Lnoise) . (12)

and increase M for calculating Û as Mb is increased for
calculating L̂, we obtain the same guarantees as before but
at a lower computational cost. However, this strategy is
only worthwhile for very large batch sizes Nn, due to the
importance of constant factors in the computational cost. In
the common continual learning settings we investigate Nn

is small enough to allow computing L∗.

The procedure for our inducing point selection method
is detailed in Algorithm 1 and we give further details in
App. B.1. We name our approach Vegas Inducing Point
Selection (VIPS), drawing an analogy to Las Vegas Algo-
rithms. These methods guarantee the accuracy of the output,
however, their computational time fluctuates for every run
(Motwani & Raghavan, 1995).

6

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

5. Experiments
We evaluate the performance of our adaptive inducing point
selection method VIPS in a range of streaming scenarios
where we assume the total number of observations is un-
known. In all cases, the variational distribution, noise and
kernel hyperparameters are optimised using the online lower
bound (Eq. (8)). We provide further details in App. D.

Continual learning scenarios pose unique challenges. It is
impossible to pre-determine memory allocation due to un-
known input space coverage. Additionally, cross-validation
for hyperparameter tuning is not feasible as it would require
storing all data. Thus, an effective method must 1) have an
adaptive memory that can grow with the demands of the
data, 2) work with hyperparameters that can be set before
training. The first part of our experiments demonstrates the
benefits of using an adaptive model capacity in continual
learning. The second part highlights the necessity of a sin-
gle, pre-tunable hyperparameter that works across diverse
settings. We benchmark VIPS against two other inducing
point selection methods on streaming UCI datasets and a
real-world robotics application.

5.1. Model size and data distribution

Figure 1 shows VIPS’s ability to adapt across three datasets
with different characteristics, each divided into ten batches,
illustrating how input distribution drives model growth as
more data is seen. In the first dataset, each batch intro-
duces data from new parts of the input space. Since each
batch is equally novel, the model size grows linearly. In the
second, the data remain within a fixed interval, leading to
diminishing novelty in each batch, and a model size that
converges to a fixed value. The third dataset mixes narrow-
range uniform samples with occasional batches sampled
from a heavy-tailed Cauchy distribution. This leads the
model size to converge, with sporadic growth when novel
data is observed.

5.2. The impact of model capacity on accuracy and
training time

Here, we compare a fixed to dynamic model size, with
inducing points selected according to the greedy variance
criterion (Burt et al., 2020), to demonstrate the challenges
of a fixed model size. Since the total dataset size and data
characteristics are not known at the start of training, select-
ing a fixed size will either lead to a model that is too small
and underperforms, or a model that is too large and wastes
computational resources. Adaptive size solves these issues.

Performance comparison: We train on a synthetic dataset
divided into four batches, using a fixed model size, and
our adaptive stopping criterion, VIPS. We test three fixed
sizes: M = 10, 20, and 30 inducing points. We record

1 2 3 4
Batch Number

0.25

0.50

0.75

R
M

SE

Mvips = 8 Mvips = 15 Mvips = 22 Mvips = 29

M = 10
M = 20
M = 30
VIPS
Exact GP

(a) Accuracy on a synthetic dataset.

1 5 10 15 20
Batch Number

100

101

102

Ti
m

e
(s

)

Mvips =13 Mvips =29 Mvips =42 Mvips =68 Mvips =119

Oracle
Heuristic
VIPS

(b) Training time comparison on “naval” dataset.

Figure 2. (a) Performance comparison of fixed memory ap-
proaches (blue curves with M = 10, 20, 30 inducing points) and
VIPS, with M (shown at the top) inducing points at each batch.
(b) (log) Time taken to train the online GP model on the “naval”
dataset divided into 20 batches with fixed size (oracle: M = 100,
heuristic: M = 1000) and VIPS, our adaptive method.

the test root mean square error (RMSE) and compare to
an exact GP model with access to all current training data
as a benchmark. Figure 2a shows that fixed size models
M = 10, 20 lose accuracy with more data whereas fixed
model M = 30 and VIPS match exact GP performance.
At this point, we can select the model with M = 30 with
the benefit of hindsight. However, at the start of training,
we could not have known that this size would have been
sufficient at the point of testing. VIPS not only automatically
ends up with this optimal size, but also avoids computational
waste by using fewer inducing points in earlier batches.

Training cost comparison: We use the “naval” UCI dataset
divided into 20 batches, to compare the training time of
models with a fixed and dynamic size. We compare a best-
case fixed-size model with the smallest number of induc-
ing points that would still give near-optimal performance.
For “naval”, this is M = 100, which would have to be
set by an “oracle”. We also include a typical heuristic, of
M = 1000 (around 1/10th of the total data points), that
would ensure sufficient capacity to handle different data
patterns and complexities. Finally, we test our adaptive
method, VIPS, which adjusts the number of inducing points
as needed while achieving near-exact performance for the
dataset. As shown in Figure 2b, VIPS results in lower com-
putational time by only growing its model size as new data
is seen, beating even the oracle method.

7

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Table 1. Mean (std) of inducing points in final batch across train-
ing/test splits at operating point selected to achieve 10% RMSE
threshold. Cross (✗) indicates failure to meet accuracy threshold
and "Max." denotes reaching maximum capacity limit. Values for
OIPS are in italics, as the operating point was selected based on
only five datasets, making it less stringent than other methods.

DATASET CV OIPS VIPS (OURS)

CONCRETE 492(54) 240(102) 234(116)
SKILLCRAFT 739(34) 174(16) 134(9)
KIN8NM 6316(10) 6458(8) 1904(41)
NAVAL 49(1) ✗ 57(1)
ELEVATORS 3133(140) 298(8) 291(4)
BIKE MAX. 7000 1964(137) 650(17)

Table 2. Mean (std) of inducing points in final batch across train-
ing/test splits at operating point selected to achieve 10% RMSE
threshold in all but one dataset. ✗ Gray shows cases exceeding
threshold, with percentages showing % difference to full-batch GP
relative to a noise model.

DATASET CV OIPS VIPS (OURS)

CONCRETE 184(74) 240(102) 178(95)
SKILLCRAFT 226(22) 174(16) 133(0)
KIN8NM 5334(27) 6458(8) 1563(39)
NAVAL ✗ 23(8)-323% ✗ 16(1)-315.28% 48(3)
ELEVATORS 836(27) 298(8) 281(4)
BIKE 4895(28) 1964(137) ✗ 549(14)-10.8%

5.3. Continual learning of UCI datasets

We compare our method, VIPS, to two other inducing point
selection approaches: Conditional Variance (CV) and OIPS
(Galy-Fajou & Opper, 2021) (see details in App. B). We use
six datasets from the UCI repository (Dua & Graff, 2017),
simulating a continual learning scenario by sorting the data
along the first dimension and dividing it into batches. When
evaluating inducing point selection methods, we must con-
sider the trade-off between accuracy and model size: while
selecting more inducing points improves model accuracy, it
also increases computational cost.

Our goal is to minimise computational cost, while satis-
fying the constraint that we reach a fixed target accuracy
threshold (e.g. within 10% RMSE of a full-batch GP). To
benchmark our methods, we select a single hyperparameter
across datasets, so that our accuracy constraint is always
met, while otherwise using the fewest inducing points. We
refer to this hyperparameter as the operating point. For
this operating point, we then measure the number of induc-
ing points that the method chooses for each dataset, with a
lower result being better. If across datasets, there is a large
variation in hyperparameter values needed to achieve the ac-
curacy constraint, selecting the most stringent criterion will

Table 3. Mean (std) of inducing points in final batch across train-
ing/test splits at operating point selected to achieve 10% RMSE
threshold. Cross (✗) indicates failure to meet accuracy threshold
and "Max." denotes reaching maximum capacity limit. Values for
OIPS are in italics, as the operating point was selected based on
only five datasets, making it less stringent than other methods.

DATASET CV OIPS VIPS (OURS)

CONCRETE 492(54) 383(90) 451(77)
SKILLCRAFT 1091(107) 236(38) 195(18)
KIN8NM 6469(7) 6523(9) 5065(46)
NAVAL 903(8) ✗ 509(15)
ELEVATORS 3133(140) 386(47) 487(24)
BIKE MAX. 7000 3916(122) 2794(148)

Table 4. Mean (std) of inducing points in final batch across train-
ing/test splits at operating point selected to achieve 10% NLPD
threshold in all but one dataset. ✗ Gray shows cases exceeding
threshold, with percentages showing % difference to full-batch GP
relative to a noise model.

DATASET CV OIPS VIPS (OURS)

CONCRETE 303(78) 383(90) 434(79)
SKILLCRAFT 295(13) 236(38) 177(13)
KIN8NM 5685(26) 6523(9) 4281(69)
NAVAL ✗ 27(6)-2406% ✗ 20(1)-133.87% ✗ 373(19)-11.92%
ELEVATORS 1099(50) 386(47) 438(17)
BIKE 5563(36) 3916(122) 2296(138)

cause large numbers of inducing points to be used for other
datasets. This simulates a realistic setting, where one cannot
know what the optimal hyperparameter value is for each
dataset beforehand, and penalises methods that are hard to
tune, due to large variations in the required hyperparameter
values across datasets.

Table 1 shows the number of inducing points for each
method at the operating point that achieves the accuracy
threshold within 10% RMSE of a full-batch GP. VIPS re-
quires fewer inducing points in the majority of datasets. CV
often results in larger models, reaching the 7000-point limit
on Bike. OIPS performs inconsistently, matching VIPS on
smaller datasets but oversizing on larger ones. For the Naval
dataset, OIPS failed to meet the accuracy constraint across
all tested hyperparameter values. While extending the hy-
perparameter range might have improved accuracy, it would
have led to even larger models. Therefore, we selected an
operating point that satisfied our conditions for five out of
six datasets, treating Naval as an outlier. Table 2 shows the
results when this exception is applied to all methods. We
observe a similar trend, with VIPS achieving the smallest
model sizes. Tables 3 and 4 report analogous results for the
threshold within 10% NLPD of a full-batch GP. The same
pattern holds. Figure 3 summarises these outcomes across

8

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

2 Outliers 1 Outlier None
Outlier Allowance

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
fo

r M
in

im
um

 M
od

el
 S

iz
e

Comparison at 10% RMSE Threshold

CV OIPS VIPS

(a)

2 Outliers 1 Outlier None
Outlier Allowance

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
fo

r M
in

im
um

 M
od

el
 S

iz
e

Comparison at 10% NLPD Threshold

CV OIPS VIPS

(b)

Figure 3. Number of datasets where each method achieves minimal
model size at different outlier allowances. A “win” is assigned to
the dataset with the smallest model which satisfies the (a) RMSE
and (b) NLPD thresholds of 10%. Counts represent absolute wins.
Higher counts indicate better method robustness across datasets.

outlier allowances, with VIPS more frequently achieving
minimal model size. App. D.3 provides additional results
under different thresholds.

Our results show that VIPS performs consistently across
datasets, allowing a single pre-set hyperparameter to be
used. In contrast, OIPS and CV require tuning, as no sin-
gle hyperparameter works well for all datasets. This is a
limitation in continual learning, where the whole dataset is
unavailable in advance.

5.4. Continual Learning of Magnetic Field

We apply the optimal hyperparameters found in the previous
section, selected under the 10% RMSE threshold, to the ex-
perimental setup from Chang et al. (2023a) using real-world
data from Solin et al. (2018), where a robot maps magnetic
field anomalies in a 6m x 6m indoor space. This scenario
simulates an expanding domain, where the model needs to
continuously learn new areas without uncontrollably increas-
ing its capacity. Our goal is to test whether the methods can
form representations by progressively spreading inducing

(a) Learning paths 1, 2, 4, 5 sequentially with VIPS.

(b) Learning path 3 with VIPS. M: 134, RMSE: 7.55.

Figure 4. A small robot is used to perform sequential estimation
of magnetic field anomalies. The strength of the magnetic field is
given by 10 µT to 90 µT. (a) shows the final estimate of
the magnitude field learned sequentially through different paths.
(b) show the outcome of learning a single path continuously with
the black dots representing the chosen inducing points.

points and learning hyperparameters without prior tuning
in two scenarios: 1) sequentially mapping multiple robot
trajectories and 2) processing a single path in continuous
batches. Figure 4 shows the final magnetic field estimates
produced by VIPS in both experimental settings. Compara-
tive results for CV and OIPS are provided in App. D.4. The
results show that VIPS was able to grow its memory as the
robot moved, allowing for accurate modelling of the path
and increasing its capacity dynamically. In contrast, we
observe that CV increases its capacity uncontrollably while
OIPS provides a less accurate estimate of the magnetic field
due to choosing fewer inducing points.

6. Discussion
In this work, we propose a method to dynamically adjust
the number of inducing variables in streaming GP regres-
sion. Our method achieves a performance close to full-batch
approaches while minimising model size. It relies on a sin-
gle hyperparameter to balance accuracy and complexity,
and we demonstrate that our method performs consistently
across diverse datasets. This reduces the need for exten-
sive hyperparameter tuning and eliminates the requirement
to pre-define model size, thereby addressing a significant
bottleneck in traditional methods. While our current appli-
cation focuses on GPs we hope this is extendable for the
development of adaptive neural networks.

9

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Acknowledgements
GPB is supported by EPSRC through the Statistical Ma-
chine Learning (StatML) CDT programme, grant no.
EP/S023151/1.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), pp.
265–283. USENIX Association, 2016.

Bauer, M., van der Wilk, M., and Rasmussen, C. E. Under-
standing probabilistic sparse Gaussian process approx-
imations. Advances in neural information processing
systems, 29, 2016.

Bui, T. D., Nguyen, C., and Turner, R. E. Streaming sparse
gaussian process approximations. Advances in Neural
Information Processing Systems, 30:3299–3307, 2017.
ISSN 1049-5258.

Burt, D., Rasmussen, C. E., and Van Der Wilk, M. Rates
of convergence for sparse variational gaussian process re-
gression. In International Conference on Machine Learn-
ing, pp. 862–871. PMLR, 2019.

Burt, D. R., Rasmussen, C. E., and van der Wilk, M. Con-
vergence of sparse variational inference in Gaussian pro-
cesses regression. The Journal of Machine Learning
Research, 21(1):5120–5182, 2020.

Chang, P. E., Verma, P., John, S., Solin, A., and Khan, M. E.
Memory-Based dual gaussian processes for sequential
learning. In International Conference on Machine Learn-
ing, pp. 4035–4054. PMLR, June 2023a.

Chang, P. G., Durán-Martín, G., Shestopaloff, A., Jones, M.,
and Murphy, K. P. Low-rank extended kalman filtering
for online learning of neural networks from streaming
data. pp. 1025–1071, 2023b.

Cho, Y. and Saul, L. Kernel methods for deep learning.
Advances in neural information processing systems, 22,
2009.

Cover, T. M. Elements of information theory, pp. 14. John
Wiley & Sons, 1999.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dutordoir, V., Durrande, N., and Hensman, J. Sparse gaus-
sian processes with spherical harmonic features. In In-
ternational Conference on Machine Learning, pp. 2793–
2802. PMLR, 2020.

Dutordoir, V., Hensman, J., van der Wilk, M., Ek, C. H.,
Ghahramani, Z., and Durrande, N. Deep neural net-
works as point estimates for deep gaussian processes.
Advances in Neural Information Processing Systems, 34:
9443–9455, 2021.

Farquhar, S. and Gal, Y. Towards robust evaluations of
continual learning. arXiv preprint arXiv:1805.09733,
2018.

Fine, S. and Scheinberg, K. Efficient svm training using low-
rank kernel representations. Journal of Machine Learning
Research, 2(Dec):243–264, 2001.

Foster, L., Waagen, A., Aijaz, N., Hurley, M., Luis, A., Rin-
sky, J., Satyavolu, C., Way, M. J., Gazis, P., and Srivas-
tava, A. Stable and efficient gaussian process calculations.
Journal of Machine Learning Research, 10(4), 2009.

Galy-Fajou, T. and Opper, M. Adaptive inducing points
selection for Gaussian Processes. In Continual Learning
Workshop, July 2021.

Ghahramani, Z. Bayesian non-parametrics and the proba-
bilistic approach to modelling. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371(1984):20110553, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial
intelligence. Nature, 521(7553):452–459, 2015.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Grünwald, P. and Roos, T. Minimum description length re-
visited. International journal of mathematics for industry,
11(01):1930001, 2019.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
pp. 282–290, 2013.

Kapoor, S., Karaletsos, T., and Bui, T. D. Variational auto-
regressive gaussian processes for continual learning. In
International Conference on Machine Learning, pp. 5290–
5300. PMLR, 2021.

10

http://archive.ics.uci.edu/ml

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Kessler, S., Nguyen, V., Zohren, S., and Roberts, S. J. Hier-
archical indian buffet neural networks for bayesian con-
tinual learning. In Uncertainty in artificial intelligence,
pp. 749–759. PMLR, 2021.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
40(12):2935–2947, 2017.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30, 2017.

Maddox, W. J., Stanton, S., and Wilson, A. G. Conditioning
sparse variational gaussian processes for online decision-
making. Advances in Neural Information Processing
Systems, 34:6365–6379, 2021.

Maile, K., Rachelson, E., Luga, H., and Wilson, D. G. When,
where, and how to add new neurons to anns. In Interna-
tional Conference on Automated Machine Learning, pp.
18–1. PMLR, 2022.

Matthews, A. G. d. G. Scalable Gaussian process inference
using variational methods. PhD thesis, 2017.

Matthews, A. G. d. G., Hensman, J., Turner, R., and Ghahra-
mani, Z. On sparse variational methods and the Kullback-
Leibler divergence between stochastic processes. In Ar-
tificial Intelligence and Statistics, pp. 231–239. PMLR,
2016.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii,
K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z.,
and Hensman, J. GPflow: A Gaussian process library us-
ing TensorFlow. Journal of Machine Learning Research,
18(40):1–6, apr 2017.

Matthews, A. G. d. G., Hron, J., Rowland, M., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In International Conference on
Learning Representations, 2018.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Mercer, J. Xvi. functions of positive and negative type, and
their connection the theory of integral equations. Philo-
sophical transactions of the royal society of London. Se-
ries A, containing papers of a mathematical or physical
character, 209(441-458):415–446, 1909.

Mitchell, R., Mundt, M., and Kersting, K. Self expanding
neural networks. arXiv preprint arXiv:2307.04526, 2023.

Motwani, R. and Raghavan, P. Randomized Algorithms.
Cambridge University Press, 1995.

Murphy, K. P. Probabilistic Machine Learning: Advanced
Topics, chapter 19.7. MIT Press, 2023.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 1996.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Varia-
tional continual learning. In International Conference on
Learning Representations, October 2018.

Panos, A., Dellaportas, P., and Titsias, M. K. Fully scalable
gaussian processes using subspace inducing inputs. arXiv
preprint arXiv:1807.02537, 2018.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. MIT Press, November 2005. ISBN
9780262182539.

Ring, M. B. Child: A first step towards continual learning.
Machine Learning, 28(1):77–104, 1997.

Rudner, T. G., Smith, F. B., Feng, Q., Teh, Y. W., and
Gal, Y. Continual learning via sequential function-space
variational inference. In International Conference on
Machine Learning, pp. 18871–18887. PMLR, 2022.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell,
R. Progress & compress: A scalable framework for con-
tinual learning. In International conference on machine
learning, pp. 4528–4537. PMLR, 2018.

Solin, A., Kok, M., Wahlstrom, N., Schon, T., and Sarkka, S.
Modeling and interpolation of the ambient magnetic field
by gaussian processes. IEEE Transactions on Robotics,
34(4):1112–1127, 2018. ISSN 1552-3098. doi: 10.1109/
TRO.2018.2830326.

Sun, S., Shi, J., and Grosse, R. B. Neural networks as
inter-domain inducing points. In Third Symposium on
Advances in Approximate Bayesian Inference, 2020.

Titsias, M. K. Variational learning of inducing variables in
sparse gaussian processes. In Proceedings of the Twelfth
International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 5 of Proceedings of Ma-
chine Learning Research, pp. 567–574. PMLR, 2009.

11

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Titsias, M. K. Variational inference for Gaussian and deter-
minantal point processes. In Workshop on Advances in
Variational Inference (NIPS), 2014.

van der Vaart, A. and van Zanten, J. Rates of contraction of
posterior distributions based on gaussian process priors.
The Annals of Statistics, 36(3):1435–1463, 2008.

van der Wilk, M. Sparse Gaussian process approximations
and applications. PhD thesis, 2019.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. In 6th
International Conference on Learning Representations,
ICLR 2018. International Conference on Learning Repre-
sentations, ICLR, 2018.

12

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

A. Code
The methods discussed in this work, along with the code to reproduce our results, are available online at https://
github.com/guiomarpescador/vips. All experiments and figures were done in Python using libraries TensorFlow
v.2.12 (Abadi et al., 2016) and GPflow v.2.9 (Matthews et al., 2017). Both packages are under Apache License 2.0. The
implementation of the online lower bound (see eq. (8)) by Bui et al. (2017) is available on GitHub under Apache license
2.0. For the “greedy variance” selection criterion and algorithm, we use the implementation provided in Burt et al. (2020)
available under Apache license 2.0.

B. Adaptive Inducing Points Selection Methods
In sections 5.3 and 5.4 we compare our method, VIPS, to two other adaptive approaches: Conditional Variance (CV) and
OIPS (Galy-Fajou & Opper, 2021). The key distinction between these approaches lies in their selection strategy of inducing
points. OIPS uses a unified selection process (Algorithm 2), where the choice of both location and number of inducing
points is determined by a single metric. In particular, each point xi in the training set Xn is evaluated individually, and those
that meet the threshold condition are added to the inducing set Zn. In contrast, both CV and VIPS use a decoupled selection
process (Algorithm 3), which separates two decisions: where to place inducing points and how many to include. These
methods iteratively select the best candidate for the next inducing point from a pool of potential locations, continuing until
a stopping criterion is met, allowing for more control over the model size. VIPS and CV share the same greedy variance
selection criterion but differ in their candidate pools and stopping criteria. Table 5 summarises the properties of these
methods, including the fixed memory approach of Bui et al. (2017) for comparison. The next three subsections provide
detailed descriptions of each method’s specific implementation.

Algorithm 2 Unified inducing set selection process done at each batch.

Input: New batch of data Xn, current set inducing points Zold.
Output: Updated set Zn

Initialise Zn = Zold

for xi ∈ Xn do
if addition_criterion(xi) < threshold then
Zn = Zn ∪ {xi}

end if
end for

Algorithm 3 Decoupled inducing set selection process done at each batch.

Input: New batch of data Xn, current set inducing points Zold.
Output: Updated set Zn

Set candidate pool Xpool based on method (see Table 5) and initialise Zn accordingly.
while stopping_criterion(Zn) > threshold do

xbest = selection_criterion(Xpool, Z) {Greedy variance criterion}
Zn = Zn ∪ {xbest}

end while

Table 5. Properties of inducing points selection method for updating an online GP regression model.

METHOD MODEL SIZE SELECTION POOL SELECTION CRITERION STOPPING CRITERION

BUI ET AL. (2017) FIXED {Zo,Xn} GRADIENT OPTIMISATION M CONSTANT
OIPS (GALY-FAJOU & OPPER, 2021) ADAPTIVE {Xn} maxku(x) ≤ ρ maxku(x) ≤ ρ̄
COND. VARIANCE (CV) ADAPTIVE {Zo,Xn} GREEDY VARIANCE tr (Kff −Qff) ≤ η.
VIPS ADAPTIVE {Xn} GREEDY VARIANCE Û − L̂ ≤ α

13

https://github.com/guiomarpescador/vips
https://github.com/guiomarpescador/vips
https://github.com/thangbui/streaming_sparse_gp

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

B.1. Vegas Inducing Point Selection (VIPS) Algorithm

To select the location of our new inducing points we use the location selection strategy “greedy variance” proposed in Burt
et al. (2020). This strategy iteratively selects points from a set based on a preference criterion until a stopping condition is
met. In particular, it chooses the location of the next inducing point to maximise the marginal variance in the conditional
prior p(f ̸=u|u). This is equivalent to maximising diag[Kff − Qff]. In continual learning, Chang et al. (2023a) use the
“greedy variance” criterion by defining {Zo,Xn} as the selection pool from which inducing point locations are selected and
maintaining a fixed number of inducing points. Similarly, Maddox et al. (2021) extends the “greedy variance” criterion to
heteroskedastic Gaussian likelihoods and also uses a fixed memory approach. In our case, we tested the location strategy
with our stopping criterion using both {Zo,Xn} and {Xn} as candidates pool for the locations of the inducing points. We
did not find a substantial difference between the methods and hence opted for the simpler version where we keep the old
inducing point locations fixed and choose the new set of inducing points from among the locations in {Xn}.

Algorithm 4 presents an inducing point selection method using our stopping criterion combined with the location selection
strategy “greedy variance”. The method takes as input a value for the hyperparameter θn. In practice, we will set θn = θo
to select the number of inducing points; the hyperparameter θn is inferred by optimising L̂(Mb) once the inducing point
locations Zn has been chosen. In Algorithm 1, Û(M) is used to calculate the stopping criterion. However, in practice,
since for the continual learning settings we investigate Nn is small enough, we will use Û(Ma +Nn) = L∗. This value is
calculated once at the beginning of the process. The algorithm’s complexity depends on the number of inducing points Mb

used to compute the lower bound L̂(Mb) at each iteration. The computational complexity for calculating L̂ at each batch is
O(NnM

2
b +M3

b), and the memory requirement is O(M2
b), where Mb represents the total number of inducing points in the

current batch.

Algorithm 4 Vegas Inducing Point Selection (VIPS)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, µ̂, σ̂, θn, kernel k(·, ·|θn), threshold parameter δ.
Output: Updated set Zn = Zo ∪ {xm′}M ′

m′=1, where |Zn| = Mb.
Initialise Zn = Zo.
while Û(M)− L̂(Mb) ≤ δ|Û(M)− Lnoise(µ̂, σ̂)| do

Select x = argmaxx∈Xn
k(x,x)− kb(x)

⊤K−1
bbkb(x).

Add x to the set of inducing points: Zn = Zn ∪ {x}.
end while

B.2. Conditional Variance

The implementation of the Conditional Variance method is presented in Algorithm 5. This method uses the “greedy
variance” strategy that iteratively chooses the location of the next inducing point. As a stopping criterion, it uses the quantity
tr (Kff −Qff). In this algorithm, new inducing points are no longer added once tr (Kff −Qff) falls below a chosen
tolerance value η. Although, this approach was mentioned in Burt et al. (2020), this stopping criterion has not yet been
tested in the literature. The hyperparameter η is determined by the user.

Algorithm 5 Conditional Variance (CV)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, θn, kernel, k(·, ·|θn), threshold η.
Output: Updated set of inducing points Zn = {zm}M ′

m=1 ∪ {xm′}Mb−M ′

m′=1 , where |Zn| = Mb.
Initialise location selection pool: Xpool = Zo ∪Xm.
Initialise Zn = argmaxx∈Xpool

k(x,x).
while tr (Kff −Qff) ≤ η do

Select x = argmaxx∈Xpool
k(x,x)− kb(x)

⊤K−1
bbkb(x).

Add x to the set of inducing points: Zn = Zn ∪ {x}.
end while

14

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

B.3. Online Inducing Point Selection (OIPS)

Galy-Fajou & Opper (2021) introduced the Online Inducing Points Selection (OIPS) algorithm, which iteratively adds points
from Xn to the set of inducing points. The algorithm assesses the impact of each new point on the existing inducing set,
based on a covariance threshold. A point x is added if the maximum value of ku(x) falls below a user-defined threshold ρ.
While the original algorithm implicitly assumes unit kernel variance, Algorithm 6 presents our implementation where we
scale the threshold ρ by the kernel variance σ2

f to ρ̄ = σ2
fρ. This modification ensures the threshold comparison remains

valid for arbitrary kernel variances.

Algorithm 6 Online Inducing Point Selection (OIPS)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, kernel function k(·, ·|θn), kernel hyperparameters θn (including variance σ2
f),

acceptance threshold 0 < ρ < 1.
Output: Updated set Zn = Zo ∪ {xm′}M ′

m′=1, where |Zn| = Mb.
Initialise Zn = Zo.
Initialise ρ̄ = ρ · σ2

f .
for all xi ∈ Xn do
d = maxj (k (xi, zj |θn)) , ∀ zj ∈ Zn.
if d < ρ̄ then

Add xi to the set of inducing points: Zn = Zn ∪ {xi}.
end if

end for

15

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

C. Proof of Guarantee
Guarantee. Let M be a fixed integer and Mb be the number of selected inducing points such that Û(M)− L̂(Mb) ≤ α.
Assuming that θn = θo, we have two equivalent bounds:

KL[qn(f) || p(f |yo,yn, θo)] ≤ α+Ψ (13)
KL[qn(f) || q∗n(f)] ≤ α (14)

where Ψ =
∫
qn(f) log

q∗n(f)
p(f |yn,yo)

df and q∗n(f) = Z−1qo(f)p(yn|f) represents the variational distribution associated

with the optimal lower bound L∗ = L̂(Nn +Ma), with Z denoting the marginal likelihood that normalises q∗n(f).

Proof. We cease the addition of points when Û(M)− L̂(Mb) < α. Since Û(M) ≥ L∗, then −L̂(Mb) < α − Û(M) <
α− L∗. Eq.(4) can be bounded as:

KL[qn(f) || p(f |yo,yn, θn)] = log
p(yn,yo|θn)
p(yo|θo)

− L̂+Φ

≤ log
p(yn,yo|θn)
p(yo|θo)

+ α− L∗ +Φ

(15)

where Φ = −
∫
qn(f) log

p(f |yo,θo)
qo(f)

df . Let q∗n(f) = Z−1qo(f)p(yn|f) be the variational distribution associated with

L∗ = L̂(Nn +Ma). Then, by expanding the true posterior and multiplying by the variational distributions q∗n(f) on both
sides of the fraction inside the log, we obtain:

Φ =

∫
qn(f) log

qo(f)

p(f |yo, θo)
df

=

∫
qn(f) log

qo(f)p(yo|θo)
p(yo|f)p(f |θo)

df

=

∫
qn(f) log

qo(f)p(yo|θo)
p(yo|f)p(f |θo)

q∗n(f)

q∗n(f)
df

=

∫
qn(f) log ���qo(f)p(yo|θo)

p(yo|f)p(f |θo)
q∗n(f)

Z−1
���qo(f)p(yn|f)

df

=

∫
qn(f) log

q∗n(f)

p(f |yn,yo, θo)
df + logZ − log

p(yn,yo|θo)
p(yo|θo)

(16)

Using the above expansion for Φ, eq. (15) becomes,

KL[qn(f) || p(f |yo,yn, θn)]

≤ log
p(yn,yo|θn)
p(yo|θo)

+ α− L∗ +Φ

≤ log
p(yn,yo|θn)
p(yo|θo)

+ α− L∗ +

∫
qn(f) log

q∗n(f)

p(f |yn,yo, θo)
df + logZ − log

p(yn,yo|θo)
p(yo|θo)

.

(17)

Assuming that θn = θo, the above can be simplified to

KL[qn(f) || p(f |yo,yn, θn)] ≤ α+

∫
qn(f) log

q∗n(f)

p(f |yn,yo, θn)
df (18)

Again by multiplying by qn(f) both sides of the fraction inside the log, we obtain:

KL[qn(f) || p(f |yo,yn, θo)] ≤
∫

qn(f) log
q∗n(f)

p(f |yn,yo, θn)

qn(f)

qn(f)
df + α

KL[qn(f) || p(f |yo,yn, θn)] ≤ KL[qn(f) || p(f |yo,yn, θn)]−KL[qn(f) || q∗n(f)] + α

KL[qn(f) || q∗n(f)] ≤ α.

(19)

16

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

D. Further Experimental Details and Results
For all experiments and methods, we use the L-BFGS optimiser.

D.1. Model size and data distribution

For the synthetic dataset, we generate random noisy observations from the test function f(x) = sin(2x) + cos(5x). We
used a Squared Exponential kernel initialised with lengthscale 0.5 and variance 1. The noise variance was initialised to 0.5.
For VIPS, we use δ = 0.05.

Dataset 1: We use N = 500 observations uniformly distributed from 0 to 10. The data is ordered and divided into ten
batches.

Dataset 2: We simulate a scenario where small batches of data are received but the data is distributed across the input
space. We use N = 150 observations uniformly distributed from 0 to 10. The data is shuffled and divided into ten batches.

Dataset 3: We simulate a scenario where only outliers are encountered from time to time and the rest of the data is
concentrated around a small part of the input space. We use two sets of data: the first set is sampled from a uniform
distribution from 4 to 6, with N = 1000 and the second set is sampled from a Cauchy distribution with a mean of µ = 5,
with N = 300. The data is divided into ten batches, where the first few batches only contain observations from the 4 to 6
range, and the Cauchy observations are observed in the latter batches.

0 2 4 6 8 10 12
x

2

1

0

1

2

y

Dataset 1

0 2 4 6 8 10 12
x

Dataset 2

0 2 4 6 8 10 12
x

Dataset 3

Exact GP Mean Data Points

Figure 5. Plot of the three datasets considered in Section D.1.

D.2. The impact of model capacity in accuracy and training time

D.2.1. ACCURACY COMPARISON

For the synthetic dataset, we generate 1000 random noisy observations from the test function f(x) = sin(2x) + cos(5x).
We used a Squared Exponential kernel initialised with lengthscale 0.5 and variance 1.0. The noise variance was initialised
to 0.5. The performance was measured on a test grid of 500 points. For VIPS, we use δ = 0.05.

D.2.2. TRAINING COST COMPARISON

This experiment was performed on an Nvidia RTX 6000’s GPU on a high-performance computing cluster. We used a
Squared Exponential kernel with hyperparameters initialised to 1. The noise variance was initialised to 0.1. The dataset was
divided into 20 batches, and we recorded the time in training per batch. For VIPS, we use δ = 0.05.

D.3. UCI datasets

These experiments were performed on an Nvidia RTX 6000’s GPU on a high-performance computing cluster. We used a
Squared Exponential kernel with hyperparameters initialised to 1 for all datasets. The noise variance was initialised to 0.1.
We consider six UCI (Dua & Graff, 2017) datasets of different characteristics: Concrete (1030, 8), Skillcraft (3338, 19),
Kin8nm (8192, 8), Naval (11934, 14), Elevators (16599, 18), and Bike (17379, 17). The smaller datasets (< 12000) were

17

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

divided into 20 batches, and the larger (> 12000) into 50 batches. The batches were created by sorting the data points by
the first dimension.

Increasing the model size enhances performance until all relevant dataset information is captured; beyond this point,
only computational costs increase. Therefore, when comparing inducing point methods, it is essential to consider the
size-performance trade-off, rather than focusing solely on performance gains. This trade-off is typically controlled by a
hyperparameter of the model. However, in continual learning, traditional cross-validation for tuning is not practical since it
would require storing all past data. As a result, a good method needs to use pre-set hyperparameters and still perform well
on different datasets. We compare our method, VIPS, with two other adaptive approaches: Conditional Variance (CV) and
OIPS. Our goal is to determine if a single hyperparameter for each method can perform consistently well across different
datasets. To do this, we evaluate various hyperparameter settings for each method, with ranges δ ∈ [0.005, 0.2] for VIPS,
δ ∈ [0.005, 1.0] for CV, ρ ∈ [0.80, 0.999] for OIPS.

For each method, we identified hyperparameter values that achieved a particular accuracy threshold (either RMSE or NLPD)
within a percentage of 5% or 10% of the full-batch GP relative to a noise model. For example, for 5% RMSE, the accuracy
threshold is calculated as: RMSEexact + 0.05 |RMSEnoise − RMSEexact|. Among the hyperparameter values meeting
these criteria, we select the one that results in the smallest model size. For CV and VIPS, this corresponds to the largest
hyperparameter value, while for OIPS, it corresponds to the smallest hyperparameter value (see Table 5 for a summary of
the methods).

With the optimal hyperparameter selected, all methods achieve the desired performance threshold. Therefore, we can
compare the methods based on their model size, where smaller sizes are preferred. As explained in the main part of the
paper, we did not find a hyperparameter that satisfied the accuracy thresholds for OIPS in the Naval dataset. For this method,
we selected the hyperparameter configuration that satisfied our conditions for five out of six datasets, treating Naval as an
outlier. This decision was made considering that OIPS already selected larger models with this less stringent hyperparameter
(for example 80% of the data points for the Kin8nm dataset) and extending the hyperparameter range would have led to
even larger dataset sizes.

Since such dataset-specific limitations are common in practical applications, and to ensure a fair comparison across methods,
we evaluated configurations that allowed for either one or two datasets to be outliers for each method. To report performance,
we calculated the difference with the full-batch GP metric relative to a noise model. For each dataset and batch, we computed
the relative RMSE percentage as

RMSE% =

(
RMSEmethod − RMSEexact

|RMSEnoise − RMSEexact|

)
× 100

and similarly for the NLPD metric. The test set for each batch consists only of data from the current and previous batches.

Figure 6 shows a summary of the results, presenting the absolute counts for smallest model size. Tables 6, 7, 8 and 9 provide
details for each threshold and outlier choice. The results reveal consistent patterns across different accuracy thresholds and
metrics. VIPS achieves the smallest model size while maintaining performance within thresholds, particulary when all
datasets are considered.

Allowing outlier datasets reduces model sizes across all methods. This comes with performance degradation on the particular
outlier. We observe that this degradation is often higher for CV and OIPS. The Naval dataset proved particularly challenging
for these methods. This is probably due to its almost noiseless nature. While VIPS came close (missing the threshold by
0.48%), none of the methods achieved the 5% target NLPD threshold within the tested hyperparameter range. Given the
dataset’s near-zero noise characteristics, we chose not to expand the hyperparameter range to avoid excessive model sizes.

The results for OIPS and CV suggest that their hyperparameters may need to be tuned for each dataset. As mentioned,
this is not possible in continual learning where data is not available in advance. In contrast, across all configurations,
VIPS demonstrates consistent behaviour, minimising model size in the majority of cases and hence reducing the need for
dataset-specific tuning. Based on our experimental results, we recommend using δ = 0.035 for VIPS, which represents the
average of successful parameter values when all datasets were considered. This value should provide near-exact performance
across different scenarios while minimising model size.

18

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

2 Outliers 1 Outlier None
Outlier Allowance

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
fo

r M
in

im
um

 M
od

el
 S

iz
e

Comparison at 5% RMSE Threshold

CV OIPS VIPS

(a)

2 Outliers 1 Outlier None
Outlier Allowance

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
fo

r M
in

im
um

 M
od

el
 S

iz
e

Comparison at 10% RMSE Threshold

CV OIPS VIPS

(b)

2 Outliers 1 Outlier
Outlier Allowance

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
fo

r M
in

im
um

 M
od

el
 S

iz
e

Comparison at 5% NLPD Threshold

CV OIPS VIPS

(c)

2 Outliers 1 Outlier None
Outlier Allowance

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
fo

r M
in

im
um

 M
od

el
 S

iz
e

Comparison at 10% NLPD Threshold

CV OIPS VIPS

(d)

Figure 6. Number of datasets where each method achieves minimal model size at different outlier allowances. A “win” is assigned to the
dataset with the smallest model which satisfies the accuracy thresholds. Counts represent absolute wins. Higher counts indicate better
method robustness across datasets.

19

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Table 6. Mean (std) of inducing points and RMSE % difference with full-batch GP for the final batch at different outlier allowances at the
selected operating point to achieve a 5% RMSE threshold. ✗ Gray highlights cases that exceed the threshold, and bold text identifies
the smallest model size. ‘Max.’ denotes reaching the model’s maximum capacity limit. For none, one, and two outliers, the selected
hyperparameters were: VIPS δ = 0.02, 0.065, 0.14, CV η = 0.005, 0.06, 0.5 and OIPS ρ = −, 0.955, 0.935.

DATASET OUTLIERS VIPS CV OIPS
M RMSE % M RMSE % M RMSE %

CONCRETE
NONE 434(79) 3.67% 492(54) 3.28% - -
ONE 317(101) 4.24% 321(71) 4.65% 383(90) 4.89%
TWO ✗163(95) ✗10.43% ✗ 70(5) ✗ 13.34% ✗ 257(106) ✗ 8.84%

SKILLCRAFT
NONE 177(13) 0.14% 739(34) 0.02% - -
ONE 135(1) 0.21% 312(15) 0.04% 236(38) 0.07%
TWO 133(0) 0.13% 130(56) 1.45% 185(21) 0.02%

KIN8NM
NONE 4281(69) 0.15% 6316(9) 0.11% - -
ONE 2513(54) 1.35% 5685(26) 0.13% 6523(9) 0.12%
TWO 1356(42) 4.97% 5334(27) 0.13% 6499(10) 0.12%

NAVAL
NONE 373(19) 0.40% 49(1) 2.39% - -
ONE 86(3) 1.37% ✗ 23(7) ✗ 79.08% ✗ 20(1) ✗ 407.22%
TWO 43(2) 2.67% ✗ 21(5) ✗ 336.08% ✗ 20(1) ✗ 407.22%

ELEVATORS
NONE 438(17) 1.19% 3133(140) 0.31% - -
ONE 312(5) 1.33% 1194(42) 0.85% 386(47) 1.19%
TWO 276(4) 1.55% 536(22) 1.43% 305(13) 1.49%

BIKE
NONE 2296(138) 4.61% MAX. 7000 0.58% - -
ONE ✗ 853(19) ✗ 8.73% 5563(36) 1.02% 3916(122) 2.19%
TWO ✗ 498(10) ✗ 11.24% 3940(41) 1.80% 2438(130) 4.23%

Table 7. Mean (std) of inducing points and RMSE % difference with full-batch GP for the final batch at different outlier allowances at the
selected operating point to achieve a 10% RMSE threshold. ✗ Gray highlights cases that exceed the threshold, and bold text identifies
the smallest model size. ‘Max.’ denotes reaching the model’s maximum capacity limit. For none, one, and two outliers, the selected
hyperparameters were: VIPS δ = 0.095, 0.12, 0.2, CV η = 0.005, 0.13, 0.6 and OIPS ρ = −, 0.93, 0.845.

DATASET OUTLIERS VIPS CV OIPS
M RMSE % M RMSE % M RMSE %

CONCRETE
NONE 234(116) 7.66% 492(54) 3.28% - -
ONE 178(95) 9.81% 184(74) 9.96% 240(102) 9.03%
TWO ✗ 111(37) ✗ 12.93% ✗ 3(2) ✗ 126.81% ✗ 108(66) ✗ 20.79%

SKILLCRAFT
NONE 134(0) 0.12% 739(34) -0.02% - -
ONE 133(0) 0.13% 226(22) 0.20% 174(16) 0.04%
TWO 133(0) 0.12% 17(0) 7.93% 138(1) 0.06%

KIN8NM
NONE 1904(51) 2.55% 6316(9) 0.11% - -
ONE 1563(39) 3.77% 5334(27) 0.13% 6458(8) 0.11%
TWO 949(25) 8.17% 3408(32) 0.19% 5053(93) 0.14%

NAVAL
NONE 57(1) 2.25% 49(1) 2.39% - -
ONE 48(3) 2.57% ✗ 23(8) ✗ 323.90% ✗ 16(1) ✗ 315.28%
TWO 38(1) 5.07% ✗ 19(3) ✗ 553.11% ✗ 13(1) ✗ 407.6%

ELEVATORS
NONE 291(4) 1.41% 3133(140) 0.31% - -
ONE 281(4) 1.51% 836(27) 1.11% 298(8) 1.49%
TWO 267(2) 1.57% 287(18) 2.52% 269(1) 1.59%

BIKE
NONE 650(17) 9.98% MAX. 7000 0.58% - -
ONE ✗ 549(14) ✗ 10.82% 4895(28) 1.29% 1964(137) 5.18%
TWO ✗ 400(7) ✗ 12.50% 2582(66) 4.22% 594(11) 10.00%

20

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Table 8. Mean (std) of inducing points and NLPD % difference with full-batch GP for the final batch at different outlier allowances at the
selected operating point to achieve a 5% NLPD threshold. ✗ Gray highlights cases that exceed the threshold, and bold text identifies the
smallest model size. ‘Max.’ denotes reaching the model’s maximum capacity limit. For one, and two outliers, the selected hyperparameters
were: VIPS δ = 0.005, 0.015, CV η = 0.025, 0.100 and OIPS ρ = 0.975, 0.960.

DATASET OUTLIERS VIPS CV OIPS
M NLPD % M NLPD % M NLPD %

CONCRETE
ONE 514(74) 2.27% 417(63) 4.28% 490(73) 4.72%
TWO 451(77) 4.43% ✗ 227(84) ✗ 15.84% ✗ 410(88) ✗ 8.34%

SKILLCRAFT
ONE 291(34) 0.60% 439(29) 0.60% 488(119) 0.53%
TWO 195(18) 0.78% 260(16) 0.81% 332(82) 0.51%

KIN8NM
ONE 5640(73) 0.85% 6194(12) 0.88% 6547(8) 0.88%
TWO 5065(46) 0.94% 5334(27) 0.90% 6539(8) 0.88%

NAVAL
ONE ✗ 1389(18) ✗ 5.48% ✗ 27(5) ✗ 4654.12% ✗ 26(1) ✗ 115.29%
TWO ✗ 509(15) ✗ 9.99% ✗ 28(4) ✗ 8146.44% ✗ 20(1) ✗ 133.87%

ELEVATORS
ONE 740(24) 1.74% 1814(88) 1.23% 1869(257) 1.34%
TWO 487(24) 2.02% 916(21) 1.91% 642(133) 2.01%

BIKE
ONE 5064(334) 3.99% MAX. 7000 2.13% 6794(79) 2.55%
TWO ✗ 2794(148) ✗ 8.18% 4895(28) 3.54% 5131(64) 4.05%

Table 9. Mean (std) of inducing points and NLPD % difference with full-batch GP for the final batch at different outlier allowances
at the selected operating point to achieve a 10% NLPD threshold. ✗ Gray highlights cases that exceed the threshold, and bold text
identifies the smallest model size. ‘Max.’ denotes reaching the model’s maximum capacity limit. For one, and two outliers, the selected
hyperparameters were: VIPS δ = 0.015, 0.02, 0.05, CV η = 0.001, 0.07, 0.5 and OIPS ρ = −, 0.95, 0.935.

DATASET OUTLIERS VIPS CV OIPS
M NLPD % M NLPD % M NLPD %

CONCRETE
NONE 451(77) 4.43% 492(54) 2.32% - -
ONE 434(79) 5.68% 303(78) 9.64% 383(90) 9.56%
TWO 349(86) 9.04% ✗ 3(2) ✗ 118.71% ✗ 247(101) ✗ 15.73%

SKILLCRAFT
NONE 195(18) 0.78% 1091(107) -0.34% - -
ONE 177(13) 0.78% 295(13) 0.71% 236(38) 0.57%
TWO 141(4) 1.10% ✗ 54(45) ✗ 8.03% 185(21) 0.68%

KIN8NM
NONE 5065(46) 0.94% 6469(7) 0.87% - -
ONE 4281(69) 0.34% 5685(26) 0.91% 6523(9) 0.88%
TWO 2953(71) 1.89% 5334(27) 0.90% 6499(10) 0.88%

NAVAL
NONE 509(15) 9.99% 903(8) 6.17% - -
ONE ✗ 373(19) ✗ 11.92% ✗ 27(6) ✗ 2405.87% ✗ 20(1) ✗ 133.87%
TWO ✗ 126(6) ✗ 22.95% ✗ 22(7) ✗ 6012.82% ✗ 20(1) ✗ 133.87%

ELEVATORS
NONE 487(24) 2.02% 3133(140) 0.82% - -
ONE 438(17) 2.11% 1099(50) 1.73% 386(47) 2.68%
TWO 332(8) 2.54% 352(29) 3.76% 305(13) 4.84%

BIKE
NONE 2794(148) 8.18% MAX. 7000 2.04% - -
ONE 2296(138) 9.92% 5563(36) 2.95% 3916(122) 5.50%
TWO ✗ 1037(23) ✗ 17.16% 2582(66) 9.61% 2438(130) 9.66%

21

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

D.4. Magnetic anomalies

The data used in this experiment is obtained from Solin et al. (2018) and is available on GitHub. The objective of this task is
to detect local anomalies in the Earth’s magnetic field online, caused by the presence of bedrock and magnetic materials in
indoor building structures. For this purpose, a small robot with a 3-axis magnetometer moves around an indoor space of
approximately 6 meters by 6 meters and measures the magnetic field strength. Out of the 9 available trajectories, we use
trajectories 1, 2, 3, 4, and 5 (with n = 8875, 9105, 9404, 7332, 8313, respectively) for the experiments. Specifically, we use
trajectories 1, 2, 4 and 5 for the first experiment and trajectory 3 for the second.

We use the experimental setup proposed in Chang et al. (2023a). The proposed model applies a GP prior to magnetic field
strength, given by GP

(
0, σ2

0 + κMat
σ2,ℓ (x,x

′)
)

(in µT), where the kernel consist of a constant kernel and a Matérn-ν/2

kernel. The model assumes the spatial domain is affected by Gaussian noise with a variance σ2
n. The initial variance for the

constant kernel is set to 500, and the Gaussian likelihood is initialised with a noise variance of 0.1.

Our aim for this experiment is to test the optimal hyperparameters identified in the previous section for the 10% RMSE
threshold for each adaptive method in a real-world setting. The setting simulates an ever-expanding domain, where the
robot is not confined to a predefined area. In this context, the model continuously learns new parts of the space. Therefore,
a method that works will need to sufficiently expand the model’s size to accommodate new data without letting it grow
uncontrollably.

In the first experiment, we aim to sequentially learn the paths taken by the robot using trajectories 1, 2, 4 and 5, i.e. an entire
path will correspond to one batch. We investigate whether the method can adapt to changes in the environment and adjust
the number of inducing points accordingly. During this process, we concurrently learn the hyperparameters σ2

0 , σ2, ℓ, and
σ2
n. As a test set, we use trajectory 3. Figures 7, 9, 11 show the temporally updating field estimate over batches alongside

the corresponding path travelled in each batch.

In the second experiment, we focus on the streaming learning of trajectory 3. The trajectory is split into 20 batches. We
compare the number of inducing points selected and the estimate obtained by the three methods, Conditional Variance (CV),
OIPS and VIPS (ours). Detailed learning of the path for each method is shown in figures 8, 10 and 12. As a test set, we
use trajectories 1, 2, 4, and 5. We observed how Conditional Variance chooses an excessive number of inducing points,
indicating that its hyperparameter needs tuning, which is impractical in the continual learning setting. OIPS chooses the
least inducing points; as seen in the figure, the number of inducing points is more concentrated at the beginning of the
path and becomes sparse towards the end. When compared to the learning estimates derived from the paths in the previous
experiment, we see that both estimates differ significantly, suggesting that OIPS fails to adequately add enough capacity to
capture the changes in the environment. VIPS provides the middle ground, selecting a moderate number of inducing points
that effectively balance accuracy and memory size. This choice allows VIPS to maintain a robust estimate of the magnetic
field obtained when compared to learning by paths without excessive computational overhead.

In the last two sections, when compared to both alternative approaches, VIPS achieved the best trade-off between performance
and model size without requiring hyperparameter tuning, making it the preferred method among the three.

After path #1 After path #2 After path #4 After path #5

Figure 7. VIPS (Ours). A small robot with wheels is used to perform sequential estimation of magnetic field anomalies. We show the
estimate of the magnitude field learned sequentially after travelling the path shown in a dotted line. The degree of transparency represents
the marginal variance.

22

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Batch 1, M = 5. Batch 5, M = 32. Batch 10, M = 66. Batch 15, M = 101. Batch 20, M = 134.

Figure 8. VIPS (Ours). A small robot with wheels is used to perform sequential estimation of magnetic field anomalies. Data is collected
continuously as the robot moves along the path. The inducing points are represented as black dots and the line represents the travelled part
of the path. We indicate the batch number and number of inducing points (M). Final RMSE = 7.55.

After path #1 After path #2 After path #4 After path #5

Figure 9. Conditional Variance. A small robot with wheels is used to perform sequential estimation of magnetic field anomalies. We
show the estimate of the magnitude field learned sequentially after travelling the path shown in a dotted line. The degree of transparency
represents the marginal variance.

Batch 1, M = 12. Batch 5, M = 597. Batch 10, M = 2206. Batch 15, M = 4071. Batch 20, M = 5785.

Figure 10. Conditional Variance. A small robot with wheels is used to perform sequential estimation of magnetic field anomalies. Data is
collected continuously as the robot moves along the path. The inducing points are represented as black dots and the line represents the
travelled part of the path. We indicate the batch number and number of inducing points (M). Final RMSE = 10.66.

After path #1 After path #2 After path #4 After path #5

Figure 11. OIPS. A small robot with wheels is used to perform sequential estimation of magnetic field anomalies. We show the estimate
of the magnitude field learned sequentially after travelling the path shown in a dotted line. The degree of transparency represents the
marginal variance.

23

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Batch 1, M = 10. Batch 5, M = 27. Batch 10, M = 43. Batch 15, M = 59. Batch 20, M = 76.

Figure 12. OIPS. A small robot with wheels is used to perform sequential estimation of magnetic field anomalies. Data is collected
continuously as the robot moves along the path. The inducing points are represented as black dots and the line represents the travelled part
of the path. We indicate the batch number and number of inducing points (M). Final RMSE = 9.42.

D.5. Model size and Data Distribution with Larger Data

We reproduce the three continual learning scenarios from App. D.1, increasing the dataset size to 50 000 data points and the
input dimensionality to three, and compare how the three methods (VIPS, OIPS and Conditional Variance) scale in this
setting. This setup aims to simulate practical scenarios where an exact GP would be infeasible, and a sequential approach is
required instead. We use a Squared Exponential kernel initialised with lengthscale 1.0 and variance 1.0. The noise variance
is set to 0.2. We evaluate all methods at the operating points corresponding to the 10% RMSE thresholds determined from
the UCI experiments (App. D.3). The data is divided into 50 batches of 1000 points each.

Dataset 1: Data points are sampled uniformly from [0, 20]3, with batches ordered such that new regions of the input space
are discovered gradually. Model size is expected to grow linearly as more data is observed.

Dataset 2: Data points are again sampled uniformly from [0, 20]3, but batches are shuffled at random. This represents a
setting where the entire input space is observed from the start. As a result, the novelty of each batch decreases over time,
and the model size is expected to plateau.

Dataset 3: Most data is concentrated in a narrow region, with occasional outliers. Ninety per cent of the points are drawn
from a truncated Cauchy distribution on [5, 15]3 centred at 10, and the remainder uniformly from [0, 40]3. This mimics a
scenario where data is dense but includes some outliers. Therefore, the model size should remain small until the region with
the outliers is observed.

Figure 13 shows how the number of inducing points evolves as more data is observed for each method across the three
datasets. VIPS adapts across all settings, increasing model size only when needed. OIPS shows similar trends but typically
adds up to twice as many inducing points as VIPS. CV grows rapidly even when unnecessary (e.g. Dataset 2). Note that for
CV we impose a cap of 5000 inducing points.

The datasets were designed to be well-approximated with relatively few inducing points, and all methods attain near-exact
accuracy. These results show that even at a larger scale, VIPS maintains a compact model, using fewer than a thousand
inducing points in all cases. In contrast, the results for CV and OIPS suggest that these methods may require hyperparameter
tuning to control model growth in larger settings.

0 10000 20000 30000 40000 50000
Cumulative Dataset Size

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f I
nd

uc
in

g
Po

in
ts Dataset 1

0 10000 20000 30000 40000 50000
Cumulative Dataset Size

0

1000

2000

3000

4000

5000

6000
Dataset 2

0 10000 20000 30000 40000 50000
Cumulative Dataset Size

0

1000

2000

3000

4000

5000

6000
Dataset 3

Conditional Variance OIPS VIPS

Figure 13. Number of inducing points used by each method as a function of cumulative data size, across the three synthetic datasets. VIPS
consistently uses fewer inducing points and only increases model size as needed. OIPS follows a similar trend but typically uses twice as
many inducing points as VIPS. CV grows unnecessarily and reaches the imposed cap of 5000 points.

24

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

E. Derivation the optimal form of variational distribution
The derivations follow Bui et al. (2017). We start by rewriting the online lower bound,

L̂ = −
∫

dfqn(f)
[
log

p(a|θo)qn(b)
p(b|θn)qo(a)p(yn|f)

]
=

∫
dfqn(f) log p(yn|f)−

∫
dfqn(f) log

p(a|θo)qn(b)
p(b|θn)qo(a)

.

(20)

We can find the optimal qn by setting the derivative of L̂ with respect to qn(b) to zero,

dL̂
dq(b)

=

∫
dfp (f ̸=b | b)

[
log p(yn | f)− log

p (a | θold) qn(b)

p (b | θnew) qo(a)

]
− 1 = 0, (21)

this gives us,

qopt (b) ∝ p(b|θn) exp
(∫

dap(a | b, θn) log
qo(a)

p (a | θold)
+

∫
dfp(f | b, θn) log p(yn | f)

)
.

Let q(a) = N (a;ma,Sa) and p (a | θold) = N (a;0,K′
aa), and denoting Da =

(
S−1
a −K′−1

aa

)−1
,Qff = KfbK

−1
bbKbf ,

and Qaa = KabK
−1
bbKba, the exponents in the optimal qopt (b) can be simplified as follows:

E1 =

∫
dap(a | b, θn) log

q(a)

p (a | θo)

=
1

2

∫
daN

(
a;KabK

−1
bbb,Qa

)(
− log

|Sa|
|K′

aa|
− (a−ma)

⊤
S−1
a (a−ma) + a⊤K′−1

aa a

)
=

1

2

∫
daN

(
a;KabK

−1
bbb,Qa

)(
− log

|Sa|
|K′

aa|
−m⊤

a S
−1
a ma + a⊤

(
K′−1

aa − S−1
aa

)
a+ 2a⊤S−1

a ma

)
=

1

2

∫
daN

(
a;KabK

−1
bbb,Qa

)(
− log

|Sa|
|K′

aa|
−m⊤

a S
−1
a ma − a⊤D−1

a a+ 2a⊤S−1
a ma

)
=

∫
daN

(
a;KabK

−1
bbb,Qa

)
log N (DaS

−1
a ma;a,Da) + ∆a

= logN
(
DaS

−1
a ma;KabK

−1
b b,Da

)
− tr

[
D−1

a (Kaa −Qaa)
]
+∆a

E2 =

∫
dfp(f | b, θn) log p(yn | f)

=

∫
dfN

(
f ;KfbK

−1
b b,Qf

)
logN

(
y; f , σ2I

)
= logN

(
y;KfbK

−1
bbb, σ

2I
)
− 1

2σ2
tr (Kff −Qff) ,

2∆a = − log
|Sa|

|K′
aa| |Da|

+m⊤
a S

−1
a DaS

−1
a ma −m⊤

a S
−1
a ma +Ma log(2π),

(22)

where ∆a is a constant term with respesct to b and Ma is the dimension of a. The optimal form of qn is then given by:

qopt(b) ∝ p(b|θn)N
(
ŷ,Kf̂bK

−1
bbb,Σŷ

)
(23)

where

ŷ =

[
y

DaS
−1
a ma

]
,Kf̂b =

[
Kfb

Kab

]
,Σŷ =

[
σ2
yI 0
0 Da

]
. (24)

After normalisation, we have

qopt(b) =
p(b|θn)N

(
ŷ,Kf̂bK

−1
bbb,Σŷ

)∫
dbp(b|θn)N

(
ŷ,Kf̂bK

−1
bbb,Σŷ

) (25)

25

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Substituting the above results into the lower bound, we have

L̂ = logN
(
ŷ;0,Kf̂bK

−1
bbKbf̂ +Σŷ

)
+∆a − 1

2
tr
[
D−1

a (Kaa −Qaa)
]
− 1

2σ2
tr(Kff −Qff). (26)

E.1. Derivation of L∗

Recall that
L∗ = logN

(
ŷ; 0 ,Kf̂ f̂ +Σŷ

)
+∆a, (27)

with Kf̂ f̂ =

[
Kff Kfa

Kaf Kaa

]
.

The first term can be lower bounded using Jensen’s inequality as,

logN
(
ŷ; 0 ,Kf̂ f̂ +Σŷ

)
≥ logN

(
ŷ; 0 ,Kf̂bK

−1
bbKbf̂ +Σŷ

)
− 1

2
tr
(
Σ−1

ŷ

(
Kf̂ f̂ −Kf̂bK

−1
bbKbf̂

)) (28)

where Kf̂bK
−1
bbKbf̂ is the Nyström approximation of Kf̂ f̂ . The trace will be small when b = {f(xn,a)} and can be

simplified as follows:

tr
(
Σ−1

ŷ

(
Kf̂ f̂ −Kf̂bK

−1
bbKbf̂

))
= tr

([
σ−2
y I 0
0 D−1

a

]([
Kff Kfa

Kaf Kaa

]
−

[
KfbK

−1
bbKbf KfbK

−1
bbKba

KabK
−1
bbKbf KabK

−1
bbKba

]))

= tr
(
D−1

a (Kaa −KabK
−1
bbKba)

)
+

1

σ2
tr(Kff −KfbK

−1
bbKbf)

(29)

which recovers the expression for L̂ −∆a .

F. Online Upper Bound Implementation

In this section, we provide efficient forms for practical implementation of the online upper bound Û . As the second term is
constant we focus on the first term,

Û2 = − (N +Ma)

2
log(2π)− 1

2
log |Kf̂bK

−1
bbKbf̂ +Σŷ| −

1

2
ŷT
(
Kf̂bK

−1
bbKbf̂ + tI+Σŷ

)−1
ŷ. (30)

This term is an upper bound for the first term of L∗ = logN
(
ŷ; 0 ,Kf̂ f̂ +Σŷ

)
+∆a.

F.1. Determinant term

Letting Kbb = LbL
T
b and using the matrix determinant lemma, we can rewrite the determinant term as

log |Kf̂bK
−1
bbKbf̂ +Σŷ| = log |Σŷ|+ log |I+ L−1

b Kbf̂Σ
−1
ŷ Kf̂bL

−T
b |

=N log σ2
y + log |Da|+ log |I+ L−1

b Kbf̂Σ
−1
ŷ Kf̂bL

−T
b |

(31)

Let D = I+ L−1
b Kbf̂Σ

−1
ŷ Kf̂bL

−T
b . Note that,

Kbf̂Σ
−1
ŷ Kf̂b =

[
Kbf Kba

] [1
σ2
y
I 0

0 D−1
a

] [
Kfb

Kab

]
=

1

σ2
y

KbfKfb +KbaD
−1
a Kab

=
1

σ2
y

KbfKfb +KbaS
−1
a Kab −KbaK

′−1
aa Kab.

(32)

26

Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?

Therefore,

D = I+
1

σ2
y

L−1
b KbfKfbL

−T
b + L−1

b KbaS
−1
a KabL

−T
b − L−1

b KbaK
′−1
aa KabL

−T
b . (33)

F.2. Quadratic term

Given the quadratic term,

−1

2
ŷT
(
Kf̂bK

−1
bbKbf̂ + tI+Σŷ

)−1
ŷ.

Letting Σ̂ŷ = tI+Σŷ and by Woodbury’s formula, we obtain:

(
Kf̂bK

−1
bbKbf̂ + Σ̂ŷ

)−1

= Σ̂−1
ŷ − Σ̂−1

ŷ Kf̂bL
−T
b

(
I + L−1

b Kbf̂ Σ̂
−1
ŷ Kf̂bL

−T
b

)−1

L−1
b Kbf̂ Σ̂

−1
ŷ .

We have,

ŷT Σ̂−1
ŷ ŷ =

1

σ2
y + t

yTy +
(
DaS

−1
a ma

)T
(Da + tI)

−1 (
DaS

−1
a ma

)
. (34)

Letting D̂ = I+ L−1
b Kbf̂ Σ̂

−1
ŷ Kf̂bL

−T
b where,

Kbf̂Σ
−1
c Kf̂b =

[⊤Kfb

Kab

][1
σ2
y+tI 0

0 (Da + tI)−1

] [
Kfb

Kab

]
=

1

σ2
y + t

KbfKfb +Kba(Da + tI)−1Kab

and letting ĉ = Kbf̂ Σ̂
−1
ŷ ŷ = 1

σ2
y+tKbfy +Kba (Da + tI)

−1 (
DaS

−1
a ma

)
, we obtain,

ŷT Σ̂−1
ŷ Kf̂bL

−T
b

(
I + L−1

b Kbf̂ Σ̂
−1
ŷ Kf̂bL

−T
b

)−1

L−1
b Kbf̂ Σ̂

−1
ŷ ŷ = ĉTL−T

b D̂−1L−1
b ĉ. (35)

Putting this back into the upper bound:

Û2 = − (N +Ma)

2
log(2π)− 1

2
N log σ2

y −
1

2
log |Da| −

1

2
log |D| − 1

2
ŷT Σ̂−1

ŷ ŷ +
1

2
ĉTL−T

b D̂−1L−1
b ĉ. (36)

The upper bound for L∗ is therefore

Û = − (N +Ma)

2
log(2π)− 1

2
log |Kf̂bK

−1
bbKbf̂ +Σŷ| −

1

2
ŷT
(
Kf̂bK

−1
bbKbf̂ + tI+Σŷ

)−1
ŷ +∆a

= −N

2
log(2πσ2

y)−
1

2
log |D| − 1

2

1

σ2
y + t

yTy − 1

2

(
DaS

−1
a ma

)T
(Da + tI)

−1 (
DaS

−1
a ma

)
+

1

2
ĉTL−T

b D̂−1L−1
b ĉ− 1

2
log

|Sa|
|K′

aa|
− 1

2
mT

aS
−1
a ma +

1

2
mT

aS
−1
a DaS

−1
a ma.

(37)

27

