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Abstract

The expensive fine-grained annotation and data scarcity have become the primary
obstacles for the widespread adoption of deep learning-based Whole Slide Images
(WSI) classification algorithms in clinical practice. Unlike few-shot learning
methods in natural images that can leverage the labels of each image, existing
few-shot WSI classification methods only utilize a small number of fine-grained
labels or weakly supervised slide labels for training in order to avoid expensive
fine-grained annotation. They lack sufficient mining of available WSIs, severely
limiting WSI classification performance. To address the above issues, we propose
a novel and efficient dual-tier few-shot learning paradigm for WSI classification,
named FAST. FAST consists of a dual-level annotation strategy and a dual-branch
classification framework. Firstly, to avoid expensive fine-grained annotation, we
collect a very small number of WSIs at the slide level, and annotate an extremely
small number of patches. Then, to fully mining the available WSIs, we use all
the patches and available patch labels to build a cache branch, which utilizes the
labeled patches to learn the labels of unlabeled patches and through knowledge
retrieval for patch classification. In addition to the cache branch, we also construct
a prior branch that includes learnable prompt vectors, using the text encoder of
visual-language models for patch classification. Finally, we integrate the results
from both branches to achieve WSI classification. Extensive experiments on
binary and multi-class datasets demonstrate that our proposed method significantly
surpasses existing few-shot classification methods and approaches the accuracy of
fully supervised methods with only 0.22% annotation costs. All codes and models
will be publicly available on https://github.com/fukexue/FAST.

1 Introduction

With the advent of Whole Slide Images (WSI) scanners, automated diagnosis based on WSIs has
become a critical problem in the field of computational pathology [53, 48, 26]. Due to the huge
size of WSI [51], deep learning-based methods typically divide it into a series of patches and apply
classification models to each patch individually. Fully supervised methods annotate each patch
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Figure 1: Different few-shot learning paradigms for WSI classification. (a) The instance few-shot
method divides all WSIs into a series of patches, then selects a few samples at the patch level and
annotates them at the patch level. The red box represents positive samples, and the blue box represents
negative samples. (b) The bag few-shot method directly selects a few WSIs at the slide level and
annotates them weakly at the slide level. (c) Our method first selects a few WSIs at the slide level,
then annotates a few patches for each selected WSI. Compared to (a) and (b), our method significantly
reduces annotation costs while providing patch-level supervision information.

and then train the classification model in an end-to-end manner [14, 7, 44]. However, fine-grained
annotation of WSIs requires expert knowledge and is extremely expensive. To overcome these issue,
weakly supervised methods formulate the WSI classification task as a multi-instance learning (MIL)
problem [48, 18, 27]. In MIL, each WSI (or slide) is a bag containing thousands of instances (patches)
cropped from the slide. They only use slide-level labels to train the classification model. These
studies assume the availability of abundant WSIs in clinical settings. However, due to wide staining
variations [30, 8], multiple cancer types [33], and rare diseases [25], many clinical scenarios can only
access a limited number of WSIs. The dual obstacles of fine-grained annotation difficulties and data
scarcity severely limit the available supervised information for model training. Therefore, how to
avoid expensive fine-grained annotations while fully utilizing limited WSIs has become a key issue
in the field of WSI classification.

Recent works [37, 61, 10, 42, 20, 54, 55, 59] in natural images have demonstrated the effectiveness of
few-shot learning under limited data. Inspired by these studies, some methods [8, 6, 49, 45] gathered
all patches obtained from dividing WSIs and randomly selected some patches for annotation, as
shown in Figure 1(a), termed instance few shot, and then used existing few-shot learning methods
from natural images for classification. These methods provide strong supervision signals for network
training, but discard a large number of unlabeled patches. Our comparative experiments indicate
that the methods from natural images perform poorly in few-shot WSI classification. Another
methods combine weakly supervised learning with few-shot learning, such as TOP [38], which
annotates only a few slide labels, as depicted in Figure 1(b), termed bag few shot. Compared to
instance few shot, bag few shot methods can utilize all patches. However, slide labels belong to
weak supervision signals, and the few-shot scenario leads to even greater scarcity of supervision
information for MIL-based weakly supervised learning methods. Therefore, the accuracy of TOP
exhibits a significant gap compared to the fully supervised learning methods [35]. Overall, the key
reason for the poor performance of existing few-shot WSI classification methods is that these methods
cannot simultaneously utilize strong supervision from patch labels and the remaining unlabeled
patches, lacking sufficient mining of available WSIs.

In this paper, we propose a novel and efficient dual-tier Few-shot learning pAradigm for WSI
classificaTion, named FAST. It consists of a annotation-efficient dual-level WSI annotation strategy
and a parameter-efficient dual-branch WSI classification framework, which fully utilizes existing
vision-language foundation models and can be rapidly applied to various WSI classification tasks.

Specifically, we first design a dual-level WSI annotation strategy, as shown in Figure 1(c). Under
this strategy, a small number of WSIs are selected at the slide-level, followed by labeling a small
number of patches within each selected WSI. Experts only need to annotate a very small number of
patches without needing to perform fine-grained annotation on the entire WSI, significantly reducing
the cost of fine-grained annotation while increasing the speed of annotation. Based on the proposed
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annotation strategy, we formulate the few-shot WSI classification task as a dual-tier few-shot learning
problem. Unlike conventional few-shot learning [37], which uses an "N-way K-shot" setting, FAST’s
"shots" consists of two levels: bag and instance. Subsequently, under the setting of dual-tier few-shot
learning, we propose a dual-branch few-shot WSI classification framework that combines vision-
language (V-L) models [41, 1]. To fully utilize the prior knowledge of V-L models and the limited
WSIs, the classification framework includes a cache branch and a prior branch. For the cache
branch, we use the image encoder of the V-L model CLIP [41] to extract features of all patches,
then construct a cache model using the labeled instances, and finally classify each instance through
knowledge retrieval. However, due to the very limited number of annotated instances, the cached
model has only limited knowledge and lacks generalization capability. To improve the cache model’s
performance, we incorporate a large number of unlabeled instances from the WSIs into the cache
model, and treat their labels as learnable parameters, which effectively increases the knowledge
capacity of the cache model. During training, we use annotated instances as supervision to optimize
these parameters. For the prior branch, we first use GPT4-V [1] to obtain task-related prompts, and
then utilize CLIP’s text-image matching prior and prompt-learning techniques to design a learnable
visual-language classifier. Finally, we integrate the outputs of the cache and prior branches to obtain
the final classification results. This framework is based on the foundational model, requires minimal
optimization of parameters (cache model and prompt vectors), and can achieve parameter-efficient
fine-tuning with a small amount of WSIs and labels. Additionally, by leveraging the prior knowledge
of the foundational model, FAST can maintain good accuracy and generalization even with extremely
limited annotated data. These characteristics make FAST suitable for rapid adaptation to various WSI
classification tasks. In summary, our main contributions are as follows:

• We propose a novel few-shot learning paradigm for WSI classification, which achieves
high-accuracy WSI classification and rapid adaptation to various WSI classification tasks
under low-cost annotation.

• We propose an efficient dual-level WSI annotation strategy, which can provide patch-level
supervisory information at a cost close to that of slide-level annotation.

• We propose a learnable cache model based on the foundation model, which fully utilizes
both annotated and unannotated patches. Furthermore, we utilize the prior knowledge of
vision-language foundation models to construct a visual-language classifier, combining both
to further enhance the performance of the classification framework.

• Extensive experiments demonstrate that our method achieves state-of-the-art performance
on the CAMELYON16 dataset and the TCGA-RENAL dataset. In addition, compared to
fully supervised methods, the annotation cost is only 0.22% of that.

2 Related Work

WSI Classification According to supervised information, WSI classification methods can be
divided into two categories: fully supervised learning methods based on patch-label and weakly
supervised learning methods based on slide-label. Fully supervised learning methods directly draw
inspiration from supervised learning methods in natural images [23, 11, 12, 15, 58, 32]. Relevant
studies on diseases such as breast cancer [44, 43], lung cancer [7, 3, 31, 14], and prostate cancer
[22, 29] indicate that such methods have approached or even surpassed expert diagnostic accuracy
[36]. However, expensive fine-grained annotation prevents their widespread adoption in clinical
practice. Weakly supervised learning methods [48, 18, 27, 39, 40, 19, 48, 28, 35] formulate the WSI
classification task as a multi-instance learning problem, avoiding expensive fine-grained annotation.
Although great progress has been made, these studies rely on large amounts of training data and
and cannot address the common issue of data scarcity encountered in practical clinical settings. In
this paper, we propose a novel WSI classification paradigm composed of an efficient annotation
strategy and a prior knowledge classification framework. The proposed method not only alleviates the
poor performance issues of existing methods caused by data scarcity and difficulties in fine-grained
annotation, but also enables rapid adaptation to various disease WSI classification tasks.

Few-shot Learning for WSI Classification Inspired by the success of few-shot learning in natural
images, similar research has emerged in pathology images. Some studies used meta-learning methods,
such as MAML [10, 42], prototypical networks [50, 9], and matching networks [54], for tasks like
whole-genome doubling prediction [6] and cancer classification [49, 45]. Limited by the scale of
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pre-training data, these methods only achieve limited generalizability. Another group of studies
borrowed the idea of fine-tuning V-L models, with related research still in the early stages. For
example, CITE [62] applied visual prompt fine-tuning techniques to few-shot learning in pathology
images. CLIPath [24] fine-tuned a learnable network layer on top of a frozen foundation model to
transfer foundation model knowledge. However, these studies are only applicable to small-sized
pathology image patches and cannot directly handle entire WSI. Qu et al. [38] leveraged the powerful
generalization capabilities of CLIP, successfully achieving WSI classification tasks using only slide
labels. Limited by the weakly supervised slide label, there still exists a significant gap in classification
accuracy compared to fully supervised methods. PLIP [16] and CONCH [34] fine-tuned multimodal
large models like CLIP [41] and CoCa [56] to perform pathology classification tasks. However,
they still rely on large-scale pathology image-text pair datasets for effective performance. Different
from previous works, we propose a dual-level few-shot annotation strategy and a dual-tier few-shot
learning formulation approach for WSI classification, which balances annotation cost and granularity,
achieving excellent classification accuracy close to fully supervised methods.

Vision-Language Model Adaptation V-L foundation models such as CLIP [41], ALIGN [21], and
Florence [57] have demonstrated remarkable generalization capabilities. How to fine-tune these V-L
foundation models for adaptation to downstream tasks is crucial. The popular adaptation strategies can
be divided into two groups: prompt tuning and feature adapter. CoOp [63] is a representative method
of prompt tuning, which optimizes a set of learnable prompt tokens to enhance the performance
of V-L models in downstream tasks. A representative method of feature adapter is CLIP-Adapter
[13], which fine-tunes the CLIP model by adding a lightweight residual module after the encoder.
Furthermore, Tip-Adapter [61] constructs a key-value cache model to integrate the knowledge from
a few-shot training set directly into the CLIP model, effectively speeding up model convergence
during fine-tuning. In the field of natural images, many subsequent works based on Tip-Adapter
have also made significant contributions to the development of foundation model adaptation. For
example, CaFo[60] effectively combines the different prior knowledge of various pre-trained models
by cascading multiple foundation models. CO3[46] goes a step further by considering both general
and open-world scenarios, designing a text-guided fusion adapter to reduce the impact of noisy
labels. Similarly, for open-world few-shot learning, DeIL[47] proposes filtering out less probable
categories through inverse probability prediction, significantly improving performance. APE[64]
proposes an adaptive prior refinement method that significantly enhances computational efficiency
while ensuring high-precision classification performance. Due to the huge size and the lack of
pixel-level annotations, these methods cannot effectively solve the classification problem of WSIs.
However, existing methods are only applicable to fully annotated data and cannot effectively utilize
unannotated patches in pathology images. Our work is inspired by Tip-Adapter, but it differs from
Tip-Adapter. The key-value cache model built by Tip-Adapter only allows the key to be learnable.
To fully utilize all patches in WSIs, we built a cache model where keys and values are learnable.
This effectively facilitates the learning of correct label information for a large number of unlabeled
patches, significantly enhancing the performance of CLIP for WSI classification.

3 Method

In this chapter, we first explain how to efficiently annotate WSIs, then describe how to formulate the
few-shot WSI classification problem under the novel annotation strategy, and finally introduce the
classification framework of FAST.

3.1 Annotation Strategy and Problem Formulation

For a better understanding, we first present a fully labeled WSI dataset. Given a
dataset Xtrain = {X1, X2, . . . XM} consisting of M WSIs, where each WSI Xi =
{xi,1, xi,2, . . . , xi,Ui

} consisting of U patches. Each patch xi,j is considered an instance,
and all patches in Xi form a bag. For Xi, we have a bag-level label Y B

i , and
Y B
train =

{
Y B
1 , Y B

2 , . . . Y B
M

}
. For xi,j , we have an instance-level label yi,j , and Y I

train =
{{y1,1, y1,2, . . . , y1,U1} , {y2,1, y2,2, . . . , y2,U2} , . . . , {yM,1, yM,2, . . . , yM,UM

}}. Similarly, for the
testing set, the data is denoted as Xtest, and the labels consist of Y B

test and Y I
test.
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Figure 2: The structure of the FAST classification framework.

As shown in Figure 1(c), the steps of the dual-tier few-shot annotation strategy are as follows:
firstly, we collect a small number of WSIs Xtrain

′ = {X1, X2, . . . XK}, where K is much
smaller than M . Then, for each WSI in Xtrain

′, only L patches are labeled, resulting in
Y I
train

′
= {{y1,1, y1,2, . . . , y1,L} , {y2,1, y2,2, . . . , y2,L} , . . . , {yK,1, yK,2, . . . , yK,L} , where L is

much smaller than U . In this annotation strategy, the size of Xtrain
′ is much smaller than Xtrain,

and the number of instance labels Ytrain
′ is much smaller than Ytrain.

In conventional few-shot learning, a "N-way K-shot" training set is provided, where N-way represents
N categories, and K-shot represents K labeled samples. Under our dual-tier few-shot annotation
strategy, the ’shot’ includes bag-level few-shot and instance-level few-shot. Therefore, we formulate
the few-shot WSI classification task as "N-way K-bshot & L-ishot", where K-bshot represents K
bags, and L-ishot represents L labeled instances. During training, only Xtrain

′ and Ytrain
′ are used

for training, but during testing, the complete test dataset Xtest and Ytest are used for testing.

3.2 Classification Framework

As shown in Figure 2, the classification framework consists of two branches: a learnable image
cache branch and a CLIP prior knowledge branch. During training, only a very small number of
instances need to be annotated to train the cache model and the learnable prompt tokens. During
testing, the prediction results from both the image cache branch and the CLIP prior knowledge branch
are integrated to obtain instance-level classification results. Finally, the instance-level classification
results are pooled to yield a bag-level classification result.

1) Image Cache Branch The cache model consists of a feature cache and a label cache, and its
construction method is illustrated in Figure 2. First, all patches from these WSIs are input into the
image encoder for feature extraction, and the extracted features are stored in the feature cache.

Ftrain = VisualEncoder (Xtrain
′)

The VisualEncoder represents the image encoder within CLIP. Simultaneously, the labels of the
annotated instances are transformed into one-hot encoding and stored in the label cache. For the
remaining instances without labels, we set their labels as learnable parameters Ptrain and store them
in the label cache.

Y I
train = Cat

(
Y I
train,

′, Ptrain

)
Ptrain = {{p1,L+1, . . . , p1,L+K1} , {p2,L+1, . . . , p2,L+K2} , . . . , {pi,L+1, . . . , pi,L+Ki}} repre-
sents the pseudo-labels of all unannotated instances in Xtrain

′, where p is a learnable high-
dimensional vector. As illustrated in the few-shot knowledge retrieval module in Figure 2, through
knowledge retrieval, we can obtain the prediction of the cache branch. Specifically, we employ an
attention mechanism to implement the knowledge retrieval module, and treat the features and labels
as key-value pairs. The Features Ftrain serve as keys, denoted by K̇. The labels Y I

train serve as
values, denoted by V̇ . The feature of patch to be retrieved serve as query, denoted by Q̇. The retrieval
result is ϕ(Q̇K̇T )V̇ , where ϕ(·) = softmax(·).
We train the cache model using Ftrain and Ytrain

′. According to the idea of knowledge retrieval,
given a query instance xtrain ∈ Xtrain and its encoded feature ftrain ∈ Ftrain, and the prediction
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result obtained from the few-shot knowledge retrieval is ỹcache = ftrainF
T
trainY

I
train

′′. Subsequently,
the cross-entropy between the predicted values ỹcachei,j from the cache model and the ground truth yi,j
is calculated as the loss function.

CacheLossi,j = CE
(
ỹcachei,j , yi,j

)
= CE

(
fi,jF

T
trainY

I
train

′′, yi,j
)

The learnable labels in the cache model can be optimized by minimizing the loss function. Addition-
ally, to further optimize the feature space of CLIP, we also set Ftrain to be learnable as follow.

P ∗
train = min

Ptrain

∑
i,j

CacheLossi,j , F ∗
train = min

Ftrain

∑
i,j

CacheLossi,j

The parameters of the VisualEncoder are frozen. It is important to note that in practical training,
when there is an excess of unlabeled data, incorporating all the unlabeled instances into the cache
model can exceed memory constraints. In such cases, we use K-means clustering algorithm to select
representative instances to construct a core set. Only the core set is incorporated into the cache model
for training and inference.

2) CLIP Prior Knowledge Branch To further leverage the prior knowledge of the vision-language
foundation model, we construct a prompt-learnable vision-language instance classifier based on
CLIP’s text encoder. Since the feature spaces of CLIP’s text encoder and image encoder are aligned,
image classification can be achieved by calculating the similarity between text and images. However,
unlike natural image classification, pathological image classification requires more specialized
and targeted prompts. As shown in the prior branch in Figure 2, we input a small number of
annotated instance images into GPT-4V, which generates descriptions of the images combining
relevant pathological knowledge, forming prompts for detecting each type of WSI. Then, these
category-specific prompts are feature-extracted by CLIP’s text encoder,

f text
c = TextEncoder (Tc) , Tc = [W ]c,1[W ]c,2 . . .

where f text
c is the text feature for category c, f text

c ∈ Ftext. Tc is the prompt encoding for category
c, consisting of multiple word vectors [W ]. Finally, given the CLIP-encoded test image feature ftest,
the classification result under N -class text descriptions is,

ỹprior = p (y = c | ftest) =
exp (cos (f text

c , ftest) /τ)∑N
j exp

(
cos

(
f text
j , ftest

)
/τ

)
where τ is the temperature coefficient, learned by CLIP during the pre-training phase.

Furthermore, inspired by CoOp, we make the category-specific prompts learnable. Specifically, we
add D learnable tokens to the prompts generated for each category, combining them into the final
learnable prompts T ′. The new text feature is as follows,

f text′

c = TextEncoder (Tc
′) , T ′

i = [W ]i,1[W ]i,2 . . . [V ]i,1[V ]i,2 . . . [V ]i,D

Based on the new text feature and the image feature fi,j , the classification result of prior branch is,

ỹpriori,j = p (yi,j = c | fi,j) =
exp

(
cos

(
f text′

c , fi,j

)
/τ

)
∑N

j exp
(
cos

(
f text′
j , fi,j

)
/τ

)
Similar to the image cache branch, we also use all annotated instances to train the prior knowledge
branch. The optimization function and loss function of the prior branch are as follows,

[V ] = min
[V ]

∑
i,j

TextLossi,j , where TextLossi,j = CE
(
ỹpriori,j , yi,j

)
The parameters of the TextEncoder are also frozen. Finally, we combine the predictions and loss
functions from the image cache branch and the prior knowledge branch to obtain the overall model’s
instance-level classification result and loss function,

ỹ = α · ỹcache + (1− α) · ỹprior

Loss =
∑
i,j

CacheLossi,j +
∑
i,j

TextLossi,j
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where α is the fusion weight of the two branches, which can be considered a hyperparameter. We
divide the fusion weight α into equal intervals with a step size of 100, then sequentially calculate
the classification accuracy for each fusion ratio, and finally select the fusion weight that yields the
highest classification accuracy as the fusion weight α for this task. Since the entire network has few
parameters and fast inference speed, this parameter can be quickly optimized through grid search to
obtain the optimal value.

4 Experiments

4.1 Datasets and Few-Shot Scenario Simulation

We evaluated our method on the public WSI datasets CAMELYON16 [4] and TCGA-RENAL [17].
CAMELYON16 is a binary dataset used to detect whether it contains breast cancer metastasis. TCGA-
RENAL is a multi-class dataset for classifying renal cancer subtypes, covering clear cell renal cell
carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal cell carcinoma
(chRCC). For more details about the datasets, please refer to the supplementary material A.1. For
few-shot scenario simulation, we first simulate the collection of few-shot WSI data in clinical settings
by sampling 1, 2, 4, 8, and 16 WSIs for each category. Then, we simulate the process of expert
annotation of few-shot instances within sampled bags, initially selecting 10% instances as a core set
by K-means clustering [2], then randomly sampling 16 instances per category from the core set as
labeled instances, with others remaining unlabeled. Through this simulation, for CAMELYON16
and TCGA-RENAL datasets, we obtained few-shot training datasets with 1, 2, 4, 8, and 16 bag shots
and 16 instance shots. Considering the randomness in few-shot learning, we conducted five random
samplings and model trainings for all scenarios and reported the mean and variance of classification
results.

4.2 Comparing Methods and Evaluation Metrics

First, we compared FAST with zero-shot learning method CLIP [36] and fully supervised method
using all instance-level labels [35], which can respectively be seen as the lower and upper bounds
of deep learning method performance in few-shot WSI classification. Subsequently, due to lack
of effective few-shot WSI learning methods, we compared the latest few-shot learning methods
Tip-Adapter and Tip-Adapter-F [61] in natural images. Bag-level weakly supervised multi-instance
learning methods, such as R2T[52], generally perform worse than instance-level fully supervised
methods due to the lack of fine-grained labels. Therefore, this paper does not directly compare
with multi-instance learning methods. For implementation details of our method, please refer to
the supplementary material A.2. To provide a comprehensive evaluation of these methods, we
reported instance-level Area Under Curve and bag-level Area Under Curve (AUC) [5]. Since the
TCGA-RENAL dataset is a multi-class classification task, we reported instance-level and bag-level
AUCs separately for each category.

4.3 Experimental Results

CAMELYON16 The few-shot WSI classification results on the CAMELYON16 dataset are shown
in Table 1. Firstly, in the zero-shot setting, the instance-level AUC and bag-level AUC of zero-shot
CLIP are very low, almost unable to handle the classification task. In contrast, under extreme few-shot
setting with 1 bag shot and 16 instance shots, FAST achieves 0.84 instance-level AUC, which shows
a significant improvement over zero-shot CLIP. Secondly, as the training samples increase, the
performance of FAST shows a significant improvement trend. Meanwhile, our proposed method
FAST consistently outperforms the comparison methods Tip-Adapter and Tip-Adapter-F across
different numbers of samples. Although Tip-Adapter and Tip-Adapter-F have achieved significant
success in natural images, their performance is poor on few-shot WSI classification task, especially
with bag-level AUC generally below 0.6. We think there are two main reasons for this: (1) there
are domain differences between pathology images and natural images, making it difficult for the
text branch of CLIP to accurately classify instances and even more difficult to classify bags. (2)
The limited WSIs make it more difficult to ensure the diversity of instances sampled from these
WSIs, resulting in poor generalization of these methods. In contrast, while FAST also utilizes a small
number of bags, it fully leverages the labeled and unlabeled instances within these bags through a
learnable label cache, enabling it to learn more comprehensive instance representations. Finally,
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Table 1: Results on CAMELYON16 dataset
Bag Shot Instance Shot Methods Instance-level AUC Bag-level AUC

0 0 Zero-shot CLIP 0.6711 0.5409
0 0 Zero-shot PLIP 0.6004 0.5434
0 0 Zero-shot CONCH 0.8929 0.7113

1 16
FAST

Tip-Adapter-F
Tip-Adapter

0.8400±0.0335
0.7162±0.0435
0.6275±0.0777

0.6933±0.0846
0.5653±0.0604
0.498±0.0187

2 16
FAST

Tip-Adapter-F
Tip-Adapter

0.8584±0.0380
0.7200±0.0595
0.6198±0.0823

0.7595±0.0391
0.5748±0.0537
0.5141±0.0156

4 16
FAST

Tip-Adapter-F
Tip-Adapter

0.8864±0.0563
0.6990±0.0890
0.5601±0.0772

0.7359±0.0853
0.5731±0.0401
0.5321±0.0152

8 16
FAST

Tip-Adapter-F
Tip-Adapter

0.9060±0.0074
0.7392±0.0180
0.6782±0.0166

0.7742±0.0249
0.6045±0.0044
0.4880±0.0097

16 16
FAST

Tip-Adapter-F
Tip-Adapter

0.9151±0.0200
0.7227±0.0098
0.6835±0.0135

0.8197±0.0474
0.5965±0.0243
0.4913±0.0164

All All Fully Supervised 0.9532 0.8555
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Figure 3: Results of FAST on CAMELYON16 dataset under different annotation ratio.

in the setting where only 16 bag shots and 16 instance shots are available, our proposed FAST
method achieves 0.9151 instance-level and 0.8197 bag-level AUC, which is close to the performance
of the fully supervised method using all instance annotations. Importantly, the annotation cost of
FAST is only 0.22% of that of the fully supervised method, as detailed in Section 4.4. In summary,
FAST achieves accuracy close to the fully supervised method with extremely low data collection and
annotation costs. This significantly enhances the efficiency of establishing deep learning models in
clinical settings and opens up possibilities for widespread clinical adoption of WSI classification
algorithms based on deep learning.

TCGA-RENAL In the few-shot experiments on the TCGA-RENAL dataset, the classification
results are shown in Table 2. Compared to the binary classification task on the CAMELYON16
dataset, the three-class classification task is more challenging. Therefore, the zero-shot CLIP method
only achieves around 0.5 instance-level AUC, almost unable to handle the classification task. In
the setting with very few shots, such as one or two bags, the results of all methods are relatively
poor, with instance-level AUC and bag-level AUC both less than 0.7000. However, our proposed
FAST still achieves SOTA performance on most metrics. As the bag shot reaches 4 or more, the
classification results begin to significantly improve, and FAST also outperforms other methods on
all metrics. Especially in 16 bag shots, FAST significantly outperforms the comparison methods.
The average bag-level AUC for chRCC reaches 0.9234, differing by only 0.0033 from the fully
supervised method. Similarly, the bag-level AUC for ccRCC and pRCC also reach 0.9254 and 0.9216
respectively, differing by only 0.0218 and 0.036 from the fully supervised method. This experimental
result further demonstrates that, in complex multi-class classification tasks, FAST can approach the
fully supervised method with very low annotation costs, achieving the state-of-the-art performance in
few-shot learning.
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Table 2: Results on TCGA-RENAL dataset
Bag Instance Methods Instance-level AUC Bag-level AUC
Shot Shot ccRCC pRCC chRCC ccRCC pRCC chRCC mean

0 0 Zero-shot CLIP 0.5475 0.5521 0.3640 0.4959 0.5192 0.4811 0.4987
0 0 Zero-shot PLIP 0.5396 0.6006 0.4774 0.6036 0.6610 0.4905 0.5850
0 0 Zero-shot CONCH 0.8127 0.9122 0.9131 0.9039 0.8936 0.9449 0.9141

1 16
FAST

Tip-Adapter-F
Tip-Adapter

0.5935±0.0488
0.5710±0.0387
0.5874±0.0503

0.6853±0.0443
0.6533±0.0566
0.6308±0.0655

0.6548±0.0760
0.6230±0.0967
0.6017±0.0734

0.6067±0.0833
0.5981±0.0393
0.5951±0.0602

0.6921±0.0416
0.6523±0.0684
0.6515±0.0668

0.6488±0.0984
0.6948±0.1113
0.6624±0.1099

0.6492
0.6484
0.6363

2 16
FAST

Tip-Adapter-F
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0.6245±0.0733
0.6084±0.0609
0.6068±0.0524

0.6998±0.0229
0.6820±0.0405
0.6413±0.0554

0.6987±0.0582
0.6985±0.0481
0.6238±0.0522

0.6745±0.0900
0.6359±0.1143
0.6545±0.0931

0.7327±0.0279
0.7391±0.0331
0.6682±0.1034

0.7329±0.0483
0.7481±0.0794
0.7405±0.0763

0.7133
0.7077
0.6877

4 16
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0.7107±0.1056
0.6587±0.0858
0.6361±0.0737

0.7547±0.0544
0.7266±0.0756
0.6797±0.0820

0.7652±0.0645
0.7488±0.0555
0.6835±0.0805

0.7684±0.1681
0.7220±0.1091
0.6671±0.1384

0.8260±0.0816
0.7621±0.0985
0.7274±0.0391
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0.8029
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Figure 4: Comparison of cache branch and prior branch in FAST.

4.4 Annotation Efficiency

To illustrate the annotation efficiency of FAST, we compared the classification results of our method
and the fully supervised method under different annotation ratios. For the CAMELYON16 dataset,
the results are presented in Figure 3. It can be observed that the classification AUC of FAST rapidly
increase with the growth of bag shots. When the bag shot reaches 16, the annotation only accounts for
0.22%. The average bag-level AUC reaches 96.32% of the fully supervised method. This result fully
demonstrates the advantage of FAST in annotation efficiency. For the results on the TCAG-RENAL
dataset, please refer to the supplementary material A.3.

4.5 Ablation Studies

To analyze the importance of each component in FAST, we conducted a serise of experiments under
the conditions of 16 bag shots and 16 instance shots on the CAMELYON16 dataset, including whether
to use a cache branch, whether to set the feature cache as learnable, whether to use a prior branch, and
whether to utilize unlabeled instances to construct a learnable label cache. The results of the ablation
experiments are shown in Table 3. The first three rows of the table correspond to zero-shot CLIP,
Tip-Adapter, and Tip-Adapter-F, respectively. The next three rows correspond to FAST using only the
prior branch, FAST using only the cache branch, and the complete FAST. Firstly, the first three rows
of the table show that the instance-level AUC gradually increases from 0.6711 to 0.7277 for the three
methods. This indicates that the cache branch can leverage a small amount of supervised information,
and making the cache feature learnable can further optimize the feature space distribution of the
cache model. However, even the best model’s instance-level AUC is only 0.7227, and the pooled
bag-level AUCs are all less than 0.6. Next, from the last three rows of the table, even with only the
prior branch, using our proposed prompt-based method, the instance-level and bag-level classification
AUCs reach 0.8739 and 0.7931, respectively, which outperformed the results of Tip-Adapter-F. The
instance-level and bag-level AUCs of only using the cache branch can reach 0.9165 and 0.8183,
respectively, demonstrating that the cache branch is crucial for FAST. By further comparing the third
and fifth rows of the table, we can infer the primary reason why FAST’s cache model surpasses that of
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Table 3: Ablation study of FAST on CAMELYON16 dataset

Cache Branch Learnable Feature Cache Prior Branch Learnable Label Cache Instance-level AUC Bag-level AUC
0.6711 0.5409

✓ 0.6835±0.0135 0.4913±0.0164
✓ ✓ 0.7227±0.0098 0.5965±0.0243

✓ 0.8739±0.0161 0.7931±0.0247
✓ ✓ ✓ 0.9165±0.0213 0.8183±0.0560
✓ ✓ ✓ ✓ 0.9151±0.0200 0.8197±0.0474

Tip-Adapter-F in natural images. Specifically, FAST utilizes a large number of unannotated instances
in a small number of bags through the learnable label cache, thereby significantly improving the
capacity and generalization ability of the cache model. Finally, comparing the last two rows of the
table, we find that when both cache and prior branches are utilized, FAST does not show significant
improvement over using only the cache branch. This is because the number of samples is sufficient,
and the prior branch primarily plays a role when there are fewer samples.

To verify the role of two branchs, we compared the prior branch and cache branch of FAST under
different bag shots. The results are shown in Figure 4. When there are only 1 or 2 bags, the instance
classification results of the prior branch are significantly higher than those of the cache branch. The
instance and bag classification results combined with both the cache and prior branches also surpass
those of using each branch separately, indicating that the prior branch performs better in extreme
samples, and the information learned by the prior branch and the cache branch is complementary.
As the number of bags increases to 4 or more, the results of the cache branch gradually surpass
those of the prior branch. Therefore, in extreme few-shot scenarios, FAST is dominated by the
prior branch, but as the sample size gradually increases, FAST is dominated by the image branch.
This experimental analysis can provide effective guidance for the practical application of FAST.
Additionally, we provide further analysis experiments on the number of annotated instance and the
number of core sets in the supplementary material A.3.

5 Conclusion

In this paper, we propose a dual-tier few-shot learning paradigm FAST for WSI classification, which
achieves low-cost WSI annotation, high-accuracy WSI classification, and adaptation to various WSI
classification tasks. To achieve these goals, we introduce two key technologies in FAST, including a
dual-level few-shot annotation strategy and a dual-branch classification framework. The dual-level
few-shot annotation strategy effectively alleviates the problem of fine-grained annotation difficulty in
WSI by annotating only a small number of patches in a limited number of WSIs. Experimental results
demonstrate that the annotation cost of our method is only 0.22% of patch-level full annotation. In
the dual-branch classification framework, we construct a cache branch where both features and labels
are learnable, fully exploiting the partially annotated data obtained from the dual-level few-shot
annotation strategy. Furthermore, combining a vision-language foundation model and prompt tuning
technology, we build a prior knowledge branch to assist the cache branch in improving classification
performance. Through extensive experiments, we demonstrate that FAST can achieve state-of-the-art
performance on both binary and multi-class classification tasks. However, our method still has certain
limitations. For bag-level classification, we simply use pooled instance classification results, ignoring
the relationships between instances. In the future, we will further explore how to use instance-level
classification results to obtain a better bag-level classification result.
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A Supplemental Material

A.1 Datasets

CAMELYON16 CAMELYON16 [4] contains 400 WSIs of lymph nodes, used to detect the
presence of metastatic breast cancer. WSIs containing metastases are labeled positive, while others
are negative, with pixel-level annotations of the metastatic areas. We first cropped these WSIs at 10x
magnification into 512x512 image patches, then removed image patches with entropy less than 15 as
background, and marked patches with more than 30% cancer area as positive, resulting in 186,604
image patches, of which 8,117 were marked as positive (4.3%).

TCGA-RENAL This dataset comes from The Cancer Genome Atlas (TCGA) project [17], covering
high-resolution WSIs of the three main subtypes of renal cell carcinoma (RCC): clear cell renal cell
carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal cell carcinoma
(chRCC). ccRCC is the most common subtype, characterized by clear cells containing abundant lipids
and glycogen. pRCC follows, characterized by papillary structures formed on the surface of tumor
cells. chRCC is relatively rare, with larger cells and granular cytoplasm. All WSIs are rigorously
reviewed by professional pathologists to ensure the representativeness and quality of the data. To
fully verify the effectiveness of our proposed method, we collected 910 WSIs from TCGA, and then
organized experts to delineate all WSIs at the pixel level, including delineation of cancerous and
non-cancerous areas. Subsequently, through preprocessing processes such as WSI segmentation and
background removal similar to CAMELYON16, we obtained instance-level labels for the complete
training and testing sets. Finally, all WSIs were divided into training and testing sets in a ratio of
70% and 30%, respectively.

A.2 Implementation Details

FAST employs the image encoder and text encoder from the pre-trained CLIP-RN50 [41]. The cache
capacity is typically determined by the number of annotated and unannotated instances in the training
set after each sampling. For bag shot greater than 4, we used a core set selection strategy to prevent
excessive caching. For the CAMELYON16 and TCGA-RENAL datasets, we set the number of core
sets to 1000 and 2000, respectively. We set the number of learnable tokens to 10. During training,
we utilized the Adam optimizer with learning rates set as follows: 0.001 for the feature cache, 0.01
for the label cache, and 0.001 for the tokens in the prior branch. We fine-tune our model with batch
size of 4096 for 20,000 epochs. All models are trained and tested on an RTX 3090 GPU with 24GB
memory.

For Tip-Adapter, We conducted comparative experiments according to the settings of the optimal
model in the original Tip-Adapter paper. For aspects that cannot be adapted to the few-shot WSI
classification task, we used the following approach. We designed a set of text prompts specifically
for pathology images, which has been proven superior in the CONCH comparison experiments we
conducted. We used all annotated patches to build the cache model.

A.3 Additional experiments

(1) Annotation Efficiency To provide a more intuitive illustration of the annotation efficiency
of our method, we first calculated the annotation ratio under different bag shots (1, 2, 4, 8, 16),
with each bag containing 16 annotated instances. Then, we visualized the classification results of
FAST under different annotation ratios and compared them with the fully supervised method. The
results for TCGA-RENAL dataset are presented in Figure 5. It can be observed that the classification
AUC of FAST rapidly increase with the growth of bag shots. When the bag shot reaches 8, FAST
achieves results comparable to fully supervised methods. At this point, the annotation ratio of FAST
on the TCGA-RENAL dataset is only 0.0067% of the total instance annotation. When the bag shot
reaches 16, the annotation only accounts for 0.013% of all instances. Even under such extreme
minimal annotation, FAST can still achieve results close to fully supervised methods, especially in
bag classification results. For chRCC, pRCC, and ccRCC, FAST’s average bag-level AUC reaches
99.64%, 96.24%, and 97.70% respectively compared to the fully supervised method. This result fully
demonstrates the advantage of FAST in annotation efficiency.
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Figure 5: Results of FAST on TCGA-RENAL dataset under different annotation ratio.

(2) The Number of Annotated Instance The above experiments indicate that achieving good
results only require annotating 16 instances per bag. To further investigate the influence of the number
of annotated instances per bag, we conducted experiments on the CAMELYON dataset with the
number of annotated instances per bag set to 4, 16, and 64, respectively. The results are shown in
Figure 6. It can be observed that when the number of bags is small and there are only 1, 2, or 4
bags per class, the instance-level and bag-level classification AUCs are significantly higher when
64 instances are annotated per bag compared to only annotating 4 or 16 instances. However, as the
number of bags increases to 8 and 16, the AUC of FAST gradually converge. Regardless of whether
each bag is annotated with 4, 16, or 64 instances, FAST achieves similar results in instance-level AUC
and bag-level AUC. These experimental results indicate that when the number of bags is extremely
small, increasing the number of annotated instances can effectively improve the performance of
FAST. However, when the number of bags increases to a certain level, even if only a small number of
instances are annotated in each bag, FAST can achieve results similar to annotating a large number of
instances. This indicates that FAST’s ability to achieve higher accuracy than other methods primarily
relies on its learning from unlabeled instances. It also suggests that in practical applications of
FAST, if there are a large number of bags, the requirement for labeling instances can be appropriately
reduced.

(3) Core Set Size Few-shot learning of WSI classification differs from conventional few-shot
learning. Even with only several WSIs, they may produce tens of thousands or even hundreds of
thousands of patches. Therefore, to avoid optimization difficulties caused by excessively large caches,
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Table 4: Results of FAST on the CAMELYON16 dataset under different core set sizes

Bag Shot Instance Shot Core Set Size Instance-level AUC Bag-level AUC

4 16

100 0.8845±0.0525 0.7295±0.0743
500 0.8770±0.0643 0.7210±0.1157

1000 0.8860±0.0546 0.7554±0.0766
2000 0.8985±0.0279 0.7595±0.0478
5000 0.9027±0.0342 0.7499±0.0641

8 16

100 0.8827±0.0303 0.7179±0.0712
500 0.8903±0.0162 0.7549±0.0445

1000 0.8957±0.0132 0.7773±0.0319
2000 0.9075±0.0122 0.7848±0.0392
5000 0.9101±0.0165 0.8025±0.0237

16 16

100 0.9008±0.0320 0.7353±0.0624
500 0.9046±0.0301 0.7924±0.0484

1000 0.9124±0.0281 0.8078±0.0626
2000 0.9181±0.0173 0.8240±0.0572
5000 0.9096±0.0211 0.8082±0.0544
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Figure 6: Results of FAST on CAMELYON16 dataset under different instance shots.

FAST employs a K-means core set selection strategy to control the size of the learnable cache. To
analyze the performance of FAST under different core set sizes, we conducted experiments on the
CAMELYON16 dataset with 4, 8, and 16 bags and 16 instances per bag. The results are shown in
Table 4. When the core set size is only 100 or 500, FAST’s bag-level AUC is significantly lower,
indicating that the core set size at this time is insufficient to cover all representative samples, resulting
in a loss of a large amount of information. However, when the core set size reaches 1000 or above,
FAST’s instance-level AUC and bag-level AUC achieve good results, indicating that FAST has good
robustness to core set size. However, when the core set size is 5000 and the number of bags is 16,
the results decrease instead, indicating that an overly large learnable cache is difficult to optimize.
Therefore, we set the core set size to 1000 or 2000 in experiments where the number of bags is greater
than 4.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and the section 1.
Guidelines:
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Not applicable.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In the abstract.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the section A.2 of supplementary materials.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the section 4.1 and the section 4.3.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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• If the authors answer No, they should explain the special circumstances that require a
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