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Abstract

We study the relationship between two desider-
ata of algorithms in statistical inference and ma-
chine learning—differential privacy and robust-
ness to adversarial data corruptions. Their con-
ceptual similarity was first observed by Dwork
and Lei (STOC 2009), who observed that private
algorithms satisfy robustness, and gave a general
method for converting robust algorithms to private
ones. However, all general methods for transform-
ing robust algorithms into private ones lead to
suboptimal error rates. Our work gives the first
black-box transformation that converts any adver-
sarially robust algorithm into one that satisfies
pure differential privacy. Moreover, we show that
for any low-dimensional estimation task, applying
our transformation to an optimal robust estima-
tor results in an optimal private estimator. Thus,
we conclude that for any low-dimensional task,
the optimal error rate for ε-differentially private
estimators is essentially the same as the optimal
error rate for estimators that are robust to adversar-
ially corrupting 1/ε training samples. We apply
our transformation to obtain new optimal private
estimators for several high-dimensional tasks, in-
cluding Gaussian (sparse) linear regression and
PCA. Finally, we present an extension of our trans-
formation that leads to approximate differentially
private algorithms whose error does not depend
on the range of the output space, which is impos-
sible under pure differential privacy.
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1. Introduction
Both differential privacy and robustness are desirable prop-
erties for machine learning or statistical algorithms, and
there are extensive, mostly separate bodies of research on
each of these properties.

Differential privacy (DP) was proposed by Dwork, McSh-
erry, Nissim, and Smith (Dwork et al., 2006) as a rigorous
formalization of what it means for an algorithm to guarantee
individual privacy, and has been widely deployed in both
industry (Erlingsson et al., 2014; Bittau et al., 2017; Apple
Differential Privacy Team, 2017; Tastuggine and Mironov,
2020; Wilson et al., 2020; Rogers et al., 2020) and govern-
ment (Haney et al., 2017; Abowd, 2018; Abowd et al., 2022)
applications. Informally, a DP algorithm ensures that no ad-
versary who observes the algorithm’s output can learn much
more about an individual in the dataset than they could if
that individual’s data had been excluded. Formally, a ran-
domized algorithm A satisfies ε-DP if for every dataset S,
and every dataset S ′ that differs on one, or a small number
of entries, the distributions A(S) and A(S ′) are ε-close
in a precise sense (see Definition 2.1), where the privacy
guarantee becomes stronger as ε becomes smaller.

Robustness, which was first systematically studied by Tukey
and Huber in the 1960s (Tukey, 1960; Huber, 1965), formal-
izes algorithms that perform well under data corruptions or
model misspecifications. Specifically, we consider a dataset
S that is drawn iid from some well behaved distribution P ,
and allow an adversary to produce a dataset S ′ that differs
from S in a τ fraction of its entries. An algorithm A is τ -
robust if the distance ∥A(S)−A(S ′)∥ is typically small in
some particular error norm, where the robustness guarantee
becomes stronger as τ becomes larger.

Although these two conditions have entirely different mo-
tivations, they are both notions of what it means for an
algorithm to be insensitive to small changes in its input,
which was first observed in the influential work of Dwork
and Lei (2009). But even once we recognize their similarity,
there are substantial technical differences. While differen-
tially private algorithms are robust, DP is a more stringent
requirement in a few ways: First, DP is worst case, mean-
ing the algorithm A must be insensitive in a neighborhood
around every dataset S, whereas a robust algorithm only
needs to be insensitive in the average case around datasets
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S drawn from well behaved distributions P . Second, DP
requires thatA(S) anA(S ′) be close as probability distribu-
tions in a strong sense, whereas robustness only requires the
distance between outputs A(S) and A(S ′) to be small. On
the other hand, since DP is harder to satisfy, DP algorithms
are typically insensitive to changes in a small number of
inputs, whereas robust algorithms can often be insensitive
to changes in a small constant fraction of inputs.

Although, differential privacy is stronger than robustness,
Dwork and Lei (Dwork and Lei, 2009) designed a method,
called propose-test-release (PTR), which can be used to turn
any accurate robust algorithm for a statistical estimation
task into an accurate differentially private algorithm for the
same task. However, this generic transformation typically
does not lead to optimal algorithms for most specific tasks of
interest. Nonetheless, there has been a recent flurry of works
in differentially private statistics that use robust estimators as
inspiration for differentially private estimators (see Related
Work for a summary of this line of work). These works
use a variety of methods for upgrading robust estimators
to differentially private ones, and each of these methods is
tailored to a specific task or set of tasks.

In this paper we demonstrate that there is, in fact, a black-
box way to transform robust estimators into private es-
timators that provably gives optimal error rates for low-
dimensional tasks, and often leads to optimal error rates for
many high-dimensional tasks.

1.1. Our Contributions

In this section we give a high-level overview of our main
contributions—black-box transformation from robust to pri-
vate estimators, optimality results for our transformations
for low-dimensional estimation tasks, and applications of
our transformations to high-dimensional estimation tasks.

From robustness to privacy via inverse-sensitivity. Our
first main contribution is a black-box transformation that
takes a robust algorithm for any statistical task and converts
it into an ε-differentially private algorithm for the same
task with comparable accuracy. Intuitively, since robust
estimators are insensitive to changing nτ inputs on a dataset
of size n, and private estimators are insensitive to changing
a 1/ε total inputs, the accuracy of the private estimator will
be related to the accuracy of the robust estimator when a
τ ≈ 1/nε fraction of inputs can be corrupted.

Our transformation applies in the standard setting of statis-
tical estimation: assume that there exists a distribution P
over domain Z ⊆ Rd and S = (S1, . . . , Sn) is a dataset
consisting of n examples drawn independently from P , that
is, ∀i ∈ [n], Si

iid∼ P . We wish to estimate a parameter µ(P )
(e.g. the mean µ = Es∼P [s]) of distribution P . The error
of an algorithm A for this task is measured with respect to

a norm ∥·∥, i.e., ∥A(S)− µ∥.

We use the following short-hand to denote the accuracy
guarantees of τ -robust and ε-private estimators of a statistic
µ for a distribution P .

Definition 1.1 ((τ, β, α)-robust estimator). LetA be a (pos-
sibly randomized) algorithm for the estimation of statistic µ.
We say thatA is a (τ, β, α)-robust estimator for distribution
P , if with probability 1 − β over dataset S iid∼ Pn (and
possibly the randomness of the algorithm), for all S ′ that
differ in at most nτ points from S, we have that

∥A(S ′)− µ(P )∥ ≤ α.

Definition 1.2 ((ε, β, α)-private estimator). LetA be a (pos-
sibly randomized) algorithm for the estimation of statistic
µ. We say that A is an (ε, β, α)-private estimator for distri-
bution P , if A is ε-DP (Definition 2.1) and with probability
1 − β over S iid∼ Pn (and possibly the randomness of the
algorithm), we have that

∥A(S)− µ(P )∥ ≤ α.

We may refer to such algorithms as (τ, β, α)-robust and
(ε, β, α)-private for brevity.

Our main theorem shows that any robust algorithm can be
transformed into an ε-DP algorithm with the same accuracy
guarantees up to constants, as long as the fraction of corrup-
tions τ ≈ d log(R)

nε , where R is the diameter of the range of
the robust algorithm.

Theorem 1.3 (Informal, Theorem 3.1). Let n ≥ 1, ε ∈
(0, 1). Let P be a distribution over Z ⊆ Rd. Let Arob :
Zn → {t ∈ Rd : ∥t∥ ≤ R} be any (τ, β, α)-robust algo-
rithm for the statistic µ(P ). Let α0 ≤ α. If

τ ≳
d log(R/α0) + log(1/β)

nε
,

then there exists an (ε,O(β), O(α))-private algorithm
Apriv for µ(P ). The notation ≳ above hides constants.

The main idea behind our transformation is to use the
inverse-sensitivity mechanism (Asi and Duchi, 2020a). At a
high level, for a deterministic algorithm Arob, the inverse-
sensitivity mechanism outputs t with probability (or density)
proportional to

Pr[MInv(S;Arob) = t] ∝ e−lenArob
(S;t)·ε/2

where lenArob
(S; t) is the minimum number of entries of S

that would have to be corrupted to obtain a dataset S ′ with
Arob(S ′) = t. This mechanism is an instance of the expo-
nential mechanism (McSherry and Talwar, 2007), and to the
best of our knowledge the idea to use len as a score func-
tion first appeared in (Johnson and Shmatikov, 2013) for
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applications in genomic data, and its general accuracy guar-
antees were first studied systematically in (Asi and Duchi,
2020a;b). A standard analysis shows that this estimator will
output t for which lenArob

(S; t) is small, and we can relate
the accuracy of such a t to the robustness of the estimator
Arob on corruptions of the sample S.

We note that our transformation only preserves the accuracy
of the robust mechanism, but not its computational effi-
ciency, and an interesting open question is whether one can
get a fully black-box, efficiency-preserving transformation
from robustness to privacy (see the concurrent and indepen-
dent work of (Hopkins et al., 2022b) for some progress on
this question).

We also define and analyze an extension of this transforma-
tion, which is based on the restricted exponential mechanism
of Brown et al. (Brown et al., 2021), that avoids the depen-
dence on R that appears in Theorem 1.3 above, by relaxing
the privacy definition to approximate DP.

An equivalence between private and robust estimation.
We prove that, up to the factor of d in Theorem 1.3, our
transformation is optimal, and in particular is optimal for
low-dimensional tasks when d is a constant. That is, for any
low-dimensional task, ifArob is an optimal robust estimator,
then our transformation of Arob is an optimal private esti-
mator. This is the first result to show a general conversion
from robust estimators to optimal private estimators.

A consequence of this result is an equivalence between ro-
bust and private estimation in low dimensions, which shows
that the optimal minimax error rates for ε-DP estimation
and for τ -robust estimation for τ ≈ 1/nε are essentially the
same. Specifically, for a given statistic µ and a family of
distributions P over domain Z , we define the minimax error
of estimating µ under P for private and robust algorithms as
follows. Having fixed β, τ , and ε, the (τ, β)-robust minimax
error under P is

αrob(τ, β) = inf
α
{α : ∃(τ, β, α)-robust algorithm ∀P ∈ P},

and the (ε, β)-private minimax error under P is

αpriv(ε, β) = inf
α
{α : ∃(ε, β, α)-private algorithm ∀P ∈ P}.

Theorem 1.4 (Informal, Corollary 4.1). Let P be a family
of distributions over R and let µ be a 1-dimensional statistic
where |µ(P )| ≤ 1 for all P ∈ P . Suppose αrob(τ, β) is a
continuous function of β for all τ ≤ 1/2. Let n > 1, ε =
ω(log(n)/n) and τ = Θ(log(n)/nε). Suppose there exists
constant c such that the non-private error αrob(0, β) ≥ 1

nc

for any β ≤ 1/4. Then there are constants c1 ≥ c2 > 0
such that for βp = 1/nc1 and βr = 1/nc2 ,

αpriv(ε, βp) = Θ (αrob(τ, βr)) .

The above theorem extends to any d-dimensional prob-
lem with a weaker conclusion roughly αpriv(ε, βp) =
Θ (d · αrob(τ, βr)), so in particular we obtain the same
equivalence for any problem in constant dimension.

The theorem follows from the folklore observation that
differentially private estimators are also robust (with τ ≈
1/εn). Thus, if we have an optimal differentially private
algorithm Apriv we can use Apriv itself as the robust es-
timator. Thus, we can instantiate the inverse-sensitivity
mechanism using Apriv as the robust estimator and apply
the inverse-sensitivity mechanism to Apriv to obtain a new
private mechanism with similar accuracy. Although this
transformation would be a circular way to produce a private
estimator, the argument shows that one can always obtain an
optimal private estimator by instantiating our transformation
with an optimal robust estimator.

Applications to high-dimensional private estimation. Al-
though our general optimality result only applies to low-
dimensional problems, we show that our transformation of-
ten yields optimal error bounds for several high-dimensional
tasks as well. By instantiating Theorem 1.3 with existing al-
gorithms for robust estimation, we give ε-DP algorithms for
the same tasks. At high level, Theorem 1.3 says that if there
is a robust algorithm with accuracy α(τ) as a function of
the fraction of corruptions, then there is an ε-DP algorithm
with accuracy α(D/nε), where D is the dimension of the
parameter we aim to estimate. Since usually α(τ) = Õ(τ),
this implies that the error due to privacy is Õ(D/nε). In
particular, we apply our theorem to give pure differentially
private algorithms for Gaussian (sparse and non-sparse) lin-
ear regression and subgaussian PCA, which, to the best of
our knowledge, are the first optimal algorithms for these
tasks satisfying pure (rather than approximate) differential
privacy.

1.2. Related Work

General transformations between robust and private al-
gorithms. Dwork and Lei (2009) were the first to observe
the intuitive connection between differential privacy and
robust statistics. That work also introduced a generic frame-
work for differentially private algorithms called propose-
test-release (PTR) that can be used to transform any robust
estimator into an approximately DP estimator. However,
compared to our optimal transformation, the error of the
resulting private algorithm will be larger by a factor of
≈ 1/ε. An even earlier work of Nissim, Raskhodnikova, and
Smith (Nissim et al., 2007) presented a framework called
smooth sensitivity that can be used to obtain a similar trans-
formation from robust to pure DP estimators, again losing a
factor of ≈ 1/ε compared to our transformation.

In the other direction, Dwork and Lei (2009) also observed
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that differentially private algorithms are robust with certain
parameters. However, private estimators are mostly studied
in a regime where 1/ε = o(n), so they do not give robust-
ness to corrupting a constant fraction of inputs, which is the
most commonly studied regime for robust estimation. More
recently, Georgiev and Hopkins (2022) observed that private
algorithms with sufficiently small failure probability and pri-
vacy parameter are robust to corrupting a constant fraction
of inputs, and use this fact to give evidence of computational
hardness of certain private estimation tasks.

Private estimators inspired by robust estimators. Al-
though prior black-box transformations from robust to pri-
vate estimators give suboptimal error rates, many optimal
private algorithms are nonetheless inspired by methods from
robust statistics, albeit with task-specific analyses (Kamath
et al., 2019; Bun and Steinke, 2019; Avella-Medina and
Brunel, 2019; 2020; Kamath et al., 2020; Liu et al., 2021;
Brown et al., 2021; Ghazi et al., 2021; Liu et al., 2022; Ts-
fadia et al., 2022; Hopkins et al., 2022a; Ashtiani and Liaw,
2022; Kothari et al., 2022; Alabi et al., 2022; Georgiev
and Hopkins, 2022). Their algorithms often leverage the
structure of specific robust estimators such as medians, high-
dimensional generalizations of the median, trimmed-means,
or sum-of-squared-based certificates of robustness.

An elegant work of Liu et al. (2022) proposed a general-
ization of PTR that can be used to give near-optimal ap-
proximate differentially private estimators for many tasks.
Although the framework is fairly general, their analysis re-
lies on specific properties of the estimation tasks rather than
merely the existence of a robust estimator.

Another line of work is that of algorithms that specifically
aim to satisfy optimal robustness and privacy guarantees
simultaneously for high-dimensional problems (Liu et al.,
2021; Ghazi et al., 2021; Alabi et al., 2022).

Concurrent work by Hopkins et al. (2022b). In concur-
rent and independent work, Hopkins et al. (2022b) proposed
the same black-box transformation from robust to DP algo-
rithms based on the smooth-inverse-sensitivity mechanism.
In contrast to our work, they also show that in some cases
their method can be implemented in a computationally ef-
ficient way by instantiating the smooth-inverse-sensitivity
mechanism with robust estimators based on the sum-of-
squares paradigm. In particular they construct computation-
ally efficient pure DP algorithms for estimating a Gaussian
distribution with optimal error. In contrast to their work, we
demonstrate that our transformation gives optimal error for
low-dimensional problems and establishes a tight connec-
tion between privacy and robustness for these problems.

1.3. Organization

In Section 2, we provide background on DP and the inverse-
sensitivity mechanism. In Section 3, we present and prove
the guarantees of our transformation from robust to pure
DP algorithms (and vice versa, for completeness). In Sec-
tion 4, we show the optimality of our transformation for
low-dimensional tasks and the equivalence of robustness
and privacy for those tasks. In Section 5, we extend our
transformation to convert robust to approximate DP algo-
rithms. In Section 6, we show that our transformation gives
us pure DP algorithms with near-optimal error for PCA
for subgaussian data, deferring more applications to Ap-
pendix C.

2. Preliminaries and Background
Additional Notation For a finite set T , we denote its
cardinality by card(T ). For any (continuous or discrete) set
T , we denote its diameter by diam(T ) = sups,t∈T ∥s− t∥,
where the choice of norm will be clear from context. We
denote by dH the Hamming distance between two vectors
or datasets. We denote by Bd(v,R) the d-dimensional ball
with radius R and center v (with respect to some norm ∥·∥).
We also let Bd(R) = Bd(0d, R) and omit d when it is clear
from context.

2.1. Differential Privacy

Let S,S ′ ∈ Zn be two datasets of size n. We say that
S,S ′ are neighboring datasets if dH(S,S ′) ≤ 1. Differ-
entially private algorithms have indistinguishable output
distributions on neighboring datasets.

Definition 2.1 (Differential Privacy (Dwork et al., 2006)).
A (possibly randomized) algorithm A : Zn → T is (ε, δ)-
differentially private (DP) if for all neighboring datasets
S,S ′ and any measurable output space T ⊆ T we have

Pr[A(S) ∈ T ] ≤ eε Pr[A(S ′) ∈ T ] + δ.

We say algorithm A satisfies pure DP if it satisfies the defi-
nition for δ = 0, which we denote by ε-DP. Otherwise, we
say it satisfies approximate DP.

The exponential mechanism (McSherry and Talwar, 2007) is
a ubiquitous building block for constructing DP algorithms.
The inverse-sensitivity mechanism, on which our transfor-
mation is based, is an instantiation of this mechanism.

Definition 2.2 (Exponential Mechanism, (McSherry and
Talwar, 2007)). Let input data set S ∈ Zn, range T ,
and score function q : Zn × T → R with sensitivity
∆q = max

t∈T
max

S′:dH(S′,S)≤1
|q(S; t)− q(S ′; t)|. The exponen-

tial mechanism selects and outputs an element t ∈ T with
probability πS(t) ∝ e(ε·q(S;t)/2∆q). The exponential mech-
anism is ε-DP.

4



From Robustness to Privacy and Back

2.2. Inverse-sensitivity Mechanism

Let f : Zn → T be a (deterministic) algorithm that we aim
to compute on dataset S. Define the path-length function

lenf (S; t) := inf
S′
{dH(S,S ′) | f(S ′) = t} ,

which is the minimum number of points in S that need to
be replaced so that the value of function f on the modi-
fied input is t. Given black-box access to function f , the
inverse-sensitivity mechanism with input dataset S , denoted
by MInv(S; f), is then defined as follows: the probability
that MInv(S; f) returns t ∈ T is

Pr[MInv(S; f) = t] :=
e−lenf (S;t)ε/2∑

s∈T e−lenf (S;s)ε/2
.

The error of this mechanism in some norm ∥·∥ depends on
the local modulus of continuity of a function f : Zn → T
at S ∈ Zn with respect to ∥·∥, defined by

ωf (S;K) = sup
S′∈Zn

{∥f(S)− f(S ′)∥ : dH(S,S ′) ≤ K} .

For a finite set T , the inverse-sensitivity mechanism has the
following guarantees.

Theorem 2.3 (Discrete functions, Th.3 (Asi and Duchi,
2020a)). Let f : Zn → T and D = diam(T ). Then for
any S ∈ Zn and β > 0, with probability at least 1− β, the
inverse-sensitivity mechanism has error

∥MInv(S)− f(S)∥ ≤ ωf

(
S; 2

ε
log

2D card(T )
βε

)
.

For continuous functions f : Zn → Rd, which is the main
setting in this paper, we use a smooth version of the inverse-
sensitivity mechanism. To this end, we define the ρ-smooth
inverse-sensitivity of t with respect to norm ∥·∥:

lenρ(S; t) = inf
s∈Rd:∥s−t∥≤ρ

len(S; s). (1)

The ρ-smooth inverse-sensitivity mechanism Mρ
Inv(·; f)

then has the following density given input dataset S:

πS(t) =
e−lenρ(S;t)ε/2∫

s∈Rd e−lenρ(S;s)ε/2ds
(2)

For our setting of interest where T = {v ∈ Rd : ∥v∥ ≤ R},
we have the following upper bound on the error of Mρ

Inv. Its
proof follows similar ideas as in (Asi and Duchi, 2020a;b)
and is in Appendix A .

Theorem 2.4 (Continuous functions). Let f : Zn → T
where T = {v ∈ Rd : ∥v∥ ≤ R}. Then for any S ∈ Zn,

and β > 0, with probability at least 1 − β, the ρ-smooth
inverse-sensitivity mechanism with norm ∥·∥ has error

∥Mρ
Inv(S; f)− f(S)∥

≤ ωf

S; 2
(
d log

(
R
ρ + 1

)
+ log 1

β

)
ε

+ ρ.

3. Transformations between Robust and
Private Algorithms

In this section, we provide transformations between differen-
tially private and robust algorithms. We begin in Section 3.1
with our main result: a general transformation from robust
algorithms to private algorithms with roughly the same error
for a specified number of corruptions. In Section 3.2, we
consider the other direction, and show for completeness that
any private algorithm is inherently robust as well, which
was already observed since (Dwork and Lei, 2009).

3.1. Robust to Private

Our first result shows how to transform a determinitstic
robust algorithm into a private algorithm with roughly the
same error. The main idea is to apply the ρ-smooth inverse-
sensitivity mechanism (Asi and Duchi, 2020a) with the input
function f being the robust algorithm itself.
Theorem 3.1 (Robust-to-private). Let S = (S1, . . . , Sn)

where Si
iid∼ P such that µ(P ) ∈ Rd. Let ε, β ∈ (0, 1). Let

Arob : (Rd)n → {t ∈ Rd : ∥t∥ ≤ R} be a deterministic
(τ, β, α)-robust algorithm. Let α0 ≤ α and

τ⋆ =
2
(
d log

(
R
α0

+ 1
)
+ log 1

β

)
nε

. (3)

If τ ≥ τ⋆, then Mρ
Inv(S;Arob) with ρ = α0 is

ε-DP and, with probability at least 1 − 2β, has er-
ror ∥Mρ

Inv(S;Arob)− µ∥ ≤ 4α. In particular, this im-

plies that for τ ≥
2
(
d log

(
R
α0

+1
)
+log 2

β

)
nε , αpriv(ε, β) ≤

4αrob(τ, β/2).

Proof. First note that the privacy guarantee is immediate
from the guarantees of the exponential mechanism (Defi-
nition 2.2) and the fact that the sensitivity of the ρ-smooth
path-length function in Equation (1) is 1. Now we prove
utility. Let K = nτ⋆. The error of Mρ

Inv(S,Arob) is then
bounded as follows:

∥Mρ
Inv(S;Arob)− µ∥

≤ ∥Arob(S)− µ∥+ ∥Mρ
Inv(S;Arob)−Arob(S)∥

≤ ∥Arob(S)− µ∥+ ωArob
(S;K) + α0

(w.p. 1− β by Theorem 2.4)

≤ 2 ∥Arob(S)− µ∥+ ∥Arob(S ′)− µ∥+ α0,
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for S ′ = argmaxS′:dH(S′,S)≤K ∥Arob(S)−Arob(S ′)∥.
Recall that, by assumption, Arob is (τ, β, α)-robust for
τ ≥ K/n. Thus, with probability 1−β, ∥Arob(S ′)− µ∥ ≤
α for any τ -corrupted dataset S ′. By union bound, we
have that with probability 1− 2β, ∥Mρ

Inv(S;Arob)− µ∥ ≤
3α+α0 ≤ 4α. This completes the proof of the theorem.

The parameter α0 determines the smallest fraction of cor-
ruptions τ⋆, which in turn determines the smallest α so
that Arob is (τ⋆, β, α)-robust. A simple choice for α0 is
the minimax error for estimating the statistic µ(P ), without
adversarial corruptions or privacy constraints.
Remark 3.2. We can extend this transformation to hold
for randomized robust algorithms, by first converting Arob

into a deterministic algorithm, albeit doubling the error and
failure probability, as shown in Theorem A.1, Appendix A.1.

3.2. Private to Robust

In this section, we state the folklore fact that any ε-
differentially private algorithm is also τ ≈ 1

nε -robust with
the same accuracy. This follows directly from the definition
of differential privacy which states that changing 1/ε users
does not change the output distribution by much (by group
privacy) and was observed in (Dwork and Lei, 2009).

Theorem 3.3 (Private-to-robust). Let S = (S1, . . . , Sn)

where Si
iid∼ P . Let ε, β ∈ (0, 1). Let Apriv be an

(ε, β, α)-private algorithm for estimating the statistic µ. Let
γ ∈ (0, 1) and τ = log(1/γ)

nε . Then Apriv is (τ, β/γ, α)-
robust. In particular, αrob(τ, β/γ) ≤ αpriv(ε, β), which is
equivalent to αrob(τ, β) ≤ αpriv(log(1/γ)/nτ, γβ).

Proof. Let W = {t ∈ Rd : ∥t− µ∥ > α} be the set of bad
outputs for the distribution P . The accuracy guarantee of
Apriv implies that Pr[Apriv(S) ∈W ] ≤ β. Now assume S ′
is a τn-corrupted version of S where τ = log(1/γ)/(nε),
that is, dH(S,S ′) ≤ log(1/γ)/ε. The definition of differen-
tial privacy now implies that

Pr[∥Apriv(S ′)− µ∥ > α] = Pr[Apriv(S ′) ∈W ]

≤ edH(S,S′)ε Pr[Apriv(S) ∈W ]

≤ eετnβ ≤ β/γ,

for τ ≤ log(1/γ)
nε . Thus Apriv is τ -robust for τ = log(1/γ)

nε
with accuracy α and failure probability β/γ.

We note that for γ = 1/e, αrob(τ, β) ≤ αpriv (1/nτ, β/e),
that is, the minimax error of any τ -robust algorithm with
failure probability β is bounded by the minimax error of
a ε-DP algorithm, for ε = 1/nτ , with the same failure
probability up to constant factors.

As private algorithms are often randomized, this transforma-
tion would result in a randomized robust algorithm. As in

the previous section, we can convert it into a deterministic
one via Theorem A.1 in Appendix A.1.

4. Implications of our transformations
4.1. Equivalence between Private and Robust

Estimation

In this section, we show that the (high-probability) minimax
rates for ε-DP and τ -robustness are on the same order when
the problem is low-dimensional and τ = log(n)/nε. The
following corollary states the result. For simplicity, we
assume that the dimension d = 1 and the range R = 1.

Corollary 4.1 (Equivalence). Let P be a family of distribu-
tions and P ∈ P . Let µ be a 1-dimensional statistic where
|µ(P )| ≤ 1 such that αrob(τ, β) is a continuous function
of β for all τ ≤ 1/2. Let n > 1, ε = ω(log(n)/n), and
τ = Θ(log(n)/nε). Suppose there exists a constant c such
that the error αrob(0, β) ≥ 1

nc for any β ≤ 1/4. Then there
are constants c1 ≥ c2 > 0 such that for βp = 1/nc1 and
βr = 1/nc2 ,

αpriv(ε, βp) = Θ (αrob(τ, βr)) .

Proof. First, we observe that α0 = αrob(0, βp) ≤
αrob(τ, βp) by the monotonicity of αrob and α0 ≥ 1

nc since
βp = 1

nc1
≤ 1/2. By Theorem 3.11, we have that, for

τ1 = 2(c+c1) log(2n)
nε ≥ 2 log(1/α0+1)+log(2/βp)

nε ,

αpriv(ε, βp) ≤ 4αrob(τ1, βp/2). (4)

Setting γ = 1/(2n)2(c+c1), we have that τ1 = log(1/γ)
nε .

By Theorem 3.3,

αrob(τ1, (2n)
2(c+c1)β) ≤ αpriv(ε, β).

Note that if αpriv(ε, βp) ≥ αrob(τ1, βp/2) then the claim
follows from Equation (4), using βr = βp/2. Otherwise we
have that

αrob(τ1, (2n)
2(c+c1)βp) ≤ αpriv(ε, βp) ≤ αrob(τ1, βp/2)

As αrob(τ1, β) is a continuous function of β, there is
βr ∈ [βp/2, (2n)

2(c+c1)βp] ⊂ [ 1
n2c1

, 1
n2c+3c1

] such that
αrob(τ, βr) = αpriv(ε, βp).

Note that in most settings, αrob(τ, βr) has the same order
when βr ∈ [βp,poly(n) ·βp] as it depends on log(1/β) (see
for example Section 6).

1If the robust algorithm achieving the minimax error αrob is
randomized, we can transform it into a deterministic one as Theo-
rem 3.1 requires, via Theorem A.1, by losing only constant factors.
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Algorithm 1 Robust-to-Private ((ε, δ)-DP)
Require: S = (S1, . . . , Sn), (τ, β, α)-robust algorithm
Arob, local modulus bound B

1: Let K = nτ/2− 1
2: Let Sbad = {S ∈ Zn : ωf (S;K + 1) > B}
3: Calculate d = minS′∈Sbad

dH(S,S ′)
4: Set d̂ = d+ ζ where ζ ∼ Laplace(2/ε)

5: if d̂ > 2 log(1/min(δ, β))/ε then
6: Sample t from the truncated inverse-sensitivity mech-

anism with threshold K, privacy parameter ε/2,
smoothness parameter ρ = 2B, and return t.

7: else
8: Return ⊥
9: end if

4.2. Optimality of Black-Box Transformation

An immediate corollary of the previous transformations is
that—for some choice of robust algorithmArob—our robust-
to-private transformation achieves the minimax optimal rate
among the family of private algorithms, for low-dimensional
statistics. See Appendix A for its proof.

Corollary 4.2 (Optimality). Let P be a family of distri-
butions and P ∈ P . Let µ be a 1-dimensional statistic
where |µ(P )| ≤ 1. Let αpriv(ε, β) be the minimax error
of any ε-DP algorithm with failure probability β ≤ 1/4
that estimates statistic µ(P ). Let n > 1. Suppose that
there exists a constant c such that the non-private error
αpriv(∞, β) ≥ 1

nc for any β ≤ 1/2. Then there are con-
stants c1 ≥ c2 > 0 such that βp = 1/nc1 and β′

p = 1/nc2 ,
robust algorithm Arob, and a choice of ρ, such that Algo-
rithm Mρ

Inv(·;Arob) with privacy parameter ε achieves the
optimal error O(αpriv(ε, βp)) with probability 1− β′

p.

5. A Transformation for Approximate DP
In this section, we propose a different transformation for
(ε, δ)-DP that avoids the necessary dependence on diameter
for pure ε-DP , by using the following truncated version of
the inverse-sensitivity:

lentruncf (S; t) :=

{
lenρf (S; t) if lenρf (S; t) ≤ K

∞ otherwise.

Algorithm 1 uses a private test to check whether S is far
from the set Sbad = {S ∈ Zn : ωf (S;K + 1) > B}. If
it is not, then it fails. Crucially, if S iid∼ Pn then the robust
algorithm guarantees that ωf (S ′;K + 1) ≤ B for S ′ in
a neighborhood of S, allowing the test to succeed in this
case (Theorem 5.1, proven in Appendix B).

Theorem 5.1 (Robust-to-private, approximate DP). Let
S = (S1, . . . , Sn) where Si

iid∼ P such that µ(P ) ∈ Rd.

Let ε, δ, β ∈ (0, 1). Let Arob : (Rd)n → Rd be a deter-
ministic (τ, β, α)-robust algorithm for the statistic µ. If
τ ≥ 8(d+log(1/min{δ,β}))

nε then Algorithm 1 with B = 2α
and ρ = 2B is (ε, δ)-DP and, with probability at least
1− 2β returns µ̂ such that ∥µ̂− µ∥ ≤ 7α.

6. Applications for Pure DP
6.1. Principal Component Analysis

In this section, we apply our transformation to obtain a pure
DP algorithm for PCA under Gaussian data. We note that
the result holds as-is for subgaussian distributions more
generally, because Theorem 6.3 (Jambulapati et al., 2020)
does. We assume w.l.o.g. that the distribution is zero-mean.

To the best of our knowledge, Corollary 6.1 gives the first
(computationally inefficient) algorithm for pure DP with
error Õ( d

nε ). PCA with a spectral gap has been studied
under pure DP in (Chaudhuri et al., 2013), where the result
can be translated to yield a suboptimal error of Õ( d

2

nε ). A
long line of work studies PCA under approximate DP (Blum
et al., 2005; Hardt and Roth, 2012; 2013; Chaudhuri et al.,
2013; Kapralov and Talwar, 2013; Dwork et al., 2014) with
the recent result by Liu et al. (2022) achieving the optimal
error of Õ( d

nε ) for subgaussian distributions.

Corollary 6.1 (Gaussian PCA). Let S = (S1, . . . , Sn)

where Si
iid∼ N(0,Σ). Let ε, β ∈ (0, 1). Suppose n is

such that α ≤ 1 in Equation (5). There exists a constant
C > 0 and an ε-DP algorithmM such that, with probabil-
ity at least 1− β, returns unit vectorM(S) = v such that
1− v⊤Σv

∥Σ∥2
≤ α for

α = C

√d+ log( 1β )

n
+

d log2(nd ) + log( 1β ) log(
n
d )

nε

 .

(5)

We will need a more general transformation, proven in Ap-
pendix A.2, and stated in Theorem 6.2below.

Theorem 6.2 (Robust-to-private, general loss). Let S =

(S1, . . . , Sn) where Si
iid∼ P such that µ(P ) ∈ Rd. Let

ε, β ∈ (0, 1). Let L : (Rd)2 → R be a loss function
which satisfies the triangle inequality. Let Arob : (Rd)n →
{t ∈ Rd : ∥t∥ ≤ R} be a (deterministic) (τ, β, α)-robust
algorithm with respect to L. Let α0 ≤ α. Suppose n is such
that the smallest value τ satisfying Equation (6) is at most 1.
Suppose for all u, v ∈ B(R + α0), L(u, v) ≤ cL ∥u− v∥
for some constant cL. If

τ ≥
2
(
d log

(
R
α0

+ 1
)
+ log 1

β

)
nε

, (6)

then Algorithm Mρ
Inv(S;Arob) with ρ = α0 in norm ∥·∥ is

7
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ε-DP and, with probability at least 1− 2β, has error

L (Mρ
Inv(S;Arob), µ) ≤ (3 + cL)α = O(α).

We will instantiate our transformation with the robust PCA
algorithm from (Jambulapati et al., 2020). An alternative
with the same guarantees is returning the unit vector that
minimizes the surrogate cost function proposed by (Liu
et al., 2022).

Theorem 6.3 (Theorem 1, (Jambulapati et al., 2020)).
Let S = (S1, . . . , Sn) where Si

iid∼ N(0,Σ). Let β ∈
(0, 1), τ ∈ (0, 1/2). Let

α′ = C ′

√d+ log( 1β )

n
+ τ log

(
1

τ

) ,

for a known constant C ′ > 0. There exists algorithm Arob

which is (τ, β, α′)-robust.

Proof of Corollary 6.1. We define the following loss func-
tion L(u, v) = u⊤Σu

∥Σ∥2
− v⊤Σv

∥Σ∥2
. If v1 is the top eigenvector

of Σ, then our goal is to return vector v with small error

L(v1, v). Let α0 = C ′
√

d+log(1/β)
n and assume it is less

than 1, to be confirmed later. Then L satisfies the triangle
inequality and for all u, v ∈ B(1 + α0) ⊂ B(2),

L(u, v) =

∥∥Σ1/2u
∥∥2
2

∥Σ∥2
−
∥∥Σ1/2v

∥∥2
2

∥Σ∥2

=

(∥∥Σ1/2u
∥∥
2
−
∥∥Σ1/2v

∥∥
2

)
·
(∥∥Σ1/2u

∥∥
2
+
∥∥Σ1/2v

∥∥
2

)
∥Σ∥2

≤ ∥u− v∥2 · (∥u∥2 + ∥v∥2) ≤ 4 ∥u− v∥2 .

Let Arob : (Rd)n → Sd−1 be the algorithm established
by Theorem 6.3, where Sd−1 denotes the unit sphere.
Then L satisfies the requirements of Theorem 6.2. For
τ = 2d log(n/d)+2 log(1/β)

nε , Arob is (τ, β, α′)-robust with

α′ = C ′

(√
d+ log(1/β)

n
+

d log2(nd ) + log( 1β ) log(
n
d )

nε

)
.

We then have that Mρ
Inv(·,Arob) with ρ = α0 is ε-DP and

with probability 1− 2β, returns v ∈ B(1 + α0), such that

L(v1, v) = 1− v⊤Σv

∥Σ∥2
≤ 7α′.

Let v̂ = v
∥v∥2

be the unit vector in the direction of v. We

have that L(v1, v̂) = 1 − v⊤Σv
∥Σ∥2∥v∥

2
2

. If ∥v∥2 ≤ 1 then

L(v1, v̂) ≤ L(v1, v). Suppose ∥v∥2 > 1.

L(v1, v̂) =
1

∥v∥22

(
∥v∥22 −

v⊤Σv

∥Σ∥2

)
=

1

∥v∥22

(
(∥v∥22 − 1) + L(v1, v)

)
≤
∥v∥22 − 1

∥v∥22
+ L(v1, v) (since ∥v∥2 > 1)

≤ α0(α0 + 2)

(α0 + 1)2
+ L(v1, v)

(since (x− 1)/x↗)

≤ 2α0 + L(v1, v) ≤ 9α′,

since α0 ≤ α′. Therefore, we return a unit vector v̂ with
1− v̂⊤Σv̂

∥Σ∥2
≤ α for α = 9α′. By assumption n is sufficiently

large so that α ≤ 1, and as such α′ < 1. The proof is
complete by rescaling β ← β/2 and adjusting the constants.

6.2. More Applications

We apply our transformation to Gaussian mean and covari-
ance estimation, instantiated by the Tukey median and the
robust algorithm by (Diakonikolas et al., 2017) respectively,
retrieving the known near-optimal error. We also apply it to
Gaussian linear regression (Corollary 6.4 below), instanti-
ated by the robust algorithm by Gao (2020) to give the first
algorithm with optimal error under pure DP.

Corollary 6.4 (Gaussian Linear Regression). Let S =
(S1, . . . , Sn) where for all i ∈ [n], Si = (Xi, yi) ∈ Rd×R
is generated by a linear model yi = X⊤

i θ + ηi for some

unknown θ ∈ Bd(R), where Xi
iid∼ N(0,Σ), I ⪯ Σ ⪯ κI,

and ηi
iid∼ N(0, σ2), independent from Xi. Let ε, β ∈ (0, 1).

There exists an ε-DP algorithmM such that, with probabil-
ity 1− β,

∥∥Σ−1/2(M(S)− θ)
∥∥
2
≤ ασ for

α = O

√d+ log( 1β )

n
+

d log
(

(R/σ+
√
κ)n

d

)
+ log( 1β )

nε

 .

We extend our main transformation to handle sparse es-
timation in Appendix A.3, which allows us to prove the
equivalent result for the case of sparse linear regression
where ∥θ∥0 ≤ k. We show that in this case, the error is in
the order of

√
k/n + k/(nε), as expected. All remaining

statements and proofs are in Appendix C.

7. Conclusions and Future Work
We gave the first black-box transformation that converts
an arbitrary robust algorithm into a differentially private
one. We proved that this transformation gives an optimal

8
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strategy for designing a differentially private algorithm for
low-dimensional tasks, and that the minimax errors for ro-
bustness and privacy are equivalent for these tasks.

We also showed that this transformation often gives near-
optimal error rates for several canonical high-dimensional
tasks under (sub)Gaussian distributions (including under
sparsity assumptions) and expect that it achieves similar
results under other families of distributions, such as heavy-
tailed. In particular, we note that the dependence on di-
mension d cannot be improved in the general setting. This
follows from the optimal rates we obtain in our applications
using this transformation, as any further improvements in
the dependence on d in the general setting will result in
a contradiction to existing lower bounds for the applica-
tions we consider. However, it would still be interesting to
explore specialized settings where this dependence can be
improved (for example, as we show for the case of sparse
linear regression), as well as to determine the conditions
under which this or another black-box transformation yields
private algorithms with optimal error in high dimensions.

A drawback of our transformation is that it produces a
computationally inefficient algorithm, even if the robust
algorithm we instantiate it with is computationally efficient.
However, there are some approaches which allow for effi-
cient implementation of this transformation. One approach
is to use accurate approximations for the inverse sensitivity
mechanism that can be implemented efficiently in certain
settings such as PCA and linear regression, as in (Asi and
Duchi, 2020b). Moreover, as the inverse sensitivity is an
application of the exponential mechanism with a specific
score function, it is possible to use existing results (Hopkins
et al., 2022a) which can be applied as long as the score
function satisfies certain properties. Specifically, Hopkins
et al. (2022b) use the sum-of-squares paradigm, to make
this transformation computationally efficient specifically for
the task of Gaussian estimation in TV distance, an approach
that has been recently successful when applied to several
problems (Hopkins et al., 2022a; Ashtiani and Liaw, 2022;
Kothari et al., 2022; Alabi et al., 2022).
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A. Additional Proofs for Transformations
A.1. Randomized to Deterministic Robust Algorithm

Here, we present a transformation from a randomized algorithm A to a deterministic robust algorithm whose error and
failure probability are larger by a factor of 2. Intuitively, Algorithm 2 finds a small ball where the randomized algorithm has
the largest density, and returns its center. This transformation is computationally inefficient because it requires running the
randomized algorithm with all possible choices of random coins.

Algorithm 2 Randomized-to-Deterministic Robust
Require: S = (S1, . . . , Sn), Algorithm A, accuracy α.

1: Let PS denote the probability distribution of A(S) over the randomness of the algorithm
2: Find the center v⋆ of a ball B(v) = {u ∈ Rd : ∥u− v∥ ≤ α} of radius α that maximizes PS(B(v))
3: Return v⋆

We have the following guarantees for the transformation in Algorithm 2.

Theorem A.1 (Randomized-to-deterministic-robust). Let S = (S1, . . . , Sn) where Si
iid∼ P . Let τ, β ∈ (0, 1). Let A be a

(τ, β, α)-robust algorithm for estimating the statistic µ. Then Algorithm 2 is (τ, 2β, 2α)-robust.

Proof. Let S = (S1, . . . , Sn) where Si
iid∼ P and let S ′ be a τ -corrupted version of S , that is, dH(S,S ′) ≤ nτ . We show that

running Algorithm 2 over S ′ returns an accurate estimate with high probability over S . Let B(µ) = {u ∈ Rd : ∥u− µ∥ ≤ α}
be the ball of radius α around µ, and let B(v⋆) be the ball that maximizes PS′(B(v)). Let E = {S : ∀S ′ dH(S ′,S) ≤
nτ, PS′(B(µ)c) ≤ 1/2} denote the set of good input datasets S such that for all τ -corrupted S ′, the robust algorithm A
returns bad answers with probability less than 1/2. We show that if S ∈ E then Algorithm 2 returns an accurate answer for
any τ -corrupted S ′. Indeed, if S ∈ E, then for any τ -corrupted S ′, PS′(B(µ)) > 1/2. Moreover, the definition of B(v⋆)
implies

PS′(B(v⋆)) ≥ PS′(B(µ)) > 1/2.

As a result, we have that B(v⋆) ∩ B(µ) ̸= ∅. Let u ∈ B(v⋆) ∩ B(µ). We have that

∥v⋆ − µ∥ ≤ ∥v⋆ − u∥+ ∥u− µ∥ ≤ 2α.

Thus, if S ∈ E then Algorithm 2 is 2α accurate. It remains to show that Pr[S /∈ E] ≤ 2β. This follows from the fact that A
has failure probability β:

β ≥ Pr
S,A

[∃S ′ : dH(S ′,S) and A(S ′) ∈ B(µ)c]

≥ Pr
S
[S /∈ E] · Pr

S,A
[∃S ′ : dH(S ′,S) ≤ nτ and A(S ′) ∈ B(µ)c | S /∈ E]

= Pr
S
[S /∈ E] · ES,A

[
max

S′:dH(S′,S)≤nτ
1{A(S ′) ∈ B(µ)c} | S /∈ E

]
≥ Pr

S
[S /∈ E] · ES

[
max

S′:dH(S′,S)≤nτ
EA[1{A(S ′) ∈ B(µ)c}] | S /∈ E

]
(by Jensen’s inequality)

= Pr
S
[S /∈ E] · ES

[
max

S′:dH(S′,S)≤nτ
PS′(B(µ)c) | S /∈ E

]
> Pr

S
[S /∈ E] · 1

2
.

The claim follows.

A.2. Robust-to-Private Transformation for General Loss

In the statement of Theorem 3.1, the error is measured in some norm ∥·∥, the range of the robust algorithm Arob is bounded
in the same norm, and the smoothness ρ allowed in the inverse sensitivity score function (Equation (1)) is again bounded
in the same norm. We can prove a more general theorem, where the last two norms are the same, but the error is instead
measured with respect to a general loss function which satisfies the triangle inequality.
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Theorem A.2 (Robust-to-private, general loss, restatement of Theorem 6.2). Let S = (S1, . . . , Sn) where Si
iid∼ P such

that µ(P ) ∈ Rd. Let ε, β ∈ (0, 1). Let L : (Rd)2 → R be a loss function which satisfies the triangle inequality. Let
Arob : (Rd)n → {t ∈ Rd : ∥t∥ ≤ R} be a (deterministic) (τ, β, α)-robust algorithm with respect to L. Let α0 ≤ α. Suppose
n is such that the smallest value τ satisfying Equation (7) is at most 1. Suppose ∀u, v ∈ B(R+ α0) L(u, v) ≤ cL ∥u− v∥
for some constant cL. If

τ ≥
2
(
d log

(
R
α0

+ 1
)
+ log 1

β

)
nε

, (7)

then Algorithm Mρ
Inv(S;Arob) with ρ = α0 in norm ∥·∥ is ε-DP and, with probability at least 1− 2β, has error

L (Mρ
Inv(S;Arob), µ) ≤ (3 + cL)α = O(α).

Before proving Theorem A.2, we need the equivalent of Theorem 2.4 for general loss functions.

Theorem A.3 (Continuous functions, general loss). Let ε, β ∈ (0, 1), ρ > 0. Let f : Zn → T where T = {t ∈ Rd : ∥t∥ ≤
R}. Let L : (Rd)2 → R be a loss function which satisfies the triangle inequality and ∀u, v ∈ B(R+ρ)L(u, v) ≤ cL ∥u− v∥
for some constant cL. Suppose n is larger than the smallest K satisfying Equation (8) below. Then for any S ∈ Zn, with
probability 1− β, the ρ-smooth-inverse-sensitivity mechanism with norm ∥·∥ has error

L (Mρ
Inv(S; f), f(S)) ≤ ωL

f (S;K) + cLρ,

where

K ≥ 2d log(R/ρ+ 1) + 2 log(1/β)

ε
(8)

and ωL
f (S;K) = supS′:dH(S,S′)≤K L (f(S), f(S ′)) denotes the local modulus of continuity of f at S with respect to loss

function L.

Proof. We define the good set of outputs A = {t ∈ Rd : lenρ(S; t) ≤ K}, where lenρ(S; t) is defined with respect to norm
∥·∥ and K ∈ N. By the definition of ρ-smooth-inverse sensitivity, for any t ∈ A, there exists s ∈ T with len(S; s) = K and
∥s− t∥ ≤ ρ. We will show that Pr[Mρ

Inv(S) /∈ A] ≤ β for sufficiently large K. This implies the desired upper bound as we
have that for t ∈ A

L(t, f(S)) ≤ L(t, s) + L(s, f(S)) (by triangle inequality)

≤ cL ∥t− s∥+ ωL
f (S;K) (since s ∈ B(R), ∥t− s∥ ≤ ρ, so s, t ∈ B(R+ ρ))

≤ cLρ+ ωL
f (S;K).

Now we upper bound Pr[Mρ
Inv(S; f) /∈ A]. First, note that lenρ(S;u) = 0 for u such that ∥u− f(S)∥ ≤ ρ. This implies

that for any t such that lenρ(S; t) ≥ K, the density is upper bounded by

πS(t) ≤
e−Kε/2∫

u:∥u−f(S)∥≤ρ
du

Overall, this implies that

Pr[Mρ
Inv(S; f) /∈ A] ≤ e−Kε/2

∫
u:∥u∥≤R+ρ

du∫
u:∥u−f(S)∥≤ρ

du

≤ e−Kε/2(R/ρ+ 1)d.

Setting K ≥ 2d log(R/ρ+1)+2 log(1/β)
ε , we get that Pr(Mρ

Inv(S; f) /∈ A) ≤ β.

We are now ready to prove Theorem A.2.
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Proof of Theorem A.2. First note that the claim about privacy is immediate from the guarantees of the smooth-inverse-

sensitivity mechanism. Now we prove utility. Let K =
2
(
d log

(
R
α0

+1
)
+log 1

β

)
ε . The error of Mρ

Inv(S,Arob) is then bounded
as follows:

L (Mρ
Inv(S;Arob), µ)

≤ L (Arob(S), µ) + L (Mρ
Inv(S;Arob),Arob(S)) (by triangle inequality)

≤ L (Arob(S), µ) + sup
S′:dH(S′,S)≤K

L (Arob(S ′),Arob(S)) + cLα0 (w.p. 1− β by Theorem A.3)

≤ 2L (Arob(S), µ) + sup
S′:dH(S′,S)≤K

L (µ,Arob(S ′)) + cLα0 (by triangle inequality)

Recall that, by assumption, Arob is (τ, β, α)-robust for τ ≥ K/n, and α0 ≤ α. Thus, with probability 1 − β,
L (Arob(S ′), µ) ≤ α for any τ -corrupted dataset S ′. By union bound, we have that with probability 1 − 2β,
L (Mρ

Inv(S;Arob), µ) ≤ 3α+ cLα0 ≤ (3 + cL)α = O(α).

A.3. Robust-to-Private Transformation for Sparse Estimators

In this section, we extend our transformation to work for k-sparse statistical estimation problems with improved dependence
on the dimension. To this end, we define a variant of the smooth inverse sensitivity which is non-zero only for k-sparse
outputs,

lensp(S; t) =

{
infs∈Rd:∥s−t∥≤ρ len(S; s) if ∥t∥0 ≤ k

∞ if ∥t∥0 > k

Then, our sparse-variant of the inverse sensitivity mechanism Mρ
sp applies the exponential mechanism with lensp as the score

function,

πS(t) =
e−lensp(S;t)ε/2∫

s∈Rd e−lensp(S;s)ε/2ds
(9)

We have the following upper bound for this mechanism.
Theorem A.4. Let f : Zn → T where T = {v ∈ Rd : ∥v∥ ≤ R} such that ∥f(S)∥0 ≤ k for all S ∈ Zn . Then for any
S ∈ Zn, and β > 0, with probability at least 1− β, the (sparse) inverse-sensitivity mechanism (9) with norm ∥·∥ has error

L (Mρ
Inv(S; f), f(S)) ≤ ωL

f (S;K) + cLρ,

where

K ≥
2
(
k (log(ed/k) + log(R/ρ+ 1)) + log 1

β

)
ε

(10)

and ωL
f (S;K) = supS′:dH(S,S′)≤K L (f(S), f(S ′)) denotes the local modulus of continuity of f at S with respect to loss

function L.

Proof. The proof follows similar steps to the proof of Theorem A.3. We define the good set of outputs A = {t ∈ Rd :
lensp(S; t) ≤ K}, where lensp(S; t) is defined with respect to norm ∥·∥ and K ∈ N. By the definition of sparse inverse
sensitivity, for any t ∈ A, t is k-sparse and there exists s ∈ T with len(S; s) = K and ∥s− t∥ ≤ ρ. We will show that
Pr[Mρ

Inv(S) /∈ A] ≤ β for sufficiently large K. This implies the desired upper bound as we have that for t ∈ A

L(t, f(S)) ≤ L(t, s) + L(s, f(S)) (by triangle inequality)

≤ cL ∥t− s∥+ ωL
f (S;K) (since s ∈ B(R), ∥t− s∥ ≤ ρ, so s, t ∈ B(R+ ρ))

≤ cLρ+ ωL
f (S;K).

Now we upper bound Pr[Mρ
Inv(S; f) /∈ A]. First, note that lenρ(S;u) = 0 for u such that ∥u− f(S)∥ ≤ ρ. This implies

that for any t such that lenρ(S; t) ≥ K, the density is upper bounded by 0 if ∥t∥0 > k, and otherwise,

πS(t) ≤
e−Kε/2∫

u:∥u∥0≤k,∥u−f(S)∥≤ρ
du
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Overall, this implies that

Pr[Mρ
Inv(S; f) /∈ A] ≤ e−Kε/2

∫
u∈Rd:∥u∥0≤k,∥u∥≤R+ρ

du∫
u∈Rd:∥u∥0≤k,∥u−f(S)∥≤ρ

du

≤ e−Kε/2

(
d

k

)∫
u∈Rk:∥u∥≤R+ρ

du∫
u∈Rk:∥u∥≤ρ

du

≤ e−Kε/2

(
d

k

)
(R/ρ+ 1)k

≤ e−Kε/2(ed/k)k(R/ρ+ 1)k.

Setting K ≥ 2k(log(ed/k)+log(R/ρ+1))+2 log(1/β)
ε , we get that Pr(Mρ

Inv(S; f) /∈ A) ≤ β.

Using this mechanism, we now have the following transformation from robust-to-private for sparse estimators.

Theorem A.5 (Robust-to-private for sparse estimators). Let S = (S1, . . . , Sn) where Si
iid∼ P such that µ(P ) ∈ Rd.

Let ε, β ∈ (0, 1). Let L : (Rd)2 → R be a loss function which satisfies the triangle inequality. Let Arob : (Rd)n →
{t ∈ Rd : ∥t∥ ≤ R} be a (deterministic) (τ, β, α)-robust algorithm with respect to L such that ∥Arob(S)∥0 ≤ k
for all S. Let α0 ≤ α. Suppose n is such that the smallest value τ satisfying Equation (11) is at most 1. Suppose
∀u, v ∈ B(R+ α0) L(u, v) ≤ cL ∥u− v∥ for some constant cL. If

τ ≥
2
(
k (log(ed/k) + log(R/α0 + 1)) + log 1

β

)
nε

(11)

then Algorithm Mρ
sp(S;Arob) with ρ = α0 in norm ∥·∥ is ε-DP and, with probability at least 1− 2β, has error

L
(
Mρ

sp(S;Arob), µ
)
≤ (3 + cL)α = O(α).

We leave the proof as an exercise for the reader as it is identical to the proof of Theorem A.2 using the upper bounds for the
sparse variant of the inverse sensitivity mechanism (Theorem A.4).

A.4. Omitted proofs of Section 2 and Section 4.2

Theorem A.6 (Continuous functions, restatement of Theorem 2.4). Let f : Zn → T where T = {v ∈ Rd : ∥v∥ ≤ R}.
Then for any S ∈ Zn, and β > 0, with probability at least 1− β, the ρ-smooth inverse-sensitivity mechanism with norm ∥·∥
has error

∥Mρ
Inv(S; f)− f(S)∥ ≤ ωf

S; 2
(
d log

(
R
ρ + 1

)
+ log 1

β

)
ε

+ ρ.

Proof. We define the good set of outputs A = {t ∈ Rd : lenρ(S; t) ≤ K}. By the definition of ρ-smooth inverse-sensitivity,
for any t ∈ A, there exists s ∈ Rd with len(S; s) ≤ K and ∥s− t∥ ≤ ρ. We will show that Pr[Mρ

Inv(S) /∈ A] ≤ β for
sufficiently large K. This implies the desired upper bound as we have that for t ∈ A

∥t− f(S)∥ = ∥t− s+ s− f(S)∥
≤ ∥t− s∥+ ∥s− f(S)∥
≤ ρ+ ωf (S;K).

Now we upper bound Pr[Mρ
Inv(S; f) /∈ A]. First, note that lenρ(S; s) = 0 for s such that ∥s− f(S)∥ ≤ ρ. This implies

that for any t such that lenρ(S; t) ≥ K, the density is upper bounded by

πS(t) ≤
e−Kε/2∫

s:∥s−f(S)∥≤ρ
ds

.
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Overall, this implies that

Pr[Mρ
Inv(S; f) /∈ A] ≤ e−Kε/2

∫
s:∥s∥≤R+ρ

ds∫
s:∥s−f(S)∥≤ρ

ds

≤ e−Kε/2(R/ρ+ 1)d.

Setting K ≥ 2d log(R/ρ+1)+2 log(1/β)
ε , we get that Pr(Mρ

Inv(S; f) /∈ A) ≤ β.

Corollary A.7 (Optimality, restatement of Corollary 4.2). Let P be a family of distributions and P ∈ P . Let µ be
a 1-dimensional statistic where |µ(P )| ≤ 1. Let αpriv(ε, β) be the minimax error of any ε-DP algorithm with failure
probability β ≤ 1/4 that estimates statistic µ(P ). Let n > 1. Suppose that there exists a constant c such that the non-private
error αpriv(∞, β) ≥ 1

nc for any β ≤ 1/2. Then there are constants c1 ≥ c2 > 0 such that βp = 1/nc1 and β′
p = 1/nc2 ,

robust algorithm Arob, and a choice of ρ, such that the ρ-smooth inverse-sensitivity mechanism Mρ
Inv(·;Arob) with privacy

parameter ε achieves the minimax optimal error O(αpriv(ε, βp)) with probability 1− β′
p.

Proof. Let αpriv(ε, β) be the minimax error for estimating µ under family P for any β ≤ 1/4. By Theorem 3.3 and Theo-
rem A.1, there exists a deterministic τ -robust algorithm with τ = log(1/γ)/nε, with accuracy α1 = 2αpriv(ε, β) and failure
probability β1 = 2β/γ. Via the transformation of Theorem 3.1, choosing ρ = 1

nc ≤ αpriv(ε, β), we can construct an ε-DP
algorithm with failure probability 2β1 = 4β/γ and accuracy 4α1 = 8αpriv(ε, β), if τ = log(1/γ)

nε ≥ 2 log(nc+1)+2 log(γ/(4β))
nε .

Setting γ = (4β/(2n)c)2/3 satisfies the requirement. Thus, the ε-DP algorithm constructed via the transformation in The-
orem 3.1 has error at most 8αpriv(ε, β) with failure probability at most β′

p = 4β/γ = (4β)1/3 · (2n)2c/3. There exist
constants c1 ≥ c2 > 0 such that β = βp = 1

nc1
and β′

p = 1
nc2

.

B. Improved Transformation for Approximate DP
In this section, we propose a different transformation for (ε, δ)-DP that avoids the necessary dependence on diameter for
pure ε-DP. Our transformation uses a truncated version of the inverse-sensitivity mechanism which only outputs values with
bounded inverse sensitivity. This mechanism is not differentially private for all inputs, therefore, in order to guarantee privacy,
we use a private test to verify that the input is well-behaved before running the truncated inverse-sensitivity mechanism.

This approach can be viewed as a special case of the restricted exponential mechanism of Brown et al. (2021) (or the
even more general HPTR framework (Liu et al., 2022)), which in turn has been inspired by the propose-test-release (PTR)
framework (Dwork and Lei, 2009). However, we choose a simplified algorithm and presentation, which is tailored to our
case, where we have the smooth inverse sensitivity as our cost function.

B.1. Truncated Inverse-Sensitivity Mechanism

We develop a truncated version of the inverse-sensitivity mechanism which is (ε, δ)-DP. This mechanism uses a truncated
version of the inverse sensitivity as follows: given a function f : Zn → Rd and threshold K,

lentruncf (S; t) :=

{
lenρf (S; t) if lenρf (S; t) ≤ K

∞ otherwise.

The truncated inverse-sensitivity mechanism Mρ
trunc(·; f) then applies the exponential mechanism using this score function,

resulting in the following density given an input dataset S:

πS(t) =
e−lentruncf (S;t)ε/2∫

s∈Rd e
−lentruncf (S;s)ε/2ds

(12)

Before proving the guarantees of the truncated inverse-sensitivity mechanism, we need to define (ε, δ)-indistinguishable
distributions:
Definition B.1 ((ε, δ)-indistinguishability). Two distributions P,Q over domain T are (ε, δ)-indistinguishable, denoted by
P ≈ε,δ Q, if for any measurable subset T ⊆ T ,

Pr
t∼P

[t ∈ T ] ≤ eε Pr
t∼Q

[t ∈ T ] + δ and Pr
t∼Q

[t ∈ T ] ≤ eε Pr
t∼P

[t ∈ T ] + δ.
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Note that if A(S) ≈ε,δ A(S ′) for any neighboring datasets S,S ′, then A is (ε, δ)-differentially private. We have the
following guarantees for the truncated inverse-sensitivity mechanism.

Proposition B.2. Let n ≥ 1, ε, δ ∈ (0, 1), B > 0, and f : Zn → Rd. Let K ≥ d+log(1/δ)
ε and Sbad = {S ∈ Zn :

ωf (S;K + 1) > B}. For any S /∈ Sbad, the truncated inverse-sensitivity mechanism (12) with ρ = 2B has error

∥Mρ
trunc(S; f)− f(S)∥ ≤ 3B.

Moreover, for any S /∈ Sbad and neighboring dataset S ′, Mρ
trunc(S; f) ≈ε,δ Mρ

trunc(S ′; f).

Proof. The claim about utility follows directly from the definition of the truncated inverse-sensitivity as the probability
of returning t such that lentruncf (S; t) ≥ K is zero. Now we proceed to prove the privacy claim. Let S ∈ Sc

bad and
S ′ ∈ Zn be two neighboring datasets and T ⊂ T . Since ωf (S;K + 1) ≤ B, we have that ωf (S ′;K) ≤ 2B. Thus, it
suffices to show that for any two neighboring datasets S and S ′ such that ωf (S ′;K) ≤ 2B and ωf (S;K) ≤ 2B, we have
Pr[Mρ

trunc(S; f) ∈ T ] ≤ eε Pr[Mρ
trunc(S ′; f) ∈ T ] + δ. Let T0 = {t ∈ T : lenρf (S; t) = K}. Now we have

Pr[Mρ
trunc(S; f) ∈ T ] = Pr[Mρ

trunc(S; f) ∈ T \ T0] + Pr[Mρ
trunc(S; f) ∈ T ∩ T0]

≤ eε Pr[Mρ
trunc(S ′; f) ∈ T \ T0] +

e−Kε

Vol(Bd(ρ))
Vol(T ∩ T0)

≤ eε Pr[Mρ
trunc(S ′; f) ∈ T ] +

e−Kε

Vol(Bd(ρ))
Vol(T ∩ T0),

where the first inequality follows since for t /∈ T0 we have that either |lentruncf (S; t)− lentruncf (S ′; t)| ≤ 1 or lentruncf (S; t) =
∞. Since ωf (S;K) ≤ 2B, we get Vol(T ∩ T0) ≤ Vol(T0) ≤ Vol(Bd(2B + ρ)). For ρ = 2B, this implies that Vol(T ∩
T0)/Vol(Bd(ρ)) ≤ Vol(Bd(4B))/Vol(Bd(2B)) = 2d. Therefore, for K ≥ d+log(1/δ)

ε , we have that Pr[Mρ
trunc(S; f) ∈

T ] ≤ eε Pr[Mρ
trunc(S ′; f) ∈ T ] + δ. By symmetry, we can use the same argument, to show that Pr[Mρ

trunc(S ′; f) ∈ T ] ≤
eε Pr[Mρ

trunc(S; f) ∈ T ] + δ. Thus, overall we show that Mρ
trunc(S; f) ≈ε,δ Mρ

trunc(S ′; f) for all S /∈ Sbad and neighboring
dataset S ′ : dH(S,S ′) ≤ 1.

While it may seem that the truncated inverse sensitivity provides the desired transformation for (ε, δ)-DP, note that it requires
the condition ωf (S;K + 1) ≤ B to hold for all inputs S ∈ Zn. However, robust algorithms only guarantee boundedness

of ωf (S;K + 1) for S iid∼ Pn. To this end, in the next section we show how to use propose-test-release (PTR) in order to
overcome this barrier.

B.2. PTR-based Transformation

Building on the truncated inverse-sensitivity mechanism, in this section we use propose-test-release (PTR) to design a
transformation from robust algorithms into approximate (ε, δ)-DP algorithms where the error does not depend on the
diameter.

An equivalent approach would be to use the restricted exponential mechanism from (Brown et al., 2021) with the smooth
inverse-sensitivity lenρf (S; t) as its cost function. The main idea of this approach is to perform a private test to check if
the input S is far from “unsafe”, before running the exponential mechanism restricted to points t with lenρf (S; t) ≤ K.
The set “unsafe” consists of datasets on which running the restricted exponential mechanism would not produce (ε, δ)-
indistinguishable outputs. However, our specific score function allows us to simplify the “unsafe” set, and this is the algorithm
we present in this section. The following theorem states its guarantees. We present our transformation in Algorithm 3.

Theorem B.3 (Robust-to-private, approximate DP, restatement of Theorem 5.1). Let S = (S1, . . . , Sn) where Si
iid∼ P

such that µ(P ) ∈ Rd. Let ε, δ, β ∈ (0, 1). Let Arob : (Rd)n → Rd be a deterministic (τ, β, α)-robust algorithm for the
statistic µ. If τ ≥ 8(d+log(1/min{δ,β}))

nε then Algorithm 1 with B = 2α and ρ = 2B is (ε, δ)-DP and, with probability at
least 1− 2β returns µ̂ such that ∥µ̂− µ∥ ≤ 7α.

Proof. We start by proving the privacy guarantees of Algorithm 1. Note that the Laplace mechanism (Dwork et al., 2006)
implies that d̂ is ε/2-DP as the function d has sensitivity 1. By assumption on τ , K = nτ/2 − 1 ≥ 2(d+log(2/δ))

ε . Thus,
by Proposition B.2, for input dataset S , if ωf (S;K + 1) ≤ B then the truncated inverse-sensitivity is (ε/2, δ/2)-DP. On the
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Algorithm 3 Robust-to-Private ((ε, δ)-DP), restatement of Algorithm 1
Require: S = (S1, . . . , Sn), (τ, β, α)-robust algorithm Arob, local modulus bound B

1: Let K = nτ/2− 1
2: Let Sbad = {S ∈ Zn : ωf (S;K + 1) > B}
3: Calculate d = dist(S, Sbad)

4: Set d̂ = d+ ζ where ζ ∼ Laplace(2/ε)

5: if d̂ > 2 log(1/min(δ, β))/ε then
6: Sample t from the truncated inverse-sensitivity mechanism (12) with threshold K, privacy parameter ε/2, smoothness

parameter ρ = 2B, and return t.
7: else
8: Return ⊥
9: end if

other hand, if ωf (S;K + 1) > B then d = 0 and therefore d̂ ≤ 2 log(1/δ)/ε with probability 1− δ/2 and the algorithm
returns ⊥. Overall, by composition, Algorithm 1 is (ε, δ)-DP.

We now prove the accuracy guarantee. Let S iid∼ Pn. By the guarantee of the robust algorithm, with probability 1− β, for
all S ′ such that dH(S,S ′) ≤ τn, we get that ∥Arob(S ′)− µ(P )∥ ≤ α. Therefore, for any S ′1 such that dH(S,S ′1) ≤ τn/2,
we have

ωf (S ′1;nτ/2) = sup
S′
2:dH(S′

1,S′
2)≤nτ/2

∥Arob(S ′1)−Arob(S ′2)∥

≤ sup
S′
2:dH(S′

1,S′
2)≤nτ/2

(∥Arob(S ′1)− µ(P )∥+ ∥µ(P )−Arob(S ′2)∥)

≤ α+ sup
S′
2:dH(S,S′

2)≤nτ

∥µ(P )−Arob(S ′2)∥

≤ 2α.

Since B = 2α, we have that with probability 1 − β, d => nτ/2 and in particular S /∈ Sbad. By the concentration
guarantees of the Laplace distribution, we have that d̂ > nτ/2 − 2 log(1/β)/ε with probability at least 1 − β, and thus
d̂ > 2 log(1/min{β,δ})

ε , which implies that the algorithm will run the truncated inverse-sensitivity mechanism. Proposition B.2
now implies that the latter will return µ̂ such that ∥µ̂−Arob(S)∥ ≤ 3B. Moreover, ∥Arob(S)− µ∥ ≤ α. Overall we get
that with probability 1− 2β,

∥µ̂− µ∥ ≤ ∥µ̂−Arob(S)∥+ ∥Arob(S)− µ∥ ≤ 3B + α = 7α.

This completes the proof of the theorem.

C. More Applications for Pure DP
In this section we apply our main transformation in Theorem 3.1 to fundamental tasks in private statistics to demonstrate
that for all these tasks near-optimal error can be achieved by instantiating our black-box reduction with a robust estimator
for the same task. In Appendix C.1 and Appendix C.2 we show that we can retrieve known optimal results for mean and
covariance estimation of Gaussian distributions up to logarithmic factors. In Appendix C.3 and Section 6.1, we show that
our transformation gives the first algorithms with optimal error for linear regression (including the sparse case) and PCA for
Gaussian distributions. Our results for PCA hold for subgaussian distributions more generally.

For the majority of this section we will use the more general transformation, proven in Appendix A.2Theorem A.2.

The general strategy we follow in our applications is simple. We choose a known robust algorithm A for the statistic
µ ∈ B(R) we want to estimate. Informally, let us denote its accuracy by α(τ), as it will be a function of the fraction of
corruptions in the dataset τ (among other parameters). Applying our robust-to-private transformation from Theorem 3.1, we
retrieve an ε-DP algorithm with accuracy roughly α(τ⋆) for τ⋆ ≈ d log(R′/α0)+log(1/β)

nε . More precisely, we let Arob be the
algorithm that runs A and then projects its output on B(R′), where R′ is such that, with high probability, the projection
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will have no effect and will maintain the accuracy guarantees of A. Let α0 be the error rate for learning statistic µ without
privacy constraints or corruptions, which is always smaller than α(τ). We run the ρ-smooth-inverse-sensitivity mechanism
instantiating it with the projected robust algorithm Arob and with smoothness parameter ρ = α0. In most applications,
α(τ) = Õ(τ) so the error we incur on top of the non-private error α0 is Õ(d/nε).

Theorem A.2extends Theorem 3.1 allowing us to measure the error of the algorithm with respect to a loss function L that
may depend on unknown parameters and thus can not be computed directly. As long as this loss satisfies the triangle
inequality, and any error we incur due to the smoothness ρ in norm ∥·∥ upper-bounds the error in L up to constants, the
statement of our main theorem still holds.

For useful linear algebra facts and definitions, see Appendix D.

C.1. Mean Estimation

C.1.1. KNOWN COVARIANCE

We start with the task of estimating the mean µ of a d-dimensional Gaussian distribution with known covariance Σ. By
applying Σ−1/2 to all the points, this case can be reduced to spherical Gaussian mean estimation, where we can assume
Σ = I. We also assume that we know a priori a bound R such that ∥µ∥2 ≤ R.2 Corollary C.1 states that via our
transformation, we can retrieve the optimal error for Gaussian mean estimation with known covariance under pure DP,
matching optimal bounds (Bun et al., 2019; Liu et al., 2021).

Corollary C.1 (Spherical Gaussian mean). Let S = (S1, . . . , Sn) where Si
iid∼ N(µ, I) such that µ ∈ B(R). Let ε, β ∈ (0, 1)

and C ≥ 1 a known constant. Suppose n is such that α ≤ 1 in Equation (13). There exists an ε-DP algorithmM such that,
with probability at least 1− β, has error ∥M(S)− µ∥2 ≤ α for

α = C ·

√d+ log( 1β )

n
+

d log
(
Rn
d

)
+ log( 1β )

nε

 . (13)

Since we are not concerned with computational efficiency, we will use the Tukey median as the robust Gaussian mean
estimation algorithm for our transformation. The Tukey depth (Tukey, 1960) of a point t with respect to a distribution P is
defined by

TP (t) := inf
v∈Rd

Pr
S∼P

[⟨S, v⟩ ≥ ⟨t, v⟩].

We denote by TS(t) :=
1
n minv

∑
i∈[n][⟨Si, v⟩ ≥ ⟨t, v⟩] the (normalized) Tukey depth of t with respect to dataset S. The

Tukey median with respect to any dataset S is then tm(S) = argmaxt∈Rd TS(t). Let ΠC(t) = argminv∈C ∥v − t∥2 be the
euclidean projection of a point t to convex set C. The next proposition states the robustness guarantees of (projected) Tukey
median, which have been long-established (for a complete proof see e.g. (Li, 2019) or the more general Proposition D.4
in Appendix D).

Proposition C.2. Let S = (S1, . . . , Sn) where Si
iid∼ N(µ, I) such that µ ∈ B(R). Let β ∈ (0, 1), τ ≤ 0.05, and

α0 = C0 ·
√
(d+ log(1/β))/n for a known constant C0 ≥ 1. Suppose n is such that α0 ≤ 0.05. Let α = 7(α0 + τ) ≤ 1.

The projected Tukey median algorithm Arob(S) = ΠB(R+1)(tm(S)) is (τ, β, α)-robust. That is, with probability 1− β, for
any τ -corrupted S ′, such that dH(S,S ′) ≤ nτ , it holds that, ∥Arob(S ′)− µ∥2 ≤ α.

Using the above proposition, the proof of Corollary C.1 is a straightforward application of Theorem 3.1.

Proof of Corollary C.1. Consider the ρ-smooth-inverse-sensitivity mechanism Mρ
Inv(·;Arob) with norm ∥·∥ = ∥·∥2,

Arob(S) = ΠB(R+1)(tm(S)) and ρ = α0 = C0

√
(d+ log(1/β))/n, as in Proposition C.2 above. We apply Theorem 3.1

to obtain a bound on the error of Mρ
Inv(S;Arob). Let

τ =
2d log

(
R+1
α0

+ 1
)
+ 2 log( 1β )

nε
.

2Knowledge of R is necessary for mean estimation under pure DP (Hardt and Talwar, 2010; Beimel et al., 2014; Bun et al., 2019).

20



From Robustness to Privacy and Back

Assume τ ≤ 0.05 and α0 ≤ 0.05, which we will confirm later. By Proposition C.2, Arob is (τ, β, α)-robust for

α = 7C0 ·

√
d+ log( 1β )

n
+ 7

2d log
(

R+1
α0

+ 1
)
+ 2 log( 1β )

nε


≤ C ′ ·

√d+ log( 1β )

n
+

d log
(
Rn
d

)
+ log( 1β )

nε

 ,

for constant C ′ = 42C0. Notice that α0 ≤ α. Therefore, by Theorem 3.1, it holds that, with probability at least 1 − 2β,

∥Mρ
Inv(S;Arob)− µ∥2 ≤ 4α ≤ C ·

(√
d+log( 1

β )

n +
d log(Rn

d )+log( 1
β )

nε

)
, for C = 168C0. By assumption, n is sufficiently

large so that the latter is less than 1 and as such, it also ensures that α0 ≤ 0.05 and τ ≤ 0.05. The proof is complete by
rescaling β ← β/2 and adjusting the constants.

C.1.2. UNKNOWN COVARIANCE

We now move to the more general task of Gaussian mean estimation with unknown mean µ and covariance Σ, but with
known a priori bounds R, κ such that µ ∈ Bd(R) and I ⪯ Σ ⪯ κI. The error metric is the affine-invariant Mahalanobis
distance with respect to Σ, defined by ∥µ̂− µ∥Σ :=

√
(µ̂− µ)⊤Σ−1(µ̂− µ). In Corollary C.3, we show that via our

transformation, we retrieve known error bounds for Gaussian mean estimation with known parameters R, κ under pure
DP (Bun et al., 2019; Liu et al., 2021).3

Corollary C.3 (Gaussian mean). Let S = (S1, . . . , Sn) where Si
iid∼ N(µ,Σ) such that µ ∈ B(R) and I ⪯ Σ ⪯ κI. Let

ε, β ∈ (0, 1) and C ≥ 1 a known constant. Suppose n is such that α ≤ 1 in Equation (14). There exists an ε-DP algorithm
M such that, with probability at least 1− β, has error ∥M(S)− µ∥Σ ≤ α for

α = C ·

√d+ log( 1β )

n
+

d log
(

(R+
√
κ)n

d

)
+ log( 1β )

nε

 . (14)

Again, we choose the projected Tukey median as our robust mechanism for this task. We state its guarantees for the
Mahalanobis loss (proven in Appendix D).

Proposition C.4. Let S = (S1, . . . , Sn) where Si
iid∼ N(µ,Σ) such that µ ∈ B(R) and I ⪯ Σ ⪯ κI. Let β ∈ (0, 1), τ ≤

0.05, and α0 = C0 ·
√
(d+ log(1/β))/n for known constant C0. Suppose n is such that α0 ≤ 0.05. Let α = 7(α0+τ) ≤ 1.

The projected Tukey median algorithm Arob(S) = ΠB(R+
√
κ)(tm(S)) is (τ, β, α)-robust with respect to the Mahalanobis

loss. That is, with probability 1−β, for any τ -corrupted S ′, such that dH(S,S ′) ≤ nτ , it holds that ∥Arob(S ′)− µ∥Σ ≤ α.

Using the above proposition, the proof of Corollary C.3 is a straightforward application of Theorem A.2.

Proof of Corollary C.3. We let L(u, v) = ∥u− v∥Σ be the loss function. As a norm, L satisfies the triangle inequality.
Moreover, ∀s, t ∈ Rd L(s, t) ≤ cL ∥s− t∥2 for cL = 1 since I ⪯ Σ (by Proposition D.1 in Appendix D). Consider
the ρ-smooth-inverse-sensitivity mechanism Mρ

Inv(·;Arob) with norm ∥·∥ = ∥·∥2, Arob(S) = ΠB(R+
√
κ)(tm(S)) and

ρ = α0 = C0

√
(d+ log(1/β))/n. We apply Theorem A.2 to obtain a bound on the mechanism’s error with respect to L.

Let

τ =
2d log

(
R+

√
κ

α0
+ 1
)
+ 2 log( 1β )

nε
.

3These results are stated for Σ = I, but can be extended to the case of unknown Σ such that I ⪯ Σ ⪯ κI, achieving the same error as
in Corollary C.3 up to logarithmic factors.
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Assume τ ≤ 0.05 and α0 ≤ 0.05, which we will confirm later. By Proposition C.2, Arob is (τ, β, α)-robust for

α = 7C0

√
d+ log( 1β )

n
+ 7

2d log
(

R+
√
κ

α0
+ 1
)
+ 2 log( 1β )

nε

≤ C ′ ·

√d+ log( 1β )

n
+

d log
(

(R+
√
κ)n

d

)
+ log( 1β )

nε

 ,

for constant C ′ = 28C0. Notice that α0 ≤ α. Therefore, by Theorem A.2, it holds that, with probability at least 1− 2β,

L(Mρ
Inv(S;Arob), µ) = ∥Mρ

Inv(S;Arob)− µ∥Σ ≤ 4α ≤ C ·

√d+ log( 1β )

n
+

d log
(

(R+
√
κ)n

d

)
+ log( 1β )

nε

 ,

for C = 112C0. By assumption, n is sufficiently large so that the latter is less than 1, and as such, it also ensures that
α0 ≤ 0.05 and τ ≤ 0.05. The proof is complete by rescaling β ← β/2 and adjusting the constants.

C.2. Covariance Estimation

Given dataset S iid∼ N(0,Σ)n, where I ⪯ Σ ⪯ κI, our goal is to return an estimate Σ̂ ∈ Rd×d, with small error, measured by
the relative Frobenius norm:

∥∥∥Σ−1/2Σ̂Σ−1/2 − I
∥∥∥
F

. The task of covariance estimation for Gaussian distributions has been
extensively studied both under robustness and differential privacy, and is particularly useful as a first step for learning a
Gaussian distribution in total variation distance (see e.g. Corollary 2.14 in (Diakonikolas et al., 2016)). Note that the fact
that the distribution is assumed to be zero-mean is w.l.o.g., as the general case can be reduced to the zero-mean case up to
constant factors in the error, by letting the difference between a pair of nonzero-mean samples be a single zero-mean sample.

In Corollary C.5, we show that via our transformation, we retrieve the optimal known error bounds for Gaussian covariance
estimation with known parameter κ under pure DP (Bun et al., 2019; Aden-Ali et al., 2021).4

Corollary C.5 (Gaussian covariance). Let S = (S1, . . . , Sn) where Si
iid∼ N(0,Σ) such that I ⪯ Σ ⪯ κI. Let ε, β ∈ (0, 1).

Suppose n is such that α ≤ 1 in Equation (15). There exists an ε-DP algorithmM such that, with probability at least 1− β,
has error

∥∥Σ−1/2M(S)Σ−1/2 − I
∥∥
F
≤ α for

α = O

((√
d2

n
+

d2

nε

)
· polylog(nκ/β)

)
. (15)

There are several algorithms in the robust statistics literature that achieve near-optimal bounds for robust covariance
estimation of Gaussian distributions, which can serve as a good instantiation of our transformation. The next theorem states
the robust accuracy guarantees of the algorithm proposed in (Diakonikolas et al., 2017).5

Theorem C.6 ((Diakonikolas et al., 2017)). Let S = (S1, . . . , Sn) where Si
iid∼ N(0,Σ). Let β ∈ (0, 1), τ ∈ (0, 1).

Suppose n ≥ Ω
(

d2 log5(d/τβ)
τ2

)
. Let α′ = O (τ log (1/τ)) . There exists algorithm Arob which is (τ, β, α′)-robust. That

is, with probability 1 − β, for any τ -corrupted S ′, such that dH(S,S ′) ≤ nτ , it returns matrix Arob(S ′) = Σ̂ such that∥∥∥Σ−1/2Σ̂Σ−1/2 − I
∥∥∥
F
≤ α′.

Proof of Corollary C.5. We will run the ρ-smooth-inverse-sensitivity mechanism over vectors RD, D = d2, with ∥·∥ = ∥·∥2.
We denote by vec(V ) ∈ Rd2

the flattening of a matrix V ∈ Rd×d, so that if vec(V ) = v, then Vi,j = vd(i−1)+j . Then
∥vec(U)− vec(V )∥2 = ∥U − V ∥F. Let A be the robust algorithm established in Theorem C.6. We will instantiate our

4Knowledge of parameter κ is necessary for this task under pure DP (Bun et al., 2019; Alabi et al., 2022).
5This algorithm as well as other alternatives (Cheng et al., 2019; Li and Ye, 2020) are computationally efficient. It is possible that by

using a computationally inefficient algorithm we would achieve smaller error up to logarithmic factors, but since we are not aiming to
optimize for those factors, we chose the clearer statement from (Diakonikolas et al., 2017).
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transformation with Arob(S) = ΠBD(R′)(vec(A(S))) for R′ = 2
√
dκ, that is, after flattening the output of A, we take its

euclidean projection on the D = d2-dimensional ball of radius R′ in ℓ2 norm. Let Σ̂ = A(S). We have that∥∥∥vec(Σ̂)∥∥∥
2
=
∥∥∥Σ̂∥∥∥

F

≤ ∥Σ∥F +
∥∥∥Σ̂− Σ

∥∥∥
F

(triangle inequality)

= ∥Σ∥F +
∥∥∥ΣΣ−1(Σ̂− Σ)

∥∥∥
F

≤ ∥Σ∥F + ∥Σ∥F ·
∥∥∥Σ−1/2(Σ̂− Σ)Σ−1/2

∥∥∥
F

(∥·∥F sub-multiplicative, rotation-invariant)

≤
√
dκ
(
1 +

∥∥∥Σ−1/2(Σ̂− Σ)Σ−1/2
∥∥∥
F

)
. (∥·∥F ≤

√
d ∥·∥2)

By Theorem C.6, the latter is at most
√
dκ(1 + α′) with probability 1− β. Suppose α′ ≤ 1, which we will confirm last.

Thus, with probability 1− β, the projection on the euclidean ball with radius R′ = 2
√
dκ will not affect the output of the

algorithm and Arob will have the same accuracy guarantees as stated in Theorem C.6.

We will let the loss function L : (Rd×d)2 → R be L(U, V ) =
∥∥Σ−1/2(U − V )Σ−1/2

∥∥
F

over matrices U, V . Our
goal is then to return a matrix U with small error L(U,Σ).6 Note that L satisfies the triangle inequality since the
Frobenius norm does. For all u, v ∈ Rd2

, let V,U ∈ Rd×d denote their corresponding matrices. We have that L(U, V ) =∥∥Σ−1(U − V )
∥∥
F
≤ ∥(U − V )∥F = ∥u− v∥2, since Σ−1 ⪯ I and ∥·∥F is monotone. It follows that L satisfies all the

requirements of Theorem A.2.

Let α0 = O(
√
(d2 + log(1/β))/n) < 1, by assumption on n. We take τ which satisfies both τ =

Ω
(

2D log(R′/α0+1)+2 log(1/β)
nε

)
= Ω

(
d2 log(κn/d)+log(1/β)

nε

)
(required by Theorem A.2) and τ = Ω

(√
d2 log5(d/τβ)

n

)
(required by Theorem C.6). Then Arob is (τ, β, α′)-robust with

α′ = O

((√
d2

n
+

d2

nε

)
· polylog(nκ/β)

)
.

We then have that Mρ
Inv(·,Arob) with ρ = α0 is ε-DP and with probability at least 1− 2β, returns matrix V̂ , which has error

L(V̂ ,Σ) =
∥∥∥Σ−1/2V̂ Σ1/2 − I

∥∥∥
F
≤ 4α′ = α.

By assumption, n is large enough so that α ≤ 1 and as such α′ < 1 as well. The statement follows by rescaling β ← β/2
and adjusting the constants.

C.3. Linear Regression

In this section, we apply our transformation to obtain an algorithm for linear regression for Gaussian data under pure DP. To
the best of our knowledge, Corollary C.7 gives the first (computationally inefficient) algorithm for pure DP which achieves
the optimal error rate up to logarithmic factors for Gaussian distributions. Liu et al. (2022) gave the analogous result under
approximate DP.
Corollary C.7 (Gaussian Linear Regression). Let S = (S1, . . . , Sn) where for all i ∈ [n], Si = (Xi, yi) ∈ Rd × R is

generated by a linear model yi = X⊤
i θ + ηi for some unknown θ ∈ Bd(R), where Xi

iid∼ N(0,Σ), I ⪯ Σ ⪯ κI, and

ηi
iid∼ N(0, σ2), independent from Xi. Let ε, β ∈ (0, 1). Let

α = Cσ

√d+ log( 1β )

n
+

d log
(

(R/σ+κ)n
d

)
+ log( 1β )

nε

 , (16)

for a known constant C > 0. Suppose n is such that α/σ ≤ c for a known constant c ∈ (0, 1). Then there exists an ε-DP

algorithmM such that, with probability at least 1− β, returnsM(S) = θ̂ such that
∥∥∥Σ−1/2(θ̂ − θ)

∥∥∥
2
≤ α.

6We can straightforwardly convert any vector v ∈ Rd2 to a unique matrix V ∈ Rd×d such that v = vec(V ).
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Since the running time of the robust algorithm is not the bottleneck for the computational complexity of our proposed
approach, we will instantiate our transformation with the (computationally inefficient) robust linear regression algorithm
from (Gao, 2020). This algorithm achieves the information-theoretic optimal error for Gaussian distributions and is
based on the notion of multivariate regression depth, similar to the Tukey depth we used for Gaussian mean estimation
in Appendix C.1.7

Theorem C.8 (Theorem 3.2, (Gao, 2020)). Consider the setting of Corollary C.7. Let β ∈ (0, 1), τ ∈ (0, 1). Suppose n and
τ are such that τ +

√
d/n < c for a known constant c ∈ (0, 1). Then there exists constant C ′ > 0 and algorithm Arob

which is (τ, β, α′)-robust, for

α′ = C ′σ

√d+ log( 1β )

n
+ τ

 . (17)

That is, with probability 1− β, for any τ -corrupted S ′, such that dH(S,S ′) ≤ nτ , it returns Arob(S ′) = θ̂ ∈ Rd such that∥∥∥Σ−1/2(θ̂ − θ)
∥∥∥
2
≤ α′.

Proof of Corollary C.7. We will run the ρ-smooth-inverse-sensitivity mechanism in Rd with ∥·∥ = ∥·∥2. Let A be the
robust algorithm established in Theorem C.8. We will instantiate our transformation with Arob(S) = ΠB(R′)(A(S)) for
R′ = R+ σ

√
κ, that is, we take the euclidean projection of A(S) on the ball of radius R′ in ℓ2 norm. Let θ̂ = A(S). We

have that ∥∥∥θ̂∥∥∥
2
≤ ∥θ∥2 +

∥∥∥θ̂ − θ
∥∥∥
2

(triangle inequality)

≤ R+
∥∥∥Σ1/2

∥∥∥
2

∥∥∥Σ−1/2(θ̂ − θ)
∥∥∥
2

≤ R+
√
κ
∥∥∥Σ−1/2(θ̂ − θ)

∥∥∥
2
.

Let α0 = C ′σ
√
(d+ log(1/β))/n for C ′ > 0 as in Theorem C.8 and

τ =
2d log(R′/α0 + 1) + 2 log(1/β)

nε
.

Assume that n is such that C ′
(√

d+log( 1
β )

n + τ

)
< c for c ∈ (0, 1) and for C ′ > 0 as in Theorem C.8, which we will

confirm last. Then, the conditions of Theorem C.8 are satisfied, and with probability 1− β, R+
√
κ
∥∥∥Σ−1/2(θ̂ − θ)

∥∥∥
2
≤

R+
√
κα′ ≤ R+ σ

√
κ = R′ and the projection will not affect the output of the algorithm Arob.

We will let the loss function L : (Rd)2 → R be L(u, v) =
∥∥Σ−1/2(u− v)

∥∥
2
. Our goal is then to return a vector u with small

error L(u, θ). Note that L satisfies the triangle inequality. For all u, v ∈ Rd, we have that L(u, v) =
∥∥Σ−1/2(u− v)

∥∥
2
≤

∥u− v∥2, since Σ−1/2 ⪯ I. It follows that L satisfies all the requirements of Theorem A.2. Thus, Mρ
Inv(·,Arob) with

ρ = α0 < α′ is ε-DP and with probability at least 1− 2β, returns û, which has error

L(û, θ) =
∥∥∥Σ−1/2(û− θ)

∥∥∥
2
≤ 4α′.

That is, there exists C > C ′, such that
∥∥Σ−1/2(û− θ)

∥∥
2
≤ α, for

α = Cσ

√d+ log( 1β )

n
+

d log((R+ σ
√
κ)n/(σd)) + log(1/β)

nε

 .

By assumption n is sufficiently large so that the latter is smaller than σc, and as such, it ensures that C ′
(√

d+log( 1
β )

n + τ

)
<

c as well. The proof is complete by rescaling β ← β/2 and adjusting the constants.
7The result is stated for the weaker Huber’s contamination model, but it holds under the strong contamination model as well.
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C.3.1. SPARSE LINEAR REGRESSION

We now apply our transformation to obtain an algorithm for sparse linear regression for Gaussian data under pure DP, which,
to the best of our knowledge, is the first (computationally inefficient) algorithm this case that achieves near-optimal error
rate. When the solution is known to be k-sparse, our transformation allows us to improve the dependence on dimension
from d/nε to k log d/(nε) as we show in the next corollary.

Corollary C.9 (Sparse Linear Regression). Let S = (S1, . . . , Sn) where for all i ∈ [n], Si = (Xi, yi) ∈ Rd × R is

generated by a linear model yi = X⊤
i θ + ηi for some unknown θ ∈ Bd(R), ∥θ∥0 ≤ k, where Xi

iid∼ N(0,Σ), I ⪯ Σ ⪯ κI,
and ηi

iid∼ N(0, σ2), independent from Xi. Let ε, β ∈ (0, 1). Let

α = Cσ


√

k log( edk ) + log( 1β )

n
+

k log( edk ) + k log
(

(R/σ+κ)n
d

)
+ log( 1β )

nε

 , (18)

for a known constant C > 0. Suppose n is such that α/σ ≤ c for a known constant c ∈ (0, 1). Then there exists an ε-DP

algorithmM such that, with probability at least 1− β, returnsM(S) = θ̂ such that
∥∥∥Σ−1/2(θ̂ − θ)

∥∥∥
2
≤ α.

We use the robust algorithm for sparse linear regression by (Gao, 2020).

Theorem C.10 (Theorem 3.2, (Gao, 2020)). Consider the setting of Corollary C.9. Let β ∈ (0, 1), τ ∈ (0, 1). Suppose
n and τ are such that τ +

√
k log(ed/k)/n < c for a known constant c ∈ (0, 1). Then there exists constant C ′ > 0 and

algorithm Arob which is (τ, β, α′)-robust, for

α′ = C ′σ


√

k log( edk ) + log( 1β )

n
+ τ

 . (19)

That is, with probability 1− β, for any τ -corrupted S ′, such that dH(S,S ′) ≤ nτ , it returns Arob(S ′) = θ̂ ∈ Rd such that∥∥∥Σ−1/2(θ̂ − θ)
∥∥∥
2
≤ α′.

The proof of Corollary C.9 follows exactly the same steps as Corollary C.7, but uses the slightly modified inverse-sensitivity
mechanism for sparse estimation and its guarantees in Theorem A.5 instead of Theorem 6.2.

D. Useful Facts and Proofs for Applications
D.1. Linear Algebra Facts and Definitions

We denote by ∥v∥M = ∥M−1/2v∥ =
√
v⊤M−1v the Mahalanobis norm of vector v with respect to M for any positive

definite matrix M . Observe that ∥v∥I = ∥v∥2.

Proposition D.1. For positive definite matrices Σ1,Σ2, if Σ1 ⪯ Σ2, then for any vector v, ∥v∥Σ2 ≤ ∥v∥Σ1 .

Let A ∈ Rd×d. We denote the spectral norm of A by ∥A∥2 = sup{∥Ax∥2 : x ∈ Rd s.t. ∥x∥2 = 1} and its Frobenius norm

by ∥A∥F =
√∑d

j=1

∑d
i=1 |Ai,j |2. It holds that ∥A∥2 ≤ ∥A∥F ≤

√
d ∥A∥2.

D.2. Robustness Guarantee of Tukey Median

We first state known properties of the Tukey depth for Gaussian datasets. The next proposition relates the Tukey depth of a
point to its Mahalanobis distance from the mean (see e.g. Proposition D.2 in (Brown et al., 2021) for a proof). Here, Φ is the
CDF of the univariate standard Gaussian.

Proposition D.2. For any µ, y ∈ Rd and positive definite Σ, TN(µ,Σ)(y) = Φ(−∥y − µ∥Σ).

The next proposition states the uniform convergence property of Tukey depth. It follows from standard uniform convergence
of halfspaces (Vapnik and Chervonenkis, 1971), extended to the definition of Tukey depth (Donoho and Gasko, 1992; Burr
and Fabrizio, 2017) (see e.g. (Liu et al., 2021) for a complete proof).
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Proposition D.3 (Convergence of Tukey Depth). Let S = (S1, . . . , Sn) where Si
iid∼ N(µ,Σ). There exists constant C0

such that, with probability 1− β, for any v ∈ Rd, |TN(µ,Σ)(v)− TS(v)| ≤ C0 ·
√

d+log(1/β)
n .

Proposition D.4 (Robust Accuracy of Tukey Median, Restatement of Proposition C.4). Let S = (S1, . . . , Sn) where

Si
iid∼ N(µ,Σ) such that µ ∈ B(R) and I ⪯ Σ ⪯ κI. Let β ∈ (0, 1), τ ≤ 0.05, and α0 = C0 ·

√
(d+ log(1/β))/n as

in Proposition D.3. Suppose n is such that α0 ≤ 0.05. Let α = 7(α0 + τ) ≤ 1. The projected Tukey median algorithm
Arob(S) = ΠB(R+

√
κ)(tm(S)) is (τ, β, α)-robust with respect to the Mahalanobis loss. That is, with probability 1− β, for

any τ -corrupted S ′, such that dH(S,S ′) ≤ nτ , it holds that ∥Arob(S ′)− µ∥Σ ≤ α.

Proof. Let S ′ be any τ -corruption of S , that is, dH(S,S ′) ≤ nτ . Observe that |TS(v)− TS′(v)| ≤ τ for any v ∈ Rd by the
definition of Tukey depth. Let t′m = argmaxv∈Rd TS′(v) be the Tukey median of the corrupted dataset. We condition on
the event that the bound of Proposition D.3 holds, which occurs with probability 1− β. We have that

TN(µ,Σ)(µ) =
1

2
(by Proposition D.2 since Φ(0) = 1

2 )

⇒ TS(µ) ≥
1

2
− α0 (by Proposition D.3)

⇒ TS′(µ) ≥ 1

2
− α0 − τ

⇒ TS′(t′m) ≥ 1

2
− α0 − τ (by definition of t′m)

⇒ TS(t
′
m) ≥ 1

2
− α0 − 2τ

⇒ TN(µ,Σ)(t
′
m) ≥ 1

2
− 2α0 − 2τ (by Proposition D.3)

⇒ Φ(−∥t′m − µ∥Σ) ≥
1

2
− 2α0 − 2τ (by Proposition D.2)

⇒ 1

2
Erf

(
∥t′m − µ∥Σ√

2

)
≤ 2(α0 + τ) (since Φ(−z) = 1

2 −
1
2Erf

(
z√
2

)
)

It is easy to see that the following bound holds for the error function 0.84z ≤ Erf(z) for z ∈ [0, 1] (see e.g. Lemma 3.2
in (Canonne et al., 2020)). It follows that, ∥t′m − µ∥Σ ≤

4
√
2

0.84 (α0 + τ) ≤ 7(α0 + τ) for α0 + τ ≤ 1/7, which holds by
assumption. Thus, with probability 1−β, ∥t′m − µ∥Σ ≤ α, for α = 7(α0+ τ) ≤ 1. Since we have assumed that ∥µ∥2 ≤ R,
it follows that ∥t′m∥2 ≤ ∥µ∥2 + ∥t′m − µ∥2 ≤ R+

√
κ ∥t′m − µ∥Σ ≤ R+

√
κα ≤ R+

√
κ, where the second inequality

holds due to Proposition D.1. Then t′m ∈ B(R+
√
κ) and the projection will not affect the output.
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