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ABSTRACT

Driven by the growing need for Oriented Object Detection (OOD), learning from
point annotations under a weakly-supervised framework has emerged as a promis-
ing alternative to costly and laborious manual labeling. In this paper, we discuss
two deficiencies in existing point-supervised methods: inefficient utilization and
poor quality of pseudo labels. Therefore, we present Point2RBox-v3. At the core
are two principles: 1) Progressive Label Assignment (PLA). It dynamically es-
timates instance sizes in a coarse yet intelligent manner at different stages of the
training process, enabling the use of label assignment methods. 2) Prior-Guided
Dynamic Mask Loss (PGDM-Loss). It is an enhancement of the Voronoi Wa-
tershed Loss from Point2RBox-v2, which overcomes the shortcomings of Water-
shed in its poor performance in sparse scenes and SAM’s poor performance in
dense scenes. To our knowledge, Point2RBox-v3 is the first model to employ
dynamic pseudo labels for label assignment, and it creatively complements the
advantages of SAM model with the watershed algorithm, which achieves excel-
lent performance in both sparse and dense scenes. Our solution gives competitive
performance, especially in scenarios with large variations in object size or sparse
object occurrences: 66.09%/56.86%/41.28%/46.40%/19.60%/45.96% on DOTA-
v1.0/DOTA-v1.5/DOTA-v2.0/DIOR/STAR/RSAR.

1 INTRODUCTION

Oriented object detection (OOD) has attracted growing attention due to the increasing demand for
object direction estimation in diverse fields, including autonomous driving (Feng et al., 2021), aerial
images (Fu et al., 2020; Liu et al., 2017; Xia et al., 2018; Yang & Yan, 2022; Yang et al., 2018),
scene text (Liao et al., 2018; Liu et al., 2018; Zhou et al., 2017), retail (Goldman et al., 2019; Pan
et al., 2020), and industrial inspection (Liu et al., 2020; Wu et al., 2022).

Training OOD models requires annotations as supervisory signals. Traditional rotated bounding
boxes (RBoxes) provide accurate supervision but are costly: annotating each RBox is 36.5% more
expensive than a horizontal box (HBox) and 104.8% more than a point (Yu et al., 2024), high-
lighting the potential of weakly-supervised OOD. HBox-based approaches such as H2RBox (Yang
et al., 2023) and H2RBox-v2 (Yu et al., 2023; 2025b) have shown strong results, while point-based
methods are rapidly advancing.

Current point-supervised methods fall into four categories: (1) Pseudo generation using multiple
instance learning and class probability maps (Luo et al., 2024; Ren et al., 2024); (2) Knowledge
combination with one-shot learning (Yu et al., 2024); (3) Point-prompt OOD leveraging SAM’s
zero-shot capability (Cao et al., 2023; Zhang et al., 2024a; Liu et al., 2025b; Lu & Bie, 2025;
Kirillov et al., 2023); (4) Spatial layout for pseudo label generation (Yu et al., 2025a). Despite
these advances, pseudo label quality remains a bottleneck, which motivates our approach.

Motivation. Our motivation mainly stems from the lack of quality and utilization efficiency of
pseudo labels in all current end-to-end methods. End-to-end point supervision method requires
label assignment for the Feature Pyramid Network (FPN) (Lin et al., 2017a), which plays a crucial
role in terms of detecting scale information. Most existing methods simply distribute them to the
same layer, such as Point2RBox-v2 (Yu et al., 2025a). This wastes the scale information contained
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Figure 1: (Left) Visual comparisons with the state-of-the-art method Point2RBox-v2. The boxes de-
tected by our method wrap the objects more tightly, with fewer missed detections. (Right) Radar plot
comparing the performance of our method with 10 other state-of-the-art methods across 6 bench-
mark datasets. Methods with ‘(e)’ in the legend indicate end-to-end version, while those without
‘(e)’ represent two-stage version.

in the pseudo labels generated by the model. Point2RBox-v2 benefits from the “Voronoi Watershed
Loss” for generating masks as pseudo labels. However, the watershed algorithm is less effective in
sparse scenes. As SAM can also provide masks, we investigated it as an alternative but found that
SAM fails in dense scenes. Can we enhance the detection capability of the model by focusing on
these two aspects? In this paper, we have an in-depth discussion about this issue to explore how to
fully uncover the potential of pseudo labels.

Highlights. 1) Point2RBox-v3 is proposed for point-supervised OOD, advancing the state of the
art (SOTA) as displayed in Figure 1 and Tables 1-2. 2) We improve the quality and utilization
efficiency of pseudo labels, compared to Point2RBox-v2, without incurring a significant increase in
training costs, which reveals more possibilities for the application and quality of pseudo labels in
weakly-supervised object detection for future researchers.

Contributions. 1) To our knowledge, Point2RBox-v3 is the first end-to-end point supervision model
to explore how to assign pseudo labels to multiple FPN levels, and it complements the advantages of
the SAM model with the watershed algorithm, which achieves excellent performance in both sparse
and dense scenes. 2) We extend our method to partial weakly-supervised tasks (Liu et al., 2025a)
beyond point supervision, demonstrating its adaptability and scalability. 3) The training pipeline
and detailed implementation are elucidated. The source code will be made publicly available.

2 RELATED WORK

Point-supervised Oriented Detection. Due to the low-cost and high-quality requirements in the
field of object detection, point-supervised oriented object detection has become one of the research
focuses. Some models apply the powerful zero-shot segmentation performance of the Segment
Anything Model (SAM) (Kirillov et al., 2023) in their pipelines, such as P2RBox (Cao et al., 2023),
PMHO (Zhang et al., 2024b), PointSAM (Liu et al., 2024) and PMS-SAM-RSD (Lu & Bie, 2025).
Apart from these models, there are also some other models whose strategies involve creating pseudo
labels using traditional machine learning or other methods. For example, the PointOBB series (Luo
et al., 2024; Ren et al., 2025; Zhang et al., 2025b) employs techniques such as multi-instance learning
and class probability graphs to generate pseudo RBoxes. Differently, Point2RBox (Yu et al., 2024)
acquires knowledge from single sample examples through a knowledge combination method, and
Point2RBox-v2 (Yu et al., 2025a) applies traditional machine learning algorithms such as watershed
and edge detection. The technology based on SAM can achieve simpler applications by leveraging
powerful base models, while other methods offer a solution that does not require reliance on other
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Figure 2: The training pipeline of Point2RBox-v3. Progressive Label Assign utilizes scale info from
pseudo label to dynamically assign gt point (see Figure 3). Prior-Guided Dynamic Mask provides
enhanced mask supervision information (see Figure 4). Lothers are the loss functions inherited from
Point2RBox-v2 (see Appendix A.2).

components. However, existing approaches have not yet explored their combination to enhance
model performance.

Label Assignment. Point-supervised oriented object detection lacks scale information, and there-
fore cannot directly apply label assignment. PointSAM (Liu et al., 2025b) adopts a ViT (Dosovitskiy
et al., 2020) backbone. Point2RBox (Yu et al., 2024), Point2RBox-v2 (Yu et al., 2025a) adopt only
a single FPN feature level. PointOBB (Zhang et al., 2025a) selects grid points within the central
region around each ground-truth point across all feature levels as positive samples. PointOBB-v3
(Zhang et al., 2025b) applies a gating mechanism to each FPN feature layer during training to pro-
duce corresponding gating scores, which are then used to automatically aggregate the multiple FPN
output layers into a fused feature map for feature extraction. Unfortunately, these methods discard
the classical multi-level label assignment in FPNs. We show that this omission largely explains the
gap between point and full supervision, and that leveraging coarse scale cues from pseudo labels can
effectively narrow this gap.

3 METHOD

3.1 OVERVIEW AND PRELIMINARY

In brief, the definition of the Point-supervised Object Detection task is as follows: during the train-
ing phase, the model inputs consist of an image I and the point annotations P = {(xi, yi)} for all
instances within the image (these points are typically, though not strictly, defined as the center points
of instances). The training objective is to output the Rotated Bounding Box (RBox) representation
[(x, y), (w, h), θ] and the instance category [cls] for each instance, where [(x, y), (w, h), θ] denotes
the precise circumscribed rectangle of the instance. During the inference phase, the input is solely
the image I , and the model outputs the RBoxes [(x, y), (w, h), θ] of all potential instances in the im-
age, along with their corresponding categories [cls] and confidence scores. The core difficulty of this
task lies in overcoming the extreme deficiency of scale and orientation information inherent in
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Figure 3: The process of Progressive Label Assignment (PLA). Points of different colors represent
those assigned to different feature pyramid levels P2, P3, P4, P5, P6 for label assignment. As training
progresses, the label assignment strategy evolves. It begins with using fixed Watershed regions in
the early stages and transitions to leveraging dynamic, network-generated dimensions in the middle-
to-late phases. This evolution guides ground truth points to be assigned to more suitable FPN levels
over time.

point annotations. Specifically, the model is required to “reconstruct” precise geometric information
from scratch. This requires resolving mutual boundary interference in densely packed scenes and
addressing segmentation difficulties in sparse scenes caused by the scarcity of spatial constraints,
while overcoming the challenge of diversity in scales.

The architectural overview of Point2RBox-v3 is presented in Figure 2. The simple evolutionary
context of Point2RBox series is as follows: Point2RBox (Yu et al., 2024) established the angle pre-
diction module via symmetry learning, while Point2RBox-v2 (Yu et al., 2025a) introduced the scale
prediction module based on spatial layout learning. The detailed explanation is in Appendix A.1.
While retaining the foundational components of this strong baseline (i.e., ResNet50 (He et al., 2016)
backbone, FPN (Lin et al., 2017a) head, PSC (Yu & Da, 2023) angle coder, and losses Lothers as
shown in the Figure 2), Point2RBox-v3 focuses on two core innovations: Progressive Label As-
signment (PLA) and Prior-Guided Dynamic Mask Loss (PGDM-Loss). These modules not only
reinforce scale learning but, crucially, PLA enables the utilization of dynamic scale information for
multi-level label assignment within the FPN under a weakly-supervised framework.

PLA iteratively generates and refines online pseudo bounding boxes in a dynamic manner for la-
bel assignment. It re-establishes the effectiveness of FPN in point-supervised learning scenarios.
PGDM-Loss enhances the supervisory quality in the object scale learning task by selecting the
mask-generating method between SAM and watershed. Incorporated with other components inher-
ited from Point2RBox-v2, our method achieves a consistent improvement (59.6% vs 51.0%) over
the previous SOTA end-to-end performance. In subsequent subsections, PLA and PGDM-Loss are
detailed.

3.2 PROGRESSIVE LABEL ASSIGNMENT

For both anchor-free (Tian et al., 2019) and anchor-based (Lin et al., 2017b) object detection al-
gorithms, the scale information of objects plays an indispensable role in label assignment. Points
lack scale, rendering label assignment infeasible. The scarcity of scale information persists and is
even magnified in the loss constraints for scale learning. In Point2RBox-v2, the authors employ
various approaches for scale learning, including explicit methods such as copy-paste loss, Voronoi
Watershed loss, and edge loss, as well as implicit techniques like layout loss. Among these, wa-
tershed segmentation algorithm plays the most pivotal role in the scale learning task of the entire
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framework. Inspired by this, we introduce the pseudo labels originally used for scale constraints in
the loss function into the label assignment module to provide approximate scale information.

We re-adopted the standard Feature Pyramid Network (FPN) architecture and the label assignment
strategy. In the initial phase of model training, scale cues are obtained from watershed-generated
pseudo labels. The computation of pseudo labels can be represented by the formula:

V = Voronoi(X), (1)
S = Watershed(I,X, V ), (2)
PL = minAreaRect(S), (3)

where Voronoi (Aurenhammer, 1991) is a partitioning of a space based on a set of points; X are the
annotated points within a training image; I is the input image; V are the output ridges; S are the
output basin regions (pixel coordinates) corresponding to each annotated instance; minAreaRect is
used to calculate the minimum enclosing rotated rectangle of a point set; PL is for Pseudo Label.

Static segmentation algorithms such as watershed produce immutable segmentation regions. When
such algorithms yield suboptimal segmentation for specific samples, the resulting defects persist
throughout the entire training cycle without correction. Consequently, during the mid-to-late training
phases, we utilize the forward network-predicted boxes associated with each GT point to supply
requisite dimension information for label assignment. For each feature level in the FPN, it selects
the predicted boxes from the anchor point closest to the target point as the candidate boxes. The
final pseudo label is then chosen from these candidate boxes based on their corresponding scores.
The computation of pseudo labels can be represented by the formula:

PLg = argmax
b∈Cg

score(b) (4)

where PLg is the Pseudo Label for ground truth point g; Cg refers to the candidate prediction boxes,
selected by picking the prediction box associated with the anchor point closest to the ground-truth
point g at each FPN level; function score(b) is the raw classification confidence directly output by
the detection network. This approach can partially mitigate label assignment issues caused by solely
relying on fixed segmentation regions generated by the watershed algorithm.

The improvement of the above design is verified in the Table 4 of the ablation study. Algorithm 1 in
Appendix A.3 outlines the workings of the proposed method. Figure 3 illustrates the limitations of
using fixed segmentation regions, such as those generated by watershed, for label assignment scale
information. It also shows how, in the later stages of training, the dynamic forward predictions of
the network progressively improve label assignment accuracy.

3.3 PRIOR-GUIDED DYNAMIC MASK LOSS

Point2RBox-v2 (Yu et al., 2025a) leverages a Watershed Loss to generate pseudo labels from spatial
layouts. While effective in dense scenes, this approach struggles in sparse scenarios where spatial
cues are minimal, often leading to over- or under-segmentation. A detailed analysis of this limitation
is provided in Appendix A.4. Conversely, the Segment Anything Model (SAM) (Kirillov et al.,
2023) offers greater robustness in these challenging scenarios, but its high computational cost and
weaker performance in dense scenes (Cai et al., 2024) preclude its direct application.

To harness the strengths of both methods, we propose the PGDM-Loss (LPGDM ), a hybrid loss
that dynamically routes images for mask generation. Images with a sparse instance count (total
instances ≤ Nthr) are directed to a SAM branch, while denser scenes are processed by the original
-Watershed branch (see Figure 4). This strategy enhances segmentation accuracy for difficult cases
without a significant computational overhead, preserving the efficiency of the Voronoi Watershed
method in dense scenes. We choose the lightweight MobileSAM (Zhang et al., 2023) as our SAM
model. On DOTA-v1.0, its AP50 is the same as the result obtained using the basic SAM model, but
its training time is 10 hours less than that of the basic one.

We integrate SAM not as a simple mask proposal tool, but as a source of weak supervision. There-
fore, the SAM model does not participate in the inference process at all, ensuring its fast inference
speed. For an instance j of class cj routed to the SAM branch, SAM generates a set of candi-
date masks, Mj = {m1,m2, . . . ,mk}. We select the optimal mask m∗

j via a prior-guided filtering

5
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Figure 4: Comparison between watershed and SAM masks on DOTA-v1.0. The red patches with
yellow edges represent the masks generated by the model. The processing result in the top-right
corner shows significant over-segmentation by SAM, which causes the masks to visually merge into
a large, incorrect region.

mechanism governed by a scoring function:

m∗
j = argmax

mi∈Mj

∑
k

wk,cj · ϕk(mi), (5)

where ϕk(mi) represents metrics calculated from the masks, and wk,cj is a class-specific weight
based on simple prior knowledge (e.g., expected shape). A full description of the five metrics (center
alignment, color consistency, rectangularity, circularity, and aspect ratio reliability) is available in
Appendix A.5.

After obtaining masks from both branches, we compute the losses uniformly, following
Point2RBox-v2 (Yu et al., 2025a). First, the mask S is rotated to align with the current predic-
tion to obtain the regression targets wt and ht:[

wt

ht

]
= 2max

∣∣∣∣R⊤
(
S −

[
xc

yc

])∣∣∣∣ . (6)

The width-height regression loss for a single instance, which we denote as Lmask, is then computed
using the Gaussian Wasserstein Distance loss (LGWD) (Yang et al., 2021):

Lmask = LGWD

((
w/2 0
0 h/2

)2

,

(
wt/2 0
0 ht/2

)2
)
, (7)

where w and h is the output of the detection head. The total loss, LPGDM , is the mean of these
individual losses over all N instances in an image. We denote the loss for instance j as Lj and
formulate the total loss as:

LPGDM =
1

N

∑
j∈Image

Lj , (8)

where each Lj is computed for the corresponding instance using its optimal mask according to the
formula for Lmask in Eq. 7.
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4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Implementation Details. Experiments are carried out using PyTorch 1.13.1 (Paszke et al., 2019)
and the rotation detection toolkit MMRotate 1.0.0 (Zhou et al., 2022). All experiments follow
the same hyper-parameters. We adopt Average Precision (AP) as the primary evaluation metric.
All models are based on the ResNet50 (He et al., 2016) backbone and are trained using AdamW
(Loshchilov & Hutter, 2018).

1. Learning rate: Initialized at 5 × 10−5, with a warm-up for 500 iterations, and divided by 10 at
each decay step.

2. Epochs: 12 for all datasets.

3. Augmentation: Random flip for all datasets.

4. Image size: Images from DOTA/STAR are split into 1,024 × 1,024 patches with an overlap of
200 pixels; images from DIOR are scaled to 800 × 800; images from RSAR are scaled to 1024 ×
1024.

5. Multi-scale: All experiments are evaluated without multi-scale techniques (Zhou et al., 2022).

Datasets. The experiments utilize six remote sensing datasets and one retail scene dataset, covering
those used by the main counterparts:

• DOTA (Xia et al., 2018). DOTA-v1.0 contains 2,806 aerial images with 15 categories. DOTA-
v1.5/2.0 are its extended versions with more small objects and new categories.

• DIOR (Li et al., 2020). It is an aerial image dataset re-annotated with RBoxes based on its original
HBox version (Cheng et al., 2022), featuring high variation in object scale and high intra-class
diversity.

• STAR (Li et al., 2024). An extensive dataset for scene graph generation, covering over 210,000
objects with diverse spatial resolutions and 48 fine-grained categories.

• RSAR (Zhang et al., 2025c). A remote sensing dataset based on Synthetic Aperture Radar (SAR)
imagery, containing 6 categories.

4.2 MAIN RESULTS ON DOTA-V1.0

Table 1 compares Point2RBox-v3 with SOTA methods. These methods can be categorized into two
tracks:

1. End-to-end training. These methods apply the trained weakly-supervised detector directly to
the test set. Our method, demonstrates an improvement of 8.61% (59.61% vs. 51.00%). Notably,
our method also outperforms P2RBox (59.04%), which also uses a pre-trained SAM.

2. Two-stage training. In this track, RBox pseudo labels are generated on the train/val sets, which
are then used to train a standard FCOS detector. In this mode, Point2RBox-v3 achieves an
accuracy of 66.09%, considerably surpassing the PointOBB series. Compared to its predecessor,
Point2RBox-v2 (62.61%), our method shows an improvement of 3.48%. It also outperforms the
SAM-powered P2RBox (59.04%) by 7.05%.

Class-wise Analysis. Our method demonstrates robust performance on high-density categories (SH,
SV, LV, PL, ST, TC), matching the strong Point2RBox-v2 baseline. More significantly, it achieves
notable gains on large-sized, low-density categories—Soccer-ball field (SBF), Bridge (BR), and
Roundabout (RA)—where traditional point-supervised methods often fail to infer accurate rotated
boxes from sparse points. This leads to state-of-the-art results on these challenging categories, ex-
emplified by a dramatic improvement on BR (41.6% vs. 8.0%), strong performance on RA (55.4%),
and a solid result on SBF (44.4%).
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Table 1: Detection performance of all categories and the mean AP50 on the DOTA-v1.0.

Methods * PL1 BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

▼ RBox-supervised OOD
RepPoints (2019) ✓ 86.7 81.1 41.6 62.0 76.2 56.3 75.7 90.7 80.8 85.3 63.3 66.6 59.1 67.6 33.7 68.45
RetinaNet (2017b) ✓ 88.2 77.0 45.0 69.4 71.5 59.0 74.5 90.8 84.9 79.3 57.3 64.7 62.7 66.5 39.6 68.69
GWD (2021) ✓ 89.3 75.4 47.8 61.9 79.5 73.8 86.1 90.9 84.5 79.4 55.9 59.7 63.2 71.0 45.4 71.66
FCOS (2019) ✓ 89.1 76.9 50.1 63.2 79.8 79.8 87.1 90.4 80.8 84.6 59.7 66.3 65.8 71.3 41.7 72.44
S2A-Net (2022) ✓ 89.2 83.0 52.5 74.6 78.8 79.2 87.5 90.9 84.9 84.8 61.9 68.0 70.7 71.4 59.8 75.81
▼ HBox-supervised OOD
Sun et al. (2021) × 51.5 38.7 16.1 36.8 29.8 19.2 23.4 83.9 50.6 80.0 18.9 50.2 25.6 28.7 25.5 38.60
BoxInst-RBox (2021)2 × 68.4 40.8 33.1 32.3 46.9 55.4 56.6 79.5 66.8 82.1 41.2 52.8 52.8 65.0 30.0 53.59
H2RBox (2023) ✓ 88.5 73.5 40.8 56.9 77.5 65.4 77.9 90.9 83.2 85.3 55.3 62.9 52.4 63.6 43.3 67.82
EIE-Det (2024) ✓ 87.7 70.2 41.5 60.5 80.7 76.3 86.3 90.9 82.6 84.7 53.1 64.5 58.1 70.4 43.8 70.10
H2RBox-v2 (2023) ✓ 89.0 74.4 50.0 60.5 79.8 75.3 86.9 90.9 85.1 85.0 59.2 63.2 65.2 70.5 49.7 72.31
▼ Point-supervised OOD
Point2Mask-RBox (2023)2 × 4.0 23.1 3.8 1.3 15.1 1.0 3.3 19.0 1.0 29.1 0.0 9.5 7.4 21.1 7.1 9.72
P2BNet+H2RBox (2023) × 24.7 35.9 7.1 27.9 3.3 12.1 17.5 17.5 0.8 34.0 6.3 49.6 11.6 27.2 18.8 19.63
P2BNet+H2RBox-v2 (2023) × 11.0 44.8 14.9 15.4 36.8 16.7 27.8 12.1 1.8 31.2 3.4 50.6 12.6 36.7 12.5 21.87
P2RBox (2024) × 87.8 65.7 15.0 60.7 73.0 71.7 78.9 81.5 44.5 81.2 41.2 39.3 45.5 57.5 41.2 59.04
PointOBB (2024) × 26.1 65.7 9.1 59.4 65.8 34.9 29.8 0.5 2.3 16.7 0.6 49.0 21.8 41.0 36.7 30.08
Point2RBox (2024) ✓ 62.9 64.3 14.4 35.0 28.2 38.9 33.3 25.2 2.2 44.5 3.4 48.1 25.9 45.0 22.6 34.07
Point2RBox+SK (2024) ✓ 53.3 63.9 3.7 50.9 40.0 39.2 45.7 76.7 10.5 56.1 5.4 49.5 24.2 51.2 33.8 40.27
Point2RBox+SK (2024) × 66.4 59.5 5.2 52.6 54.1 53.9 57.3 90.8 3.2 57.8 6.1 47.4 22.9 55.7 40.5 44.90
PointOBB-v2 (2025) × 64.5 27.8 1.9 36.2 58.8 47.2 53.4 90.5 62.2 45.3 12.1 41.7 8.1 43.7 32.0 41.68
PMS-SAM-RSD (2025) ✓ 69.0 39.5 6.7 44.8 64.7 71.9 79.6 79.8 2.7 60.0 12.1 32.6 39.6 44.8 42.5 46.00
PointOBB-v3 (2025b) ✓ 30.9 39.4 13.5 22.7 61.2 7.0 43.1 62.4 59.8 47.3 2.7 45.1 16.8 55.2 11.4 41.29
PointOBB-v3 (2025b) × 52.9 54.4 21.3 52.7 65.6 44.9 67.8 87.2 26.7 73.4 32.6 53.3 39.0 56.4 10.2 49.24
Point2RBox-v2 (2025a) ✓ 78.4 52.7 8.3 40.9 71.0 60.5 74.7 88.7 65.5 72.1 24.4 26.1 30.1 50.7 21.0 51.00
Point2RBox-v2 (2025a) × 88.0 72.6 8.0 46.2 79.6 76.3 86.9 89.1 79.7 82.9 26.2 45.3 45.8 66.3 46.3 62.61
Point2RBox-v2+PLA (ours) ✓ 82.3 47.8 23.2 36.0 77.9 75.5 86.6 85.3 72.0 76.5 28.0 33.4 39.4 52.7 31.7 56.55
Point2RBox-v2+PLA (ours) × 88.3 71.5 26.3 45.9 78.8 76.9 87.5 86.9 74.6 83.1 47.7 45.2 49.0 60.7 46.7 64.61
Point2RBox-v2+PLA+CS3 (ours) ✓ 84.6 51.5 25.4 37.2 78.7 75.3 86.5 86.4 75.8 74.9 31.3 33.6 40.2 54.5 34.2 58.00
Point2RBox-v3 (ours) ✓ 86.5 53.4 35.7 37.5 78.8 75.3 86.3 86.6 66.0 80.2 29.7 49.9 36.7 59.1 32.5 59.61
Point2RBox-v3 (ours) × 89.0 72.5 41.6 45.1 79.4 76.4 87.7 85.1 75.7 84.8 44.4 55.4 45.7 59.8 48.8 66.09
∗Comparison tracks: ✓= End-to-end training and testing; × = Generating pseudo labels to train the FCOS detector (two-stage training).
P2RBox/PMS-SAM-RSD/Point2RBox-v3: Pre-trained SAM model; Point2RBox+SK: One-shot sketches for each class.
1PL: Plane, BD: Baseball diamond, BR: Bridge, GTF: Ground track field, SV: Small vehicle, LV: Large vehicle, SH: Ship, TC: Tennis court,
BC: Basketball court, ST: Storage tank, SBF: Soccer-ball field, RA: Roundabout, HA: Harbor, SP: Swimming pool, HC: Helicopter.

2RBox: The minimum rectangle operation is performed on the output Mask to obtain the RBox.
3CS: CS denotes the abbreviation for Class-Specific Watershed. The Appendix A.6 contains detailed information on Class-Specific Watershed.
The best score is in bold and the second-best is in underline.

4.3 RESULTS ON MORE DATASETS

As shown in Table 2, Point2RBox-v3 also performs excellently on other datasets. On the more chal-
lenging DOTA-v1.5/2.0 datasets, Point2RBox-v3 shows a similar leading trend. In the end-to-end
track, its AP50 is 17.09% and 11.65% higher than PointOBB-v3, respectively, and it consistently out-
performs its predecessor, Point2RBox-v2 (56.86% / 41.28% vs. 54.06% / 38.79%). On the DIOR
dataset, where object distribution is relatively sparse, our method achieves an AP50 of 46.40%. This
result is slightly higher than PMHO (46.20%), whose five-stage “point - proposal bag - mask - hori-
zontal box - rotated box” pipeline makes it expensive to train and susceptible to error accumulation,
while evidently higher than other methods. On the fine-grained dataset STAR, our method achieves
a competitive AP50 of 19.60%. Furthermore, on the SAR image dataset RSAR, Point2RBox-v3
obtains an AP50 of 45.96%, demonstrating its effectiveness across different imaging modalities.

4.4 ABLATION STUDIES

Tables 3- 6 display the ablation studies on DOTA-v1.0. “E2E” denotes end-to-end training; “FCOS”
denotes two-stage training (i.e. generating pseudo labels to train FCOS). The final values adopted
are highlighted in gray.

Incremental addition of modules. Table 3 demonstrates the impact of different modules on the
final result. Adding only the PLA module increases the E2E and two-stage metrics by 5.6% and
2.0%, reaching 56.6% and 64.6%, respectively. Adding only the PGDM-Loss module enhances
these metrics by 3.2% and 1.3%, achieving 54.2% and 63.9%, respectively. The improvements from
the two modules exhibit a high degree of orthogonality. When integrated simultaneously, they yield
a combined gain of 8.6% and 3.5% on the E2E and two-stage metrics, respectively.
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Table 2: AP50 comparisons on the DOTA-v1.0/1.5/2.0, DIOR, STAR, and RSAR datasets.

Methods * DOTA-v1.0 DOTA-v1.5 DOTA-v2.0 DIOR STAR RSAR
▼ RBox-supervised OOD
RetinaNet (2017b) ✓ 68.69 60.57 47.00 54.96 21.80 57.67
GWD (2021) ✓ 71.66 63.27 48.87 57.60 25.30 57.80
FCOS (2019) ✓ 72.44 64.53 51.77 59.83 28.10 66.66
S2A-Net (2022) ✓ 75.81 66.53 52.39 61.41 27.30 66.47
▼ HBox-supervised OOD
Sun et al. (2021) × 38.60 - - - - -
H2RBox (2023) ✓ 70.05 61.70 48.68 57.80 17.20 49.92
H2RBox-v2 (2023) ✓ 72.31 64.76 50.33 57.64 27.30 65.16
AFWS (2024) ✓ 72.55 65.92 51.73 59.07 - -
▼ Point-supervised OOD
P2RBox (2024) × 59.04 - - - - -
PMHO (2024b) × - - - 46.20 - -
PointOBB (2024) × 30.08 10.66 5.53 37.31 9.19 13.80
Point2RBox+SK (2024) ✓ 40.27 30.51 23.43 27.34 7.86 27.81
PointOBB-v2 (2025) × 41.68 30.59 20.64 39.56 9.00 18.99
PMS-SAM-RSD (2025) ✓ 46.00 - - - - -
PointOBB-v3 (2025b) ✓ 41.20 31.25 22.82 37.60 11.31 15.84
PointOBB-v3 (2025b) × 49.24 33.79 23.52 40.18 12.85 22.60
Point2RBox-v2 (2025a) ✓ 51.00 39.45 27.11 34.70 7.80 28.60
Point2RBox-v2 (2025a) × 62.61 54.06 38.79 44.45 14.20 30.90
Point2RBox-v3 (ours) ✓ 59.61 48.34 34.47 41.50 14.60 40.80
Point2RBox-v3 (ours) × 66.09 56.86 41.28 46.40 19.60 45.96
* Comparison tracks: ✓ = End-to-end training and testing; × = Generating pseudo labels to
train the FCOS detector (two-stage training). P2RBox/PMS-SAM-RSD/PMHO/Point2RBox-
v3: Pre-trained SAM model; Point2RBox+SK: One-shot sketches for each class. The best
score is in bold and the second-best is in underline.

Table 3: Ablation with addi-
tion of modules.

Modules DOTA
PLA PGDM E2E FCOS

51.0 62.6
✓ 56.6 64.6

✓ 54.2 63.9
✓ ✓ 59.6 66.1

Table 4: Ablation with switch
epoch of PLA.

switch epoch E2E FCOS

0 56.6 64.4
3 59.5 66.4
6 59.6 66.1
9 56.2 65.5

12 56.3 65.3

Table 5: Ablation on sparse
scene threshold in PGDM-
Loss.

Threshold E2E FCOS Time

0 56.6 64.6 13.6h
4 59.6 66.1 19.5h
8 58.9 66.1 23.5h
∞ 57.2 66.1 79.0h

Switch epoch of PLA. Table 4 studies the hyperparameter switch epoch of PLA. Our ablation
study confirms that the phased assignment strategy is crucial. The extreme methods—using only
network predictions (switch epoch = 0) or only watershed boxes (switch epoch = 12) for the entire
training—performed substantially worse than a mid-training transition. The optimal switch epoch
was found to be 3 or 6; we selected 6 for subsequent experiments.

Hyperparameters of PGDM-Loss. We investigated the hyperparameter Nthr, a threshold on the
number of target instances used to define sparse scenes. A scene is classified as sparse if its instance
count is no more than Nthr. As shown in Table 5, the model achieves optimal E2E performance of
59.6% at Nthr = 4 and their two-stage training performance on the FCOS platform is very close.
This indicates that the model is robust to the choice of Nthr within a reasonable range, obviating the
need for meticulous tuning. Notably, setting Nthr to infinity, which directs all instances to the SAM
branch, quadruples the training time and significantly degrades precision. This result, consistent
with our findings in Figure 4, underscores the importance of our hybrid approach that applies SAM
and watershed strategies to different scenes based on sparsity.

Necessity of Prior Knowledge in PGDM-Loss. It is crucial to note that the reliance on prior
knowledge stems from the fact that SAM is trained on general-purpose datasets. We find that while
SAM can effectively segment instances based on edge features in remote sensing scenes, its native
confidence scores often fail to accurately reflect the quality of the generated masks in this specific
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domain. For example, in Figure 2, the ‘Prior-Guided Selector’ part shows that SAM will not tend
to give the most correct answer a higher score. To validate this, we conducted an ablation study on
DOTA-v1.0 as shown in Table 6. The results indicate that relying solely on SAM’s native confidence
scores leads to a performance degradation, with AP50 dropping by 1.75 and 2.5 points for the end-
to-end and two-stage frameworks, respectively. This empirical evidence strongly demonstrates the
superiority of our proposed method.

Table 6: Ablation with Prior
Knowledge in PGDM-Loss

Modules E2E FCOS

NoPrior-Loss 57.86 63.59
PGDM-Loss 59.61 66.09

Table 7: AP50 comparison on DOTA-v1.0/v1.5

Method DOTA-v1.0 DOTA-v1.5

10% 20% 30% full 10% 20% 30% full

PWOOD 42.35 45.01 49.12 55.87 35.33 41.54 43.02 46.83
PGDM 42.81 47.70 51.02 57.96 37.29 42.02 44.06 49.08
PLA 45.18 50.33 55.67 62.41 40.36 45.24 48.13 53.23
PLA + PGDM 50.67 52.22 58.02 64.57 43.25 47.05 50.51 56.18

We integrated this method into the “Partially Weakly Supervised Oriented Object Detection”, i.e.
PWOOD framework (Liu et al., 2025a), to demonstrate the universality and practicality of our ap-
proach. The operating principle of this framework is to train the model using a small portion of
weakly labeled data (such as point annotations) and a large portion of unlabeled samples. We text-
colorblue our modules to the training process of the PWOOD framework and conducted experiments
on the DOTA-v1.0 and DOTA-v1.5 datasets following the training process of PWOOD, setting the
proportion of weakly labeled (point labeled) data to 10%, 20%, and 30% respectively.

As shown in Table 7, these results indicate that the approach we adopted in this partially weakly-
supervised environment is successful. We conducted ablation experiments and multi-data exper-
iments. In both datasets, our modular approach consistently and significantly outperformed the
PWOOD baseline. For example, on the DOTA-v1.0 dataset with only 10% point-labeled data, our
method increased the AP50 from 42.35% to 50.67%, an improvement of 8.32% . The performance
improvement brought by our method is also robust in cases of higher weak supervision. In the 100%
point-labeled (marked as “full”) scenario, our method achieved an AP50 of 64.57%, 8.7% higher
than the baseline. It is notable that these improvements were also significant on the more challeng-
ing DOTA-v1.5 dataset; for instance, in 10% of the scenarios, it increased from 35.33% to 43.25%,
an improvement of 7.92%.

The above experiments have confirmed that our method can be applied in partially weakly-
supervised scenarios, significantly improving the performance of the PWOOD framework, whether
in the case of only a small amount of weak supervision or with more supervision. This provides a
powerful and cost-effective solution for oriented object detection.

5 CONCLUSION

This paper introduces Point2RBox-v3, an upgraded framework that significantly improves both the
quality and utilization efficiency of pseudo labels. We introduce Progressive Label Assignment
(PLA), which revitalizes point-supervised FPN and unifies label assignment with fully-supervised
paradigms through dynamically generated pseudo labels. To address potential limitations of Voronoi
Watershed Loss in object scale learning, we propose Prior-Guided Dynamic Mask Loss (PGDM-
Loss), which incorporates Segment Anything Model (SAM) to enhance the quality of pseudo labels.

Experiments yield the following observations: 1) In point-supervised tasks, both the quality and uti-
lization efficiency of pseudo labels are critical factors that can yield substantial performance gains.
2) The label assignment module distributes objects to FPN layers based on their scale-specific re-
ceptive fields. Due to the intrinsic spatial approximation of convolutional operations and empirically
defined assignment thresholds, this approach exhibits inherent tolerance to pseudo labels imperfec-
tions while maintaining detection accuracy. 3) It advances the state of the art by a large amount,
achieving 66.09%, 56.86%, 41.28%, 46.40%, 19.60% and 45.96% on the DOTA-v1.0, DOTA-v1.5,
DOTA-v2.0, DIOR, STAR and RSAR respectively.
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A APPENDIX

A.1 THE RELATIONSHIP AMONG POINT2RBOX SERIES

The evolution of the Point2RBox series represents a progressive exploration into resolving the scale
ambiguity inherent in point-supervised oriented object detection (OOD). The initial Point2RBox
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(Yu et al., 2024) pioneered this series by introducing a ”knowledge combination” paradigm. It uti-
lized overlaid synthetic visual patterns with known geometries to provide proxy regression supervi-
sion, while simultaneously incorporating symmetry-aware learning to exploit the inherent geo-
metric symmetry prevalent in man-made structures for self-supervision, thereby circumventing
the lack of size information. Building upon this, Point2RBox-v2 (Yu et al., 2025a) shifted the focus
towards the intrinsic spatial layout among instances. It proposed Voronoi Watershed and Gaussian
Overlap losses to constrain object extent by exploiting mutual spatial exclusivity, yet it exhibited lim-
itations in sparse scenarios where such spatial constraints are weak. In this work, Point2RBox-v3
addresses these deficiencies. It introduces Progressive Label Assignment (PLA) to restore the effi-
cacy of multi-scale Feature Pyramid Networks (FPN) often neglected in point-supervised settings,
and incorporates a Prior-Guided Dynamic Mask (PGDM) strategy that synergizes the robustness of
SAM with the efficiency of watershed algorithms, ensuring consistent high performance across both
sparse and dense scenes.

A.2 LOSS FUNCTIONS INHERITED FROM POINT2RBOX-V2

In our Point2RBox-v3, we incorporate several loss functions that were originally proposed in
Point2RBox-v2 (Yu et al., 2025a). These methods are not part of our novel contributions but are
utilized to maintain a strong baseline performance. We group them under a single loss term, Lothers,
which is a weighted sum of the following components.

A.2.1 GAUSSIAN OVERLAP LOSS (LO)

This loss function is designed to enforce mutual exclusivity among instances, which is particularly
effective in densely packed scenes. As detailed in Point2RBox-v2, it operates by representing each
oriented object as a 2D Gaussian distribution, N (µ,Σ), and then minimizing the spatial overlap
between these distributions. The overlap between any two distributions, Ni and Nj , is quantified
using the Bhattacharyya coefficient (Yang et al., 2021). For a given image with N instances, an
overlap matrix M ∈ RN×N is constructed, where each element Mi,j represents the coefficient
between instance i and j. The Gaussian overlap loss is then formulated as the sum of all off-diagonal
elements, encouraging the detector to produce more compact and non-overlapping predictions:

LO =
1

N

∑
i̸=j

Mi,j . (9)

A.2.2 EDGE LOSS (LE )

The Edge Loss is employed to refine the predicted bounding boxes by aligning their boundaries pre-
cisely with the object edges visible in the image. The process begins by applying an edge detection
filter to the input image. For each predicted rotated bounding box (RBox), a corresponding fea-
ture region is extracted from the resulting edge map via Rotated RoI Align. By analyzing the edge
intensity distribution within this region, new, more accurate regression targets for the box’s width
(wt) and height (ht) are computed. The loss is then calculated using a smooth L1 loss function,
which penalizes the deviation between the predicted dimensions (w, h) and the edge-aligned targets
(wt, ht):

LE = smoothL1([w, h], [wt, ht]). (10)

A.2.3 COPY-PASTE AUGMENTATION (LBOX)

To enhance the model’s robustness and generalization, especially in varied contexts, we utilize
the copy-paste data augmentation strategy (Ghiasi et al., 2021), following its implementation in
Point2RBox-v2. During the training process, object instances detected in a preceding step (e.g., step
k) are cropped and subsequently pasted onto the training images for the current step (k + 1). The
bounding boxes of these pasted instances serve as additional ground-truth targets. The associated
regression loss, which we denote as Lbox and include in our Lothers term, is calculated using the
Gaussian Wasserstein Distance Loss (Yang et al., 2021).
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Table 8: Detailed Configuration of Point2RBox-v3 Loss Functions. All of them (except PGDM-
Loss) are inherited from Point2RBox-v2.

Loss Name Symbol Weight (λ) Function / Type
Classification Loss Lcls 1.0 Focal Loss
Regression Loss Lbbox 5.0 GDLoss (GWD)
Gaussian Overlap Loss Loverlap 10.0 GaussianOverlapLoss
Edge Loss Lbbox edg 0.3 EdgeLoss
Consistency Loss Lss 1.0 Point2RBoxV2ConsistencyLoss
PGDM-Loss Lvoronoi 5.0 VoronoiWatershedLoss

A.2.4 SELF-SUPERVISED CONSISTENCY LOSS (Lss)

To further regularize the model in a self-supervised manner, we adopt the consistency loss introduced
in Point2RBox-v2. This loss enforces prediction consistency between an original training image and
its augmented counterpart (e.g., random rotation, flip, or scaling). Specifically, given an image I
and its transformed view Iaug, the detector outputs two sets of Gaussian representations and rotation
angles:

(Σ, θ) = fnn(I), (Σaug, θaug) = fnn(Iaug).

The consistency loss is then computed as the sum of two terms: a Gaussian Wasserstein Distance
loss that measures the discrepancy between the covariance matrices, and an angular regression loss
that aligns the rotation predictions:

Lss = LGWD(αΣα⊤,Σaug) + LANG(mθ +R, θaug), (11)

where α is the transformation matrix applied to I , R is the rotation angle of augmentation, and
m ∈ {1,−1} accounts for symmetry in flips. This self-supervised term encourages the detec-
tor to capture consistent scale and orientation variations under different geometric transformations,
thereby improving robustness.

A.3 PROGRESSIVE LABEL ASSIGNMENT (PLA)

Algorithm 1 delineates the detailed workflow of the PLA algorithm throughout the entire model
training cycle.

A.4 ANALYSIS OF VORONOI WATERSHED IN SPARSE SCENARIOS

The Voronoi Watershed method in Point2RBox-v2 (Yu et al., 2025a) constructs a Voronoi diagram.
The annotation point of each object serves as a foreground marker for the watershed algorithm, and
the background markers are defined by the Voronoi cell boundaries and regions where the fixed-size
Gaussian distribution around the annotation point falls below a certain probability threshold. The
Voronoi cells and Gaussian distributions are deeply related to the spatial layout of the objects.

This approach has a critical limitation in sparse scenes with minimal spatial layout information.
The fixed size of the Gaussian distribution can lead to improperly sized foreground or background
regions. This imbalance often causes the watershed algorithm to produce segmentation errors, in-
cluding over-segmentation or under-segmentation. In contrast, the Segment Anything Model (SAM)
(Kirillov et al., 2023) focuses primarily on object edges, textures, and other semantic visual cues.
This makes it less dependent on the spatial layout of instances and allows it to produce more reliable
segmentations in such challenging, sparse scenarios.

A.5 DETAILED FORMULATION OF MASK SELECTION INDICATORS

To select the optimal mask from the candidates generated by SAM, we use five indicators to score
each mask based on simple prior knowledge provided by the user. This prior selection process is
designed to be straightforward: the user only needs to make a simple judgment about the target’s
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Algorithm 1 Progressive Label Assignment (PLA)
Input:
e is the number of current training epoch
Es is the number of switch epoch
G is a set of ground-truth points on the image
V are the output Voronoi ridges (pixel coordinates)
I is the input image
S are the basin regions (pixel coordinates) corresponding to each annotated instance
PL is a set of pseudo labels on the image
L is the number of feature pyramid levels
A is a set of all anchor points
Ai is a set of anchor points on the i-th pyramid levels
ai is a anchor point of Ai

Output:
P is a set of positive samples
N is a set of negative samples

1: if e < Es then
2: V = Voronoi (G)
3: S = Watershed (I, G, V)
4: PL = minAreaRect (S)
5: P, N = StandardLabelAssign (PL, A)
6: else
7: PL← ∅
8: for each g ∈ G do
9: build an empty set for candidate pseudo label of g: Cg ← ∅

10: for each level i ∈ [1, L] do
11: Si ← Select the prediction box with the closest ai to g as the candidate
12: Cg = Cg

⋃
Si

13: end for
14: PLg = argmaxb∈Cg

score(b)
15: PL = PL

⋃
PLg

16: end for
17: P, N = StandardLabelAssign (PL, A)
18: end if

general shape (e.g., more rectangular or circular) and the rough range of its aspect ratio, guided
by example images from the dataset. The five indicators are center alignment, color consistency,
rectangularity, circularity, and aspect ratio reliability. The setting of wk,cj is as follows. When an
object class has a significant corresponding geometric feature, the weight is set to a positive value.
If the geometric feature is unimportant or ambiguous, it is set to 0. If the class does not possess the
feature but is prone to being misinterpreted by a part that does, the weight is set to a negative value.
For example, the weight for circularity for a basketball court is set to a negative value to penalize
segmentations that only capture the center circle.

Briefly, center alignment, inspired by P2RBox (Cao et al., 2023), prioritizes masks whose centroids
are close to the prompt point. Color consistency favors masks with a uniform color distribution,
calculated based on the standard deviation of pixel values within the mask. Rectangularity and cir-
cularity measure how closely a mask’s shape resembles a standard rectangle or circle, respectively.
Finally, aspect ratio reliability ensures the mask’s aspect ratio falls within a plausible, user-defined
range. The mathematical formulation for each indicator is designed to be simple and computation-
ally efficient.

1) Center alignment. This metric first checks if the prompt point is inside the mask’s minimum
area bounding rectangle. If not, the mask is heavily penalized. If it is inside, the score Salign is
calculated based on the distance d between the prompt point and the center of the rectangle using a
Gaussian function.

Salign = exp

(
− d2

2σ2
c

)
, (12)
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where σc is a scaling factor proportional to the diagonal of the image, ensuring that a smaller distance
yields a higher score.

2) Color consistency. This metric evaluates color uniformity by calculating the weighted standard
deviation of pixel values within the mask, giving higher weight to pixels near the prompt point. The
final score Scolor is mapped from the average weighted standard deviation σ̄w using an exponential
decay function:

Scolor = exp
(
− σ̄w

λ

)
, (13)

where λ is an empirical scaling constant. A lower deviation (more uniform color) results in a score
closer to 1.

3) Rectangularity and Circularity. These metrics quantify how closely the mask’s shape resembles
a rectangle or a circle. They are defined by the following ratios:

Srect =
Amask

Amabr
, Scirc =

Amask

Amcc
, (14)

where Amask is the mask area, while Amabr and Amcc are the areas of the minimum area bounding
rectangle and the minimum circumscribed circle, respectively. To handle shapes near the edge of
the image, the areas Amabr and Amcc are calculated from the parts of the shapes that lie within the
image boundaries, that is, the part beyond the image boundaries is cropped and discarded.

4) Aspect ratio reliability. This metric checks if the aspect ratio of the mask’s minimum area
bounding rectangle, AR = max(w,h)

min(w,h) , is within a predefined range [Rmin, Rmax]. If AR is within
this range, the score is 1. If it falls outside, the score Sar is calculated based on its deviation D from
the range:

Sar = exp(−k ·D), (15)

where k is a decay coefficient and the deviation D is defined as (Rmin/AR − 1) if AR < Rmin or
(AR/Rmax− 1) if AR > Rmax. We found that for all non-extremely long-to-wide ratio categories
in the remote sensing field, their long-to-wide ratio ranges were within the interval [1, 5], while the
predicted incorrect masks were generally outside this range. For example, the fuselage of a plane
(excluding the wings). Therefore, in order to enhance the usability of the model, we always set
[Rmin, Rmax] to be [1, 5].

A.6 WATERSHED ALGORITHM VS CLASS-SPECIFIC WATERSHED ALGORITHM

The quality of masks is critical for point-supervised learning. We observe that the mask quality
produced by the Watershed algorithm severely degrades when processing overlapping objects, as
illustrated in the second row of Figure 5. Motivated by this observation, we introduce a simple yet
effective trick, termed class-specific Watershed. The key idea is to construct Voronoi diagrams and
perform the Watershed algorithm on a per-class basis, rather than applying the algorithm indiscrim-
inately to all objects in the image. Taking the ground track field (GTF) and soccer ball field (SBF)
categories, which suffer from the most severe overlaps, as examples, the third and fourth rows of
Figure 5 visually demonstrate the effectiveness of our class-specific Watershed. The results show
a noticeable improvement in the mask quality for overlapping objects. This visual gain is corrob-
orated by quantitative metrics; as indicated in Table 1 (see Point2RBox-v2+PLA+CS), this trick
brings an overall performance gain of 1.45% (56.55% vs. 58.00%). Notably, the proposed trick
not only ameliorates the segmentation of overlapping objects but also enhances the model’s overall
performance. Class-specific Watershed and PGDM share a similar functional role. They can be con-
sidered as complementary strategies, and the optimal choice depends on the specific characteristics
of the application scenario.

A.7 LIMITATION

The primary advantage of our Progressive Label Assignment (PLA) module—its adaptability to
large scale variations—also defines its main limitation. The performance gain offered by PLA might
be less pronounced on datasets where object scales are relatively uniform, as its benefits are most
apparent in multi-scale scenarios. While introducing inductive biases like PLA into point-supervised
task is effective, we believe that more fundamental advancements will likely stem from holistic
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Figure 5: Efficacy of Class-Specific Watershed on Overlapping Instances. The top row shows chal-
lenging cases with overlapping objects. The standard Watershed algorithm produces unsatisfactory
masks under these conditions (second row). Our class-specific Watershed (third and fourth rows)
effectively mitigates this issue, leading to a noticeable improvement in mask separation and quality.

architectural upgrades and more inventive loss function designs. Such directions could potentially
elicit richer learning signals from extremely sparse annotations.

Furthermore, while our method alleviates the shortcomings of Point2RBox-v2 in sparse scenes by
imposing spatial constraints, its performance is ultimately still limited by the characteristics of the
existing SAM model. Since SAM is significantly more sensitive to color rather than texture and
edges, the effectiveness of our method is limited in those sparse instances that blend with the sur-
rounding environment or have unclear boundaries (such as basketball courts and ground track fields,
see table 1), which led to its performance in some categories being even worse than that of previous
models. In the future, researchers can consider enriching the prompts for SAM, such as introducing
edge-aware algorithms to generate rough mask prompts, thereby improving performance in these
challenging scenarios.

In addition, we study some cases where both SAM and watershed fail. In Figure 6, we present
some examples that failed in both methods. The detailed analysis is as follows: as a segmentation
model/algorithm, SAM and Watershed encounter certain bottlenecks, which are mainly attributed to
the complexity of the spectral characteristics and the diversity of the geometric structures of the ob-
jects in the remote sensing scene. For example, the textures of the objects introduce high-frequency
gradient noise, leading to over-segmentation or under-segmentation; the unclear boundaries weaken

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

S
A

M
 m

od
el

W
at

er
sh

ed

Figure 6: The situation where both splitting methods fail on DIOR dataset. The reasons for the
failure of the segmentation of the four images from left to right are as follows: excessive internal
texture, unclear boundaries, overly thin edge shapes, and distorted shapes.

Failed case (angle) Failed case (angle) Failed case (scale) Failed case (scale)

Figure 7: Qualitative analysis on failed cases. Point2RBox-v3 still exhibits errors in angle prediction
for objects in complex scenarios (e.g., harbor targets) as well as for single objects; meanwhile,
boundary detection remains challenging for low-resolution or texture-complex objects.

the robustness of edge perception, causing mask overflow or positioning deviation; and overly thin
edge shapes and distorted geometric forms challenge the model’s ability to maintain the integrity
of slender topologies and non-convex geometries, ultimately resulting in topological breaks or mor-
phological distortions in the segmentation results. Future work could consider improving the SAM
model to accommodate these circumstances, or introduce other constraints to solve this problem.

Finally, we examine cases where our method fails. The qualitative analysis on the failed cases is
shown in Figure 7. 1) Angle. Angle prediction for objects in complex environments like harbor, as
well as for single object, still has room for improvement. 2) Scale. Although significant progress
has been made, boundary delineation continues to face challenges in low-resolution contexts and
with complex-textured objects.

A.8 Nthr : DATASET GENERALITY AND PARAMETER SENSITIVITY

As shown in Table 9, a more granular ablation study reveals that the model metrics are not highly
sensitive to the threshold, exhibiting no drastic fluctuations with its variation. Based on the result,
we recommend an optimal range of 4 to 6. In practice, a threshold of 4 is adopted for all other
datasets, with the exception of the RSAR dataset, where it is set to 6.
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Table 9: Granularly Ablation on Sparse Scene Threshold in PGDM-Loss on DOTA-v1.0.

Threshold 0 1 2 3 4 5 6 7 8 ∞
E2E 56.6 58.6 58.6 58.7 59.6 59.6 60.1 59.8 58.9 56.6
FCOS 64.6 65.1 65.2 65.2 66.1 65.9 66.3 65.5 66.1 64.6

Table 10: Accuracy (AP50) comparisons on non-remote-sensing domains.

Methods OCDPCB DIATOM

Point2RBox-v2 36.4 69.0
Point2RBox-v3 40.9 77.6

A.9 GENERALIZABILITY TO NON-REMOTE-SENSING DOMAINS

OCDPCB1: OCDPCB is a dataset for oriented component detection in printed circuit boards aimed
at automated optical inspection. The dataset consists of 636 images, of which 445 images are used
for training and 191 for testing. The resolution of the images is 1280 × 1280.

DIATOM2: Diatoms are a group of algae found in oceans, freshwater, moist soils, and surfaces.
The dataset consists of 2197 images, of which 1758 images are used for training and 439 for testing.
The resolution of the images is 2112 × 1584.

As shown in Table 10, the superiority of Point2RBox-v3 generalizes to non-remote sensing scenar-
ios. Specifically, it outperforms Point2RBox-v2 by a margin of 4.5% on the OCDPCB dataset and
8.6% on the DIATOM dataset.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, the ideas, analysis, and conclusions presented are the sole product of the authors’ origi-
nal thought and research. We utilized large language models (LLMs) to accomplish several auxiliary
tasks in order to enhance the presentation quality and clarity of our manuscripts. Specifically, LLMs
were employed for:

• Table Generation: Create tables to reduce manual formatting workload.
• Text Optimization: Simplify and refine sentence structures to make the expression clearer.
• Consistency Check: Ensure uniformity in terms and style across all sections.

All the content generated by the large language model is carefully reviewed and verified by the
author to ensure the technical accuracy and compliance with our scientific contributions.

1https://doi.org/10.34740/kaggle/ds/5060183.
2https://doi.org/10.34740/kaggle/ds/1187591.
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