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Abstract

Graph neural networks have emerged as a powerful tool for
learning spatiotemporal interactions. However, conventional
approaches often rely on predefined graphs, which may ob-
scure the precise relationships being modeled. Additionally,
existing methods typically define nodes based on fixed spa-
tial locations, a strategy that is ill-suited for dynamic en-
vironments like maritime environments. Our method intro-
duces an innovative graph representation where timestamps
are modeled as distinct nodes, allowing temporal dependen-
cies to be explicitly captured through graph edges. This setup
is extended to construct a multi-ship graph that effectively
captures spatial interactions while preserving graph sparsity.
The graph is processed using Graph Convolutional Network
layers to capture spatiotemporal patterns, with a forecasting
layer for feature prediction and a Variational Graph Autoen-
coder for reconstruction, enabling robust anomaly detection.

Introduction
Graph neural network (GNN) based methods provided a
powerful approach for modeling spatiotemporal data (Yu,
Yin, and Zhu 2017), yet existing approaches often relied on
predefined or fully connected graphs (Liu et al. 2023; Zhang
et al. 2023), introducing noise and reducing interpretability.
Additionally, most graph based anomaly detection methods
primarily utilized graphs for node embedding updates, rather
than fully utilizing their structural and relational properties
(Liu et al. 2023; Zhang et al. 2023).

We introduce a novel framework for anomaly detection
in multi-ship trajectory data by utilizing a sparsified graph,
removing noisy and task-irrelevant edges while retaining es-
sential spatiotemporal relationships. The optimized graph is
then embedded using Graph Convolutional Network (GCN)
(Kipf and Welling 2016a) layers to effectively capture these
relationships. Furthermore, leveraging a Variational Graph
Autoencoder (VGAE) (Kipf and Welling 2016b), our frame-
work reconstructs adjacency matrices, allowing anomaly de-
tection by identifying discrepancies in graph structures.

Our contributions are summarized as follows:
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• Novel Graph Representation: We establish a graph-based
input structure for moving objects, representing each
timestamp as a node to explicitly model temporal depen-
dencies through graph edges.

• Efficient Graph Construction Strategy: We generate a
multi-ship graph that effectively captures spatial relation-
ships while preserving graph sparsity.

• Graph Based Anomaly Detection: Our framework com-
bines prediction and reconstruction within a graph based
approach, fully leveraging graph structures to enhance
anomaly detection performance.

Related Works
Spatiotemporal GNNs Existing spatiotemporal methods
often relied on fixed spatial locations, such as intersections
(Wang et al. 2020; Yu, Yin, and Zhu 2017), which were un-
suitable for the dynamic and fluid nature of maritime envi-
ronments. Consequently, although efforts were made to es-
tablish dynamic reference points that were appropriate for
the maritime domain (Eljabu, Etemad, and Matwin 2021;
Liang et al. 2022), these points still did not adequately cap-
ture the fluid and constantly evolving nature of moving ves-
sels.

Vessel Behavior Anomaly The concept of anomalies in
AIS tracks refers to behaviors that deviate from what is con-
sidered ‘normal’ or expected under typical operational con-
ditions (Laxhammar 2008). There are many studies (Lane
et al. 2010; Davenport 2008; Liu, Li, and Liu 2024) that
define anomalous behaviors based on kinematic behaviors,
AIS transmission behaviors, and other supplementary be-
haviors that occur on the ship. One of the key challenges in
defining anomalies is the absence of a universal criterion for
what constitutes an anomalous event. Despite the wide range
of possible anomalies, this study specifically focuses on de-
viation from standard route. This type of anomaly is one of
the most fundamental and frequently observed irregularities
in vessel movement, serving as a crucial indicator of poten-
tial maritime risks. A vessel straying from its expected tra-
jectory could signal various underlying causes, including ad-
verse weather conditions, mechanical failures, unauthorized
maneuvers, or illicit activities. By analyzing deviations from
standard routes, we aim to establish a robust framework for



Figure 1: Our framework employs a multi-component architecture designed to learn a sparsified graph structure. The learned
graph is then embedded using GCN layers, which supports both the forecasting and reconstruction processes. The combined
loss from these components is utilized for effective anomaly detection.

detecting navigational anomalies in real-world maritime op-
erations. The rationale behind this selection will be elabo-
rated more in the experimental section, where we detail the
statistical techniques used to quantify deviations.

GNN Based Vessel Anomaly Detection The objective of
vessel anomaly detection is to identify unusual movement
patterns, which are often caused by mechanical failures or
navigational errors (Ribeiro, Paes, and de Oliveira 2023).
Most existing methods constructed graphs using predefined
or fully connected structures (Jiang et al. 2024; Liu et al.
2023; Wolsing et al. 2022; Zhang et al. 2023). Nevertheless,
these methodologies proved inadequate for capturing mean-
ingful spatiotemporal relationships that are well-suited to the
task at hand.

Methodology
Problem Definition
Given AIS data X = {xt

i|i ∈ Vt, t ∈ T}, where xt
i repre-

sents the feature vector of ship i at time t, and a series of
temporal graphs {Gt}Tt=1, the objective is to:

1. Predict the next time step embedding ht+1
i for each node

i ∈ Vt using past observations and graph structure.
2. Identify anomalous nodes and edges in Gwt

by compar-
ing observed patterns to learned normal behavior.

The proposed approach combines node embedding, graph
sparsification, time-series forecasting, and anomaly detec-
tion into a unified framework to effectively handle these
challenges.

As depicted in Figure 1, our paper establishes a novel
framework for vessel anomaly detection leveraging graph
neural networks to model multi-ship trajectory data.

Graph Construction
To define the boundaries of multi-ship graphs, the OPTICS
clustering algorithm (Ankerst et al. 1999) is employed. This
algorithm groups ships based on the latitude and longitude at
a given time stamp t, thereby identifying clusters that reflect
shared spatiotemporal regions.

Algorithm 1: Graph Initialization
Input: Timestamps of ship i: ti1, t

i
2, . . . , t

i
n, window size w

Output: Graphs Giw1
,Giw2

, . . . ,Giwm

1: for each sliding window wk do
2: Initialize graph Giwk

= (Vi
wk

, E iwk
)

3: Vi
wk
← timestamps in wk

4: for each pair of timestamps (t1, t2) where t1, t2 ∈ wk

and t1 < t2 do
5: Add directed edge et1→t2 to E iwk

6: end for
7: end for
8: return Giw1

,Giw2
, . . . ,Giwm

Graph Initialization Unlike conventional GNN tasks
where the initial graph structure is predefined, our approach
starts by constructing the graph from raw data. In our case,
the graph is constructed within each identified cluster from
the previous step. The core idea is illustrated on lines 4–5
of Algorithm 1, where each edge represents a temporal con-
nection between consecutive timestamps.

The underlying intuition behind this approach is to
demonstrate that, rather than relying on traditional time-
series prediction models such as RNN (Rumelhart, Hinton,
and Williams 1986) or LSTM (Hochreiter 1997), tempo-
ral dependencies can be effectively captured within a graph
structure. By embedding sequential relationships as edges
in the graph, we establish a framework where time-series
forecasting can be performed using a simple MLP model.
This highlights the feasibility of leveraging graph-based rep-
resentations for temporal modeling, enabling efficient and
scalable predictions without the need for complex recurrent
architectures.

Multi-ship Trajectory Graph Then the multi-ship trajec-
tory graph is constructed in the same context for a single
ship while only considering the ships within the same clus-
ter. This guarantees that the graph encompasses both intra-
ship and inter-ship temporal interactions.



Algorithm 2: Graph Sparsification
Input: Graph Gi = (Vi, E i)
Output: Sparsified Graph Gisparse

1: Initialize sparsification function F
2: Apply F to Gi:

Gsparse
i = F (Gi)

3: Perform downstream tasks using Gisparse
4: Compute Lforecast and Lreconstruct
5: Apply sparsity regularization with L0 norm:

Ltotal = Lforecast + Lreconstruct + λ∥Z∥0
6: Optimize Gisparse by minimizing Ltotal

7: return Gisparse

Graph Sparsification
Graph sparsification is essential for efficient computation,
particularly when the graph is initially constructed using
Algorithm 1. Algorithm 2 focuses on learning an edge-
sparsified graph by systematically removing noisy and task-
irrelevant edges. It is based on SGAT (Ye and Ji 2021),
which employs a binary mask Z ∈ {0, 1}M , where M de-
notes the total number of edges. The function of the mask zij
is to determine whether the edge eij is used during neigh-
bor aggregation. The adjacency matrix A is modified as
Ā = A ⊙ Z and sparsification is achieved by optimizing
a regularized loss of the L0 norm.

While there is a separate regularization for this process,
recent approaches (Li et al. 2024) suggest integrating the
term directly with the downstream task loss, which could of-
fer a more unified optimization framework. Further advance-
ments in this direction can be explored through the emerging
field of Graph Structural Learning, which has gained signif-
icant attention in recent research.

Anomaly Detection
The anomaly detection process begins with the sparsified
graph derived from the multi-ship trajectory graph, which is
then subjected to a series of GCN layers. These layers cap-
ture structural and spatiotemporal patterns, embedding them
into node representations.

The output of the GCN layers is proceeded to two addi-
tional layers, namely the forecasting layer and the recon-
struction layer. These stages are performed at the individual
ship level for a tailored process, where each ship’s trajectory
is treated as an independent subgraph.

The two-layer design integrates both forecasting and re-
constructive perspectives, enabling comprehensive anomaly
detection for temporal deviations and feature distortions. By
leveraging the graph’s inductive bias, specifically the di-
rected edges that are constructed upon temporal dependen-
cies, the architecture eliminates the need for sequential mod-
els like LSTM or GRU, ensuring a streamlined and robust
design for diverse graph structures.

Ltotal = Lforecast + Lreconstruct + λ∥Z∥0 (1)

Forecasting The forecasting layer employs a simple
multi-layer perceptron (MLP) to predict the feature values at
the subsequent time step for each node, utilizing the tempo-
ral dependencies encoded by the GCN layers. A discrepancy
between the predicted and actual values may be indicative of
a potential anomaly.

Reconstruction The reconstruction layer utilizes VGAE
to process individual ship trajectories as distinct subgraphs,
encoding their structural and feature information into a com-
pact latent space. The VGAE reconstructs the adjacency ma-
trix, with anomalies identified based on reconstruction errors
derived from the differences between the original and recon-
structed subgraph properties. By capturing subgraph level
patterns, this approach facilitates robust anomaly detection
for individual ship trajectories.

Lreconstruct = Eq(Z|X,Ā)[log p(Ā,X|Z)]

−β ·DKL(q(Z|X, Ā)∥p(Z))
(2)

Anomaly Scoring To detect anomalous data points, we
adopt a reasoning score that integrates both the prediction er-
ror and the node reconstruction probability (Liu et al. 2023).
For each data point i, the reasoning score is defined as

RSi =
Ei + γ · (1− Pi)

1 + γ
, (3)

where Ei denotes the mean squared error between pre-
dicted and actual values, Pi is the node reconstruction prob-
ability representing the likelihood of observing the feature
values under the learned model, and γ is a hyperparame-
ter that controls the balance between these two components.
The optimal value of γ can be determined through validation
on the training set.

To determine the anomaly threshold, we employ the Peak-
Over-Threshold (POT) method, which dynamically adjusts
the threshold based on environmental changes. This ap-
proach classifies a data point as anomalous when its pre-
diction and reconstruction errors exceed the dynamically set
threshold, allowing for more adaptive and robust anomaly
detection in varying maritime conditions.

Experiment
Dataset
In this paper, we use the OMTAD dataset (Masek et al.
2021), which was constructed from the Australian Maritime
Safety Authority (AMSA), using anonymized AIS data. We
specifically focused on the Western Australian waters due to
its high vessel traffic density, as it represents one of the bus-
iest maritime routes in the region. Figure 2 shows the visu-
alization of vessel trajectories in this area. The dataset con-
tains fundamental AIS features: longitude, latitude, Speed
over Ground (SOG), and Course over Ground (COG), with
data points sampled at one-hour intervals. Vessel journeys
were segmented based on stoppage (zero speed) or data gaps
(>3.5 hours), and only tracks at least 10 hours long were re-
tained. Missing data was interpolated using linear interpola-
tion, with manual verification ensuring data quality. The fi-



Figure 2: Visualization of maritime vessel trajectories from
the OMTAD dataset in Western Australian waters, one of
the most congested maritime areas in the region. The move-
ment paths show vessel positions over a 5-hour period, with
lines representing trajectories and points indicating vessel
positions. The OPTICS algorithm identified distinct vessel
clusters (shown in different colors), while gray trajectories
represent non-clustered vessels classified as noise.

nal dataset includes 19,124 vessel tracks, categorized by ves-
sel type (cargo, tanker, passenger), year, and month. While
the original dataset included fishing vessels as a fourth cate-
gory, we excluded them from our analysis as their distinctive
movement patterns significantly differ from the other vessel
types and could potentially be misclassified as anomalies in
our model.

Synthetic Anomaly Generation A major challenge in
maritime anomaly detection is the lack of ground truth la-
bels. In cases where labeled anomalies exist, they are typi-
cally annotated by domain experts, which is impractical for
large-scale datasets. To address this issue, many existing ap-
proaches synthesize anomalies by injecting artificial pertur-
bations into normal data. Inspired by this, we generate syn-
thetic anomalies based on the Speed and Course Anomaly
(SCA) defined by (Liu, Li, and Liu 2024). SCA is character-
ized by abnormal changes in both speed and course, making
it one of the most commonly observed anomalies in vessel
trajectories.

To synthesize such anomalies, we model the statistical
properties of normal vessel movements and introduce per-
turbations in the SOG and COG values. Specifically, we as-
sume that the rate of change in SOG and COG follows a
normal distribution:

a ∼ N (µa, σ
2
a), ω ∼ N (µω, σ

2
ω) (4)

where ai =
SOGi−SOGi−1

∆t and ωi =
COGi−COGi−1

∆t de-
note the change rate of speed and course, respectively. Here,
i represents the index of a data point in the trajectory, and
∆t is the time interval between consecutive AIS messages.

To introduce synthetic anomalies, we perturb the speed
and course change rates by sampling values that significantly
deviate from their normal distribution:

a∗i = µa + k · σa, ω∗
i = µω + k · σω (5)

where k is a scaling factor that determines the severity of
the anomaly. A typical choice is k > 3, ensuring that the
new values fall outside the normal range (beyond the 99.7%
confidence interval).

Once the synthetic anomaly values a∗i and ω∗
i are gener-

ated, the corresponding speed and course values are updated
iteratively:

SOG∗
i = SOGi−1 + a∗i ·∆t (6)

COG∗
i = COGi−1 + ω∗

i ·∆t (7)

where SOG∗
i and COG∗

i represent the modified speed
and course values containing synthetic anomalies.

This process is applied to randomly selected trajectory
points, ensuring that a subset of the dataset contains anoma-
lous behavior. The generated anomalies effectively simulate
real-world vessel irregularities, such as sudden acceleration,
deceleration, or unexpected course deviations, making them
valuable for training and evaluating anomaly detection mod-
els.

Experimental Setup
All experiments were implemented using PyTorch 2.0 and
PyTorch Geometric frameworks. Our architecture consists
of a GCN encoder with 64 hidden channels and 32 latent di-
mensions, utilizing LayerNorm for stable training. For graph
construction, we employed a sliding window approach with
h = 10 hours and 1-hour steps. Each node encodes a vessel
state through five features: geographical coordinates, speed,
and course decomposed into sine and cosine components.
This decomposition of course angle was necessary to pre-
serve the circular nature of angular data, as direct use of
raw angles would create discontinuity at the 0/360-degree
boundary.

The model was trained using the Adam optimizer with
a learning rate of 0.001 and weight decay of 1e-5. We
trained for a maximum of 100 epochs with early stopping
(patience=10) to prevent overfitting. The loss function com-
bines three components: forecasting loss (MSE), graph re-
construction loss, and KL divergence term. For synthetic
anomaly generation, we set track anomaly ratio=0.1 (10%
of tracks contain anomalies) and point anomaly ratio=0.3
(30% of points within anomalous tracks), with severity fac-
tor k = 3.5.

The dataset was partitioned to ensure all synthetic anoma-
lies appeared exclusively in the test set to maintain uncon-
taminated training data. Specifically, any trajectory contain-
ing y = 0 values was allocated to the test set, while the
remaining data was split into training (90%) and validation
(10%) sets. Input features were normalized using per-graph
standardization to ensure stable training.

Conclusion and Future Work
The proposed framework will be validated using AIS data,
with comparative analyses conducted alongside existing



anomaly detection models to evaluate performance. Further-
more, efforts will be made to refine the methodology through
the use of adaptive graph construction techniques, with the
aim of assessing its robustness and scalability across various
maritime scenarios.
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Appendix
Bounded Position Change Under Small Perturbations in
SOG and COG A key assumption in the anomaly gener-
ation process is that modifying SOG and COG does not sig-
nificantly alter the vessel’s position. The following theorem
provides a theoretical justification for this assumption.
Theorem 1. For a sufficiently small perturbation ϵ, if the
SOG and COG satisfy the following conditions:

|a∗i | ≤ ϵSOGi−1, |ω∗
i | ≤ ϵCOGi−1

then the resulting position change remains bounded by:

|∆ϕ∗| ≤ ϵ∆t, |∆λ∗| ≤ ϵ∆t

implying that the vessel remains effectively on the same
trajectory.
where

• ∆ϕ∗ and ∆λ∗ denote the changes in latitude and longi-
tude, respectively.

Theorem 1 ensures that, under controlled perturbations,
the trajectory remains unchanged, making it valid to gener-
ate anomalies by modifying only SOG and COG. Further
proof is provided in the Appendix section.

Proof of Theorem 1 We start by defining the changes in
latitude and longitude. Let R denote the Earth’s radius. The
latitude change ∆ϕ∗ is computed using R, while the longi-
tude change ∆λ∗ is adjusted by R cosϕ to account for the
varying circumference of the Earth at different latitudes:

∆ϕ∗ =
SOG∗

i cos(COG∗
i )

R
·∆t



∆λ∗ =
SOG∗

i sin(COG∗
i )

R cosϕ
·∆t

Substituting the perturbed values of SOG and COG, we
obtain:

∆ϕ∗ =
(SOGi−1 + a∗i ·∆t) cos(COGi−1 + ω∗

i ·∆t)

R
·∆t

∆λ∗ =
(SOGi−1 + a∗i ·∆t) sin(COGi−1 + ω∗

i ·∆t)

R cosϕ
·∆t

Using the Taylor series expansion for small x, we approx-
imate:

cos(COG∗
i ) ≈ cos(COGi−1)− sin(COGi−1) · ω∗

i ·∆t

sin(COG∗
i ) ≈ sin(COGi−1) + cos(COGi−1) · ω∗

i ·∆t

By substituting these approximations back into the ex-
pressions for ∆ϕ∗ and ∆λ∗, we get:

∆ϕ∗ ≈
SOGi−1

(
1 +

a∗
i

SOGi−1

)
cosCOGi−1

R
·∆t

∆λ∗ ≈
SOGi−1

(
1 +

a∗
i

SOGi−1

)
sinCOGi−1

R cosϕ
·∆t

Since we assume:

|a∗i | ≤ ϵSOGi−1, |ω∗
i | ≤ ϵCOGi−1

it follows that:

|∆ϕ∗| ≤ ϵ∆t, |∆λ∗| ≤ ϵ∆t

which ensures that for a sufficiently small ϵ, the vessel
remains effectively on the same trajectory.


