
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAGELITE: HARMONIZING TEXT AND CODE EMBED-
DING VIA TWO-STAGE TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Creating versatile embedding models that excel across both text and code do-
mains is essential, as modern applications often involve diverse, heterogeneous
data. While data mixing is a typical starting point, we take a significant step
forward by addressing the limitations of naive data mixing. In this work, we
introduce SAGELITE, a unified embedding model capable of handling both text
and code within a single framework. Our approach begins with pretraining on a
blended dataset of text and code, fostering shared representations that are crucial
for strong cross-domain performance. We then enhance domain-specific capabil-
ities by independently applying large-scale contrastive learning to text and code
from various web sources. Our key finding is that, despite the inherent differences
between text and code, starting from a model pretrained on mixed data enables the
domain-specific contrastive learning stages to produce models that remain closely
aligned. This alignment allows us to effectively integrate domain-specific im-
provements at the constrastive learning stage into a final model through model
weights interpolation. Through comprehensive ablation studies, we explore the
mechanisms behind our approach, offering insights to guide future research in
this area.

1 INTRODUCTION

Pre-training on large-scale heterogeneous data collected from various domains is crucial for enabling
a single model to demonstrate remarkable versatility in generation tasks, including both code and
text generation (OpenAI, 2023; Team et al., 2024; Dubey et al., 2024, inter alia). However, state-of-
the-art (SOTA) embedding models are often domain-specific, typically focusing on either text (Li &
Li, 2023; Wang et al., 2022; 2024; Lee et al., 2024, inter alia) or code (Zhang et al., 2024; Guo et al.,
2022, inter alia) independently. There is a strong practical need for versatile embedding models that
can handle heterogeneous data, as they can significantly reduce hosting costs and eliminate the need
for complex routing system designs in applications requiring multi-domain processing.

To train a versatile model, data mixing is a natural starting point. However, the optimal data-mix
strategy is not yet understood. The distributions of text and code are fairly different, leading many
general-purpose generative models to incorporate only a small fraction of code data during pretrain-
ing (Touvron et al., 2023; Chowdhery et al., 2023, inter alia). Although studies by Hernandez et al.
(2021); Muennighoff et al. (2024a) have empirically demonstrated positive transfer between text and
code, these investigations are limited to Python, a language that intuitively shares more similarities
with natural language. In our experiments, we indeed find that models trained with mixed data un-
derperformed compared to domain-specific models on in-domain tasks at both the initial pretraining
and the subsequent contrastive learning stages.

We are thus faced with a conundrum: on one hand, we aim to train a versatile embedding model;
on the other hand, data mixing results in suboptimal performance at each stage of training. This
challenge prompts us to explore two critical questions: (1) Is cross-domain data mixing the only
viable approach for training versatile embeddings at each stage? (2) What benefits can be gained
from training on mixed data, and if data mixing is necessary at certain stages, can we devise a
strategy that leverages its strengths in later stages to compensate the performance drop it causes
earlier?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

By working backwards, we developed a multi-stage strategy that leverages two key ingredients to
reach the sweet spot: the transfer learning capabilities of contrastive learning and the interpolation
of properly trained models. Our key insight is that the shared embedding model obtained by pre-
training on the mixed data can be leverage to attain strong transfer performance across-domains
via contrastive learning in the subsequent stages. Such shared base model largely narrows the per-
formance gap between the in-domain and out-of-domain contrastive learning, which coupled with
contrastive learning’s ability to keep models close, provides a solid foundation for constructing a
versatile embedding model through the merging of models trained with domain-specific contrastive
learning. Additionally, the strong cross-domain transfer learning performance enhances the perfor-
mance of the merged model in each domain, compensating for the initial performance drop during
the pretraining stage with mixed data. As a result, this versatile embedding model achieves compa-
rable or even superior performance to models trained specifically for individual domains. To better
understand the factors contributing to successful versatile embedding learning, we thoroughly ana-
lyze the key components of our framework and present our findings as directions for future research.

2 RELATED WORK

Text Embedding Model The early success of transformer-based text embeddings (Reimers &
Gurevych, 2019; Gao et al., 2021; Ni et al., 2021; Zhang et al., 2021, inter alia) is largely driven
by the use of human-labeled datasets (Bowman et al., 2015; Williams et al., 2017; Nguyen et al.,
2016). However, the high cost of human annotations often results in small-scale datasets with limited
diversity and complexity. Consequently, these models often struggle with complex tasks and broad
generalization. To improve general-purpose text embeddings, Izacard et al. (2021); Neelakantan
et al. (2022); Wang et al. (2022) leverage large-scale, naturally occurring text pairs curated from
web data to provide diverse training signals, e.g., title and passage, or question and answer pairs
mined from various web sources. More recently, Wang et al. (2024) and its follow-up work (Meng
et al., 2023; Muennighoff et al., 2024b; Lee et al., 2024)demonstrated that fine-tuning Mistral-7B
(Jiang et al., 2023) with high-quality synthetic data generated by proprietary LLMs (OpenAI, 2023)
can push the boundaries of encoder-based embedding models.

Code Embedding Model Early work by Feng et al. (2020); Kanade et al. (2020) primarily fol-
lowed BERT’s training paradigm (Devlin et al., 2019), optimizing the Masked Language Modeling
objective alongside various auxiliary tasks on linearized code data. Another line of research focuses
on exploiting the structural aspects of code to provide additional training signals, either by explic-
itly utilizing data-flow information (Guo et al., 2021) or abstract syntax trees (ASTs) (Wang et al.,
2021a; Jiang et al., 2021), or by implicitly encoding code structures through deobfuscation (Wang
et al., 2021b; anne Lachaux et al., 2021; Zhang et al., 2024). More recently, Wang et al. (2021a);
Guo et al. (2022); Neelakantan et al. (2022); Zhang et al. (2024) have substantially improved the
quality of sequence-level representations by employing contrastive learning on (text, code) pairs
mined from GitHub data.

Model Weights Interpolation Model weights interpolation dates back to the practice of averaging
points along the training trajectory of stochastic gradient descent (Ruppert, 1988; Polyak & Juditsky,
1992; Szegedy et al., 2016; Izmailov et al., 2018), which has been shown to lead to wider optima
and improved generalization. More recent research has explored model weight interpolation during
the finetuning stage. Wortsman et al. (2022a) demonstrate better generalization performance by av-
eraging models that were fine-tuned independently on the same dataset with varying configurations,
while Wortsman et al. (2022b); Ilharco et al. (2022); Matena & Raffel (2022) extend this idea by in-
cluding the pretrained model in the averaging process to achieve broader generalization. In contrast,
our work mainly focuses on systematically training one versatile model with steered performance in
each single domain, where model weight interpolation is one step of our entire pipeline.

Transfer Learning Between Text and Code The impact of incorporating code data on text per-
formance, and vice versa, remains underexplored. Hernandez et al. (2021) empirically show that
training exclusively on text achieves similar performance gains, measured by cross-entropy loss on
test data, as those obtained by training on other programming languages. Conversely, Muennighoff
et al. (2024a) demonstrate that incorporating Python into pretraining can enhance text performance,
particularly in data-constrained scenarios. However, these studies focus solely on Python, a lan-
guage that intuitively shares more similarities with natural language, and only verify on the loss

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

function. The distributions of text and code are fairly different, leading many general-purpose gen-
erative models to incorporate only a small fraction of code data during pretraining (Touvron et al.,
2023; Chowdhery et al., 2023, inter alia). In our work, we empirically show that, for embedding
models, naı̈ve mixing of text and code data for both MLM-based pretraining and contrastive learning
leads to suboptimal performance on downstream tasks. A strategic approach is therefore necessary
to train a general-purpose cross-domain embedding model, which is the primary focus of this paper.

3 METHOD

We train SAGELITE through two primary stages: token-level pretraining on a mix of text and code
data, followed by sequence-level domain-specific contrastive learning.

3.1 PRETRAINING FOR SHARED EMBEDDINGS BETWEEN TEXT AND CODE

We first train the model with the mask language modeling (MLM) Devlin et al. (2019) objective.
Given an input sequence with N tokens, i.e., x = [x1,x2, . . . ,xN , ], the MLM objective (Devlin
et al., 2019) is formed as

LMLM(x) = −
∑
i∈M

logP
(
xi|xM)

(1)

Here M denotes the mask applied on the given input x. Equation (1) is essentially a denoising
objective with the task to predict the original tokens given the masked sequence xM.

We pretrain the embedding model on a mixture of text (Penedo et al., 2023) and code (Lozhkov et al.,
2024) data for one epoch. As discussed in Section 4, this mixed-data pretraining produces a shared
embedding model for both code and text, which may result in suboptimal in-domain performance
but establishes a strong foundation for enhanced transfer learning in subsequent contrastive learning
stages.

3.2 DOMAIN-SPECIFIC CONTRASTIVE LEARNING

Next, we refine the representations through contrastive learning. Unlike the pretraining stage, we ap-
ply domain-specific contrastive learning on top of the pretrained model, producing domain-specific
models at this stage. Our objectives are two-fold. First, to assess whether starting from a model
pretrained on mixed text and code data leads to any performance drop during this contrastive learn-
ing stage, compared to performing contrastive learning on domain-specific models. Second, to
determine whether domain-specific contrastive learning can effectively steer the embedding model
performance in each domain, and whether this improvement can be transferred to the final model
through model weight interpolation.

We leverage the naturally occuring pairs from various web sources as positives. Our datasets include
(summary, code) for code with summary mined from the docstring of each function or class (Zhang
et al., 2024), and (question, answer) or (title, body) mined from Web data (Wang et al., 2022). Let
B = {(qi,pi)}Mi=1 denote the representations of a randomly sampled batch with M pairs, we then
minimize the following to separate each positive pair from other examples within the same batch,

LCL =
1

M

M∑
i=1

− log
exp(pi ⋄ qi/τ)

exp(pi ⋄ qi/τ) +
∑

k ̸=i exp(qi ⋄ pk/τ)
. (2)

τ is the temperature hyperparameter and ⋄ denotes cosine similarity between two vectors. We set it
to 0.05 in this paper.

Given that these datasets are scraped from the internet using simple heuristics, a substantial portion
of the pairs exhibit weak semantic relevance. To address this, we first apply deduplication and rule-
based data filtering, followed by a consistency-based filter (Wang et al., 2022). Specifically, we train
the model on the entire dataset for one epoch and remove any pair whose similarity score falls below
the top-K (K = 3) similarity scores relative to a presampled set of 100,000 examples. After these
two filtering stages, we retain 72 million summary-code pairs for code-related contrastive learning
and 250 million positive pairs for text-related tasks.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) SAGELITE outperforms the model trained on naively mixed data.

(b) Retrieval accuracy landscape.

Figure 1: (a) Naive-Mix, despite starting from the same pretrained model as SAGELITE, exhibits
suboptimal performance due to the gap between domain-specific and mixed contrastive learning
(i.e., , Naive-Mix vs SAGELITE-TEXT and SAGELITE-CODE in their respective domains). (b) Mod-
els achieving optimal performance tend to lie between SAGELITE-TEXT and SAGELITE-CODE,
validating the effectiveness of leveraging model weights interpolation to obtain SAGELITE.

We found that consistency-based filtering is particularly effective for code-related contrastive learn-
ing. This is likely due to the fact that rule-based summary extraction from docstrings can be highly
noisy. Not all docstrings in GitHub codebases are of high quality, and summaries mined based on
handcrafted rules may fail to capture the main intent of the code, especially in the case of more
complex code.

4 WHEN AND HOW MODEL INTERPOLATION WORKS FOR TEXT AND CODE

After the contrastive learning stage, we obtain two models, SAGELITE-TEXT and SAGELITE-
CODE. The final model, SAGELITE, is then produced by averaging the weights of these two models.
To better understand the effectiveness of SAGELITE, we conduct ablation studies to systematically
explore its key factors. We consider the following baselines throughout our analyses: NAIVE-MIX,
which trains on mixed text and code data during both pretraining and contrastive learning; TEXT-
ONLY, trained exclusively on text data at both stages; CODE-ONLY, trained only on code data at both
stages. Additionally, SAGELITE-TEXT begins with a pretrained mixed model and is pre-finetuned
on text contrastive learning data, while SAGELITE-CODE continues training the mixed model on
code contrastive learning data.

4.1 SAGELITE VS. NAIVE DATA MIX

In Figure 1a, we compare SAGELITE to a model trained using naive data mixing during both the
pre-training and pre-finetuning stages. The results indicate that SAGELITE consistently outperforms
the naive data mixing approach across multiple benchmarks. We hypothesize that this is because
training data from different domains may require tailored learning configurations, and naive data
mixing fails to optimally accommodate these domain-specific needs. To further demonstrate that
naive data mixing is suboptimal, we apply a constant learning rate to both SAGELITE-TEXT and
SAGELITE-CODE and construct SAGELITE by simply averaging their model weights.

To gain a more intuitive understanding of why cross-domain model interpolation is effective, we
visualize the retrieval accuracy landscape in Figure 1. Following the approach in Wortsman et al.
(2022a); Garipov et al. (2018), we construct an orthonormal basis for the plane spanned by the mod-
els, with the x and y axes representing movement within this parameter space along the respective

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: (a) – (b): Cosine similarity between models SAGELITE-TEXT and SAGELITE-CODE
trained with domain-specific contrastive pre-finetuning at different learning rates. Contrastive learn-
ing maintains high similarity between the models over a wide range of learning rates. (c) – (e):
With not too large learning rate, SAGELITE-TEXT and SAGELITE-CODE remain close and thereby
the merged model SAGELITE consistently outperforms the individual domain-specific models on
retrieval tasks in each domain.

directions. As illustrated, optimal performance lies between SAGELITE-TEXT and SAGELITE, with
SAGELITE closely approaching this optimal region, while NAIVE-MIX remains further away from
it.

4.2 MODELS ARE CLOSE

Effective model interpolation relies on certain preconditions — merging two models with the same
architecture but that are too distant in parameter space can severely degrade the resulting model’s
performance. From this standpoint, we expect that models trained via domain-specific contrastive
learning at the pre-finetuning stage should maintain sufficient similarity for model interpolation to
be effective. We explore this hypothesis in Figure 2. Notably, models trained independently on
text and code data i.e., , SAGELITE-TEXT and SAGELITE-CODE, at the prefinetuning stage remain
closely aligned across different learning rates. Specifically, the cosine similarity between these
models remains above 0.96, as long as the learning rate is below 10−4. Within this range, model
interpolation is highly effective, as evidented by SAGELITE consistently outperforms SAGELITE-
TEXT and SAGELITE-CODE as in Figures 2 (c)–(e).

As the learning rate increases, SAGELITE-TEXT and SAGELITE-CODE begin to diverge, with a
monotonically decreasing similarity, as shown in Figure 2(a). As hypothesized, this divergence
results in a significant drop in the performance of the interpolated model, i.e., , SAGELITE under-
performs compared to SAGELITE-TEXT and SAGELITE-CODE in their respective domains. How-
ever, such large learning rates are not viable options, as they also lead to degraded performance in
the individual models trained via domain-specific contrastive learning, as indicated by the mono-
tonic performance decline of both SAGELITE-TEXT and SAGELITE-CODE when the learning rate
exceeds 10−4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Compared to domain-specific pretraining, training on the mixed text and code data causes
in-domain performance drop at both pretraining and the subsequent domain-specific contrastive
learning stages, but it leads to better transfer learning performance (right).

4.3 TRADE-OFFS BETWEEN IN-DOMAIN ACCURACY AND ENHANCED TRANSFER
LEARNING

Next, we analyze how SAGELITE compares to domain-specific models, which are trained exclu-
sively on domain-specific data during both the pretraining and pre-finetuning stages. As shown
in Figure 3, pretraining on mixed data leads to a decline in in-domain performance, both during
pretraining and the subsequent contrastive learning stage. Figure 3 (left) demonstrates that pre-
training on text-only or code-only data (text-only MLM and code-only MLM) consistently outper-
forms pretraining on mixed text and code data (text&code MLM) when evaluated on Text2Text and
Code2Code retrieval tasks. This performance gap continues during the contrastive learning stage,
where SAGELITE-TEXT and SAGELITE-CODE underperform relative to domain-specific models
trained with contrastive learning on top of domain-specific pretrained models.

On the other hand, Figure 3 demonstrates that the shared embeddings learned from pretraining on
mixed data can significantly enhance transfer learning performance during the contrastive learning
stage. Specifically, applying text-only contrastive learning to the shared embedding model outper-
forms its counterpart where contrastive learning is performed on a model pretrained exclusively on
text data. This strong transfer learning capability can be particularly valuable in domains where con-
trastive learning data is scarce or challenging to acquire at scale but pretraining data is more readily
available, offering a practical advantage for improving model performance.

Another notable observation from Figure 3.1 (right) is that applying text-only contrastive learning
to a text-only pretrained model results in significantly lower transfer learning performance on code-
related tasks, compared to the performance achieved by applying code-only contrastive learning on
top of code-only pretrained models. One potential explanation for this discrepancy is the presence
of text within code data during both the pretraining and contrastive learning stages, in the form
of code comments, documentation, or the text summary used in the positve pairs for contrastive
learning. This overlap may provide a stronger alignment between code and text representations in
code-specific training.

5 COMPARE AGAINST THE OTHER MODELS

To assess the versatility of SAGELITE, we compare it against both code and text embedding models,
providing a comprehensive evaluation across different modalities. In order to sharpen the focus of
our analysis, we prioritize retrieval tasks due to their increasing importance. Our objective is to
evaluate the embedding models in practical scenarios where collecting supervised fine-tuning data
is expensive or unfeasible. Thus, our evaluation emphasizes zero-shot performance.

For code-related retrieval tasks, we assess SAGELITE on both Code2Code and NL2Code semantic
search. In Code2Code retrieval, the goal is to find relevant code snippets given a code fragment as
a query. We utilize the Code2Code search set from (Zhang et al., 2024), which expands the original
benchmark from (Guo et al., 2022) to cover nine programming languages instead of just three. For
NL2Code semantic search, where natural language queries are used to retrieve relevant code, we rely

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Code2Code Search
Model Embed Evaluation Languages

Model Size Dim Python Java JS TS C# C Ruby PHP GO Avg
GraphCodeBERT 125M 768 19.2 10.8 7.4 8.7 5.5 8.5 19.7 15.7 9.7 11.7

UnixCoder 125M 1024 30.8 16.5 21.3 22.0 6.2 15.6 32.3 31.9 13.9 21.2
OpenAI-Text-3-Small NA 1536 25.2 12.6 8.0 9.4 5.5 15.9 30.7 23.3 11.2 15.8
OpenAI-Text-3-Large NA 1536 40.6 25.3 20.1 22.0 11.8 31.9 42.5 41.8 21.8 28.7

CodeSage-Small 130M 1024 36.3 24.0 26.6 29.9 11.8 22.8 29.1 34.6 19.6 26.1
CodeSage-Base 356M 1024 47.5 22.8 28.7 32.0 13.4 31.0 44.7 51.1 25.2 33.0

CodeSage-Large 1.3B 2048 46.7 33.1 37.2 41.2 16.8 32.9 54.1 52.1 32.5 38.5
SAGELITE-X 850M 1536 67.79 53.80 55.92 62.37 39.73 51.67 63.19 71.66 48.90 57.23

NL2Code Search
Model Model Embed CoSQA AdvTest CSN
Name Size Dim Python Python Python Java JS PhP Go Ruby

GraphCodeBERT 125M 768 16.2 5.6 10.4 8.6 7.3 8.1 12.5 20.8
UnixCoder 125M 768 42.1 27.3 42.2 43.9 40.5 35.2 61.4 55.2

OpenAI-Text-3-Small NA 1536 52.5 34.1 62.6 65.9 60.3 54.9 82.0 67.6
OpenAI-Text-3-Large NA 3072 55.2 46.8 70.8 72.9 68.1 59.6 87.6 75.2

CodeSage-Small 130M 1024 49.9 41.3 64.4 63.2 60.0 54.7 77.7 63.2
CodeSage-Base 356M 1024 48.5 49.1 68.0 68.0 67.0 58.2 83.2 68.0

CodeSage-Large 1.3B 2048 47.5 52.7 70.8 70.2 69.5 61.3 83.7 71.9
SAGELITE-X 850M 1536 61.0 54.62 73.9 72.65 69.81 63.91 84.87 76.61

Table 1: MRR score (%) of NL2Code search in zero-shot setting.

MTEB Retrieval (Text2Text)

M
od

el
Si

ze

Em
be

d
D

im

M
S

M
A

R
C

O

Tr
ec

-C
ov

id

N
FC

or
pu

s

N
Q

H
ot

po
tQ

A

Fi
Q

A

A
rg

uA
na

To
uc

he
-2

00
0

C
Q

A
D

up
St

ac
k

Q
uo

ra

D
B

Pe
di

a

Sc
id

oc
s

Fe
ve

r

C
lim

at
e-

Fe
ve

r

Sc
ifa

ct

OpenAI-Text-3-Small NA 1536 37.02 77.9 38.33 52.86 63.63 44.91 55.49 24.28 42.58 88.83 39.97 20.80 79.42 26.86 73.37
OpenAI-Text-3-Large NA 3072 40.24 79.56 42.07 61.27 71.58 55.00 58.05 23.35 47.54 89.05 44.76 23.11 87.94 30.27 77.77

Gecko 1B 768 32.58 82.62 40.33 61.28 71.33 59.24 62.18 25.86 48.82 88.18 47.12 20.35 86.96 33.21 75.42

SAGELITE-X 850M 1536 35.9 74.0 33.6 51.2 53.9 46.7 60.8 23.6 38.1 87.2 36.7 20.24 87.2 24.0 68.7

Table 2: MTEB.

on three established benchmarks: CoSQA (Huang et al., 2021), AdvTest (Lu et al., 2021), and CSN
(Guo et al., 2021). Additionally, for Text Retrieval, we employ tasks from the MTEB benchmark
suite (Muennighoff et al., 2022).

We summarized our model performance in Table 1 to Table 2. As we can see SAGELITE achieve
very strong performance in code, and comparable performance on text. We believe the perforam-
nce gap regarding the some text embedding models can be reduced through careful synthetic data
curation.

5.1 MORE ABOUT GENERALIZATION

Given synthetic data becomes increasingly prevalent, we propose two purely LLM generated syn-
thetic benchmark datasets to assess the generalization of a subset of selected embedding models.
The multi-stage benchmark data generation pipeline began by brainstorming diverse retrieval tasks,
then generated corresponding queries, positive, and negative documents. After the initial task gen-
eration, we refined and deduplicated the tasks to maximize coverage and diversity. Our goal was to
assess model performance on LLM-generated datasets as

Data Generation Pipeline The synthetic text and code benchmark datasets were constructed us-
ing pipelines designed to evaluate nuanced retrieval performance. The text pipeline started with
generating diverse retrieval tasks, covering a broad range of potential information retrieval scenar-
ios. The code pipeline similarly produced a variety of developer-focused retrieval scenarios. These
foundational tasks were chosen to simulate realistic search contexts, promoting diversity in query
types and document structures. Next, examples were created to challenge retrieval models’ sensitiv-
ity to fine-grained similarities. The code dataset paired queries with relevant snippets and deceptive
negatives—incorrect but plausible code—to mimic real-world debugging and search complexities.
The use of misleading negatives was intentional, designed to evaluate the models’ ability to distin-
guish between closely related but semantically distinct examples.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset Name # Queries Min/Median/Max Query Token Counts # Corpus Documents Min/Median/Max Corpus Docs Token Counts
Synthetic Text Benchmark 1296 4/9/18 14106 87/270/1217

Synthetic Code Benchmark 324 3/9/19 1691 6/105/875

Table 3: Entirely synthetic evaluation benchmark statistics.

Model Embed Text Code
Model Size Dim Synthetic Synthetic

e5-base 109M 768 43.3 42.1
gte-base-en-v1.5 137M 1024 66.8 52.89

multilingual-e5-large 560M 1024 48.5 43.2
e5-mistral-7b-instruct 7B 4096 82.9 69.3

SFR-Embedding-Mistral 7B 4096 83.9 68.7
CodeSage-Large 1.3B 2048 32.2 48.6

SAGELITE-X 850M 1536 73.7 61.6

Table 4: Evaluation results on the text and code synthetic data benchmarks.

For text, we generated queries with short positive document summaries before additional stages
that expanded summaries into detailed documents. We also generated hard negatives, ensuring the
final dataset could effectively test the models’ robustness in distinguishing subtle contextual nu-
ances—a key requirement for evaluating contrastive learning models in both text and code domains.
The dataset distributions can be found in 3, and full prompts used to construct the synthetic text
benchmark and synthetic code benchmark can be found in the Appendix C.2.

Evaluation We conducted evaluation on our benchmark datasets through using the generated
queries as the search queries, and all positive and negative generated documents as the search cor-
pus. Full evaluation results can be found in 4. Both encoder-based and decoder-based embedding
models were considered. Notably, E5-mistral-7b-instruct Wang et al. (2024) and SFR-Embedding-
Mistral Meng et al. (2023) achieved superior performance across both text and code tasks. This
outcome is expected, given their generative nature and fine-tuning on synthetic data collected in a
manner similar to our benchmark, enabling them to handle synthetic data effectively. Additionally,
their significantly larger model sizes confer an advantage. Following these models, SAGELITE-X
demonstrated the next highest performance across both text and code benchmarks, indicating its
strong capability in handling diverse data types, including synthetic datasets, which are becoming
increasingly prevalent.

6 CONCLUSION

In conclusion, SAGELITE demonstrates a significant advancement in the field of code embeddings
by effectively leveraging a combination of text and code data, followed by rigorous unsupervised
contrastive learning. Through this approach, the model not only excels in capturing shared repre-
sentations across text and code but also achieves fine-grained semantic discrimination crucial for
domain-specific generalization. Our results suggest that this comprehensive framework for integrat-
ing knowledge from diverse sources can open new avenues for scalable, adaptable, and efficient
embedding model.

REFERENCES

Marie anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample. DOBF: A de-
obfuscation pre-training objective for programming languages. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=3ez9BSHTNT.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

8

https://openreview.net/forum?id=3ez9BSHTNT


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1xMH1BtvB.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for pro-
gramming and natural languages. In Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pp. 1536–1547, 2020. doi: 10.18653/v1/2020.findings-emnlp.139. URL
https://aclanthology.org/2020.findings-emnlp.139.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcode{bert}: Pre-training
code representations with data flow. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=jLoC4ez43PZ.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan
Duan. Cosqa: 20,000+ web queries for code search and question answering. arXiv preprint
arXiv:2105.13239, 2021.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
CodeSearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019. URL https://arxiv.org/abs/1909.09436.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. Advances in Neural Information Processing Systems, 35:29262–29277, 2022.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

9

https://openreview.net/forum?id=r1xMH1BtvB
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=jLoC4ez43PZ
https://arxiv.org/abs/1909.09436


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu. Treebert: A tree-based pre-trained
model for programming language. In Uncertainty in Artificial Intelligence, pp. 54–63. PMLR,
2021.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating
contextual embedding of source code. In International conference on machine learning, pp.
5110–5121. PMLR, 2020.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Xianming Li and Jing Li. Angle-optimized text embeddings. arXiv preprint arXiv:2309.12871,
2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-
draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii
Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan
Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han
Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Cha-
pados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming
Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Star-
coder 2 and the stack v2: The next generation, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie LIU. CodeXGLUE: A machine learning benchmark dataset for code
understanding and generation. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 1), 2021. URL https://openreview.net/
forum?id=6lE4dQXaUcb.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfr-embedding-mistral: Enhance text retrieval with transfer learning. arXiv preprint
arXiv:2401.00368, 2023.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024a.

10

https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning. arXiv preprint arXiv:2402.09906,
2024b.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human-generated machine reading comprehension dataset. 2016.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yin-
fei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. arXiv
preprint arXiv:2108.08877, 2021.

OpenAI. Gpt-4 technical report, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023. URL https://arxiv.org/abs/2306.01116.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. Salesforce AI Research Blog, 2024.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin
Jiang. Syncobert: Syntax-guided multi-modal contrastive pre-training for code representation.
arXiv preprint arXiv:2108.04556, 2021a.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708,
2021b. doi: 10.18653/v1/2021.emnlp-main.685. URL https://aclanthology.org/
2021.emnlp-main.685.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

11

https://arxiv.org/abs/2306.01116
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Figure 4: The average discrimination loss achieved by SAGELITE and its domain-specific compo-
nents, SAGELITE-TEXT and SAGELITE-CODE. The results show that models achieving optimal
performance consistently lie between SAGELITE-TEXT and SAGELITE-CODE, validating our strat-
egy of obtaining a versatile model through interpolation.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing in-
ference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022b.

Dejiao Zhang, Shang-Wen Li, Wei Xiao, Henghui Zhu, Ramesh Nallapati, Andrew O Arnold, and
Bing Xiang. Pairwise supervised contrastive learning of sentence representations. arXiv preprint
arXiv:2109.05424, 2021.

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei
Ma, and Bing Xiang. CODE REPRESENTATION LEARNING AT SCALE. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=vfzRRjumpX.

A APPENDIX

B DATA, MODEL, AND HYPER-PARAMETERS DETAILS

C EVALUATION

C.1 BASELINE MODELS

Code Embedding Models We compare our models against four general-purpose code represen-
tation learning encoders. Both CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo et al.,
2021) are trained with standard MLM on six programming languages using CodeSearchNet (Husain
et al., 2019)1, while the replaced token detection objective (Clark et al., 2020) and data flow predic-
tion objectives are adopted as auxiliary objectives, respectively. UnixCoder (Guo et al., 2022) is
trained via three language modeling and two contrastive learning objectives using the same dataset.
More recently, StarEncoder (Li et al., 2023) is trained with MLM and next sentence prediction
(Devlin et al., 2019) on 86 programming languages from The Stack (Kocetkov et al., 2022). Zhang
et al. (2024) is the current state-of-the-art code embedding models on Code2Code and NL2Code
search performance among open-sourced embedding models.

1The dataset includes 2.3M functions paired with natural language documents.

12

https://openreview.net/forum?id=vfzRRjumpX
https://openreview.net/forum?id=vfzRRjumpX


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 5: This figure shows the similarity between text and text models for various learning rates.

C.2 SYNTHETIC BENCHMARK PROMPTS AND EXAMPLES

Text Retrieval Prompts: Stages 2-4

Stage 2 Prompt. Text retrieval task: task. Create one text retrieval example using the
format provided. The JSON object must contain the following keys:

• user query: A string, a random user search query specified by the retrieval task.
• summary: A string, a short summary of a relevant document for the user query.

Try not to repeat exact phrases from the query in this positive, accurate summary.
The summary should be between 20-50 words.

Stage 3 Prompt. Given the following query and short summary, produce a document
of 128-1024 words. The document should contain the information presented in the short
summary, but expand the document to include more context and related information. Do not
copy exact phrases or answers in the document; instead, try to be creative in how you present
the information. The document should seem independently written, and not reference the
summary nor the query. Query: query Summary: summary Please output your completed
document in ¡document¿ tags.
Stage 4 Prompt. Given the following query and short summary, produce a document of

128-1024 words each that does not contain the answer to the query. The document should
contain related information presented in the short summary, but expand the document to
include more context and related information. Try to copy exact phrases or answers from
the summary and query, and be creative in how you present the information. The document
should a be misleading answer to the user query; it must be incorrect, or be on a related
but different subject. The document should not reference the summary nor the query, nor
reference the fact that it is wrong or misleading. Query: query Summary: summary Please
output your completed document in ¡document¿ tags.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Code Retrieval Prompt: Stage 2

Given the following code retrieval task: task. Create one code retrieval example using
the format provided. The JSON object must contain the following keys:

• user query: A string, a random developer search query specified by the retrieval
task. The query should require a code response of 20-100 lines of code.

• positive code: A string, a correct chunk of code or relevant document for the de-
veloper query with no explanation. The code should be 20-100 lines long.

• incorrect code: A list of 4 strings, all incorrect code responses to the developer
query. These can include buggy implementations or code with errors, or code that
responds to another similar query. These responses must not be accurate responses
to the developer search query. Each negative code snippet should be 20-100 lines
long.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sample Text Retrieval Example

Listing 1: A structured example for the text retrieval task.
1 {
2 "user_query": "Impact of urban growth on endangered species in

city outskirts",
3 "positive_document": "Urbanization, the process by which rural

areas transform into urban environments, brings with it a
multitude of changes to the landscape. Forests, wetlands, and
grasslands are often cleared to make way for residential
developments, commercial buildings, and infrastructure
projects. This transformation is particularly destructive for
endangered species whose survival relies on the integrity of
these natural habitats. The effects of urban growth can
primarily be seen in two critical areas: habitat fragmentation
and habitat degradation.

4

5 Habitat fragmentation occurs when continuous habitats are divided
into smaller, isolated patches by roads, buildings, and other
urban structures. For many species, a continuous habitat is
essential for their survival, as it allows for movements
related to breeding, foraging, and escaping predators. When
these habitats are broken up, it restricts the natural
movements of wildlife, leading to decreased genetic diversity,
inbreeding, and increased vulnerability to environmental
changes. For example, certain amphibians, which have specific
breeding sites often located in wetland areas, may find it
increasingly difficult to reach these sites when their habitat
is fragmented by new housing developments and roadways.

6

7 In the face of expanding cities, habitat degradation also poses a
significant challenge. Habitat degradation involves the
reduction in quality and usability of an environment for
wildlife, often through pollution, introduction of invasive
species, and general disturbances from human activities. As
urban areas expand, pollutants from vehicles, factories, and
human settlements can seep into the surrounding land and water
bodies. Such changes can disrupt the delicate balance of
ecosystems, making it difficult for native species to thrive.
Native plants and animals might be replaced by non-native or
invasive species that can better tolerate the altered
conditions, leading to further declines in native populations.

8

9 Moreover, one cannot overlook the impact of human-induced light
and noise pollution, which significantly affect wildlife
behaviors. Many species depend on natural light cycles for
activities like migration and reproduction. Urban lights can
disorient birds during migration, causing fatal collisions
with buildings. Similarly, increased noise levels from traffic
and industrial activities can disturb communication and
breeding of various species, especially those that rely on
acoustic signals.\n\nAnother aspect to consider is climate
change, which is exacerbated by urbanization. The creation of
heat |islandswhere urban areas become significantly warmer
than their rural surroundings due to human |activitiesalters
local climate conditions. This can shift the distribution of
species, further adding to the stress on those already
endangered. Many species are specifically adapted to their
regional climate, and changes can render their current
habitats unsuitable, forcing them to migrate, where possible,
to more hospitable areas or face heightened risk of extinction
.

10

11 ...
12 "
13 } 15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Sample Code Retrieval Example

Listing 2: A structured example for the code retrieval task.
1 {
2 "user_query": "How do I calculate the determinant of a matrix in

C++?",
3 "positive_document":
4 "#include <iostream>
5 #include <vector>
6

7 using namespace std;
8

9 typedef vector<vector<double>> Matrix;
10

11 double determinant(Matrix mat, int n) {
12 double det = 0;
13 if (n == 1)
14 return mat[0][0];
15 if (n == 2)
16 return (mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]);
17

18 Matrix subMatrix(n, vector<double>(n));
19 for (int x = 0; x < n; x++) {
20 int subi = 0;
21 for (int i = 1; i < n; i++) {
22 int subj = 0;
23 for (int j = 0; j < n; j++) {
24 if (j == x)
25 continue;
26 subMatrix[subi][subj] = mat[i][j];
27 subj++;
28 }
29 subi++;
30 }
31 det = det + (pow(-1, x) * mat[0][x] * determinant(subMatrix

, n - 1));
32 }
33 return det;
34 }
35

36 int main() {
37 Matrix mat = {{1, 2, 3},
38 {4, 5, 6},
39 {7, 8, 9}};
40

41 cout << \"Determinant: \" << determinant(mat, 3) << endl;
42 return 0;
43 }",
44 "hard_negative_documents": [
45 "#include <iostream>
46 #include <vector>
47 using namespace std;
48

49 typedef vector<vector<double>> Matrix;
50

51 double computeDeterminant(Matrix mat, int n) {
52 double det = 1;
53 for (int i = 0; i < n; i++) {
54 det *= mat[i][i];
55 }
56 return det;
57 }

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

58

59 int main() {
60 Matrix mat = {{2, 1},
61 {5, 3}};
62

63 cout << \"Determinant: \" << computeDeterminant(mat, 2) << endl
;

64 return 0;
65 }",
66 "#include <iostream>
67 #include <vector>
68 using namespace std;
69

70 typedef vector<vector<int>> Matrix;
71

72 Matrix invertMatrix(Matrix mat) {
73 // Implementation for inverting matrix goes here
74 }
75

76 int main() {
77 Matrix mat = {{4, 7},
78 {2, 6}};
79

80 Matrix invertedMat = invertMatrix(mat);
81

82 // Code to display inverted matrix
83 return 0;
84 }",
85 "#include <iostream>
86 #include <vector>
87 using namespace std;
88

89 typedef vector<vector<int>> Matrix;
90

91 int calculateTrace(Matrix mat, int n) {
92 int trace = 0;
93 for (int i = 0; i < n; i++) {
94 trace += mat[i][i];
95 }
96 return trace;
97 }
98

99 int main() {
100 Matrix mat = {{1, 2, 3},
101 {4, 5, 6},
102 {7, 8, 9}};
103

104 cout << \"Trace: \" << calculateTrace(mat, 3) << endl;
105 return 0;
106 }"
107 ]
108 }

17


	Introduction
	Related Work
	Method
	Pretraining for Shared Embeddings between Text and Code
	Domain-Specific Contrastive Learning

	When and How Model Interpolation Works for Text and Code
	SageLite VS. Naive Data Mix
	Models are close
	Trade-offs Between In-Domain Accuracy and Enhanced Transfer Learning

	Compare against the other models
	More about Generalization

	Conclusion
	Appendix
	Data, Model, and Hyper-parameters Details
	Evaluation
	Baseline Models
	Synthetic Benchmark Prompts and Examples


