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ABSTRACT

Creating versatile embedding models that excel across both text and code do-
mains is essential, as modern applications often involve diverse, heterogeneous
data. While data mixing is a typical starting point, we take a significant step
forward by addressing the limitations of naive data mixing. In this work, we
introduce SAGELITE, a unified embedding model capable of handling both text
and code within a single framework. Our approach begins with pretraining on a
blended dataset of text and code, fostering shared representations that are crucial
for strong cross-domain performance. We then enhance domain-specific capabil-
ities by independently applying large-scale contrastive learning to text and code
from various web sources. Our key finding is that, despite the inherent differences
between text and code, starting from a model pretrained on mixed data enables the
domain-specific contrastive learning stages to produce models that remain closely
aligned. This alignment allows us to effectively integrate domain-specific im-
provements at the constrastive learning stage into a final model through model
weights interpolation. Through comprehensive ablation studies, we explore the
mechanisms behind our approach, offering insights to guide future research in
this area.

1 INTRODUCTION

Pre-training on large-scale heterogeneous data collected from various domains is crucial for enabling
a single model to demonstrate remarkable versatility in generation tasks, including both code and
text generation (OpenAI, 2023; Team et al., 2024; Dubey et al., 2024, inter alia). However, state-of-
the-art (SOTA) embedding models are often domain-specific, typically focusing on either text (Li &
Li, 2023; Wang et al., 2022; 2024; Lee et al., 2024, inter alia) or code (Zhang et al., 2024; Guo et al.,
2022, inter alia) independently. There is a strong practical need for versatile embedding models that
can handle heterogeneous data, as they can significantly reduce hosting costs and eliminate the need
for complex routing system designs in applications requiring multi-domain processing.

To train a versatile model, data mixing is a natural starting point. However, the optimal data-mix
strategy is not yet understood. The distributions of text and code are fairly different, leading many
general-purpose generative models to incorporate only a small fraction of code data during pretrain-
ing (Touvron et al., 2023; Chowdhery et al., 2023, inter alia). Although studies by Hernandez et al.
(2021); Muennighoff et al. (2024a) have empirically demonstrated positive transfer between text and
code, these investigations are limited to Python, a language that intuitively shares more similarities
with natural language. In our experiments, we indeed find that models trained with mixed data un-
derperformed compared to domain-specific models on in-domain tasks at both the initial pretraining
and the subsequent contrastive learning stages.

We are thus faced with a conundrum: on one hand, we aim to train a versatile embedding model;
on the other hand, data mixing results in suboptimal performance at each stage of training. This
challenge prompts us to explore two critical questions: (1) Is cross-domain data mixing the only
viable approach for training versatile embeddings at each stage? (2) What benefits can be gained
from training on mixed data, and if data mixing is necessary at certain stages, can we devise a
strategy that leverages its strengths in later stages to compensate the performance drop it causes
earlier?
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By working backwards, we developed a multi-stage strategy that leverages two key ingredients to
reach the sweet spot: the transfer learning capabilities of contrastive learning and the interpolation
of properly trained models. Our key insight is that the shared embedding model obtained by pre-
training on the mixed data can be leverage to attain strong transfer performance across-domains
via contrastive learning in the subsequent stages. Such shared base model largely narrows the per-
formance gap between the in-domain and out-of-domain contrastive learning, which coupled with
contrastive learning’s ability to keep models close, provides a solid foundation for constructing a
versatile embedding model through the merging of models trained with domain-specific contrastive
learning. Additionally, the strong cross-domain transfer learning performance enhances the perfor-
mance of the merged model in each domain, compensating for the initial performance drop during
the pretraining stage with mixed data. As a result, this versatile embedding model achieves compa-
rable or even superior performance to models trained specifically for individual domains. To better
understand the factors contributing to successful versatile embedding learning, we thoroughly ana-
lyze the key components of our framework and present our findings as directions for future research.

2 RELATED WORK

Text Embedding Model The early success of transformer-based text embeddings (Reimers &
Gurevych, 2019; Gao et al., 2021; Ni et al., 2021; Zhang et al., 2021, inter alia) is largely driven
by the use of human-labeled datasets (Bowman et al., 2015; Williams et al., 2017; Nguyen et al.,
2016). However, the high cost of human annotations often results in small-scale datasets with limited
diversity and complexity. Consequently, these models often struggle with complex tasks and broad
generalization. To improve general-purpose text embeddings, Izacard et al. (2021); Neelakantan
et al. (2022); Wang et al. (2022) leverage large-scale, naturally occurring text pairs curated from
web data to provide diverse training signals, e.g., title and passage, or question and answer pairs
mined from various web sources. More recently, Wang et al. (2024) and its follow-up work (Meng
et al., 2023; Muennighoff et al., 2024b; Lee et al., 2024)demonstrated that fine-tuning Mistral-7B
(Jiang et al., 2023) with high-quality synthetic data generated by proprietary LLMs (OpenAI, 2023)
can push the boundaries of encoder-based embedding models.

Code Embedding Model Early work by Feng et al. (2020); Kanade et al. (2020) primarily fol-
lowed BERT’s training paradigm (Devlin et al., 2019), optimizing the Masked Language Modeling
objective alongside various auxiliary tasks on linearized code data. Another line of research focuses
on exploiting the structural aspects of code to provide additional training signals, either by explic-
itly utilizing data-flow information (Guo et al., 2021) or abstract syntax trees (ASTs) (Wang et al.,
2021a; Jiang et al., 2021), or by implicitly encoding code structures through deobfuscation (Wang
et al., 2021b; anne Lachaux et al., 2021; Zhang et al., 2024). More recently, Wang et al. (2021a);
Guo et al. (2022); Neelakantan et al. (2022); Zhang et al. (2024) have substantially improved the
quality of sequence-level representations by employing contrastive learning on (text, code) pairs
mined from GitHub data.

Model Weights Interpolation Model weights interpolation dates back to the practice of averaging
points along the training trajectory of stochastic gradient descent (Ruppert, 1988; Polyak & Juditsky,
1992; Szegedy et al., 2016; Izmailov et al., 2018), which has been shown to lead to wider optima
and improved generalization. More recent research has explored model weight interpolation during
the finetuning stage. Wortsman et al. (2022a) demonstrate better generalization performance by av-
eraging models that were fine-tuned independently on the same dataset with varying configurations,
while Wortsman et al. (2022b); Ilharco et al. (2022); Matena & Raffel (2022) extend this idea by in-
cluding the pretrained model in the averaging process to achieve broader generalization. In contrast,
our work mainly focuses on systematically training one versatile model with steered performance in
each single domain, where model weight interpolation is one step of our entire pipeline.

Transfer Learning Between Text and Code The impact of incorporating code data on text per-
formance, and vice versa, remains underexplored. Hernandez et al. (2021) empirically show that
training exclusively on text achieves similar performance gains, measured by cross-entropy loss on
test data, as those obtained by training on other programming languages. Conversely, Muennighoff
et al. (2024a) demonstrate that incorporating Python into pretraining can enhance text performance,
particularly in data-constrained scenarios. However, these studies focus solely on Python, a lan-
guage that intuitively shares more similarities with natural language, and only verify on the loss
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function. The distributions of text and code are fairly different, leading many general-purpose gen-
erative models to incorporate only a small fraction of code data during pretraining (Touvron et al.,
2023; Chowdhery et al., 2023, inter alia). In our work, we empirically show that, for embedding
models, naı̈ve mixing of text and code data for both MLM-based pretraining and contrastive learning
leads to suboptimal performance on downstream tasks. A strategic approach is therefore necessary
to train a general-purpose cross-domain embedding model, which is the primary focus of this paper.

3 METHOD

We train SAGELITE through two primary stages: token-level pretraining on a mix of text and code
data, followed by sequence-level domain-specific contrastive learning.

3.1 PRETRAINING FOR SHARED EMBEDDINGS BETWEEN TEXT AND CODE

We first train the model with the mask language modeling (MLM) Devlin et al. (2019) objective.
Given an input sequence with N tokens, i.e., x = [x1,x2, . . . ,xN , ], the MLM objective (Devlin
et al., 2019) is formed as

LMLM(x) = −
∑
i∈M

logP
(
xi|xM)

(1)

Here M denotes the mask applied on the given input x. Equation (1) is essentially a denoising
objective with the task to predict the original tokens given the masked sequence xM.

We pretrain the embedding model on a mixture of text (Penedo et al., 2023) and code (Lozhkov et al.,
2024) data for one epoch. As discussed in Section 4, this mixed-data pretraining produces a shared
embedding model for both code and text, which may result in suboptimal in-domain performance
but establishes a strong foundation for enhanced transfer learning in subsequent contrastive learning
stages.

3.2 DOMAIN-SPECIFIC CONTRASTIVE LEARNING

Next, we refine the representations through contrastive learning. Unlike the pretraining stage, we ap-
ply domain-specific contrastive learning on top of the pretrained model, producing domain-specific
models at this stage. Our objectives are two-fold. First, to assess whether starting from a model
pretrained on mixed text and code data leads to any performance drop during this contrastive learn-
ing stage, compared to performing contrastive learning on domain-specific models. Second, to
determine whether domain-specific contrastive learning can effectively steer the embedding model
performance in each domain, and whether this improvement can be transferred to the final model
through model weight interpolation.

We leverage the naturally occuring pairs from various web sources as positives. Our datasets include
(summary, code) for code with summary mined from the docstring of each function or class (Zhang
et al., 2024), and (question, answer) or (title, body) mined from Web data (Wang et al., 2022). Let
B = {(qi,pi)}Mi=1 denote the representations of a randomly sampled batch with M pairs, we then
minimize the following to separate each positive pair from other examples within the same batch,

LCL =
1

M

M∑
i=1

− log
exp(pi ⋄ qi/τ)

exp(pi ⋄ qi/τ) +
∑

k ̸=i exp(qi ⋄ pk/τ)
. (2)

τ is the temperature hyperparameter and ⋄ denotes cosine similarity between two vectors. We set it
to 0.05 in this paper.

Given that these datasets are scraped from the internet using simple heuristics, a substantial portion
of the pairs exhibit weak semantic relevance. To address this, we first apply deduplication and rule-
based data filtering, followed by a consistency-based filter (Wang et al., 2022). Specifically, we train
the model on the entire dataset for one epoch and remove any pair whose similarity score falls below
the top-K (K = 3) similarity scores relative to a presampled set of 100,000 examples. After these
two filtering stages, we retain 72 million summary-code pairs for code-related contrastive learning
and 250 million positive pairs for text-related tasks.

3
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(a) SAGELITE outperforms the model trained on naively mixed data.

(b) Retrieval accuracy landscape.

Figure 1: (a) Naive-Mix, despite starting from the same pretrained model as SAGELITE, exhibits
suboptimal performance due to the gap between domain-specific and mixed contrastive learning
(i.e., , Naive-Mix vs SAGELITE-TEXT and SAGELITE-CODE in their respective domains). (b) Mod-
els achieving optimal performance tend to lie between SAGELITE-TEXT and SAGELITE-CODE,
validating the effectiveness of leveraging model weights interpolation to obtain SAGELITE.

We found that consistency-based filtering is particularly effective for code-related contrastive learn-
ing. This is likely due to the fact that rule-based summary extraction from docstrings can be highly
noisy. Not all docstrings in GitHub codebases are of high quality, and summaries mined based on
handcrafted rules may fail to capture the main intent of the code, especially in the case of more
complex code.

4 WHEN AND HOW MODEL INTERPOLATION WORKS FOR TEXT AND CODE

After the contrastive learning stage, we obtain two models, SAGELITE-TEXT and SAGELITE-
CODE. The final model, SAGELITE, is then produced by averaging the weights of these two models.
To better understand the effectiveness of SAGELITE, we conduct ablation studies to systematically
explore its key factors. We consider the following baselines throughout our analyses: NAIVE-MIX,
which trains on mixed text and code data during both pretraining and contrastive learning; TEXT-
ONLY, trained exclusively on text data at both stages; CODE-ONLY, trained only on code data at both
stages. Additionally, SAGELITE-TEXT begins with a pretrained mixed model and is pre-finetuned
on text contrastive learning data, while SAGELITE-CODE continues training the mixed model on
code contrastive learning data.

4.1 SAGELITE VS. NAIVE DATA MIX

In Figure 1a, we compare SAGELITE to a model trained using naive data mixing during both the
pre-training and pre-finetuning stages. The results indicate that SAGELITE consistently outperforms
the naive data mixing approach across multiple benchmarks. We hypothesize that this is because
training data from different domains may require tailored learning configurations, and naive data
mixing fails to optimally accommodate these domain-specific needs. To further demonstrate that
naive data mixing is suboptimal, we apply a constant learning rate to both SAGELITE-TEXT and
SAGELITE-CODE and construct SAGELITE by simply averaging their model weights.

To gain a more intuitive understanding of why cross-domain model interpolation is effective, we
visualize the retrieval accuracy landscape in Figure 1. Following the approach in Wortsman et al.
(2022a); Garipov et al. (2018), we construct an orthonormal basis for the plane spanned by the mod-
els, with the x and y axes representing movement within this parameter space along the respective
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Figure 2: (a) – (b): Cosine similarity between models SAGELITE-TEXT and SAGELITE-CODE
trained with domain-specific contrastive pre-finetuning at different learning rates. Contrastive learn-
ing maintains high similarity between the models over a wide range of learning rates. (c) – (e):
With not too large learning rate, SAGELITE-TEXT and SAGELITE-CODE remain close and thereby
the merged model SAGELITE consistently outperforms the individual domain-specific models on
retrieval tasks in each domain.

directions. As illustrated, optimal performance lies between SAGELITE-TEXT and SAGELITE, with
SAGELITE closely approaching this optimal region, while NAIVE-MIX remains further away from
it.

4.2 MODELS ARE CLOSE

Effective model interpolation relies on certain preconditions — merging two models with the same
architecture but that are too distant in parameter space can severely degrade the resulting model’s
performance. From this standpoint, we expect that models trained via domain-specific contrastive
learning at the pre-finetuning stage should maintain sufficient similarity for model interpolation to
be effective. We explore this hypothesis in Figure 2. Notably, models trained independently on
text and code data i.e., , SAGELITE-TEXT and SAGELITE-CODE, at the prefinetuning stage remain
closely aligned across different learning rates. Specifically, the cosine similarity between these
models remains above 0.96, as long as the learning rate is below 10−4. Within this range, model
interpolation is highly effective, as evidented by SAGELITE consistently outperforms SAGELITE-
TEXT and SAGELITE-CODE as in Figures 2 (c)–(e).

As the learning rate increases, SAGELITE-TEXT and SAGELITE-CODE begin to diverge, with a
monotonically decreasing similarity, as shown in Figure 2(a). As hypothesized, this divergence
results in a significant drop in the performance of the interpolated model, i.e., , SAGELITE under-
performs compared to SAGELITE-TEXT and SAGELITE-CODE in their respective domains. How-
ever, such large learning rates are not viable options, as they also lead to degraded performance in
the individual models trained via domain-specific contrastive learning, as indicated by the mono-
tonic performance decline of both SAGELITE-TEXT and SAGELITE-CODE when the learning rate
exceeds 10−4.
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Figure 3: Compared to domain-specific pretraining, training on the mixed text and code data causes
in-domain performance drop at both pretraining and the subsequent domain-specific contrastive
learning stages, but it leads to better transfer learning performance (right).

4.3 TRADE-OFFS BETWEEN IN-DOMAIN ACCURACY AND ENHANCED TRANSFER
LEARNING

Next, we analyze how SAGELITE compares to domain-specific models, which are trained exclu-
sively on domain-specific data during both the pretraining and pre-finetuning stages. As shown
in Figure 3, pretraining on mixed data leads to a decline in in-domain performance, both during
pretraining and the subsequent contrastive learning stage. Figure 3 (left) demonstrates that pre-
training on text-only or code-only data (text-only MLM and code-only MLM) consistently outper-
forms pretraining on mixed text and code data (text&code MLM) when evaluated on Text2Text and
Code2Code retrieval tasks. This performance gap continues during the contrastive learning stage,
where SAGELITE-TEXT and SAGELITE-CODE underperform relative to domain-specific models
trained with contrastive learning on top of domain-specific pretrained models.

On the other hand, Figure 3 demonstrates that the shared embeddings learned from pretraining on
mixed data can significantly enhance transfer learning performance during the contrastive learning
stage. Specifically, applying text-only contrastive learning to the shared embedding model outper-
forms its counterpart where contrastive learning is performed on a model pretrained exclusively on
text data. This strong transfer learning capability can be particularly valuable in domains where con-
trastive learning data is scarce or challenging to acquire at scale but pretraining data is more readily
available, offering a practical advantage for improving model performance.

Another notable observation from Figure 3.1 (right) is that applying text-only contrastive learning
to a text-only pretrained model results in significantly lower transfer learning performance on code-
related tasks, compared to the performance achieved by applying code-only contrastive learning on
top of code-only pretrained models. One potential explanation for this discrepancy is the presence
of text within code data during both the pretraining and contrastive learning stages, in the form
of code comments, documentation, or the text summary used in the positve pairs for contrastive
learning. This overlap may provide a stronger alignment between code and text representations in
code-specific training.

5 COMPARE AGAINST THE OTHER MODELS

To assess the versatility of SAGELITE, we compare it against both code and text embedding models,
providing a comprehensive evaluation across different modalities. In order to sharpen the focus of
our analysis, we prioritize retrieval tasks due to their increasing importance. Our objective is to
evaluate the embedding models in practical scenarios where collecting supervised fine-tuning data
is expensive or unfeasible. Thus, our evaluation emphasizes zero-shot performance.

For code-related retrieval tasks, we assess SAGELITE on both Code2Code and NL2Code semantic
search. In Code2Code retrieval, the goal is to find relevant code snippets given a code fragment as
a query. We utilize the Code2Code search set from (Zhang et al., 2024), which expands the original
benchmark from (Guo et al., 2022) to cover nine programming languages instead of just three. For
NL2Code semantic search, where natural language queries are used to retrieve relevant code, we rely
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Code2Code Search
Model Embed Evaluation Languages

Model Size Dim Python Java JS TS C# C Ruby PHP GO Avg
GraphCodeBERT 125M 768 19.2 10.8 7.4 8.7 5.5 8.5 19.7 15.7 9.7 11.7

UnixCoder 125M 1024 30.8 16.5 21.3 22.0 6.2 15.6 32.3 31.9 13.9 21.2
OpenAI-Text-3-Small NA 1536 25.2 12.6 8.0 9.4 5.5 15.9 30.7 23.3 11.2 15.8
OpenAI-Text-3-Large NA 1536 40.6 25.3 20.1 22.0 11.8 31.9 42.5 41.8 21.8 28.7

CodeSage-Small 130M 1024 36.3 24.0 26.6 29.9 11.8 22.8 29.1 34.6 19.6 26.1
CodeSage-Base 356M 1024 47.5 22.8 28.7 32.0 13.4 31.0 44.7 51.1 25.2 33.0

CodeSage-Large 1.3B 2048 46.7 33.1 37.2 41.2 16.8 32.9 54.1 52.1 32.5 38.5
SAGELITE-X 850M 1536 67.79 53.80 55.92 62.37 39.73 51.67 63.19 71.66 48.90 57.23

NL2Code Search
Model Model Embed CoSQA AdvTest CSN
Name Size Dim Python Python Python Java JS PhP Go Ruby

GraphCodeBERT 125M 768 16.2 5.6 10.4 8.6 7.3 8.1 12.5 20.8
UnixCoder 125M 768 42.1 27.3 42.2 43.9 40.5 35.2 61.4 55.2

OpenAI-Text-3-Small NA 1536 52.5 34.1 62.6 65.9 60.3 54.9 82.0 67.6
OpenAI-Text-3-Large NA 3072 55.2 46.8 70.8 72.9 68.1 59.6 87.6 75.2

CodeSage-Small 130M 1024 49.9 41.3 64.4 63.2 60.0 54.7 77.7 63.2
CodeSage-Base 356M 1024 48.5 49.1 68.0 68.0 67.0 58.2 83.2 68.0

CodeSage-Large 1.3B 2048 47.5 52.7 70.8 70.2 69.5 61.3 83.7 71.9
SAGELITE-X 850M 1536 61.0 54.62 73.9 72.65 69.81 63.91 84.87 76.61

Table 1: MRR score (%) of NL2Code search in zero-shot setting.

MTEB Retrieval (Text2Text)
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OpenAI-Text-3-Small NA 1536 37.02 77.9 38.33 52.86 63.63 44.91 55.49 24.28 42.58 88.83 39.97 20.80 79.42 26.86 73.37
OpenAI-Text-3-Large NA 3072 40.24 79.56 42.07 61.27 71.58 55.00 58.05 23.35 47.54 89.05 44.76 23.11 87.94 30.27 77.77

Gecko 1B 768 32.58 82.62 40.33 61.28 71.33 59.24 62.18 25.86 48.82 88.18 47.12 20.35 86.96 33.21 75.42

SAGELITE-X 850M 1536 35.9 74.0 33.6 51.2 53.9 46.7 60.8 23.6 38.1 87.2 36.7 20.24 87.2 24.0 68.7

Table 2: MTEB.

on three established benchmarks: CoSQA (Huang et al., 2021), AdvTest (Lu et al., 2021), and CSN
(Guo et al., 2021). Additionally, for Text Retrieval, we employ tasks from the MTEB benchmark
suite (Muennighoff et al., 2022).

We summarized our model performance in Table 1 to Table 2. As we can see SAGELITE achieve
very strong performance in code, and comparable performance on text. We believe the perforam-
nce gap regarding the some text embedding models can be reduced through careful synthetic data
curation.

5.1 MORE ABOUT GENERALIZATION

Given synthetic data becomes increasingly prevalent, we propose two purely LLM generated syn-
thetic benchmark datasets to assess the generalization of a subset of selected embedding models.
The multi-stage benchmark data generation pipeline began by brainstorming diverse retrieval tasks,
then generated corresponding queries, positive, and negative documents. After the initial task gen-
eration, we refined and deduplicated the tasks to maximize coverage and diversity. Our goal was to
assess model performance on LLM-generated datasets as

Data Generation Pipeline The synthetic text and code benchmark datasets were constructed us-
ing pipelines designed to evaluate nuanced retrieval performance. The text pipeline started with
generating diverse retrieval tasks, covering a broad range of potential information retrieval scenar-
ios. The code pipeline similarly produced a variety of developer-focused retrieval scenarios. These
foundational tasks were chosen to simulate realistic search contexts, promoting diversity in query
types and document structures. Next, examples were created to challenge retrieval models’ sensitiv-
ity to fine-grained similarities. The code dataset paired queries with relevant snippets and deceptive
negatives—incorrect but plausible code—to mimic real-world debugging and search complexities.
The use of misleading negatives was intentional, designed to evaluate the models’ ability to distin-
guish between closely related but semantically distinct examples.

7
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Dataset Name # Queries Min/Median/Max Query Token Counts # Corpus Documents Min/Median/Max Corpus Docs Token Counts
Synthetic Text Benchmark 1296 4/9/18 14106 87/270/1217

Synthetic Code Benchmark 324 3/9/19 1691 6/105/875

Table 3: Entirely synthetic evaluation benchmark statistics.

Model Embed Text Code
Model Size Dim Synthetic Synthetic

e5-base 109M 768 43.3 42.1
gte-base-en-v1.5 137M 1024 66.8 52.89

multilingual-e5-large 560M 1024 48.5 43.2
e5-mistral-7b-instruct 7B 4096 82.9 69.3

SFR-Embedding-Mistral 7B 4096 83.9 68.7
CodeSage-Large 1.3B 2048 32.2 48.6

SAGELITE-X 850M 1536 73.7 61.6

Table 4: Evaluation results on the text and code synthetic data benchmarks.

For text, we generated queries with short positive document summaries before additional stages
that expanded summaries into detailed documents. We also generated hard negatives, ensuring the
final dataset could effectively test the models’ robustness in distinguishing subtle contextual nu-
ances—a key requirement for evaluating contrastive learning models in both text and code domains.
The dataset distributions can be found in 3, and full prompts used to construct the synthetic text
benchmark and synthetic code benchmark can be found in the Appendix C.2.

Evaluation We conducted evaluation on our benchmark datasets through using the generated
queries as the search queries, and all positive and negative generated documents as the search cor-
pus. Full evaluation results can be found in 4. Both encoder-based and decoder-based embedding
models were considered. Notably, E5-mistral-7b-instruct Wang et al. (2024) and SFR-Embedding-
Mistral Meng et al. (2023) achieved superior performance across both text and code tasks. This
outcome is expected, given their generative nature and fine-tuning on synthetic data collected in a
manner similar to our benchmark, enabling them to handle synthetic data effectively. Additionally,
their significantly larger model sizes confer an advantage. Following these models, SAGELITE-X
demonstrated the next highest performance across both text and code benchmarks, indicating its
strong capability in handling diverse data types, including synthetic datasets, which are becoming
increasingly prevalent.

6 CONCLUSION

In conclusion, SAGELITE demonstrates a significant advancement in the field of code embeddings
by effectively leveraging a combination of text and code data, followed by rigorous unsupervised
contrastive learning. Through this approach, the model not only excels in capturing shared repre-
sentations across text and code but also achieves fine-grained semantic discrimination crucial for
domain-specific generalization. Our results suggest that this comprehensive framework for integrat-
ing knowledge from diverse sources can open new avenues for scalable, adaptable, and efficient
embedding model.
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Figure 4: The average discrimination loss achieved by SAGELITE and its domain-specific compo-
nents, SAGELITE-TEXT and SAGELITE-CODE. The results show that models achieving optimal
performance consistently lie between SAGELITE-TEXT and SAGELITE-CODE, validating our strat-
egy of obtaining a versatile model through interpolation.
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A APPENDIX

B DATA, MODEL, AND HYPER-PARAMETERS DETAILS

C EVALUATION

C.1 BASELINE MODELS

Code Embedding Models We compare our models against four general-purpose code represen-
tation learning encoders. Both CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo et al.,
2021) are trained with standard MLM on six programming languages using CodeSearchNet (Husain
et al., 2019)1, while the replaced token detection objective (Clark et al., 2020) and data flow predic-
tion objectives are adopted as auxiliary objectives, respectively. UnixCoder (Guo et al., 2022) is
trained via three language modeling and two contrastive learning objectives using the same dataset.
More recently, StarEncoder (Li et al., 2023) is trained with MLM and next sentence prediction
(Devlin et al., 2019) on 86 programming languages from The Stack (Kocetkov et al., 2022). Zhang
et al. (2024) is the current state-of-the-art code embedding models on Code2Code and NL2Code
search performance among open-sourced embedding models.

1The dataset includes 2.3M functions paired with natural language documents.
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Figure 5: This figure shows the similarity between text and text models for various learning rates.

C.2 SYNTHETIC BENCHMARK PROMPTS AND EXAMPLES

Text Retrieval Prompts: Stages 2-4

Stage 2 Prompt. Text retrieval task: task. Create one text retrieval example using the
format provided. The JSON object must contain the following keys:

• user query: A string, a random user search query specified by the retrieval task.
• summary: A string, a short summary of a relevant document for the user query.

Try not to repeat exact phrases from the query in this positive, accurate summary.
The summary should be between 20-50 words.

Stage 3 Prompt. Given the following query and short summary, produce a document
of 128-1024 words. The document should contain the information presented in the short
summary, but expand the document to include more context and related information. Do not
copy exact phrases or answers in the document; instead, try to be creative in how you present
the information. The document should seem independently written, and not reference the
summary nor the query. Query: query Summary: summary Please output your completed
document in ¡document¿ tags.
Stage 4 Prompt. Given the following query and short summary, produce a document of

128-1024 words each that does not contain the answer to the query. The document should
contain related information presented in the short summary, but expand the document to
include more context and related information. Try to copy exact phrases or answers from
the summary and query, and be creative in how you present the information. The document
should a be misleading answer to the user query; it must be incorrect, or be on a related
but different subject. The document should not reference the summary nor the query, nor
reference the fact that it is wrong or misleading. Query: query Summary: summary Please
output your completed document in ¡document¿ tags.
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Code Retrieval Prompt: Stage 2

Given the following code retrieval task: task. Create one code retrieval example using
the format provided. The JSON object must contain the following keys:

• user query: A string, a random developer search query specified by the retrieval
task. The query should require a code response of 20-100 lines of code.

• positive code: A string, a correct chunk of code or relevant document for the de-
veloper query with no explanation. The code should be 20-100 lines long.

• incorrect code: A list of 4 strings, all incorrect code responses to the developer
query. These can include buggy implementations or code with errors, or code that
responds to another similar query. These responses must not be accurate responses
to the developer search query. Each negative code snippet should be 20-100 lines
long.
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Sample Text Retrieval Example

Listing 1: A structured example for the text retrieval task.
1 {
2 "user_query": "Impact of urban growth on endangered species in

city outskirts",
3 "positive_document": "Urbanization, the process by which rural

areas transform into urban environments, brings with it a
multitude of changes to the landscape. Forests, wetlands, and
grasslands are often cleared to make way for residential
developments, commercial buildings, and infrastructure
projects. This transformation is particularly destructive for
endangered species whose survival relies on the integrity of
these natural habitats. The effects of urban growth can
primarily be seen in two critical areas: habitat fragmentation
and habitat degradation.

4

5 Habitat fragmentation occurs when continuous habitats are divided
into smaller, isolated patches by roads, buildings, and other
urban structures. For many species, a continuous habitat is
essential for their survival, as it allows for movements
related to breeding, foraging, and escaping predators. When
these habitats are broken up, it restricts the natural
movements of wildlife, leading to decreased genetic diversity,
inbreeding, and increased vulnerability to environmental
changes. For example, certain amphibians, which have specific
breeding sites often located in wetland areas, may find it
increasingly difficult to reach these sites when their habitat
is fragmented by new housing developments and roadways.

6

7 In the face of expanding cities, habitat degradation also poses a
significant challenge. Habitat degradation involves the
reduction in quality and usability of an environment for
wildlife, often through pollution, introduction of invasive
species, and general disturbances from human activities. As
urban areas expand, pollutants from vehicles, factories, and
human settlements can seep into the surrounding land and water
bodies. Such changes can disrupt the delicate balance of
ecosystems, making it difficult for native species to thrive.
Native plants and animals might be replaced by non-native or
invasive species that can better tolerate the altered
conditions, leading to further declines in native populations.

8

9 Moreover, one cannot overlook the impact of human-induced light
and noise pollution, which significantly affect wildlife
behaviors. Many species depend on natural light cycles for
activities like migration and reproduction. Urban lights can
disorient birds during migration, causing fatal collisions
with buildings. Similarly, increased noise levels from traffic
and industrial activities can disturb communication and
breeding of various species, especially those that rely on
acoustic signals.\n\nAnother aspect to consider is climate
change, which is exacerbated by urbanization. The creation of
heat |islandswhere urban areas become significantly warmer
than their rural surroundings due to human |activitiesalters
local climate conditions. This can shift the distribution of
species, further adding to the stress on those already
endangered. Many species are specifically adapted to their
regional climate, and changes can render their current
habitats unsuitable, forcing them to migrate, where possible,
to more hospitable areas or face heightened risk of extinction
.

10

11 ...
12 "
13 } 15
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Sample Code Retrieval Example

Listing 2: A structured example for the code retrieval task.
1 {
2 "user_query": "How do I calculate the determinant of a matrix in

C++?",
3 "positive_document":
4 "#include <iostream>
5 #include <vector>
6

7 using namespace std;
8

9 typedef vector<vector<double>> Matrix;
10

11 double determinant(Matrix mat, int n) {
12 double det = 0;
13 if (n == 1)
14 return mat[0][0];
15 if (n == 2)
16 return (mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]);
17

18 Matrix subMatrix(n, vector<double>(n));
19 for (int x = 0; x < n; x++) {
20 int subi = 0;
21 for (int i = 1; i < n; i++) {
22 int subj = 0;
23 for (int j = 0; j < n; j++) {
24 if (j == x)
25 continue;
26 subMatrix[subi][subj] = mat[i][j];
27 subj++;
28 }
29 subi++;
30 }
31 det = det + (pow(-1, x) * mat[0][x] * determinant(subMatrix

, n - 1));
32 }
33 return det;
34 }
35

36 int main() {
37 Matrix mat = {{1, 2, 3},
38 {4, 5, 6},
39 {7, 8, 9}};
40

41 cout << \"Determinant: \" << determinant(mat, 3) << endl;
42 return 0;
43 }",
44 "hard_negative_documents": [
45 "#include <iostream>
46 #include <vector>
47 using namespace std;
48

49 typedef vector<vector<double>> Matrix;
50

51 double computeDeterminant(Matrix mat, int n) {
52 double det = 1;
53 for (int i = 0; i < n; i++) {
54 det *= mat[i][i];
55 }
56 return det;
57 }
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58

59 int main() {
60 Matrix mat = {{2, 1},
61 {5, 3}};
62

63 cout << \"Determinant: \" << computeDeterminant(mat, 2) << endl
;

64 return 0;
65 }",
66 "#include <iostream>
67 #include <vector>
68 using namespace std;
69

70 typedef vector<vector<int>> Matrix;
71

72 Matrix invertMatrix(Matrix mat) {
73 // Implementation for inverting matrix goes here
74 }
75

76 int main() {
77 Matrix mat = {{4, 7},
78 {2, 6}};
79

80 Matrix invertedMat = invertMatrix(mat);
81

82 // Code to display inverted matrix
83 return 0;
84 }",
85 "#include <iostream>
86 #include <vector>
87 using namespace std;
88

89 typedef vector<vector<int>> Matrix;
90

91 int calculateTrace(Matrix mat, int n) {
92 int trace = 0;
93 for (int i = 0; i < n; i++) {
94 trace += mat[i][i];
95 }
96 return trace;
97 }
98

99 int main() {
100 Matrix mat = {{1, 2, 3},
101 {4, 5, 6},
102 {7, 8, 9}};
103

104 cout << \"Trace: \" << calculateTrace(mat, 3) << endl;
105 return 0;
106 }"
107 ]
108 }
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