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ABSTRACT

Recent studies show that deep neural networks can be trained to learn good heuris-
tics for various Combinatorial Optimization Problems (COPs). However, it re-
mains a great challenge for the trained deep optimization models to generalize to
distributions different from the training one. To address this issue, we propose
a general framework, Generative Adversarial Neural Combinatorial Optimization
(GANCO) which is equipped with another deep model to generate training in-
stances for the optimization model, so as to improve its generalization ability. The
two models are trained alternatively in an adversarial way, where the generation
model is trained by reinforcement learning to find instance distributions hard for
the optimization model. We apply the GANCO framework to two recent deep
combinatorial optimization models, i.e., Attention Model (AM) and Policy Opti-
mization with Multiple Optima (POMO). Extensive experiments on various prob-
lems such as Traveling Salesman Problem, Capacitated Vehicle Routing Problem,
and 0-1 Knapsack Problem show that GANCO can significantly improve the gen-
eralization ability of optimization models on various instance distributions, with
little sacrifice of performance on the original training distribution.

1 INTRODUCTION

Combinatorial Optimization Problems (COPs) are a family of problems with the goal of finding the
best one(s) from a finite set of solutions. Due to the considerably large solution space, many im-
portant COPs are hard to solve, such as the vehicle routing problems (Toth & Vigo, 2002). Exact
algorithms based on branch-and-bound (Lawler & Wood, 1966) or its variants can provide elegant
theoretical guarantees but the worst-case computational complexity is exponential, hence impracti-
cal for problems of medium and large sizes. In contrast, heuristic methods can usually attain good
solutions in reasonable running time, which are often preferred in practical applications.

Traditional heuristics are designed based on expert knowledge for specific problems, which usually
requires a large amount of time and efforts to develop. These manually designed heuristics could
suffer from relatively poor performance. Moreover, for less studied problems, sufficient expert
knowledge may even be unavailable. Recent studies suggest that deep learning could greatly facili-
tate in automating the design of heuristics, and alleviating the heavy reliance on expert knowledge.
With the prior that the instances may follow certain distribution (e.g., locations in a routing problem
may uniformly scatter in an area), deep models can be trained to learn heuristics in an end-to-end
way (Dai et al., 2017; Kool et al., 2019; Chen & Tian, 2019). It has been shown that these models
perform well with relatively short running time on COP instances following the training distribution.

However, after the trained model is deployed, it could encounter many instances following unknown
distributions different from the training one, especially for real-life applications. As shown in many
existing works and our experiments, when applied to infer the instances following a different distri-
bution, the generalization performance of deep models gets much inferior, which severely hinders
the practical use of the learned heuristics. Such mismatch between the training and testing distribu-
tions is always an important issue for most learning based methods. Especially, for neural combi-
natorial optimization (NCO) models, deep learning models are mostly trained on instances sampled
from specific distributions and the solution quality intricately depends on the instance distributions.
The generalization to instances with different distributions has been widely acknowledged for the
importance (e.g., in Mazyavkina et al. (2021)) and remains a challenge.
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To tackle this issue, we propose the Generative Adversarial Neural Combinatorial Optimization
(GANCO) framework which is model agnostic and generally applicable to various neural combi-
natorial optimization models for solving different COPs. Instead of training an optimization model
only on instances following the predefined distribution, another deep neural network is deployed as
a generation model to produce training instances following the distributions on which the optimiza-
tion model performs poorly. The generation model and optimization model are trained alternatively
in an adversarial way. Specifically, the generation model is trained by reinforcement learning to
maximize the performance gap of the current optimization model on the generated instances with
respect to a traditional non-learning baseline algorithm. The optimization model is trained in the
original way but using the training dataset augmented with the newly generated instances to im-
prove the generalization performance, i.e., to reduce the performance gap. As we will show in the
experiments, the non-learning baseline algorithms do not need to be very strong or fast.

To demonstrate the effectiveness of the proposed GANCO framework, we apply it to a representative
neural combinatorial optimization model, the Attention Model (AM, Kool et al. (2019)) on various
COPs including Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Problem (CVRP),
Orienteering Problem (OP), Prize Collecting TSP (PCTSP) and 0-1 Knapsack Problem (KP). In the
extensive experiments, we show that the proposed GANCO framework improves the generalization
performance of the original optimization model on various testing distributions with little sacrifice of
performance on the original training distribution. Furthermore, we show that the proposed GANCO
framework can be readily and effectively applied to other optimization models such as the Policy
Optimization with Multiple Optima (POMO, Kwon et al. (2020)).

2 RELATED WORKS

Most deep learning models are trained to learn the construction heuristics where the model picks the
actions sequentially to construct a solution (e.g., Bello et al. (2017); Nazari et al. (2018); Kool et al.
(2019); Hottung et al. (2021); Kwon et al. (2020)), which perform well with fairly short running
time. While some other models learn the improvement heuristics to locally refine existing solutions,
which usually search over a large number of solutions and are relatively slow. Moreover, they often
need to fit in frameworks specifically designed for different problems, such as 2-opt (d O Costa
et al., 2020), large neighborhood search (Hottung & Tierney, 2020) and combinations of local oper-
ators (Lu et al., 2020). Most models are trained with reinforcement learning (RL) except for several
ones with supervised learning, e.g., Vinyals et al. (2015) and Joshi et al. (2019). Though we use
representative construction heuristic models with RL in the experiments, our proposed GANCO
framework can also be applied to models of other types.

The most well-known models trained with adversary are the Generative Adversarial Networks
(Goodfellow et al., 2014; Yang et al., 2018; Zhang et al., 2019), which serve to generate new data
samples to imitate the training set. The generative network generates the sample candidates whereas
the discriminative network classifies whether the sample is generated or genuine. In contrast, the
goal of our proposed GANCO framework is to train the optimization model for better generalization
ability where the generation model is used only to generate more informative training samples. The
idea of using adversarial training to improve RL robustness has also been studied in other fields such
as Atari games and robotics (Pinto et al., 2017; Khirodkar et al., 2018; Dennis et al., 2020). However,
existing works in this direction are not directly applicable to our task due to its unique properties.
The key is how to define the adversary, which is specific to the application domain. In the field of
COPs, we define the adversary as a hard instance generator, which is evaluated by performance gaps
of the optimization model with respect to a traditional non-learning baseline algorithm.

To the best of our knowledge, the most related work considering generating data samples for COPs
is Liu et al. (2020) where the samples are generated by performing crossover and mutation to ex-
isting instances. The goal is to search better parameters configuration for given traditional solvers.
Whereas our proposed framework is designed to generate instances with the guidance of deep rein-
forcement learning and improve the generalization performance for neural combinatorial optimiza-
tion models. In our experiments, we also verify the necessity of our data generation method.
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Figure 1: Generative Adversarial Neural Combinatorial Optimization (GANCO) framework. We
use 2 adversarial iterations of generation training and optimization training for illustration purpose.

3 MODEL

For most learning based methods, the patterns are learned from the training data and usually appli-
cable to similar testing samples. However, if the distributions of training and testing samples are
considerably different, these learned patterns may not be general enough to guarantee desirable in-
ference performance. As we will show in the experiments, this issue is particularly severe for COPs
due to the intricate relationship between the solution and the instance distribution.

Instead of designing a network architecture to achieve better generalization performance for specific
problems, we aim to propose a model agnostic framework which is generally applicable to different
optimization models and training methods. The only requirement for the optimization models is that
they are able to learn effective patterns from the training data and perform well on similar testing
samples, which could be fulfilled by most of the recent learning based models.

To this end, we propose the Generative Adversarial Neural Combinatorial Optimization (GANCO)
framework, as shown in Figure 1. Rather than training the optimization model solely on instances
sampled from the predefined training distribution, we also deploy another deep learning model to
generate instances on which the optimization model performs poorly. The generation model is
trained by reinforcement learning to maximize the performance gap between the optimization model
and a non-learning baseline algorithm on the generated instances. And the optimization model
is trained with the generated samples to improve the performance on similar instances. In other
words, the generation model and the optimization model are trained to maximize and minimize the
performance gaps on the generated instances, respectively. In such an adversarial training way, the
lower bound of the optimization model performance on the instance distributions generated by the
generation model will be pushed up. We detail the generation model and the GANCO framework in
the following subsections.

3.1 GENERATION MODEL

As suggested in existing works (Kool et al., 2019; Kwon et al., 2020), many important COPs can be
viewed as a graph of n nodes with different attributes, like the city coordinates for TSP and the item
information for KP. Therefore, we formulate the data generation task as determining the attribute
values for each node of an instance. However, the proposed framework could be easily adapted to
other types of COPs, such as by determining the presence of each edge for problems depending on
the graph connectivity (e.g., the Boolean Satisfiability Problem).

The generation model Ω takes the noise sample h for each node as the input to output the distribution
parameters for the node attributes. We format the noise input h ∈ Rn×2 as 2-dimensional variables
for each node j = 1, .., n following the unit uniform distribution independently, i.e., h ∼ U(0, 1).
Pertaining to the network architecture, we use the self-attention block proposed in the Attention
Model (AM, Kool et al. (2019)), which consists of a multi-head self-attention layer (Vaswani et al.,
2017), two node-wise feed-forward layers with Batch Normalization (Ioffe & Szegedy, 2015) and
skip connection (He et al., 2016). The noise input is node-wise linearly projected to H-dimension
and encoded by k self-attention blocks. And another node-wise linear layer with a sigmoid activation
projects the hidden vectors to the output distribution parameters Ω(h) ∈ Rn×d where d is the number
of attributes for each node. Then we draw the sample x̃ from the Gaussian distribution N (µ, σ2)
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with mean µ = Ω(h) and fixed standard deviation σ. The network outputs are kept in the same range
[0, 1] to use the same variance for different attributes. The sample x̃ is scaled to the corresponding
valid ranges (and discretized for discrete attributes) to attain the node attributes x = A(x̃).

The goal of the generation model is to generate instances on which the optimization model currently
performs poorly. Since different instances have different optimal objective values, the attained ob-
jective values alone are not meaningful enough to evaluate the model performance. Although the
optimality gap appears to be a good alternative metric in this case, it often requires expensive com-
putation to attain the optimal solutions. On the other hand, while achieving approximate solutions,
traditional non-learning algorithms tend to perform relatively stably on instances with different dis-
tributions, compared to the learning based methods. Therefore, the performance gaps of the opti-
mization model with respect to a traditional non-learning baseline algorithm could be regarded as
a favorable metric. Theoretically, the baseline algorithm performance can be arbitrarily inferior as
long as it performs consistently (e.g., similar optimality gaps) on different instances. As we will
show in our experiments, the baseline algorithms do not need to be very strong or fast as the training
for generation models converges in a relatively small number of iterations.

The generation model is trained by the reinforcement learning (RL). Specifically, the state of RL
environment is the noise input h ∈ Rn×2. The action is to sample the attribute values for a node.
An episode is to sample the attribute values x = A(x̃) with x̃ ∼ N (Ω(h), σ2) for all the nodes to
form an instance. However, as the sampled attributes for one node will not affect the other nodes,
the episode can be viewed as only containing one action with large action space to sample all the
node attributes at the same time. The reward for an episode is the performance gap between the
optimization model Φ and baseline algorithm B on the sampled instance x. The loss function is
formally defined as follow,

L(Ω) = −Eh∼U(0,1),x̃∼N (Ω(h),σ2)G(x,Φ, B), (1)

where G(x,Φ, B) = (OΦ(x) − OB(x))/OB(x) is the performance (objective) gap1; OΦ(x) and
OB(x) are the objective values of the solutions found by the optimization model Φ and the baseline
algorithm B for the generated instance x, respectively. Different from the generator in GAN (Good-
fellow et al., 2014) which deterministically infers the instance given the noise input, we sample the
noise input to infer the distribution and sample the instance from the output distribution. The gener-
ation model is trained by the REINFORCE algorithm (Sutton et al., 2000) with reward baseline as
the mean of the gaps in a batch. The gradient to train the generation model is expressed as follow,

∇ΩL(Ω) ≈ −
1

N

N∑
i=1

G(xi,Φ, B)− 1

N

N∑
j=1

G(xj ,Φ, B)

∇ΩlogN
(
x̃i; Ω(hi), σ

2
)
, (2)

where i and j are the instance indices; N is the batch size; x̃i ∈ Rn×d ∼ N (Ω(hi), σ
2); and

N (x̃i; Ω(hi), σ
2) is the probability of x̃i sampled from the Gaussian distribution N (Ω(hi), σ

2).

3.2 GANCO FRAMEWORK

The formal flow of the GANCO framework is summarized in Algorithm 1. The GANCO framework
is compatible with different optimization models and training algorithms. In the framework, the
optimization model is always trained by the same algorithm from its original work.

Pretraining Stage First, we train the optimization model on the instances sampled from the original
training distribution. To make sure that the performance improvement in the experiments is brought
by the proposed GANCO framework rather than more epochs of training, we train the model until
fully converged. However, convergence is not necessary in practice.

Adversarial Training Stage After pretraining, the generation model and optimization model are
trained alternatively during the adversarial iterations. In each iteration, the generation model is first
trained to generate the instance distributions on which the current optimization model exhibits poor
performances. And the training distribution will be augmented with the newly generated distribu-
tion. Then the optimization model is trained with instances sampled from the augmented distribution
to improve the performance on new instances while preserving the performance on old ones.

1Here we follow the convention to formulate the COPs as minimizing the objective functions. The maxi-
mization problem can be viewed as minimizing the negative objective.
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Generation Training At the beginning of each adversarial iteration, the parameters of the genera-
tion model are re-initialized randomly. In doing so, it prevents the model from being stuck in the
local optimum of previous adversarial iterations and also allows the model to learn diverse instance
distributions. Specifically, the generation model is trained using the gradients in Eq. (2).

Optimization Training In each adversarial iteration, the optimization model is trained with the
same algorithm from its original work but on different distributions. To achieve desirable perfor-
mance on both the base training distributions and the adversarial generated distributions, we main-
tain a number of samples from the base distributions while adding the samples from the newly
generated ones. In the experiments, we find that good performance could be easily and effectively
realized by a simple data composition rule. Specifically, we always keep half of the samples from
the base training distribution and then equally sample the other half from the generated distribution
in each adversarial iteration. For optimization models trained by RL, we sample new instances from
these distributions for each epoch following the composition rule above.

Algorithm 1 Generative Adversarial Neural Combinatorial Optimization

Input: Optimization model Φ, generation model Ω, the non-learning baseline algorithm B, the
base training distribution Do, the number of adversarial iterations Na, the number of training
iterations NΩ for Ω and the number of training epochs NΦ for Φ in an adversarial iteration, the
learning rate η and batch size N for Ω.

Output: Generative adversarial trained optimization model Φ
1: while Φ not converged do ▷ Pretraining Stage
2: Sample dataset X from Do, train Φ on dataset X
3: end while
4: Initialize the training distribution D as Do

5: for ka ← 1 to Na do ▷ Adversarial Training Stage
6: Randomly initialize the parameters for Ω
7: for kΩ ← 1 to NΩ do ▷ kath Generation Training
8: Sample the noise inputs h ∈ RN×n×2, and infer the distribution parameters µ = Ω(h)
9: for i← 1 to N do

10: Sample the instances xi with x̃i ∼ N (µi, σ
2), and use Φ and B to solve xi

11: end for
12: Ω← Ω− η∇ΩL(Ω)
13: end for
14: Augment D with the distribution generated by Ω
15: for kΦ ← 1 to NΦ do ▷ kath Optimization Training
16: Sample dataset X from D following dataset composition rule, and train Φ on dataset X
17: end for
18: end for

4 EXPERIMENTS AND ANALYSIS

We adopt the Attention Model (AM, Kool et al. (2019)) as the optimization model to verify the
effectiveness of our proposed GANCO framework. AM is a widely used strong deep learning model
for a series of routing problems and other COPs such as the Knapsack Problem. It is also used as the
base model in many other recent works, e.g., Kwon et al. (2020); Xin et al. (2021); Hottung et al.
(2021). As a heuristic model that learns to construct the solution sequentially, AM requires much less
expert knowledge about the problems, especially compared with the region and rule design in Chen
& Tian (2019) and the various perturbation operators in Lu et al. (2020). Typically, AM consists
of an encoder and a decoder, which is trained by the REINFORCE algorithm with a deterministic
rollout baseline. With three self-attention blocks, the encoder maps the nodes into embeddings.
Based on the attention mechanism with glimpse, the decoder sequentially decides which node to
visit at each step. We further improve AM in two ways, i.e., removing the Batch Normalization
layers and training the model for more epochs until full convergence. Therefore, the performance of
our base model is much better than the original ones reported in Kool et al. (2019). We discuss the
reasons for the changes and the performance improvement with more details in Appendix H.
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Table 1: Results of AM and GANCO-AM for TSP on instances with different distributions.

n = 20 n = 50 n = 100
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base
Concorde 3.83 0.00% 4s 5.69 0.00% 39s 7.76 0.00% 142s
AM 3.83 0.14% 0.3s 5.73 0.73% 0.8s 7.93 2.16% 2.1s
GANCO-AM 3.83 0.14% 0.3s 5.74 0.83% 0.8s 7.94 2.28% 2.1s

Cluster
Concorde 3.19 0.00% 12s 4.01 0.00% 91s 5.15 0.00% 210s
AM 3.21 0.39% 0.3s 4.14 3.07% 0.8s 5.60 8.85% 2.1s
GANCO-AM 3.20 0.27% 0.3s 4.10 2.04% 0.8s 5.46 6.06% 2.1s

Uniform
Concorde 2.78 0.00% 15s 3.91 0.00% 78s 5.30 0.00% 183s
AM 2.79 0.54% 0.3s 4.04 3.37% 0.8s 5.67 7.12% 2.1s
GANCO-AM 2.78 0.19% 0.3s 3.97 1.45% 0.8s 5.51 3.94% 2.1s

Diagonal
Concorde 2.43 0.00% 21s 2.72 0.00% 152s 3.24 0.00% 196s
AM 2.49 2.29% 0.3s 3.35 23.21% 0.8s 5.22 61.47% 2.1s
GANCO-AM 2.44 0.29% 0.3s 2.78 2.37% 0.8s 3.47 7.39% 2.1s

Gaussian
Concorde 3.40 0.00% 12s 4.45 0.00% 51s 5.70 0.00% 167s
AM 3.41 0.32% 0.3s 4.67 4.86% 0.8s 6.21 9.06% 2.1s
GANCO-AM 3.41 0.27% 0.3s 4.54 1.96% 0.8s 6.10 7.02% 2.1s

TSPLIB-S
Concorde 3.40 0.00% 7s 4.50 0.00% 44s 5.76 0.00% 155s
AM 3.41 0.21% 0.3s 4.58 1.77% 0.8s 6.06 5.27% 2.1s
GANCO-AM 3.41 0.17% 0.3s 4.55 1.26% 0.8s 5.99 4.12% 2.1s

We use AM to solve TSP, CVRP, OP, PCTSP and KP in our experiments. The model is trained by
the GANCO framework for 20 adversarial iterations, during each of which the generation model is
trained for at most 2000 iterations (depending on problems) with batch size 100 and attribute stan-
dard deviation σ 0.05, and the optimization model is trained for 20 epochs with 256000 instances in
each. The hyper-parameters for model architecture and optimizer are the same as those in Kool et al.
(2019). For fast convergence and stable training, we fix the parameters in AM encoder and only train
the decoder after the pretraining stage. We leverage Concorde, Hybrid Genetic Search (HGS, Vidal
(2020)), Compass (Kobeaga et al., 2018), Iterated Local Search (ILS) and Dynamic Programming
(DP) for TSP, CVRP, OP, PCTSP and KP, respectively, as the non-learning baseline algorithms for
training the generation model. As our GANCO framework is relatively robust to the performance of
(non-learning) baseline algorithms, we set the number of non-improvement iterations before termi-
nation for HGS as 100 instead of the default 20000 to save training time. Also, we exploit a faster
version of ILS and round the item weights to two decimal places for DP. For a fair comparison, we
consider the node attribute ranges of the original training distribution as the valid ones and show the
results for the five problems on various distributions of instances within those ranges.

Besides, we apply the GANCO framework to another prevailing optimization model, i.e., POMO
(Kwon et al., 2020) to solve TSP and CVRP, and also present more analysis about our GANCO
framework. All our codes will be made available soon.

4.1 TRAVELING SALESMAN PROBLEM

For TSP, the attributes learned by the generation model are the two coordinates for each node. The
base training instances are generated uniformly in the unit square, following Kool et al. (2019). We
adopt instances following five different distributions as the testing sets to evaluate the generalization
performance. Specifically, (1) Clustered: the nodes are distributed in clusters following Uchoa et al.
(2017); (2) Uniform: the nodes are uniformly sampled in a rectangle with random aspect ratios; (3)
Diagonal: the nodes are distributed near the diagonal of rectangle; (4) Gaussian: the nodes follow
the bivariate Gaussian distribution with random correlation coefficients; (5) TSPLIB-S: the nodes
are sampled without replacement from a random instance of the TSPLIB (Reinelt, 1991). We scale
the instance coordinates to the valid range [0, 1] with the aspect ratio fixed between horizontal and
vertical axes so that the objective values of all solutions for an instance will only be scaled by the
same constant. More details of data generation for each distribution are presented in Appendix A.

The results of Concorde, AM (with greedy decoding) and GANCO-AM are gathered in Table 1,
where we report the average objective values and gaps, and the total time for solving the 10000 test-
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Table 2: Results of AM and GANCO-AM for CVRP on instances with different distributions.

n = 20 n = 50 n = 100
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base
HGS 6.11 0.00% 0.5h 10.34 0.00% 1.4h 15.57 0.00% 3.2h
AM 6.28 2.74% 0.5s 10.76 4.05% 1.2s 16.38 5.22% 2.8s
GANCO-AM 6.29 2.86% 0.5s 10.78 4.22% 1.2s 16.37 5.16% 2.8s

Original
HGS 5.77 0.00% 0.5h 9.43 0.00% 1.4h 14.03 0.00% 3.9h
AM 5.93 2.83% 0.5s 9.90 5.03% 1.2s 15.05 7.25% 2.7s
GANCO-AM 5.94 3.02% 0.5s 9.89 4.82% 1.2s 14.90 6.18% 2.8s

Small
HGS 3.55 0.00% 0.2h 5.11 0.00% 1.0h 7.21 0.00% 3.1h
AM 4.08 14.86% 0.5s 5.82 13.87% 1.2s 8.79 21.80% 3.4s
GANCO-AM 3.85 8.55% 0.4s 5.63 10.05% 1.1s 8.27 14.65% 2.6s

Large
HGS 8.84 0.00% 0.6h 15.00 0.00% 1.5h 21.93 0.00% 3.7h
AM 9.11 2.99% 0.5s 15.95 6.34% 1.3s 23.47 7.02% 3.0s
GANCO-AM 9.04 2.17% 0.5s 15.89 5.95% 1.2s 23.29 6.20% 3.0s

Identical
HGS 5.93 0.00% 0.4h 9.74 0.00% 1.2h 14.46 0.00% 2.9h
AM 6.19 4.47% 0.5s 10.25 5.31% 1.1s 15.75 8.93% 3.4s
GANCO-AM 6.12 3.34% 0.5s 10.20 4.75% 1.1s 15.47 7.03% 3.0s

Quadrant
HGS 5.83 0.00% 0.5h 9.56 0.00% 1.4h 14.05 0.00% 3.4h
AM 6.05 3.72% 0.5s 10.24 7.11% 1.1s 15.37 9.40% 3.0s
GANCO-AM 6.04 3.59% 0.5s 10.18 6.52% 1.2s 15.14 7.76% 3.0s

SL
HGS 4.40 0.00% 0.4h 6.69 0.00% 1.3h 9.52 0.00% 3.4h
AM 4.59 4.18% 0.4s 7.17 7.21% 1.1s 10.67 12.06% 3.3s
GANCO-AM 4.58 4.05% 0.4s 7.13 6.59% 1.1s 10.43 9.51% 2.8s

ing instances sampled from each distribution, respectively. For the traditional algorithm Concorde,
we run 20 instances in parallel on a 28-core CPU (also applies to HGS, Compass, ILS and DP in the
subsequent subsections). The AM and GANCO-AM are trained and tested on a RTX-2080Ti GPU.
Generally, their run time is much shorter than the traditional algorithm as indicated in the table(s),
which is a core strength of deep models. Clearly, GANCO-AM improves the performance on vari-
ous generalization testing sets (i.e., the last five distributions in Table 1) by large margins. While the
optimality gaps of AM could be up to 61.47% for TSP100 on certain distribution, its performance
after GANCO training tends to be much desirable and stable. As the GANCO framework does not
change the optimization model architecture or the total number of parameters, the slight drop of
performance on the base training distribution is fairly acceptable.

A more complete comparison with other methods is presented in Appendix A, where we show
the performance improvement of GANCO-AM over AM while sampling more solution trajectories
(e.g., GANCO-AM reduces the average gaps of AM on generalization distributions from 16.52% and
14.55% to 4.47% and 3.48% for TSP100 with 10 and 100 trajectories, respectively). Although we
follow the convention in existing works (Kool et al., 2019) to train and test the model on fixed-size in-
stances (n = 20, 50, 100 for routing problems), we also demonstrate that GANCO-AM significantly
improves the results of AM on larger-size instances of the TSPLIB benchmark in Appendix B, where
the average gap is reduced from 11.95% to 7.05% for instances with 100-300 nodes.

4.2 CAPACITATED VEHICLE ROUTING PROBLEM

Following Kool et al. (2019), the base training distribution with respect to the customer and depot
coordinates is the same as the one for TSP. The demands are uniformly sampled from {1, ..., 9}, and
the capacities are fixed as 30, 40, 50 for CVRP with 20, 50, 100 customers, respectively. Therefore,
apart from the coordinate attribute, the generation model also learns the demand attribute given the
fixed capacities. For the generalization testing sets, the customer nodes follow the six distributions
used for TSP (including its base distribution). The depots are distributed uniformly, fixed at the
center or a corner in the unit square, following CVRPLIB (Uchoa et al., 2017). For the customer de-
mands, we adopt six distributions based on CVRPLIB. Particularly, they are sampled from {1, ..., 9}
(Original) or {1, 2} (Small) or {8, 9} (Large), random yet identical for all nodes within the same
instance (Identical), small or large depending on the node quadrant (Quadrant), and most small with
a few large ones (SL), respectively. More details for the testing sets are presented in Appendix C.
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Table 3: Results of POMO and GANCO-POMO for CVRP100.

HGS Single trajectory 100 trajectories
Dist. Obj. Time Method Obj. Gap Time Obj. Gap Time

Base 15.57 3.2h POMO 16.09 3.32% 4.7s 15.87 1.97% 51.3s
GANCO-POMO 16.12 3.56% 4.9s 15.89 2.09% 51.6s

Original 14.03 3.9h POMO 15.14 7.89% 4.0s 14.69 4.68% 58.3s
GANCO-POMO 14.56 3.78% 3.8s 14.35 2.26% 50.8s

Small 7.21 3.1h POMO 10.15 40.74% 4.1s 8.84 22.47% 61.1s
GANCO-POMO 7.78 7.82% 3.6s 7.57 4.91% 48.0s

Large 21.93 3.7h POMO 24.22 10.43% 4.5s 23.40 6.68% 68.5s
GANCO-POMO 22.94 4.56% 3.9s 22.58 2.95% 53.8s

Identical 14.46 2.9h POMO 16.28 12.60% 4.5s 15.52 7.38% 67.3s
GANCO-POMO 14.93 3.28% 4.1s 14.75 2.01% 54.4s

Quadrant 14.05 3.4h POMO 15.92 13.32% 4.4s 15.15 7.81% 66.1s
GANCO-POMO 14.78 5.20% 3.8s 14.51 3.24% 53.7s

SL 9.52 3.4h POMO 10.79 13.28% 4.2s 10.25 7.67% 57.9s
GANCO-POMO 10.05 5.52% 3.7s 9.84 3.35% 49.1s

As shown in Table 2, the proposed GANCO framework ameliorates the AM performance by large
margins on almost all generalization testing sets with greedy decoding. However, for CVRP20, the
performance of AM and GANCO-AM are close on some testing sets (such as Original, Quadrant
and SL), which indicates that the original AM is fairly robust to certain distributions as the problem
size is small. In Appendix C, we also compare with another popular traditional algorithm LKH3
(Helsgaun, 2017) and demonstrate the significant improvement of GANCO-AM over AM with the
sampling (rather than greedy) version (e.g., the average gaps are reduced from 9.06% and 7.62% to
6.93% and 5.75% for CVRP100 with 10 and 100 trajectories, respectively).

4.3 ORIENTEERING PROBLEM, PRIZE COLLECTING TSP AND 0-1 KNAPSACK PROBLEM

We also apply the GANCO framework on AM to solve OP, PCTSP and KP, respectively. The
base training distributions for OP and PCTSP are the same as those in Kool et al. (2019). The
prizes setting for OP uses the hardest one reported in its original work, where the customer prizes
increase with the distance to the depot. The base distribution for KP follows the setting in Kwon
et al. (2020). More details for problem settings, generalization testing distributions and results are
presented in Appendix D, E and F for OP, PCTSP and KP, respectively. GANCO significantly boosts
the performance on the three problems of different sizes, with greedy decoding and trajectories
sampling for AM, respectively (e.g., with greedy decoding, the average gaps for OP100, PCTSP100
and KP200 are reduced from 13.68%, 14.75% and 0.25% to 7.67%, 7.33% and 0.17%, respectively).

4.4 POLICY OPTIMIZATION WITH MULTIPLE OPTIMA

To demonstrate that the GANCO framework is model agnostic, we further apply it to the Policy
Optimization with Multiple Optima (POMO, Kwon et al. (2020)) for solving TSP and CVRP. We
only consider 100 nodes since the results of the improved AM in our experiments are superior or
close to those of POMO on other sizes as reported in Kwon et al. (2020). In Table 3, we record the
results of POMO and GANCO-POMO by inferring a single trajectory and 100 trajectories (with the
multi-starting-node strategy) for solving CVRP100. Clearly, the improvement of GANCO-POMO
over POMO is salient for both decoding methods. In Appendix G, we present more discussion
about CVRP and detailed results for TSP100 (the average gaps are reduced from 7.79% to 2.08%
with single trajectory, and from 3.64% to 0.90% with 100 trajectories for TSP100, respectively).

4.5 ANALYSIS ON THE GANCO FRAMEWORK

In Figure 2, we plot the objective gaps of GANCO models on various testing sets along adversar-
ial iterations for TSP or CVRP, where iteration 0 refers to the original AM or POMO. To better
demonstrate the learning process, we adopt the gaps with respect to the best objective values among
all the iterations. Though fluctuating on some testing sets especially for the early iterations, the
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(a) GANCO-AM on TSP100 (b) GANCO-AM on CVRP100 (c) GANCO-POMO on CVRP100

Figure 2: Results of models trained with GANCO on testing sets along the adversarial iterations.

performance on those generalization testing sets becomes more desirable and stable quickly as the
iteration increases.

Figure 3: GANCO-AM results of
CVRP100 on distributions generated by
the generation model along the 20 ad-
versarial iterations.

Similarly, in Figure 3, we also plot the objective gaps of
GANCO-AM for CVRP100 on 20 distributions, each of
which is generated in the respective adversarial iteration.
Clearly, the objective gaps of the worst-case instances
found by the generation model are decreasing as the it-
eration increases, indicating that the lower bound of per-
formance is pushed up with our GANCO. Furthermore,
even before we train the model on a generated distribu-
tion (the diagonal polyline), the performance on it also
usually tends to become better, which verified the effec-
tiveness of the learned patterns. Besides, we also compare
our data generation method with the genetic based one in
Liu et al. (2020) to justify the deep RL in our GANCO.
The details are presented in Appendix A.

Though deep learning models still perform relatively in-
ferior to strong traditional algorithms on well-studied
COPs, GANCO framework effectively improves the gen-
eralization ability. With certain settings for the less studied problems, deep models performs favor-
ably against the traditional ones (e.g., inferring 10 trajectories on PCTSP50, GANCO-AM improves
the average gaps on testing sets from 2.32% to 1.31% with average run time 8s for 10000 instances,
compared to the fast ILS 1.67% and 106s). Especially the adversarial training does not alter the
model architecture and consumes fairly short time. The hardest training in our methods (GANCO-
AM for CVRP100) costs less than 3 days compared to the 14 days for pretraining of AM. Further-
more, aiming at improving the generalization ability, GANCO could also be potentially applied to
upcoming deep models, e.g., the one has stronger performance and could handle much larger sizes.

To further demonstrate the effectiveness of adversarial training in the proposed GANCO framework,
we conduct more experiments in Appendix I. We demonstrate that GANCO achieves most of the
benefits of training on in-distribution data and achieves better generalization performances com-
pared to the model trained with multiple distributions. Furthermore, the generation model tailors
distributions bespoke to the specific problem.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose the GANCO framework to improve the generalization ability of Neural
Combinatorial Optimization models. Trained by reinforcement learning, a generation model aims
to find instances hard for an optimization model. With the two models trained alternatively in an
adversarial way, the generalization ability of the optimization model is significantly boosted. We
apply GANCO to two optimization models including AM and POMO on various COPs. Extensive
experimental results show that our GANCO framework ameliorates the generalization performance
by large margins with slight performance drops on the original training distribution. In future, we
will investigate more optimization models and COPs, and study how to tackle much larger instances.
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A AM EXPERIMENTS ON TSP

For the Traveling Salesman Problem (TSP), the base training instances are generated uniformly in
the unit square (Kool et al., 2019). We adopt instances following five different distributions as the
testing sets to evaluate the generalization performance.
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1. Clustered: Following Uchoa et al. (2017), the nodes are distributed in clusters where
the number of clusters S is uniformly sampled from the integers {3, ..., 8}. With the
unit square discretized to 1000 × 1000 grid, the cluster centers are uniformly and in-
dependently sampled. A node is located at location p with probability proportional to∑S

s=i exp(−w(p, s)/0.04), where s is the cluster index and w(p, s) is the distance be-
tween location p and cluster center s. All nodes in an instance are located at distinct points
in the grid.

2. Uniform: For each instance, the nodes are distributed uniformly in a rectangle. The aspect
ratio of the rectangle is sampled from the uniform distribution U(0, 1) and the longer side
is the horizontal or vertical axis with equal probabilities.

3. Diagonal: The nodes are distributed along the diagonal of a rectangle. For each instance,
a rectangle is generated in the same way as in Uniform and a noise size t is sampled from
the uniform distribution U(0.05, 0.2). One of the two diagonals is selected with equal
probabilities. For each node in this instance, one point is sampled uniformly from the
selected diagonal. And two noises independently sampled from the uniform distribution
U(−t, t) are imposed for the horizontal and vertical axes, respectively, to attain the node
coordinates.

4. Gaussian: For each instance, a correlation coefficient ρ is sampled from the uniform dis-
tribution U(0, 1). The nodes follow the bivariate Gaussian distribution with the mean
(0.5, 0.5), the standard deviation 1 for both axes, and the correlation coefficient ρ. How-
ever, we will scale the instance coordinates to the valid coordinate range [0, 1]. Therefore,
the mean and standard deviation will not affect the scaled instance.

5. TSPLIB-S: For each instance, a reference instance is sampled from the TSPLIB benchmark
(Reinelt, 1991). The nodes are sampled from this reference instance without replacement
to form a new instance. We sample the instances in this way to have fixed number of nodes
for testing set. However, we further present the results on the TSPLIB benchmark with
various sizes in Appendix B.

We do not include the Random-Clustered node distribution in Uchoa et al. (2017), where half of the
nodes are distributed uniformly in the unit square and the other half are distributed in 3-8 clusters.
It is similar to the base unit uniform distribution for problems with 100 nodes or less.

In Table 4, we show the results of Concorde, LKH, original AM and GANCO-AM on the testing sets
with different instance distributions, which include the base training distribution and 5 generalization
testing distributions. Concorde is a highly optimized exact solver for TSP, which finds the optimal
solutions in a fairly short time. LKH (Helsgaun, 2000) uses the same hyper-parameters (10000
trails and 10 runs) as those in Kool et al. (2019). For all the traditional algorithms (Concorde and
LKH for TSP, HGS and LKH3 for CVRP, Compass for OP, ILS for PCTSP, DP for KP), we run 20
instances in parallel on a 28-core CPU. And the run time of AM and GANCO-AM is measured on a
single RTX2080Ti GPU. In addition to the greedy decoding version of AM and GANCO-AM which
infer one solution trajectory, we further include another two versions, i.e., inferring 10 trajectories
(10t) and 100 trajectories (100t). In the greedy version, the node to visit at each step is selected as
the one with the highest probability. More solution trajectories could be achieved by sampling the
node to visit at each step for multiple times according to the inferred probability. With one solution
trajectory greedily inferred, we further sample another 9 and 99 solution trajectories which lead to
versions of 10 trajectories (10t) and 100 trajectories (100t), respectively. Clearly, for most settings,
GANCO-AM improves the performance of the original AM by large margins. For small problem
sizes (n = 20), some distributions (Gaussian and TSPLIB-S) are not significantly different from
the base one, where the performance of AM and GANCO-AM is similar. For the base training
distribution, the performance of GANCO-AM is fairly close to the original AM. As the GANCO
framework does not change the model architecture or the total number of parameters, the small
performance drop on the original training distribution is acceptable considering the improvement of
generalization ability on other testing distributions.

To demonstrate the necessity of deep generation model trained by reinforcement learning in
GANCO, we adopt the genetic based (GB) generation method in Liu et al. (2020) to our framework,
namely GB-AM. Instead of managing instance distributions in GANCO, GB applies crossover and
mutation operators to given instances for generating new ones. After the pretraining stage, GB first
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Table 4: Results of AM and GANCO-AM for TSP on instances with different distributions.

n = 20 n = 50 n = 100
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base

Concorde 3.83 0.00% 4s 5.69 0.00% 39s 7.76 0.00% 142s
LKH 3.83 0.00% 32s 5.69 0.00% 296s 7.76 0.00% 1241s
AM greedy 3.83 0.14% 0.3s 5.73 0.73% 0.8s 7.93 2.16% 2.1s
GANCO-AM greedy 3.83 0.14% 0.3s 5.74 0.83% 0.8s 7.94 2.28% 2.1s
GB-AM greedy 3.83 0.12% 0.3s 5.73 0.71% 0.8s 7.91 1.97% 2.1s
AM 10t 3.83 0.07% 2s 5.71 0.43% 7s 7.88 1.50% 20s
GANCO-AM 10t 3.83 0.08% 2s 5.72 0.49% 7s 7.88 1.57% 20s
GB-AM 10t 3.83 0.07% 2s 5.71 0.40% 7s 7.86 1.34% 20s
AM 100t 3.83 0.04% 25s 5.70 0.26% 74s 7.84 1.08% 206s
GANCO-AM 100t 3.83 0.05% 25s 5.71 0.32% 74s 7.85 1.13% 206s
GB-AM 100t 3.83 0.04% 25s 5.70 0.25% 74s 7.83 0.96% 206s

Cluster

Concorde 3.19 0.00% 12s 4.01 0.00% 91s 5.15 0.00% 210s
LKH 3.19 0.00% 110s 4.01 0.00% 655s 5.15 0.00% 2754s
AM greedy 3.21 0.39% 0.3s 4.14 3.07% 0.8s 5.60 8.85% 2.1s
GANCO-AM greedy 3.20 0.27% 0.3s 4.10 2.04% 0.8s 5.46 6.06% 2.1s
GB-AM greedy 3.21 0.40% 0.3s 4.14 3.22% 0.8s 5.64 9.53% 2.1s
AM 10t 3.20 0.20% 2s 4.09 1.99% 7s 5.53 7.43% 20s
GANCO-AM 10t 3.20 0.14% 2s 4.06 1.25% 7s 5.39 4.64% 20s
GB-AM 10t 3.20 0.22% 2s 4.10 2.11% 7s 5.57 8.24% 20s
AM 100t 3.20 0.12% 25s 4.07 1.31% 77s 5.46 6.04% 208s
GANCO-AM 100t 3.20 0.09% 25s 4.05 0.81% 77s 5.33 3.58% 208s
GB-AM 100t 3.20 0.12% 25s 4.07 1.42% 77s 5.50 6.85% 208s

Uniform

Concorde 2.78 0.00% 15s 3.91 0.00% 78s 5.30 0.00% 183s
LKH 2.78 0.00% 111s 3.91 0.00% 712s 5.30 0.00% 2051s
AM greedy 2.79 0.54% 0.3s 4.04 3.37% 0.8s 5.67 7.12% 2.1s
GANCO-AM greedy 2.78 0.19% 0.3s 3.97 1.45% 0.8s 5.51 3.94% 2.1s
GB-AM greedy 2.79 0.53% 0.3s 4.12 5.25% 0.8s 5.67 7.06% 2.1s
AM 10t 2.78 0.28% 2s 4.00 2.13% 7s 5.61 5.99% 21s
GANCO-AM 10t 2.78 0.10% 2s 3.95 0.83% 7s 5.45 2.97% 21s
GB-AM 10t 2.78 0.26% 2s 4.05 3.54% 7s 5.61 5.96% 21s
AM 100t 2.78 0.15% 26s 3.97 1.43% 77s 5.56 4.97% 208s
GANCO-AM 100t 2.78 0.05% 26s 3.93 0.51% 77s 5.42 2.26% 208s
GB-AM 100t 2.78 0.14% 26s 4.01 2.40% 77s 5.56 4.96% 208s

Diagonal

Concorde 2.43 0.00% 21s 2.72 0.00% 152s 3.24 0.00% 196s
LKH 2.43 0.00% 472s 2.72 0.00% 1775s 3.24 0.01% 3371s
AM greedy 2.49 2.29% 0.3s 3.35 23.21% 0.8s 5.22 61.47% 2.1s
GANCO-AM greedy 2.44 0.29% 0.3s 2.78 2.37% 0.8s 3.47 7.39% 2.1s
GB-AM greedy 2.48 1.90% 0.3s 3.66 34.72% 0.8s 5.78 78.76% 2.1s
AM 10t 2.46 1.10% 2s 3.17 16.68% 7s 5.08 56.92% 20s
GANCO-AM 10t 2.44 0.13% 2s 2.76 1.47% 7s 3.44 6.25% 20s
GB-AM 10t 2.46 0.96% 2s 3.26 19.89% 7s 5.61 73.51% 20s
AM 100t 2.45 0.62% 26s 3.04 11.95% 77s 4.89 51.19% 209s
GANCO-AM 100t 2.43 0.06% 26s 2.74 0.88% 77s 3.40 5.05% 209s
GB-AM 100t 2.45 0.53% 26s 3.06 12.65% 77s 5.34 65.02% 209s

Gaussian

Concorde 3.40 0.00% 12s 4.45 0.00% 51s 5.70 0.00% 167s
LKH 3.40 0.00% 75s 4.45 0.00% 421s 5.70 0.00% 1335s
AM greedy 3.41 0.32% 0.3s 4.67 4.86% 0.8s 6.21 9.06% 2.1s
GANCO-AM greedy 3.41 0.27% 0.3s 4.54 1.96% 0.8s 6.10 7.02% 2.1s
GB-AM greedy 3.41 0.36% 0.3s 4.65 4.30% 0.8s 6.25 9.69% 2.1s
AM 10t 3.41 0.16% 2s 4.61 3.41% 7s 6.15 7.92% 20s
GANCO-AM 10t 3.41 0.15% 2s 4.51 1.22% 7s 6.01 5.54% 20s
GB-AM 10t 3.41 0.19% 2s 4.59 2.99% 7s 6.20 8.73% 20s
AM 100t 3.40 0.08% 26s 4.56 2.34% 77s 6.09 6.90% 209s
GANCO-AM 100t 3.40 0.10% 26s 4.49 0.79% 77s 5.95 4.33% 209s
GB-AM 100t 3.40 0.10% 26s 4.55 2.09% 77s 6.14 7.84% 209s

TSPLIB-S

Concorde 3.40 0.00% 7s 4.50 0.00% 44s 5.76 0.00% 155s
LKH 3.40 0.00% 40s 4.50 0.01% 296s 5.76 0.01% 1386s
AM greedy 3.41 0.21% 0.3s 4.58 1.77% 0.8s 6.06 5.27% 2.1s
GANCO-AM greedy 3.41 0.17% 0.3s 4.55 1.26% 0.8s 5.99 4.12% 2.1s
GB-AM greedy 3.41 0.21% 0.3s 4.58 1.77% 0.8s 6.09 5.79% 2.1s
AM 10t 3.40 0.11% 2s 4.55 1.23% 7s 6.01 4.33% 21s
GANCO-AM 10t 3.40 0.10% 2s 4.53 0.77% 7s 5.93 2.94% 21s
GB-AM 10t 3.40 0.11% 2s 4.55 1.24% 7s 6.04 4.88% 21s
AM 100t 3.40 0.06% 26s 4.54 0.89% 77s 5.97 3.63% 210s
GANCO-AM 100t 3.40 0.06% 26s 4.52 0.50% 77s 5.88 2.18% 210s
GB-AM 100t 3.40 0.06% 26s 4.54 0.91% 77s 6.00 4.16% 210s

samples a dataset from the base training distribution. During the adversarial training stage, GB
generates each new instance with the crossover and mutation operators. Two reference instances
are randomly selected from the dataset. The ith node attributes (coordinates) are taken from the
corresponding node of either reference instance with equal probability. And then each coordinate is
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mutated with probability 1/
√
n to be replaced with a random number sampled from the unit uniform

distribution (n is the number of nodes). And same as GANCO, the objective gaps of the optimiza-
tion model with respect to the baseline algorithm (Concorde) are used as the score for the instances.
Given the objective gap scores, a binary tournament is used to remove an instance with lower score
(since we plan to reserve the hard instances) and keep the dataset size unchanged. The genetic based
generation is performed at the beginning of each adversarial iteration and the optimization model
is trained on the new dataset. For a fair comparison, we use the same hyperparameters (number of
adversarial iterations, number of running for the baseline algorithm, number of epochs for training
the optimization model and number of instances in an epoch) for GB as those for GANCO.

As shown in Table 4, GB-AM does not improve the performance of AM on the generalization testing
distributions. However, the performance on the base training distribution is slightly boosted. This
result is expected because the genetic based generation method tends to search locally within the
field of base training distribution to find the hard instances. The resulting distribution still approxi-
mately follows the base training distribution. It would be extremely hard for the genetic operators to
attain instances following a significantly different distribution. If we discretize the node attributes,
the generation task for finding instances with large objective gaps is essentially a Combinatorial Op-
timization Problem. Therefore, to tackle such a relatively hard task, we exploit a deep model trained
with reinforcement learning, which is fairly effective as we have demonstrated in the experiments.

B AM EXPERIMENTS ON TSPLIB

In Table 5, we show the greedy decoding results of AM and GANCO-AM on TSPLIB instances
with 100-1000 nodes. Both models are trained only with instances of 100 nodes. The instance
coordinates are scaled to the valid range [0, 1] with the fixed aspect ratio between the horizontal and
vertical axes. Therefore, the objective values of the tours for an instance are scaled by the same
constant. As the models are trained for 2-dimensional Euclidean TSP, we treat all the instances as
in this distance space. Even though both models are trained with fixed-size graphs of 100 nodes,
the performance on medium-size instances with 100-300 nodes are reasonably good. The average
objective gaps for AM and GANCO-AM are 11.95% and 7.05% on instances with 100-300 nodes.
Clearly, GANCO-AM effectively improves the generalization performance. However, both models
start to deteriorate with lager sizes. The average gaps for AM and GANCO-AM are 27.44% and
23.37% on large instances with 300-1000 nodes. Nevertheless, the GANCO-AM still improves the
generalization performance over AM.

C AM EXPERIMENTS ON CVRP

We detail the instance distributions for CVRP. The base training distribution is acquired from Kool
et al. (2019), where the coordinates of customers and depot follow the unit uniform distribution,
and the demands are uniformly sampled from the integers {1, ..., 9}. The capacity is fixed as 30, 40
and 50 for CVRP with 20, 50 and 100 nodes, respectively. Existing benchmarks such as CVRPLIB
(Uchoa et al., 2017) have ranges of node attributes (demands and capacity) different from those of
the base training distribution (the valid attribute ranges). Therefore, we use the following testing dis-
tributions based on the CVRPLIB benchmark. For all the generalization testing sets, the coordinates
of customer nodes follow one of the 6 distributions for TSP (including the base training distribution
and 5 generalization testing distributions) with equal probabilities. And the depot follows one of the
3 positioning with equal probabilities, 1) Central: at the center of unit square (0.5, 0.5), 2) Eccentric:
at one of the four corners in the unit square, 3) Random: uniformly sampled from the unit square.
The capacity is the same constant as the base training distribution. The demand distributions are
adapted from the CVRPLIB, and presented as follows,

1. Original: The demands are uniformly sampled from {1, ..., 9}.
2. Small: The demands are sampled from the small integers {1, 2}.
3. Large: The demands are sampled from the large integers {8, 9}.
4. Identical: The demands for the nodes in the same instance are an identical integer uniformly

sampled from {1, ..., 9}.
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Table 5: Results of AM and GANCO-AM for TSP on TSPLIB instances.

AM GANCO-AM AM GANCO-AM
Instance Opt. Obj. Gap Obj. Gap Instance Opt Obj. Gap Obj. Gap
KroA100 5.41 5.60 3.58% 5.57 2.94% KroB100 5.63 5.88 4.45% 5.83 3.68%
KroC100 5.29 5.54 4.72% 5.39 1.88% KroD100 5.46 5.58 2.09% 5.62 2.98%
KroE100 5.62 5.91 5.08% 5.91 5.01% rd100 8.07 8.32 3.20% 8.31 3.07%
eil101 8.65 8.87 2.58% 8.94 3.31% lin105 4.76 4.94 3.95% 5.12 7.64%
pr107 5.37 5.57 3.71% 5.50 2.46% pr124 6.26 6.44 2.90% 6.43 2.59%
bier127 6.94 7.55 8.84% 7.30 5.16% ch130 8.83 9.20 4.14% 9.14 3.47%
pr136 8.54 8.84 3.45% 8.74 2.33% gr137* 5.68 6.19 8.97% 6.00 5.57%
pr144 5.36 5.51 2.75% 5.59 4.34% kroB150 6.66 6.95 4.36% 6.89 3.46%
kroA150 6.71 6.96 3.71% 6.93 3.23% ch150 9.34 9.72 4.08% 9.59 2.70%
pr152 5.37 6.02 12.05% 5.73 6.73% u159 8.09 8.72 7.80% 8.30 2.63%
rat195 8.08 9.12 12.96% 8.99 11.29% d198 3.92 6.12 56.04% 5.04 28.51%
kroA200 7.45 7.91 6.09% 8.05 8.08% kroB200 7.47 7.93 6.20% 7.99 6.98%
gr202* 4.78 7.31 52.79% 5.36 12.13% ts225 10.55 10.98 4.05% 11.21 6.23%
tsp225 8.22 9.09 10.62% 9.06 10.28% pr226 5.54 5.76 3.94% 5.80 4.66%
gr229* 4.63 9.04 95.43% 5.81 25.52% gil262 12.05 12.58 4.42% 12.66 5.08%
pr264 6.38 7.50 17.59% 7.19 12.61% a280 9.24 10.61 14.84% 10.42 12.78%
pr299 7.22 8.16 13.09% 8.18 13.36% linhp318 10.17 11.09 9.09% 11.14 9.54%
lin318 10.17 11.09 9.09% 11.14 9.54% rd400 15.34 17.41 13.48% 17.04 11.05%
fl417 6.29 8.28 31.66% 7.05 12.12% gr431* 5.45 9.39 72.38% 7.45 36.83%
pr439 8.99 10.72 19.27% 11.39 26.73% pcb442 13.36 15.58 16.61% 15.19 13.68%
d493 9.35 12.51 33.75% 11.48 22.80% att532 10.09 12.61 24.98% 12.62 25.06%
ali535* 6.00 8.33 38.87% 8.02 33.57% u574 12.02 14.71 22.34% 14.67 21.98%
rat575 13.62 16.75 22.97% 16.66 22.36% p654 7.20 9.08 26.23% 9.71 34.97%
d657 12.21 15.30 25.27% 14.96 22.50% gr666* 8.74 11.65 33.32% 11.65 33.26%
u724 14.44 18.47 27.91% 18.23 26.27% rat783 15.41 20.32 31.91% 19.70 27.88%
dsj1000 15.36 20.70 34.72% 20.06 30.59%

* The gr and ali535 instances are treated as in 2-D Euclidean space with their latitude and longitude as coordinates.

5. Quadrant: The demands depend on the quadrant of nodes. With the center of unit square
(0.5, 0.5) as the origin, the demands of nodes in even quadrants are sampled from small in-
tegers {1, 2} while the demands of nodes in odd quadrants are sampled from large integers
{8, 9}.

6. SL: Most nodes have small demands while other nodes have large ones. For one instance,
a random percentage p is sampled from the uniform distribution U(70%, 95%). Thus, p of
the total nodes have demands sampled from the small integers {1, 2} and the others have
demands sampled from the large integers {8, 9}.

In Table 6, we show the results of HGS, a faster version of HGS, LKH3, the original AM and
GANCO-AM on the various instance distributions. Hybrid Genetic Search (HGS, Vidal et al.
(2012); Vidal (2020)) combines genetic algorithm with local search, which is considered as the
state-of-the-art algorithm for CVRP. The faster version of HGS (HGS fast) uses the number of non-
improvement iterations before termination as 100 instead of the default 20000 for HGS. HGS fast is
the non-learning baseline algorithm which we use to train the generation model. LKH3 (Helsgaun,
2017) is an extension of LKH (Helsgaun, 2000) to solve various routing problems including CVRP.
We use the same hyper-parameters (SPECIAL parameters, 10000 trials, 1 run) as those used in Kool
et al. (2019). For distributions with small demands (Small) where the number of nodes in a route
is large, LKH3 excels at the tour optimization within the route and outperforms HGS. However,
LKH3 is unfriendly to the instances with many large-demand nodes. For these distributions (Large,
Identical, Quadrant), LKH3 cannot find feasible solutions for some instances within 10000 trails.

We report the results of AM and GANCO-AM with greedy inferring, 10 trajectories (10t) and 100
trajectories (100t), respectively. As shown in Table 6, the GANCO-AM framework significantly
improves the generalization performance over AM on most generalization testing settings. For small
size (n = 20), GANCO-AM and AM exhibit similar performance on some distributions (Quadrant
and SL), suggesting that AM is relatively robust to these distributions. And the improvement of
GANCO-AM on all the generalization testing settings with relatively larger sizes (n = 50, 100) is
significant.
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Table 6: Results of AM and GANCO-AM for CVRP on instances with different distributions.

n = 20 n = 50 n = 100
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base

HGS 6.11 0.00% 1803s 10.34 0.00% 5043s 15.57 0.00% 11686s
HGS fast 6.12 0.03% 14s 10.35 0.10% 52s 15.69 0.80% 153s
LKH3 6.12 0.07% 3336s 10.35 0.10% 13223s 15.65 0.54% 24393s
AM greedy 6.28 2.74% 0.5s 10.76 4.05% 1.2s 16.38 5.22% 2.8s
GANCO-AM greedy 6.29 2.86% 0.5s 10.78 4.22% 1.2s 16.37 5.16% 2.8s
AM 10t 6.23 1.87% 3s 10.64 2.84% 10s 16.18 3.92% 25s
GANCO-AM 10t 6.23 1.92% 3s 10.64 2.90% 10s 16.17 3.87% 25s
AM 100t 6.20 1.36% 40s 10.57 2.18% 107s 16.06 3.14% 265s
GANCO-AM 109t 6.20 1.41% 40s 10.57 2.18% 109s 16.05 3.11% 268s

Original

HGS 5.77 0.00% 1775s 9.43 0.00% 4926s 14.03 0.00% 13921s
HGS fast 5.77 0.05% 14s 9.44 0.11% 51s 14.12 0.65% 155s
LKH3 5.77 0.07% 3498s 9.44 0.07% 14042s 14.08 0.33% 29169s
AM greedy 5.93 2.83% 0.5s 9.90 5.03% 1.2s 15.05 7.25% 2.7s
GANCO-AM greedy 5.94 3.02% 0.5s 9.89 4.82% 1.2s 14.90 6.18% 2.8s
AM 10t 5.87 1.81% 3s 9.76 3.53% 10s 14.86 5.89% 26s
GANCO-AM 10t 5.88 1.91% 3s 9.74 3.30% 10s 14.71 4.84% 26s
AM 100t 5.84 1.25% 40s 9.68 2.66% 111s 14.72 4.89% 272s
GANCO-AM 109t 5.85 1.34% 40s 9.66 2.44% 111s 14.59 3.96% 268s

Small

HGS 3.55 0.10% 823s 5.11 0.19% 3549s 7.21 0.01% 11073s
HGS fast 3.55 0.10% 11s 5.12 0.31% 40s 7.25 0.53% 146s
LKH3 3.55 0.00% 153s 5.10 0.00% 1632s 7.21 0.00% 4366s
AM greedy 4.08 14.98% 0.5s 5.82 14.08% 1.2s 8.79 21.82% 3.4s
GANCO-AM greedy 3.85 8.67% 0.4s 5.63 10.26% 1.1s 8.27 14.66% 2.6s
AM 10t 3.91 10.23% 3s 5.62 10.21% 10s 8.48 17.52% 31s
GANCO-AM 10t 3.74 5.59% 3s 5.46 6.94% 9s 8.08 11.97% 26s
AM 100t 3.80 7.18% 38s 5.49 7.51% 114s 8.27 14.59% 312s
GANCO-AM 109t 3.69 3.96% 36s 5.36 4.94% 102s 7.93 9.97% 261s

Large

HGS 8.84 0.00% 2031s 15.00 0.00% 5416s 21.93 0.00% 13298s
HGS fast 8.84 0.00% 16s 15.02 0.12% 55s 22.03 0.43% 149s
LKH3 - - - - - - - - -
AM greedy 9.11 2.99% 0.5s 15.95 6.34% 1.3s 23.47 7.02% 3.0s
GANCO-AM greedy 9.04 2.17% 0.5s 15.89 5.95% 1.2s 23.29 6.20% 3.0s
AM 10t 8.98 1.56% 4s 15.74 4.97% 11s 23.23 5.91% 28s
GANCO-AM 10t 8.95 1.20% 4s 15.68 4.56% 11s 23.02 4.93% 28s
AM 100t 8.92 0.82% 44s 15.58 3.86% 119s 23.03 4.97% 284s
GANCO-AM 109t 8.91 0.71% 43s 15.52 3.49% 120s 22.81 4.01% 281s

Identical

HGS 5.93 0.00% 1495s 9.74 0.00% 4341s 14.46 0.00% 10521s
HGS fast 5.93 0.01% 13s 9.74 0.04% 43s 14.49 0.25% 136s
LKH3 - - - - - - - - -
AM greedy 6.19 4.47% 0.5s 10.25 5.31% 1.1s 15.75 8.93% 3.4s
GANCO-AM greedy 6.12 3.34% 0.5s 10.20 4.75% 1.1s 15.47 7.03% 3.0s
AM 10t 6.10 2.91% 4s 10.14 4.15% 11s 15.55 7.59% 30s
GANCO-AM 10t 6.06 2.29% 4s 10.09 3.60% 11s 15.32 5.98% 29s
AM 100t 6.05 2.10% 43s 10.06 3.36% 120s 15.41 6.63% 301s
GANCO-AM 109t 6.03 1.74% 42s 10.01 2.86% 119s 15.20 5.18% 284s

Quadrant

HGS 5.83 0.00% 1708s 9.56 0.00% 5049s 14.05 0.00% 12235s
HGS fast 5.83 0.04% 14s 9.57 0.10% 50s 14.12 0.48% 152s
LKH3 - - - - - - - - -
AM greedy 6.05 3.72% 0.5s 10.24 7.11% 1.1s 15.37 9.40% 3.0s
GANCO-AM greedy 6.04 3.59% 0.5s 10.18 6.52% 1.2s 15.14 7.76% 3.0s
AM 10t 5.97 2.40% 4s 10.08 5.46% 10s 15.13 7.71% 29s
GANCO-AM 10t 5.97 2.34% 4s 10.03 4.89% 11s 14.93 6.25% 28s
AM 100t 5.93 1.67% 42s 9.97 4.31% 117s 14.96 6.50% 284s
GANCO-AM 109t 5.93 1.66% 42s 9.92 3.79% 117s 14.77 5.12% 280s

SL

HGS 4.40 0.05% 1386s 6.69 0.00% 4601s 9.52 0.00% 12151s
HGS fast 4.40 0.09% 13s 6.69 0.09% 46s 9.56 0.36% 145s
LKH3 4.40 0.00% 1069s 6.69 0.00% 5630s 9.54 0.18% 12595s
AM greedy 4.59 4.24% 0.4s 7.17 7.21% 1.1s 10.67 12.06% 3.3s
GANCO-AM greedy 4.58 4.11% 0.4s 7.13 6.59% 1.1s 10.43 9.51% 2.8s
AM 10t 4.52 2.69% 3s 7.03 5.19% 10s 10.45 9.73% 28s
GANCO-AM 10t 4.52 2.68% 3s 6.98 4.49% 9s 10.25 7.60% 26s
AM 100t 4.48 1.89% 38s 6.95 3.93% 109s 10.30 8.13% 271s
GANCO-AM 109t 4.48 1.90% 38s 6.90 3.27% 107s 10.12 6.30% 258s

D AM EXPERIMENTS ON OP

In the Orienteering Problem (OP), the vehicle starts from the depot, visits some of the customers
and returns to the depot. The goal is to maximize the total prize collected from the customers with
the tour distance shorter than the maximum length. We use the hardest setting reported in Kool et al.
(2019), where the prize of node increases with the distance to the depot. The base training distribu-
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Table 7: Results of AM and GANCO-AM for OP on instances with different distributions.

n = 20 n = 50 n = 100
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base

Compass 5.38 0.00% 49s 16.19 0.00% 167s 33.18 0.00% 454s
AM greedy 5.27 1.96% 0.3s 15.82 2.27% 0.8s 32.40 2.34% 1.7s
GANCO-AM greedy 5.28 1.89% 0.3s 15.77 2.57% 0.8s 32.30 2.64% 1.7s
AM 10t 5.31 1.25% 2s 15.98 1.33% 6s 32.74 1.32% 15s
GANCO-AM 10t 5.31 1.17% 2s 15.95 1.48% 6s 32.69 1.48% 15s
AM 100t 5.33 0.81% 27s 16.06 0.81% 67s 32.92 0.77% 165s
GANCO-AM 100t 5.34 0.71% 27s 16.04 0.91% 67s 32.89 0.86% 166s

Clustered

Compass 6.57 0.00% 75s 23.14 0.00% 786s 51.23 0.00% 2173s
AM greedy 6.40 2.50% 0.3s 21.48 7.17% 1.0s 44.19 13.74% 2.3s
GANCO-AM greedy 6.42 2.22% 0.3s 21.73 6.10% 0.9s 46.67 8.91% 2.3s
AM 10t 6.46 1.62% 3s 21.91 5.33% 8s 45.38 11.43% 21s
GANCO-AM 10t 6.47 1.40% 3s 22.15 4.29% 8s 47.48 7.32% 22s
AM 100t 6.49 1.10% 32s 22.18 4.14% 87s 46.16 9.90% 221s
GANCO-AM 100t 6.51 0.90% 32s 22.40 3.21% 88s 48.08 6.16% 227s

Uniform

Compass 7.31 0.00% 90s 22.46 0.00% 304s 45.97 0.00% 559s
AM greedy 7.06 3.41% 0.3s 21.40 4.72% 0.9s 41.72 9.26% 2.4s
GANCO-AM greedy 7.11 2.74% 0.3s 21.57 3.97% 1.0s 43.29 5.84% 2.4s
AM 10t 7.15 2.20% 3s 21.74 3.22% 8s 42.54 7.46% 23s
GANCO-AM 10t 7.19 1.66% 3s 21.89 2.57% 8s 43.94 4.43% 23s
AM 100t 7.20 1.54% 33s 21.95 2.30% 91s 43.07 6.32% 241s
GANCO-AM 100t 7.24 1.05% 33s 22.06 1.80% 91s 44.37 3.48% 241s

Diagonal

Compass 7.57 0.00% 137s 26.52 0.00% 752s 55.33 0.00% 634s
AM greedy 7.28 3.84% 0.3s 24.60 7.24% 1.0s 44.61 19.39% 2.5s
GANCO-AM greedy 7.36 2.75% 0.3s 25.26 4.78% 1.0s 51.37 7.17% 2.4s
AM 10t 7.37 2.64% 3s 25.15 5.17% 8s 46.35 16.24% 23s
GANCO-AM 10t 7.43 1.80% 3s 25.62 3.41% 8s 51.95 6.12% 23s
AM 100t 7.42 1.98% 33s 25.53 3.76% 91s 47.31 14.49% 239s
GANCO-AM 100t 7.48 1.24% 33s 25.87 2.47% 91s 52.49 5.15% 240s

Gaussian

Compass 6.14 0.00% 64s 19.52 0.00% 346s 40.73 0.00% 927s
AM greedy 5.99 2.51% 0.3s 18.48 5.35% 1.0s 35.16 13.68% 2.4s
GANCO-AM greedy 6.00 2.37% 0.3s 18.56 4.93% 1.0s 37.31 8.40% 2.4s
AM 10t 6.05 1.59% 3s 18.81 3.66% 8s 35.96 11.71% 22s
GANCO-AM 10t 6.06 1.43% 3s 18.88 3.31% 8s 37.97 6.80% 23s
AM 100t 6.08 1.09% 32s 19.00 2.69% 90s 36.57 10.22% 230s
GANCO-AM 100t 6.09 0.93% 32s 19.05 2.40% 90s 38.44 5.65% 238s

TSPLIB-S

Compass 6.14 0.00% 63s 20.47 0.00% 323s 44.98 0.00% 857s
AM greedy 6.01 2.10% 0.3s 19.37 5.37% 1.0s 39.44 12.32% 2.3s
GANCO-AM greedy 6.02 1.95% 0.3s 19.50 4.74% 0.9s 41.37 8.03% 2.4s
AM 10t 6.06 1.38% 3s 19.69 3.79% 8s 40.58 9.80% 23s
GANCO-AM 10t 6.07 1.22% 3s 19.80 3.29% 9s 42.29 5.99% 23s
AM 100t 6.09 0.89% 32s 19.88 2.90% 90s 41.24 8.32% 232s
GANCO-AM 100t 6.09 0.79% 33s 19.97 2.43% 92s 42.79 4.87% 238s

tion is the unit uniform distribution for the node coordinate. The maximum tour length is fixed as
2, 3 and 4 for OP with 20, 50 and 100 customers, respectively. The prize ρi of node i is determined
by ρi =

1
100⌊1 + 99× w0i

maxn
j=1w0j

⌋, where w0i is the distance between depot and node i. Therefore,
the generation model only learns the node coordinates. For the generalization testing distributions,
we use the same coordinate distributions for TSP (Clustered, Uniform, Diagonal, Gaussian and
TSPLIB-S) as the ones for the customers. In each generalization distribution, the depot coordinates
follow the 3 depot positioning (Central, Eccentric, Random) with equal probabilities.

In Table 7, we report the results of Compass Kobeaga et al. (2018), AM and GANCO-AM on the
testing distributions for OP. Different from most other routing problems, the objective value is the
total collected prize which is to be maximized instead of minimized. The results confirm that the
GANCO framework significantly improves the performance on all the generalization settings with
different testing distributions, graph sizes and numbers of solution trajectories.

E AM EXPERIMENTS ON PCTSP

In Prize Collecting TSP (PCTSP), the vehicle starts from the depot, visits some of the customers
to collect prize and returns to the depot. With the total collected prize no less than a minimum
value, the goal is to minimize the tour distance plus the total penalties of unvisited nodes. In Kool
et al. (2019), the base training distribution is that the coordinates of depot and customers follow
the unit uniform distribution. The prizes are designed to force the vehicle to visit approximately
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Table 8: Results of AM and GANCO-AM for PCTSP on instances with different distributions.

n = 20 n = 50 n = 100
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base

ILS 3.15 0.00% 862s 4.50 0.00% 6895s 5.98 0.00% 47404s
ILS fast 3.19 1.10% 78s 4.57 1.56% 119s 6.10 2.12% 358s
AM greedy 3.15 0.11% 0.3s 4.54 0.94% 0.7s 6.11 2.15% 1.7s
GANCO-AM greedy 3.15 0.09% 0.3s 4.54 0.90% 0.7s 6.10 2.09% 1.7s
AM 10t 3.15 -0.19% 3s 4.51 0.36% 7s 6.06 1.33% 16s
GANCO-AM 10t 3.14 -0.20% 3s 4.51 0.38% 7s 6.05 1.29% 16s
AM 100t 3.14 -0.37% 32s 4.50 0.08% 74s 6.03 0.85% 168s
GANCO-AM 100t 3.14 -0.36% 33s 4.50 0.10% 75s 6.03 0.83% 174s

Clustered

ILS 2.90 0.00% 1018s 3.72 0.00% 9957s 4.65 0.00% 57305s
ILS fast 2.93 1.04% 81s 3.79 1.94% 102s 4.77 2.74% 476s
AM greedy 2.90 0.14% 0.3s 3.79 2.06% 0.9s 5.09 9.53% 2.2s
GANCO-AM greedy 2.90 0.01% 0.3s 3.76 1.21% 0.8s 4.89 5.14% 2.1s
AM 10t 2.89 -0.28% 3s 3.75 0.95% 8s 4.99 7.40% 21s
GANCO-AM 10t 2.89 -0.35% 3s 3.73 0.37% 8s 4.82 3.78% 21s
AM 100t 2.88 -0.50% 34s 3.73 0.29% 88s 4.92 5.95% 224s
GANCO-AM 100t 2.88 -0.54% 34s 3.71 -0.13% 88s 4.78 2.76% 218s

Uniform

ILS 2.68 0.00% 1121s 3.63 0.00% 12893s 4.72 0.00% 63008s
ILS fast 2.71 1.14% 76s 3.69 1.64% 101s 4.83 2.16% 523s
AM greedy 2.69 0.43% 0.3s 3.75 3.33% 0.9s 5.23 10.70% 2.3s
GANCO-AM greedy 2.69 0.38% 0.3s 3.70 1.94% 0.9s 4.99 5.74% 2.3s
AM 10t 2.68 -0.03% 3s 3.70 2.00% 8s 5.13 8.65% 22s
GANCO-AM 10t 2.68 -0.04% 3s 3.67 1.13% 8s 4.94 4.51% 22s
AM 100t 2.67 -0.26% 34s 3.68 1.23% 92s 5.06 7.18% 235s
GANCO-AM 100t 2.67 -0.26% 34s 3.65 0.64% 91s 4.90 3.65% 231s

Diagonal

ILS 2.49 0.00% 1242s 2.95 0.00% 17265s 3.44 0.00% 83044s
ILS fast 2.52 1.24% 70s 3.01 2.11% 122s 3.51 2.13% 716s
AM greedy 2.51 0.73% 0.3s 3.23 9.69% 0.9s 4.62 34.47% 2.3s
GANCO-AM greedy 2.50 0.37% 0.3s 3.09 4.73% 0.9s 3.97 15.53% 2.3s
AM 10t 2.49 0.04% 3s 3.12 6.06% 8s 4.46 29.68% 23s
GANCO-AM 10t 2.48 -0.16% 3s 3.04 3.09% 8s 3.89 13.32% 22s
AM 100t 2.48 -0.28% 35s 3.07 4.10% 92s 4.32 25.68% 234s
GANCO-AM 100t 2.48 -0.41% 35s 3.01 2.04% 91s 3.82 11.29% 229s

Gaussian

ILS 2.80 0.00% 949s 3.59 0.00% 11168s 4.48 0.00% 36622s
ILS fast 2.82 0.83% 71s 3.63 1.06% 99s 4.53 1.17% 505s
AM greedy 2.81 0.31% 0.3s 3.68 2.69% 0.8s 4.94 10.21% 2.2s
GANCO-AM greedy 2.81 0.31% 0.3s 3.66 1.97% 0.8s 4.74 5.76% 2.1s
AM 10t 2.80 -0.03% 3s 3.65 1.60% 8s 4.84 8.06% 22s
GANCO-AM 10t 2.80 -0.02% 3s 3.63 1.19% 8s 4.68 4.37% 21s
AM 100t 2.79 -0.21% 34s 3.62 1.00% 88s 4.78 6.66% 223s
GANCO-AM 100t 2.80 -0.19% 34s 3.62 0.75% 86s 4.64 3.45% 215s

TSPLIB-S

ILS 2.98 0.00% 952s 3.93 0.00% 11155s 4.96 0.00% 39783s
ILS fast 3.01 0.99% 72s 3.99 1.62% 106s 5.07 2.25% 471s
AM greedy 2.99 0.15% 0.3s 4.00 1.81% 0.9s 5.40 8.83% 2.4s
GANCO-AM greedy 2.99 0.08% 0.3s 3.98 1.43% 0.9s 5.18 4.51% 2.2s
AM 10t 2.98 -0.20% 3s 3.97 1.01% 8s 5.31 7.00% 23s
GANCO-AM 10t 2.98 -0.24% 3s 3.96 0.75% 8s 5.12 3.30% 22s
AM 100t 2.97 -0.39% 35s 3.95 0.56% 89s 5.24 5.68% 237s
GANCO-AM 100t 2.97 -0.40% 35s 3.94 0.37% 90s 5.09 2.51% 221s

half of the customer nodes, which follows the uniform distribution U(0, 4/n). And the penalties
are designed to balance the importance of minimizing the tour distance and the cost of unvisited
nodes, which follows the uniform distribution U(0, 3K/n). Particularly, K is fixed as 2, 3 and
4 for PCTSP with 20, 50 and 100 customers. The prizes and penalties are specifically designed
to have meaningful instances. Therefore, for the generalization testing distributions, we keep the
node prize and penalty distributions the same as the base training distribution. We only consider
the generalization to different node coordinate distributions. The depot coordinates follow one of
the three depot positioning (Central, Eccentric, Random) with equal probabilities. The customer
coordinates follow the same generalization testing distributions as those for TSP.

In Table 8, we show the results of ILS, a faster version of ILS, AM and GANCO-AM on PCTSP
with different instance distributions. A faster version of ILS (ILS fast) uses the number of non-
improvement iterations, the maximum iterations and the maximum reboot times as 200, 400 and 201
instead of the default 20000, 40000 and 4001 for the original ILS. The ILS fast is the non-learning
baseline algorithm to train the generation model. Similarly, the GANCO framework improves the
original AM by large margins on almost all the generalization testing settings. For the only exception
(PCTSP20 with Gaussian), the performance of AM and GANCO-AM is almost identical. It is
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Table 9: Results of AM and GANCO-AM for KP on instances with different distributions.

n = 50 n = 100 n = 200
Dist. Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Base

DP 20.099 0.00% 23s 40.404 0.00% 91s 57.730 0.00% 186s
AM greedy 20.081 0.092% 0.7s 40.383 0.052% 1.7s 57.699 0.053% 4.1s
GANCO-AM greedy 20.080 0.096% 0.7s 40.381 0.056% 1.7s 57.697 0.058% 3.9s
AM 10t 20.088 0.053% 6s 40.393 0.028% 16s 57.714 0.028% 37s
GANCO-AM 10t 20.088 0.056% 6s 40.392 0.029% 16s 57.712 0.031% 38s
AM 100t 20.092 0.036% 67s 40.397 0.018% 169s 57.721 0.015% 391s
GANCO-AM 100t 20.091 0.039% 68s 40.397 0.018% 173s 57.719 0.019% 404s

Clustered

DP 18.915 0.00% 22s 38.084 0.00% 97s 53.754 0.00% 182s
AM greedy 18.873 0.226% 0.8s 38.018 0.174% 2.1s 53.544 0.390% 6.4s
GANCO-AM greedy 18.880 0.186% 0.8s 38.029 0.144% 2.1s 53.654 0.184% 6.4s
AM 10t 18.891 0.127% 8s 38.048 0.094% 21s 53.601 0.283% 63s
GANCO-AM 10t 18.895 0.110% 8s 38.052 0.084% 21s 53.694 0.111% 64s
AM 100t 18.900 0.080% 81s 38.062 0.057% 241s 53.637 0.217% 677s
GANCO-AM 100t 18.901 0.074% 81s 38.064 0.053% 239s 53.716 0.071% 717s

Uniform

DP 18.783 0.00% 22s 37.757 0.00% 95s 50.819 0.00% 200s
AM greedy 18.741 0.223% 0.7s 37.695 0.163% 1.8s 50.731 0.174% 4.1s
GANCO-AM greedy 18.753 0.159% 0.7s 37.717 0.105% 1.8s 50.748 0.140% 4.1s
AM 10t 18.757 0.137% 6s 37.720 0.095% 18s 50.776 0.086% 41s
GANCO-AM 10t 18.764 0.097% 6s 37.732 0.065% 18s 50.783 0.073% 41s
AM 100t 18.765 0.094% 71s 37.733 0.061% 182s 50.795 0.048% 443s
GANCO-AM 100t 18.769 0.071% 71s 37.740 0.044% 182s 50.798 0.042% 443s

Diagonal

DP 18.650 0.00% 25s 37.031 0.00% 90s 49.553 0.00% 194s
AM greedy 18.586 0.344% 0.7s 36.956 0.202% 1.8s 49.419 0.271% 4.2s
GANCO-AM greedy 18.620 0.158% 0.7s 36.980 0.138% 1.8s 49.436 0.236% 4.2s
AM 10t 18.612 0.202% 6s 36.990 0.111% 18s 49.477 0.154% 42s
GANCO-AM 10t 18.634 0.084% 6s 37.002 0.078% 18s 49.481 0.145% 42s
AM 100t 18.625 0.135% 71s 37.006 0.068% 182s 49.508 0.091% 445s
GANCO-AM 100t 18.639 0.057% 71s 37.012 0.053% 182s 49.506 0.096% 444s

Gaussian

DP 16.351 0.00% 22s 32.126 0.00% 97s 37.127 0.00% 193s
AM greedy 16.319 0.196% 0.8s 32.088 0.120% 1.9s 37.057 0.191% 3.8s
GANCO-AM greedy 16.319 0.193% 0.7s 32.089 0.116% 2.0s 37.074 0.143% 3.8s
AM 10t 16.334 0.103% 7s 32.108 0.057% 19s 37.096 0.086% 38s
GANCO-AM 10t 16.333 0.107% 7s 32.107 0.058% 19s 37.100 0.074% 38s
AM 100t 16.341 0.060% 75s 32.116 0.030% 205s 37.109 0.049% 402s
GANCO-AM 100t 16.339 0.070% 75s 32.116 0.032% 203s 37.113 0.038% 403s

TSPLIB-S

DP 18.917 0.00% 22s 37.850 0.00% 91s 51.699 0.00% 189s
AM greedy 18.887 0.159% 0.8s 37.799 0.134% 2.0s 51.579 0.233% 4.9s
GANCO-AM greedy 18.889 0.148% 0.8s 37.810 0.105% 2.0s 51.621 0.151% 5.0s
AM 10t 18.900 0.089% 7s 37.821 0.075% 19s 51.626 0.142% 49s
GANCO-AM 10t 18.899 0.092% 7s 37.827 0.059% 19s 51.658 0.080% 49s
AM 100t 18.906 0.058% 75s 37.831 0.048% 203s 51.647 0.102% 493s
GANCO-AM 100t 18.904 0.066% 75s 37.834 0.040% 211s 51.674 0.049% 498s

worth noting that for small size problem, AM and GANCO-AM can outperform the traditional non-
learning methods that are highly optimized for the specific problems.

F AM EXPERIMENTS ON KP

Following Kwon et al. (2020), the item weights and values in KP are sampled from the unit uniform
distribution U(0, 1) as the base training distribution. The weight capacity is fixed as 12.5, 25, 25
for the instances with 50, 100, 200 items. Considering the weights and values as the x and y
axis coordinates, we could leverage the same generalization testing distributions for TSP. The item
weights are rounded to 2 decimal places for the Dynamic Programming (DP) algorithm to attain the
optimal solutions.

As shown in Table 9, for the greedy inferring, the GANCO framework effectively improves the
performance on all the generalization testing distributions for different problem sizes. With more
trajectories inferred, the performance of AM and GANCO-AM become fairly close on some distri-
butions (such as Gaussian and TSPLIB-S) because KP is a relatively simple problem and the order
of node (item) sequences will not affect the solution. Therefore, multiple trajectories by sampling
introduce more randomness to the solution quality and the performance slightly fluctuates.
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G POMO EXPERIMENTS

We leverage AM as the base model for most experiments given that it has been used in many other
recent works including POMO, and exhibits good performance on a series of COPs. Here, we
only consider TSP100 and CVRP100 since the results of the improved AM in our experiments are
superior or close to those of POMO on the other sizes. Specifically, regarding TSP20 and TSP50, the
gaps of AM are 0.14% and 0.73% compared to 0.12% and 0.64% for POMO. Regarding CVRP20
and CVRP50, the gaps of AM are 2.74% and 4.05% compared to 3.72% and 3.52% for POMO.
Regarding KP50, KP100 and KP200, the gaps of AM are 0.092%, 0.052% and 0.053% compared
to 0.130%, 0.125% and 0.260% for POMO. However, POMO significantly outperforms AM on
TSP100 and CVRP100 (2.16% and 5.22% of AM for TSP100 and CVRP100 compared to 1.07%
and 3.32%). Therefore, to further show that the proposed GANCO framework is model agnostic and
general enough to other models, we conduct experiments on POMO to solve TSP100 and CVRP100.

The results of POMO and GANCO-POMO are shown in Table 10 and Table 3 for TSP100 and
CVRP100, respectively. Both the results of single trajectory and 100 trajectories (the-multi-starting-
node strategy) are presented. Clearly, the improvement of GANCO-POMO over POMO is salient
for both decoding methods.

Table 10: Results of POMO and GANCO-POMO for TSP100.

Concorde single trajectory 100 trajectories
Dist. Obj. Time Method Obj. Gap Time Obj. Gap Time

Base 7.76 142s POMO 7.84 1.07% 2.2s 7.79 0.45% 34sGANCO-POMO 7.85 1.20% 7.80 0.54%

Clustered 5.15 210s POMO 5.42 5.26% 2.2s 5.26 2.29% 34sGANCO-POMO 5.28 2.61% 5.21 1.15%

Uniform 5.30 183s POMO 5.56 4.97% 2.2s 5.41 2.21% 34sGANCO-POMO 5.39 1.82% 5.34 0.75%

Diagonal 3.24 196s POMO 3.94 21.78% 2.2s 3.57 10.43% 34sGANCO-POMO 3.30 2.12% 3.26 0.86%

Gaussian 5.70 167s POMO 5.93 3.99% 2.2s 5.80 1.84% 34sGANCO-POMO 5.82 2.07% 5.75 0.97%

TSPLIB-S 5.76 155s POMO 5.93 2.97% 2.2s 5.84 1.42% 34sGANCO-POMO 5.86 1.79% 5.80 0.74%

H MODIFICATIONS TO IMPROVE AM

We modify the base AM to improve its performance in two ways. Firstly, we remove the Batch Nor-
malization layers as we find that they only help the model converge slightly faster at the beginning
but harm the generalization performance on other distributions. Secondly, we train the model until
full convergence instead of the fixed 100 epochs used in Kool et al. (2019). Therefore, the perfor-
mance of the base model is much better than the original one (e.g., 0.14%, 0.73%, 2.16% optimality
gaps instead of the original 0.34%, 1.76%, 4.53% for TSP with 20, 50, 100 nodes).

In Table 11, we take TSP50 as an example and show the results of AM with and without the BN
layers. As the results are reported for 100 epochs in Kool et al. (2019), we start from there and
present the results every 300 epochs until convergence. Clearly, after convergence, the performance
without BN is better than with on various instance distributions including the training one. And
the performance on most generalization distributions gets better with more training epochs. Even
though the performance on some distributions could fluctuate or deteriorate, the best results on
these distributions among different number of epochs are still far inferior to the ones attained after
GANCO training.

To be more fair, we further compare GANCO-AM against a variant of AM named AM-S, which is
trained on the base distribution for the same number of steps (also the same number of instances)
after the pretraining stage as GANCO-AM. Taking TSP50 as an example, the average performance
of AM (after the pretraining stage), AM-S and GANCO-AM on the five generalization distributions
is 4.156, 4.168 and 3.989, respectively (the smaller the better). The generalization ability does not
improve with more epochs for the original AM. And the improvement of GANCO over the other
two models is clearly significant. The detailed results are shown in Table 11.
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Table 11: Results of AM with and without the Batch Normalization (BN) layers trained for different
number of epochs on TSP50.

100 400 700 1000 1300 AM-S GANCO-AM
Dist. Models epochs epochs epochs epochs epochs (without BN) (without BN)

Base AM with BN 5.806 5.753 5.740 5.735 5.731 - 5.735AM without BN 5.825 5.755 5.740 5.733 5.729 5.729

Clustered AM with BN 4.235 4.191 4.171 4.183 4.181 - 4.096AM without BN 4.295 4.153 4.142 4.142 4.137 4.145

Uniform AM with BN 4.214 4.080 4.219 4.159 4.226 - 3.970AM without BN 4.117 4.057 4.044 4.089 4.045 4.071

Diagonal AM with BN 3.292 3.205 3.886 4.288 4.411 - 2.784AM without BN 3.858 3.260 3.427 3.457 3.351 3.368

Gaussian AM with BN 4.671 4.621 4.667 4.685 4.687 - 4.542AM without BN 4.743 4.639 4.659 4.691 4.671 4.684

TSPLIB-S AM with BN 4.656 4.605 4.606 4.606 4.592 - 4.554AM without BN 4.656 4.600 4.582 4.578 4.577 4.572

I MORE ANALYSIS ON GANCO FRAMEWORK

Table 12: Results of AM, AM-T4 and GANCO-AM for TSP100 and OP100. Distributions with ‘*’
are the AM-T4 training distributions.

TSP100 OP100
Dist. AM AM-T4 GANCO-AM AM AM-T4 GANCO-AM
Base* 7.93 7.97 7.94 32.40 32.22 32.30
Clustered 5.60 5.57 5.46 44.19 45.55 46.67
Uniform* 5.67 5.52 5.51 41.72 43.65 43.29
Diagonal* 5.22 3.50 3.47 44.61 52.76 51.37
Gaussian* 6.21 6.27 6.10 35.16 36.25 37.31
TSPLIB-S 6.06 6.02 5.99 39.44 40.26 41.37

We conduct experiments of training the original AM on 4 distributions (base, uniform, diagonal,
gaussian) after the pre-training stage, namely, AM-T4. The training dataset equally samples from
the 4 distributions and AM-T4 is trained for the same number of steps (also the same number of
instances) as the GANCO adversarial training stage. For TSP100, the average performance of the
original AM (after the pretraining stage), AM-T4 and GANCO-AM is 6.26, 5.82 and 5.75 on the four
AM-T4 training distributions and 5.83, 5.79 and 5.73 on the other two generalization distributions
(the smaller the better). For OP100, the average performance of the original AM, AM-T4 and
GANCO-AM is 38.47, 41.22 and 41.07 on the four AM-T4 training distributions and 41.82, 42.90
and 44.02 on the other two generalization distributions (larger collected prizes are better). The
detailed results are shown in Table 12.

On the four distributions AM-T4 is trained on, GANCO-AM achieves comparable or better perfor-
mance than AM-T4. The performance of GANCO-AM is better than AM-T4 on some distributions
even though AM-T4 trains on these distributions. And AM-T4 underperforms the original AM on
one AM-T4 training distribution (gaussian) for TSP100. This is because equally sampling from four
distributions leads to unbalanced reward (the rewards for instances with some distributions domi-
nate the gradients). Instead of equally sampling from each of the four distributions, we also tried
another simple composition rule (1/2 base distribution and 1/6 for each of the three generalization
distributions) and the results are similar. In contrast, our GANCO framework uses the alternative
training process to dynamically find the hard distributions and adjust the proportion of newly gener-
ated distributions in the training dataset during the adversarial training stage. Compared to AM-T4,
GANCO-AM achieves most of the benefits of training on in-distribution data.

More importantly, on the two generalization distributions which both models do not train on, the
average performance of GANCO-AM is much better, which also demonstrates the improvement of
generalization ability by training on adversarially generated distributions.
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To demonstrate the adaptive nature of GANCO’s adversarial instance generation, we also conduct
the experiments of training the agent for one problem (OP) on the distribution curriculum generated
by GANCO for another agent for a different problem (PCTSP), namely, GANCO-AM-DIFF. The
average performance of GANCO-AM-DIFF on the five generalization distributions is 43.26, 43.55
and 43.90 with 5, 10 and 20 adversarial iterations (the larger the better for OP). In comparison,
results of the original GANCO-AM for OP are 43.41, 43.73 and 44.00, respectively. Result of the
original AM is 41.02. We can see that the performance of GANCO-AM-DIFF is also pretty good
as these two problems are very similar with the distinction of flipping the constraint and objective
value. However, the original GANCO-AM for OP performs better, suggesting that the generation
model indeed tailors distributions bespoke to the specific problem.
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