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Abstract

As annotations of data can be scarce in large-scale practical problems, leveraging
unlabelled examples is one of the most important aspects of machine learning. This
is the aim of semi-supervised learning. To benefit from the access to unlabelled
data, it is natural to diffuse smoothly knowledge of labelled data to unlabelled one.
This induces to the use of Laplacian regularization. Yet, current implementations
of Laplacian regularization suffer from several drawbacks, notably the well-known
curse of dimensionality. In this paper, we provide a statistical analysis to overcome
those issues, and unveil a large body of spectral filtering methods that exhibit
desirable behaviors. They are implemented through (reproducing) kernel methods,
for which we provide realistic computational guidelines in order to make our
method usable with large amounts of data.

In the last decade, machine learning has been able to tackle amazingly complex tasks, which was
mainly allowed by computational power to train large learning models on large annotated datasets.
For instance, ImageNet is made of tens of millions of images, which have all been manually annotated
by humans [[16]. The greediness in data annotation of such a current learning paradigm is a major
limitation. In particular, when annotation of data demands in-depth expertise, relying on techniques
that require zillions of labelled data is not viable. This motivates several research streams to overcome
the need for annotations, such as self-supervised learning for images or natural language processing
[L7]. Aiming for generality, semi-supervised learning is the most classical one, assuming access
to a vast amount of input data, but among which only a scarce percentage is labelled. To leverage
the presence of unlabelled data, most semi-supervised techniques assume a form of low-density
separation hypothesis, as detailed in the recent review of van Engelen and Hoos [52], and illustrated
by state-of the-art models [[6}54]. This hypothesis assumes that the function to learn from the data
varies smoothly in highly populated regions of the input space, but might vary more strongly in
scarcely populated areas, or that the decision frontiers between classes lie in regions with low-density.
In such a setting, it is natural to enforce constraints on the variations of the function to learn. While
semi-supervised learning is an important learning framework, it has not provided as much exciting
realizations as one could have expected. This might be related to the fact that it is classically
approached through graph-based Laplacian, a technique that does not scale well with the dimension
of the input space [l

Paper organization. In Section[I] we motivate Laplacian regularization, and recall drawbacks of
naive implementations. These limitations are overcome in Section [2] where we expose a theoretically
principled path to derive well-behaved algorithms. More precisely, we unveil a vast class of estimates
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based on spectral filtering. We turn to implementation in Section [3] where we provide realistic
guidelines to ensure scalability of the proposed algorithms. Statistical properties of our estimators are
stated in Section ]

Contributions. They are two folds. (i) Statistically, we explain that Laplacian regularization can
be properly leveraged based on functional space considerations, and that those considerations can be
turned into concrete implementations thanks to kernel methods. As a result, we provide consistent
estimators that exhibit fast convergence rates under a low density separation hypothesis, and that,
in particular, do not suffer from the curse of dimensionality. (if) Computationally, we avoid dealing
with large matrices of derivatives by providing a low-rank approximation that allows to deal with
n"log(n) x n¥log(n) matrices, with a parameter v € (0, 1] depending on the regularity of the
problem, instead of n(d + 1) x n(d + 1) matrices, thus cutting down to O(log(n)?n'T2d) the
potential O(n®d?) training cost.

Related work. Interplays between graph theory and machine learning were proven successful in
the 2000s [47]. The seminal paper of Zhu et al. [62] introduced graph-Laplacian as a transductive
method in the context of semi-supervised learning. A smoothing variant was proposed by [60], which
is coherent with the fact that enforcing constraints on labelled points leads to spikes [1]. Interestingly,
graph Laplacians do converge to diffusion operators linked with the weighted Laplace Beltrami
operator [24}, 21]]. However, these local diffusion methods are known to suffer from the curse of
dimensionality [S]]. That is, local averaging methods are intuitive learning methods that have been
used for more than half a century [20]. Yet, those methods do not scale well with the dimension of
the input space [56]]. This is related with the fact that to cover [0, 1]¢, we need ¢ ~¢ balls of radius
e. Interestingly, if the function to learn is m times differentiable with smooth partial derivatives,
it is possible to leverage more information from function evaluations and overcome the curse of
dimensionality when m 2 d. This property is related to covering numbers (a.k.a. capacity) of
Sobolev spaces [28] and is leveraged by (reproducing) kernel methods [49, [10]. The crux of this
paper is apply this fact to Laplacian regularization techniques. Note that derivative with reproducing
kernel methods in machine learning have already been considered in different settings by [61} 44} [19].

1 Laplacian regularization

In this section, we introduce the notations and concepts related to the semi-supervised learning
regression problem, noting that most of our results extend to any convex loss beyond least-squares.
We motivate and describe Laplacian regularization that will allow us to leverage the low-density
separation hypothesis. We explain statistical drawbacks usually linked with Laplacian regularization,
and discuss on how to circumvent them.

In the following, we denote by X = R the input space, ) = R the output space, and by p € Axxy
the joint distribution on X x ). For simplicity, we assume that p has compact support. In the
following, we denote by py the marginal of p over X, and by p|, the conditional distribution of Y’
given X = x. As usual, for p € N*, LP(R%) is the space of functions f such that f? is integrable.
Moreover, we define usual Sobolev spaces: for s € N, W*P (Rd) stands for the space of functions
whose weak derivatives of order s-th are in LP(R?). When p = 2, they have a Hilbertian structure
and we denote, H*(R%) = W*2(IR%) these Hilbertian spaces. Ideally, we would like to retrieve the
mapping g* : X — ) defined as

g" = argmin E(x y), [[l9(X) — YHQ} = argmin ||g = g,l|72(,) = 9o (D
gEL?(px) geEL?(px)

where g, : X — ) is defined as g,(z) = E[Y | X = z]. In semi-supervised learning, we assume
that we do not have access to p but we have access to n independent samples (X;);<p ~ p?é”, among
which we have ny labels Y; ~ p|x, for i < ng, with ny potentially much smaller than n. In other
terms, we have n, supervised pairs (X;,Y;)i<n,, and n — n, unsupervised samples (X;)n,<i<n-
While we restrict ourselves to real-valued regression for simplicity, our exposition indeed applies
generically to partially supervised learning. In particular, it can be used off-the-shelve to complement
the approaches of [[7, [8] as we detailed in Appendix [A]



Semi-supervision setting Baseline: 1=0, u=1 Result: A=1, u=1/n

@

Figure 1: Motivating example. (Left) We suppose given n = 2000 points in X = R?, represented as
black dots, spanning 4 concentric circles. Among those points are ny, = 4 labelled points, with labels
being either 1 represented in red, and —1 represented in blue. In this setting, it is natural to assume that g*
should be constant on each circles, which can be encoded as ||Vg*|| = 0 on supp px. (Middle) Kernel
ridge regression estimate based on the labelled points with Gaussian kernel of bandwidth o = .27, r being
the radius of the innermost circle. (Right) Laplacian regularization reconstruction. The reconstruction is
based on approximate empirical risk minimization with p = n, which ensures a computational complexity
of O(p*nd), instead of O(n*d*) needed to recover the exact empirical risk minimizer (3).
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1.1 Diffusion operator £

In order to leverage unlabelled data, we will assume that g* varies smoothly on highly populated
regions of X, and might vary highly on low density regions. For example, this is the case when data
are clustered in well separated regions of space, and labels are constant on clusters. This is captured
by the fact that the Dirichlet energy

/X 199" @)1 pa(d2) = Exnp IV (O] = |12,

is assumed to be small. Because the quadratic functional (2)) will play a crucial role in our exposition,
we define £ as the self-adjoint operator on L?(pyx ), extending the operator on H'(py) representing
this functional. Under mild assumptions on py, £~! can be shown to be a compact operator, which
we will assume in the following. In essence, we will assume that if we have a lot of unlabelled data
and ||£1/2g|| can be well approximated for any function g, then we do not need a lot of labelled

data to estimate correctly g*. To illustrate this, at one extreme, if we know that Hﬁl/ 2 g* | = 0, then
g* is known to be constant on each connected component of py so that, along with the knowledge
of px, only a few labelled points would be sufficient to recover perfectly g*. We illustrate those
considerations on Figure[I]
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1.2 Drawbacks of naive Laplacian regularization

Following the motivations presented precedently, it is natural to consider the regularized objective
and solution defined, for A > 0, as

gx = argmin E(x y)., [HQ(X) - YIIQ} +AEx~py {HVQ(X)”]?W}
geH (px)

— argmin ||g — g,|2 +)\H£1/2 H2 = (I+AL)! )
gegl(px) 97 9oL (oe) g L2(px) -

This regularization has nice properties. In particular, for small ), it can be seen as a first order

approximation of the heat equation solution e~ *# 9p» Which represents the temperature profile at time

t = ), instantiated with the initial profile g,, and with px modelling the thermal conductivity. It

also has interpretations in term of random walk and Langevin diffusion [40, 48]]. In a word, g, is the

diffusion of g, with respect to the density px, which relates to the idea of diffusing labelled data with

respect to the intrinsic geometry of the data, which is the idea captured by [62].

However, from a learning perspective, Eq. (3)) is linked with the prior that g* belongs to H!(px), a
prior that is not strong enough to overcome the curse of dimensionality as we saw in the related work
section. Moreover, assuming we have enough unsupervised data to suppose known py, and therefore

L, Eq. (3) leads to the naive empirical estimate gipaive)y € argming, y g iy [|g(X;) — Yill? +

ngA ||£1/ 2 gH . While the definition of ggmaive) could seem like a great idea, in fact, such an estimate
Jinaive) 18 known to be mostly constant and spiking to interpolate the data (X;,Y;) as soon as d > 2



[37]. This is to be related with the capacity of the space associated with the pseudo-norm HEI/ 2 g||

in L2. This capacity, related to H', is too large for the Laplacian regularization term to constraint
Jnaivey In @ meaningful way. In other terms, we need to regularize with stronger penalties.

1.3 Stronger regularization

In this subsection, we discuss techniques to overcome the issues encountered with g(naive). Those
techniques are based on functional space constraints or on spectral filtering techniques.

Functional spaces. A solution to overcome the capacity issue of H' in L? is to constrain the
estimate of g* to belong to a smaller functional space. In the realm of graph Laplacian, [1]] proposed to
solve this problem by considering the r-Laplacian regularization reading 2, = [, [|[Vg(X)||" p(dz),
with » > d. In essence, this restricts g to live in W“(px) for r > d, and allows to avoid spikes
associated with gmaive)- However considering high power of the gradient is likely to introduce
instability (think that d is the potentially really big dimension of the input space), and from a learning
perspective, the capacity of W, which compares to the one of H?2, is still too big.

In this paper, we will rather keep the diffusion operator £, and add a second penalty to reduce the
space in which we look for the solution. With G an Hilbert space of functions, we could look for,
with g > 0 a second regularization parameter

+ A llgllZ - (4)
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gap = argmin |lg—gyll72(,,) +A Hﬁl/2g’ o

X

g:GNH (px)

This formulation restricts g ,, to belong both to H'(px) (thanks to the term in \) and G (thanks to
the term in ). In particular the resulting space H'(px) N G to which g, ,, belongs, has a smaller
capacity in L? than the one of G in L2. In practice, we do not have access to p and px but to
(Xi,Y:)i<n, and (X;);<n, and we might consider the empirical estimator defined through empirical
risk minimization
ng n
Gnem = afgerginnzl D lg(Xa) = Yill* + xn=t Y (Vg + A llgllg (5)
g9 i=1 i=1

For example, we could consider G to be the Sobolev space H™ (dx). Note the difference between G
linked with dz, the Lebesgue measure, that is known, and £ linked with px, the marginal of p over X,

that is not known. In this setting, the regularization ||£'/2g||% + || g||3 reads [, | Dg(x)||* pa(dz) +

1 >y IDg(x) ||* d. Because of the size of H™ in L2, this allows for efficient approximation
of gy, based on empirical risk minimization. In particular, if n = +o00, we expect the minimizer

() to converge toward gy, at rates in L? scaling similarly to n;m/ “in ng. To complete the picture,
depending on a prior on g,, g, might exhibit good convergence properties towards g, as A and p go
to zero. This contrasts with the problem encountered with gmaive). Those considerations are exactly
what reproducing kernel Hilbert space will provide, additionally with a computationally friendly
framework to perform the estimation. Note that quantity similar to g , were considered in [61} 44].

Spectral filtering. Without looking for higher power-norm, [37]] proposed to overcome the capacity
issue by considering approximation of the operator £ based on the graph-based technique provided
by [4}14]] and to reduce the search of g,,, on the space spanned by the first few eigenvectors of the
Laplacian. In particular, on Figure[I] g* could be searched in the null space of £, that is, among
functions that are constant on each connected component of supp px. This technique exhibits two
parts, the “unsupervised” estimation of £ that will depend on the total number of data n, and the
“supervised” search for g, on the first few eigenvectors of £ that will depend on the number of labels n,.
While, at first sight, this technique seems to be completely different than Tikhonov regularization (@),
it can be cast, along with gradient descent, into the same spectral filtering framework [30]. This
point of view enables the use of a wide range of techniques offered by spectral manipulations on the
diffusion operator L.

This paper is motivated by the fact that current well-grounded semi-supervised learning techniques
are implemented based on graph-based Laplacian, which is a local averaging method that does not
leverage smartly functional capacity. In particular, as recalled earlier, graph-based Laplacian is known



to suffer from the curse of dimensionality, in the sense that the convergence of the empirical estimator
L towards the £ exhibits a rate of convergence of order O(n~'/¢) with d the dimension of the input
space X' [24]. In this work, we will bypass this curse of dimensionality by looking for g in a smooth
universal reproducing kernel Hilbert space, which will lead to efficient empirical estimates.

2 Spectral Filtering with Kernel Laplacian

In this section, we approach Laplacian regularization from a functional analysis perspective. We
first introduce kernel methods and derivatives in reproducing kernel Hilbert space (RKHS). We then
translate the considerations provided in Section [I.3]in the realm of kernel methods.

2.1 Kernel methods and derivatives evaluation maps

In this subsection, we introduce kernel methods (see [3}46,49] for more details Consider (, (-, -);,)
a reproducting kernel Hilbert space, that is a Hilbert space of functions from X to R such that
the evaluation functionals L, : H — R;g — ¢(z) are continuous linear forms for any z € X.
Such forms can be represented by k, € H such that, for any g € H, L,(9) = (kz,9)5. A
reproducing kernel Hilbert space can alternatively be defined from a symmetric positive semi-
definite kernel £ : X — X — R, that is a function such that for any n € N and (z;);<, €
A™ the matrix (k(z;,x;));; is symmetric positive semi-definite, by building (k;)zcx such that
k(x,z") = (kg, ks )4, From a learning perspective, it is useful to use the evaluation maps to rewrite
H = {g0: 2 — (kg,0), |0 € H}. As such, kernel methods can be seen as “linear models” with
features k,, allowing to parameterize large spaces of functions [34]]. In the following, we will
differentiate 6 seen as an element of 7 and gy seen as its embedding in L?. To make this distinction
formal, we define the embedding S : (H, (-, -)4,) < (L*(px), (-,*) 12); @ — go, as well as its adjoint
S*: L*(px) — H.

Given a linear parametric model of functions gg(x) = (0, k), it is possible to compute derivatives
of gy based on derivatives of the feature vector — think of H = R? and of k, = ¢(x) as a feature
vector with ¢ : R? — RP. For o € N%, with || = 3., a;, we have the following equality of
partial derivatives, when k is 2 |a| times differentiable,

Hled
(8581)0‘1 (89:2)0‘2 cee (al‘d)ad '

D%gg(x) = (0, Dk,) , where DY =

Here and D“k, has to be understood as the partial derivative of the mapping of x € X to k, € H,
which can be shown to belong to H [61]]. In the following, we assume that k is twice differentiable with
continuous derivatives, and will make an extensive use of derivatives of the form 9;k,, = 0k, /0x;
fori < dand z € X. Note that, as well as we can describe completely the Hilbertian geometry of the
space Span {k, |z € X'} through k(x,z') = (k,, k), for z, 2’ € X, we can describe the Hilbertian
geometry of Span {k, |z € X} 4+ Span {0;k, | x € X'}, through

81,1‘/{3(1‘,%/) = <(9Zk/’z, kw'>7—[ s and 81,2‘82}]-16(1’,:5’) = <6zkza 8jkaj/>H y

where 0; ; denotes the partial derivative with respect to the i-th coordinates of the first variable. This
echoes to so-called “representer theorems”.

Example 1 (Gaussian kernel). A classical kernel is the Gaussian kernel, also known as radial basis
function, defined for o > 0 as the following k, and satisfying, for i # j, the following equalities,

Nz =)
202

k(z,2") = exp ( ) , O1.i0a jk(z,y) = i yi)(fj — yj)k(x,y),
Ti — Yi 1 x; — ;)
o ik(z,y) = —(Uif)k(x,y), 01,i09,:k(x,y) = (2 - m> k(z,y),

where x; designs the i-th coordinates of the vector v € X = R4



Eigen vector #1 (e;) Eigen vector #4 (e4) Eigen vector #8 (e3)

Figure 2: Few of the first generalized eigenvectors of (f); L+ pul ) (with g = 1/n). The first four
eigenvectors correspond to constant functions on each circle, as shown with e; and e4. The few eigenvectors
after correspond to second harmonics localized on a single circle as shown with es.

2.2 Tikhonov, spectral filtering and dimensionality reduction

Given the kernel k, its associated RKHS # and S the embedding of H in L?, we rewrite Eq. @)
under its “parameterized” version

2
_ . 2 1/2 2
10 = § argmin {nse 9ol + A28, 4 ||9||H} - @

Do not hesitate to refer to Table [I] to keep track of notations. In the following, we will use that
H‘CUQSQH;(M) + o3, =[S LS + uI)1/20||i . This equality explains why we consider p\
instead of y in the last term. In the RKHS setting, the study of Eq. (@) unveils the three operators
Y, L,and I on H, (indeed g , = S arg mingcy, {6* (X + AL + Ap)f — 260*S*g,}) where I is the
identity, and, as we detail in Appendix|[C]

d
Y =88 =Exmpy kx ®kx], and L=S"LS=Ex.,, lz dikx @ ajkxl . (6)
i=1

Regularization and spectral filtering have been well-studied in the inverse-problem literature. In
particular, the regularization Eq. (@) is known to be linked with the generalized singular value decom-
position of [2; L + ] (see, e.g., [18]]), which is linked to the generalized eigenvalue decomposition
of (X, L + puI) [22]]. We derive the following characterization of Eq. (@), whose proof is reported in
Appendix [D]
Proposition 1. Let (\; ,)ien € RY, (0, ,,)ien € HY be the generalized eigenvalue decomposition
of the pair (3,L + ul), that is (6;,) generating H and such that for any i,j € N, £6; , =
XL+ pD)0; 0, and (0; 0, (L + pd)0;,,) = 1,—j. Eq. @) can be rewritten as

Inp = (Z w(/\i,u)%,u ® Sei,u) 9p = Z¢(>‘i,u) <S*gp79i7u> 56,1, )
i€N ieN

with : Ry — Rz — (v + \) =L Eq. (7) should be seen as a specific instance of spectral filtering

based on a filter function ) : Ry — R.

Interestingly, the generalized eigenvalue decomposition of the pair (X, L+ 1) was already considered
by Pillaud-Vivien [40] to estimate the first eigenvalue of the Laplacian. Moreover, Pillaud-Vivien [41]
suggests to leverage this decomposition for dimensionality reduction based on the first eigenvectors
of the Laplacian. As well as Eq. (4) contrasts with graph-based semi-supervised learning techniques,
this dimensionality reduction technique contrasts with methods based on graph Laplacian provided by
[4,114]. Remarkably, the semi-supervised learning algorithm that consists in using the unsupervised
data to perform dimensionality reduction based on the Laplacian eigenvalue decomposition, before
solving a small linear regression problem on the small resulting space, can be seen as a specific
instance of spectral filtering, based on regularization by thresholding/cutting-off eigenvalue, which
corresponds to 1 : © — £~ 11, for a given threshold A > 0 in Eq. (7).

3 Implementation

In this section, we discuss on how to practically implement estimates for Eq. (7)) based on empirical
data (X;,Y;)i<n, and (X;)n,<i<n. We first review how we can approximate the integral operators of



Eq. (6) based on data. We then discuss on how to implement our methods practically on a computer.
We end this section by considering approximations that allow to cut down high computational costs
associated with kernel methods involving derivatives.

Algorithm 1: Empirical estimates based on spectral filtering.

Data: (X;,Y;)i<n,, (Xi)n,<i<n. a kernel k, a filter 1, a regularizer

Result: g, through ¢ € R? defining g,(z) = Y., c;ik(z, X;) = kT,

Compute S, T, = (k(X;, X;))i<n,j<p € R"*P in O(pn)

Compute Z, T, = (01,;k(X1, X)) (j<di<n).i<p € R"P in O(pnd)

Build T*3T, = n~ (S, T,)" (S,T,) in O(p*n)

Build T} LT, = n~Y(Z,T.) " (ZnTs) in O(p>ndf|

Build T}T, = (k(X;, X;))ij<p € RP*P in O(1) as a partial copy of S, Ty,

Get (i, Ui )i<n the generalized eigenelements of (T 3T, T (L + uI)T,) in O(p?)
Getb = T30 = (n,' L1, Yik(Xi, X;)) j<p € RP in O(pny)

Return ¢ = > i ¥(A\)usu b € RP in O(p?).

“Building this matrix can be avoided by using the generalized singular value decomposition rather than the
generalized eigenvector decomposition. Implemented with Lapack, such a procedure will also requires O(p*nd)
floating point operations, but with a smaller constant in the big O [22].

3.1 Integral operators approximation

The classical empirical risk minimization in Eq. (5) can be understood as the plugging of the
approximate distributions p = n;l S 0x, ® 0y, and py =nt Y| dx, instead of p and px
in Eq. @). It can also be understood as the same replacement when dealing with integral operators,
leading to the three following important quantities to rewrite Eq. (7),

n n d ng
ZA: i=n"! Zsz ®kXi7 i/ i=n"! ZZ@I@XL ®8jkxi, é = @ = n[l Z[Y;kXL ()

i=1 =1 j=1 i=1

It should be noted that while considering 7 in the definition of 3 is natural from the spectral filtering
perspective, to make it formally equivalent with the empirical risk minimization (3)), it should be
replaced by ne. Eq. (8] allows to rewrite Eq. (7) without relylng on the knowledge of p, by considering

(/\z 1 0; 1) the generalized eigenvalue decomposition of (32, L) and considering

§=3" V(i) (590 0is ) b, ©)

€N

We present the first eigenvectors (after plunging them in L? through S) of the generalized eigenvalue

decomposition of (2, L+ wul) on Figure The first eigenvectors allow to recover the null space of
L. This explains clearly the behavior on the right of Figure[l]

3.2 Matrix representation and approximation of operators

Currently, we are dealing with operators (i, ﬁ) and vectors (e.g., é) in the Hilbert space H. It is
natural to wonder on how to represent this on a computer. The answer is the object of representer
theorems (see Theorem 1 of [61]), and consists in noticing that all the objects introduced are
actually defined in, or operate on, H,, + H, 0 C H, with H,, = Span{kx, |i <n} and H, 9 =
Span{0;kx, | i < n,j < d}. This subspace of H is of dimension at most n(d + 1) and if T : R? —
Hp + Hnpo (with p < n(d + 1)) parameterizes H,, + H,, o, our problem can be cast in R? by
considering the p X p matrices T*ST and T* (ﬁ + pI)T instead of the operators S and L + ul.
The canonical representation consists in taking p = n(d 4 1) and considering for ¢ € R™4+1) the
mapping T.c = Y i, ciokx, + Z?zl ¢;j05kx, (611 144].

This exact implementation implies dealing and finding the generalized eigen value decomposition of

p x p matrices with p = n(d + 1), which leads to computational costs in O(n3d?), which can be
prohibitive. Two solutions are known to cut down prohibitive computational costs of kernel methods.



Both methods consist in looking for a space that can be parameterized by RP for a small p and that
approximates well the space H,, + H, 5 C H. The first solution is provided by random features
[42]. It consists in approximating H with a space of small dimension p € N, linked with an explicit
representation ¢ : X — R? that approximate k(z, 2’) ~ k,(z,2") = (¢(z), ¢(z'))g,. In theory, it
substitutes the kernel k£ by k. In practice, all computations can be done with the explicit feature .

Approximate solution. The second solution, which we are going to use in this work, consists in
approximating H,, + Hn,0 by H;, = Span {kx, },,, for p < n. This method echoes the celebrated
Nystrom method [55]], as well as the Rayleigh-Ritz method for Sturm-Liouville problems. In
essence, [45] shows that, when considering subsampling based on leverage score, p = n” log(n),
with v € (0, 1] linked to the “size” of the RKHS and the regularity of the solution, is a good
enough approximation, in the sense that it only downgrades the sample complexity by a constant
factor. In theory, we know that the space #,, will converge to H = Closure Span {k; } supp px AP
goes to infinity. In practice, it means considering the approximation mapping 7, : R? — H;c —
P, cikx,, and dealing with the p x p matrices Ty X1, and T* LT,,. It should be noted that the
computation of 17r LT}, requires to multiply a p x nd matrix by its transpose. Overall, training this
method can be done with O(p?nd) basic operations, and inference with this method can be done in
O(p). The saving cost of this approximate method is huge: without compromising the precision of
our estimator, we went from O(n3d?) run time complexities to O(log(n)?n'*27d) computations,
with ~y possibly very small. Similarly, the memory cost went from O(n?d?) down to O(nd + n??)[]

4 Statistical analysis

In this section, we are interested in quantifying the risk of the learnt mapping g. We study it
through the generalization bound, which consists in obtaining a bound on the averaged excess
risk Eqaa [|§ — 9|72 In particular, we want to answer the following points.

1. How, and under which assumptions, Laplacian regularization boost learning?
2. How the excess of risk relates to the number of labelled and unlabelled data?

In terms of priors, we want to leverage a low-density separation hypothesis. In particular, we can
suppose that when diffusing g, with e~ £ we stay close to g, or that g, is supported on a finite
dimensional space of functions on which ||£1/ 2 g|| (which measures the variation of g) is small. Both
those assumptions can be made formal by assuming the g, is supported by the first eigenvectors of
the diffusion operator L.

Assumption 1 (Source condition). g, is supported on a finite dimensional space that is left stable by

the diffusion operator L. In other terms, if (e;) € (L)Y are the eigenvectors of L, there exists r € N,
such that g, € Span{e;},,.

We will also assume that the diffusion operator £ can be well approximated by the RKHS associated
with k. In practice, under mild assumptions, c.f. Appendix [C} the eigenvectors of the Laplacian are
known to be regular, in particular to belong to H™ for m € N bigger than d. As such, many classical
kernels would allow to verify the following assumption.

Assumption 2 (Approximation condition). The eigenvectors (e;) of L belongs to the RKHS H.

We add one technical assumptions regarding the eigenvalue decay of the operator 3 compared to the
operator L, with < denoting the Lowner order (i.e., for A and B symmetric, A < Bif B — A is
positive semi-definite).

Assumption 3 (Eigenvalue decay). There exists a € [0, 1] and ¢ > 0 such that L < ¢3°.

Note that, in our setting, L is compact and bounded and Assumption [3|is always satisfied with a = 0.
For translation-invariant kernel, such as Gaussian or Laplace kernels, based on considerations linking
eigenvalue decay of operators with functional space capacities [49], under mild assumptions, we can
take a > 1 — 2/d. We discuss all assumptions in more details in Appendix

To study the consistency of our algorithms, we can reuse the extensive literature on kernel ridge
regression [[10} 30]. This literature body provides an extensive picture on convergence rates relying

'Our code is available online at https://github.com/VivienCabannes/partial_labelling,
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Figure 3: (Left) Comparison between our kernelized Laplacian method (Tikhonov regularization version
with A = 1, g, = n~', p = 50) and graph-based Laplacian based on the same Gaussian kernel
with bandwidth ¢,, = niﬁ log(n) as suggested by graph-based theoretical results [24]. We report
classification error as a function of the number of samples n. The error is averaged over 50 trials, with
errorbars representing standard deviations. We fixed the ratio ng/n to one tenth, and generated the data
according to two Gaussians in dimension d = 10 with unit variance and whose centers are at distance
6 = 3 of each other (similar to the setting of [[11}29]). Our method discovers the structure of the data
much faster than graph-based Laplacian (to get a 20% error we need 40 points, while graph-based need
700). (Right) Time to perform training with graph-based Laplacian in orange, with Algorithm[I]in blue
(with the specification of the left figure), and with the naive representation in ™41 of the empirical
minimizer Eq. (@) in green. When dealing with 1000 points, our algorithm, as well as graph-based
Laplacian, can be computed in about one tenth of a second on a 2 GHz processor, while the naive kernel
implementation requires 10 seconds. We show in Appendix [B]that this cut in costs is not associated with a
loss in performance.

on various filters and assumptions of capacity, a.k.a effective dimension, and source conditions. Our
setting is slightly different and showcases two specificities: (i) the eigenelements (A; ., 0; ,,) are
dependent of y; (ii) the low-rank approximation in Algorithm|I]is specific to settings with derivatives.
We end our exposition with the following convergence result, proven in Appendix [E} Note that the
dependency of p in n can be improved based on subsampling techniques that leverage expressiveness
of the different (kx,) [45]. Moreover, universal consistency results could also be provided when the
RKHS is dense in H', as well as convergence rates for other filters and laxer assumptions which we
discuss in Appendix [E] (in particular, the source condition can be relaxed by considering the biggest
q € (0, 1] such that g € im L9).

the spectral filtering Algorithm|l|with ¢y : x — (x + X) ™+, there exists a constant C' independent of
n, ng, A, v and p such that the estimate gy, defined in Algorlthmmverlﬁes

. oZn; 424+t o log(p)®
Eo, (9, — 94l132] < C(A2 4+ Au + 72 " + g;p)jt/\ i}f) ). a0

Theorem 1 (Convergence ratesi Under Assumptlonsm |1?_|and B3] for ng,n € N, when considering
i

with o2 is a variance parameter that relates to the variance of the variable Y (I + \L)'dx,
inheriting its randomness from (X,Y') ~ p. In particular, when the ratio r = ny/n is fixed, with
the regularization scheme \,, = Aon /4, L = ,uon_l/4, for any A\g > 0 and pg > 0, and the
subsampling scheme p,, = pon® log(n) for any pg > 0 and with s = max(1/2,1/1a), there exists a
constant C' independent of n and ny such that the excess of risk verifies

Ep, (I3 = goll3:| < C'(n7Y/2 + ofn, 2). (an

Theorem [I] answers the two questions asked at the beginning of this section. In particular, it
characterizes the dependency of the need for labelled data to a variance parameter linked with the
diffusion of observations (X;, Y;) based on the density px through the operator £. Finally, Theorem
is remarkable in that it exhibits no dependency to the dimension of X in the power of n and ny.
This contrasts with graph-based Laplacian methods that do not scale well with the input space
dimensionality [3, 24]. Indeed, Figure [3] shows the superiority of our method over graph-based
Laplacian in dimension d = 10, with a mixture of Gaussians. We provide details as well as additional
experiments in Appendix [B]



5 Conclusion

Diffusing information or enforcing regularity through penalties on derivatives are natural ideas to
tackle many machine learning problems. Those ideas can be captured informally with graph-based
techniques and finite element differences, or captured more formally with the diffusion operator we
introduced in this work. This formalization allowed us to shed lights on Laplacian regularization
techniques based on statistical learning considerations. In order to make our method usable in practice,
we provided strong computational guidelines to cut down prohibitive cost associated with a naive
implementation of our methods. In particular, we were able to develop computationally efficient
semi-supervised techniques that do not suffer from the curse of dimensionality.

This work paves the way to many extensions beyond semi-supervised learning. For example, in
Appendix [A] we describe its usefulness to the partial supervised learning problem, where minimizing
the Dirichlet energy provide a learning principle, in order to bypass the restrictive non-ambiguity
assumption usually made in this setup [15} 31, [7 8]. Moreover, in the context of active learning,
retaking the strategy of Karzand and Nowak [27], this energy provides a computationally-effective,
theoretically-grounded, data-dependent score to select the next point to query. As such, follow-ups
would be of interest to see how this introductory theoretical paper makes its way into the world of
concrete applications.
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