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ABSTRACT
Scheduling virtual machines (VMs) on hosts in cloud data centers dictates efficiency and is an NP-hard problem
with incomplete information. Prior work improved VM scheduling with predicted VM lifetimes. Our work further
improves lifetime-aware scheduling using repredictions with lifetime distributions versus one-shot prediction. Our
approach repredicts and adjusts VM and host lifetimes when incorrect predictions emerge. We also present novel
approaches for defragmentation and regular system maintenance, which are essential to our data center reliability
and optimizations, and are not explored in prior work. We show repredictions deliver a fundamental advance in
effectiveness over one-shot prediction.

We call our novel combination of distribution-based lifetime predictions and scheduling algorithms Lifetime Aware

VM Allocation (LAVA). LAVA reduces resource stranding and increases the number of empty hosts, which are
critical for large VM scheduling, cloud system updates, and reducing dynamic energy consumption. Our approach
runs in production within Google’s hyperscale cloud data centers, where it improves efficiency by decreasing
stranded compute and memory resources by ⇠3% and ⇠2% respectively. It increases empty hosts by 2.3-9.2 pp
in production, reducing dynamic energy consumption, and increasing availability for large VMs and cloud system
updates. We also show a reduction in VM migrations for host defragmentation and maintenance. In addition to
our fleet-wide production deployment, we perform simulation studies to characterize the design space and show
that our algorithm significantly outperforms the prior state of the art lifetime-based scheduling approach.

1 INTRODUCTION

Cloud data centers run an increasing fraction of the world’s
compute. Efficient resource use in data centers is thus crit-
ical, from both an economic and environmental perspec-
tive. In Infrastructure-as-a-Service (IaaS) environments,
VM scheduling to physical hosts determines a large por-
tion of end-to-end efficiency. Poor assignment of VMs may
strand host resources – making the remaining host resources
too small or too imbalanced to accommodate additional
VMs. VM allocation also impacts the number of empty

hosts, which impacts idle power optimizations, resource uti-
lization, the ability to provision large VMs (obtainability),
and system maintenance velocity (e.g., for security patches).

Much prior work addresses workload allocation in data cen-
ters (Schwarzkopf et al., 2013; Verma et al., 2015; Cortez
et al., 2017; Gog et al., 2016; Grandl et al., 2016; Zhang
et al., 2014), including leveraging workload predictions (De-
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limitrou & Kozyrakis, 2014b; 2013; Park et al., 2018). The
closest related work predicts job lifetimes (time between
start and exit) to assist the scheduler in making better place-
ment decisions (Yadwadkar et al., 2014; Ferguson et al.,
2012; Tumanov et al., 2016; Cortez et al., 2017; Buchbinder
et al., 2021). Most recently, Barbalho et al. (Barbalho et al.,
2023) show bin packing improvements using Lifetime Align-
ment (LA) scheduling. LA predicts the lifetime of a VM at
creation time, and then treats the predicted lifetime as fixed.
As a result, mispredictions may tie up an entire host and,
over time, model mistakes will accumulate. For example,
assume a model with a 1% chance of predicting a long-
lived VM (running for months) as short-lived. If, over time,
the scheduler places 70 presumably short-lived VMs on a
host, there is a greater than 50% chance that one of them
is long-lived, which would prevent the host from freeing
up until that VM exits. Correspondingly, Barbalho et al.
show that their best algorithm achieves maximum efficiency
with perfect prediction accuracy and degrades rapidly as the
accuracy decreases ((Barbalho et al., 2023), Figure 8). They
thus introduce an alternative algorithm that achieves lower
efficiency but is more tolerant to mispredictions.
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Our work achieves both tolerance to mispredictions and high
efficiency by repredicting VM and host lifetimes to correct
mispredictions and improve accuracy over time. We take
inspiration from C++ memory allocation work that increases
the robustness of lifetime-based allocation by reassessing
predictions on the fly (Maas et al., 2020). For example, if
a VM outlives its predicted lifetime, the algorithms change
which other VMs are preferred to be co-scheduled with it on
the VM’s host. In addition to host bin packing, we address
significant challenges not explored by prior work, including
host defragmentation, maintenance, and stranding, which
are essential components of Google’s cloud system design
and approach to efficiency.

Our key contributions are A) VM lifetime reprediction and
adaptation to mispredictions, such as when a VM outlives its
initial prediction; B) a novel ML model of VM lifetime prob-
ability distributions, which captures hard-to-predict VM
behavior and prediction uncertainty; and C) three novel life-
time repredicting scheduling algorithms: 1) Non-Invasive
Lifetime Aware Scheduling (NILAS) incorporates predic-
tions into an existing scoring function. 2) Lifetime Aware
VM Allocation (LAVA) more fundamentally redesigns the
scheduler around lifetimes. 3) Lifetime-Aware ReSchedul-
ing (LARS) exploits lifetimes to reduce VM disruptions
during host defragmentation and maintenance.

We deployed our approach fleet-wide across Google’s
planet-scale cloud infrastructure. We evaluate it in pro-
duction and in high-fidelity simulations with production
traces, and compare these results to prior work. Some of the
key findings of our paper include the following:

• This paper shows how to exploit our key insight – using
probability distribution models of VM lifetimes – to
co-design algorithms that repredict VM lifetimes and
actively respond to mispredictions.

• While NILAS and the prior state-of-the-art (SOTA)
LA algorithm place VMs with similar lifetime together,
the key idea of LAVA is the opposite – it puts shorter-
lived VMs on hosts with one or more longer-lived
VM, creating hosts with a wider range of lifetimes.
This approach avoids extending the time at which the
longest-lived VM will exit and the host will be empty.

• We show the NILAS, LAVA, and LARS algorithms
increase empty host availability (2.3-9.2 percentage
points (pp)), reduce stranding (⇠2-3%), and reduce
VM disruptions (4.5%). Note that a consistent 1 pp
improvement in stranding or empty hosts can be equiv-
alent to saving 1% of a cluster’s capacity.

• Using production data and extensive simulation studies,
we show that these algorithms are efficient and robust,
outperforming the prior SOTA.

Figure 1. Distribution of VM lifetimes of scheduled VMs vs. their
resource consumption.

• We incorporate lifetime-based scheduling in a complex
environment that features dynamic resource manage-
ment based on VM usage, VM live migrations, and
hierarchical scheduling. We show reductions in re-
source stranding and VM migrations, in addition to
improved bin packing quality.

Similar to Maas et al. (Maas et al., 2020), we find that on-the-
fly adjustment to mispredictions, versus one-off predictions,
opens up a fundamentally different class of algorithms and
optimizations, in this case for VM scheduling, and perhaps
beyond. Our production deployment shows the practicality
of this approach, and of deploying ML in the lower layers
of the systems infrastructure stack more broadly.

2 BACKGROUND

We first give an overview of VM lifetime properties, our
production system, and metrics. Next, we describe the prior
SOTA Lifetime Alignment algorithm (LA) (Barbalho et al.,
2023), to which we compare qualitatively and quantitatively.

2.1 Characterizing VM Lifetimes in Production

In our production environment, most VMs are short-lived,
but most core hours are consumed by long-running VMs,
similar to the generational hypothesis in garbage collec-
tion (Lieberman & Hewitt, 1983; Ungar, 1984). Figure 1
shows our VM lifetime distributions. While 88% of all VMs
live for less than 1 hour, 98% of resources are consumed by
VMs that live for 1 hour or more (measured in CPU cores ⇥
time occupied). Without lifetime-specific handling of VMs,
each VM would introduce the same amount of fragmenta-
tion, although only the placement of a small fraction of them
has an impact on the overall resource efficiency. Prioritizing
the bin packing quality of all VMs equally is thus highly
inefficient, which motivates lifetime-based VM scheduling.

A key element of our approach is to view VM lifetimes from
the perspective of distributions (Cumulative Density Func-
tions or CDFs), as opposed to just averages. We identify that
VM features useful for prediction do not fully determine
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Figure 2. Lifetime distribution (PDF) of VM lifetimes. When the
VM is scheduled, the expected (average) lifetime is 0.2 days. After
it has run for 1 day, the expected remaining lifetime is 4 days.
After 7 days, the expected remaining lifetime is 10 days.

VM lifetimes. The best a traditional model could do would
thus be to predict the expected (or average) lifetime for each
VM. Figure 2 shows the average lifetime may not be partic-
ularly meaningful when there are both long and short-lived
VMs with the same features. We therefore model and pre-
dict the lifetime of VMs as probability distributions. Note
that this type of approach has a long history in survival anal-
ysis (Wang et al., 2019) and in areas such as storage systems
(Zhou & Maas, 2021). However, our novelty is predicting
distributions and co-designing VM scheduling algorithms
to leverage them in detecting and updating mispredictions.

2.2 VM Allocation

Our fleet consists of data centers in many geographic regions
that run a mix of first and third party workloads. Cloud
workloads have distinct host pools for distinct VM families.
VM families represent different products, such as VMs opti-
mized for high performance or cost efficiency. Broadly, VM
families fall into two categories. 1) Performance-optimized,
slice-of-hardware families assign each VM a fixed parti-
tion of a host’s resources, e.g., CPU cores, DRAM, SSD,
and GPUs. 2) Dynamically sized families share unused
resources based on VM and host usage patterns and thus
the amount of virtual CPUs and memory of VMs may on
occasion exceed the physical resources on a host. This pa-
per focuses on the performance-optimized C2 family and
cost-optimized E2 family, representative of these categories.

A scheduling framework called Borg (Verma et al., 2015)
assigns VMs to hosts. Borg maintains a global view of all
VMs and hosts in a given host pool. When a VM creation
request arrives, the scheduler computes the set of feasible
hosts, i.e., hosts with sufficient resources that match any
hard constraints. For each feasible host, it computes a score
that determines the preference between them. This score
incorporates a number of different business goals, such
as spreading tasks across failure domains and bin packing
efficiency. This scheduling setup is common (Barbalho
et al., 2023; Hindman et al., 2011; Verma et al., 2015).

Borg’s Waste Minimization bin packing algorithm explicitly
optimizes for producing empty shapes of resources in mul-
tiple dimensions (e.g., CPU ⇥ DRAM ⇥ SSD) that match
anticipated workload patterns. Borg deployed this approach
several years ago because it achieves higher obtainability
for large VMs and improves resource efficiency compared
to Best Fit, the previous scheduler, which was similar to
prior work (Barbalho et al., 2023). However, Borg’s scoring
function poses challenges for incorporating VM lifetimes,
because it uses lexicographic ordering – one scoring dimen-
sion is evaluated at a time, with tie-breakers resolved by the
next-lower scoring function. Bin packing is among its final
dimensions, ensuring that improving bin packing does not
degrade other business objectives.

2.3 Constraints & Objectives

Our work aims to maximize resource utilization and mini-
mize fragmentation without degrading other business objec-
tives. We measure the following optimization metrics.

Empty Hosts. We measure the percentage of hosts in a
pool that is empty. Empty hosts are required to schedule
large VMs that consume most or all of the host’s resources.
They also increase host maintenance velocity when rolling
out a kernel or microcode security patch: By increasing
empty hosts, applying the update to empty hosts first, and
preferring new VMs land on updated hosts, we speed up
maintenance and reduce VM disruptions due to live migra-
tions. Additionally, Google puts empty hosts in low power
mode and moves empty hosts between pools, configuring
them differently to serve various capacity needs. As such,
1 pp of increase in empty hosts directly corresponds to 1%
more capacity available for these use cases. Other metrics
of bin packing quality include packing density (Barbalho
et al., 2023), and are equivalent (Appendix D).

Resource Stranding. This metric measures free resource
shapes and how many future VMs may be scheduled in
them. Periodic inflation simulations measure stranding. We
take a representative mix of VMs and simulate scheduling as
many as possible until capacity is exhausted. The remaining
resources on hosts represent stranded resources that cannot
fit new VMs. For example, a host may contain free memory
but no free CPUs. This memory is thus stranded. The metric
is similar to admission control scoring functions (Sajal et al.,
2023) and captures unusable capacity when the zone is full.

VM Live Migrations. We aim to minimize live migrations.
Live migration and fragmentation are closely connected. For
some VM families, periodic live migrations will defragment
resources. Live migration and resource efficiency may thus
be traded against one another. This trade-off is controlled by
policy and predates our work. It represents a fundamental
difference from some other clouds. Maintenance events
trigger live migrations as well.
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Figure 3. Overview of our VM allocation setup.

2.4 Baseline: Lifetime Alignment (LA)

We compare against LA (the Lifetime Alignment algorithm)
from Barbalho et al. (Barbalho et al., 2023). While other
work on lifetime-based VM scheduling predates it, LA su-
persedes this work and, to our knowledge, is the only pub-
lished approach deployed in production data centers. At
a high level, our setup (Figure 3) resembles Barbalho et
al. We use machine learning to predict the lifetimes of
VMs and incorporate predictions into scheduling decisions.
Note that their work uses Best Fit scoring. They do not
correct mispredictions nor do they consider maintenance
and defragmentation, contributions of our paper.

For every VM allocation request, LA runs a gradient-
boosting model to predict its lifetime class, which is over
an exponentially increasing time interval (2i to 2i+1). Their
models run on special inference servers. The allocator then
preferentially assigns VMs to a host with the same lifetime
class, using Best Fit. The lifetime class of a host is defined
dynamically: it is the longest remaining time of any VM on
that host, based on the VM’s initial lifetime prediction. If
there is no host of the same lifetime class, LA picks another
suitable host. If no such host exists, it assigns the VM to a
new (previously empty) host.

Barbalho et al. report that LA achieves high improvements
in packing density with accurate predictions. While LA
performs live migrations occasionally, they are not reported
or part of the scheduling approach (Barbalho et al., 2023).
Because they find the multi-class version of LA is sensi-
tive to mispredictions, they introduce DPBFR, which uses
lifetime predictions only to adjust the quantization of Best
Fit scoring. They deployed DPBFR in production, as it is
more robust to mispredictions, but it achieves lower maxi-
mum improvement compared to the binary version of LA.
We thus compare to a faithful implementation of their best
algorithm, called LA-Binary.

While LA (Barbalho et al., 2023) tackled optimizing pack-
ing density (empty hosts), we extend the state-of-the-art
by reducing stranding and our LARS algorithm decreases
the number of migrations needed due to maintenance and
defragmentation by determining the migration order. In ad-
dition, since we create more empty hosts via lifetime-aware
scheduling, we further reduce the need for defragmentation.

2.5 Lifetime-aware C++ Memory Allocation

We observe that VM scheduling is similar to explicit mem-
ory allocation in C/C++ and other languages. The memory
allocator needs to place objects, that never move, on pages
such that pages are either maximally used or become empty
(Maas et al., 2020). VM scheduling is similar. VMs cor-
respond to objects, hosts to pages, stranding to internal
fragmentation, and empty hosts to external fragmentation.
A key difference is that VM allocation is multi-dimensional.
It manages multiple resources, including CPUs, memory,
and SSD, while memory is one-dimensional (object size).

LLAMA (Maas et al., 2020) is a C++ memory allocator that
uses an ML model to predict object lifetimes. Every page is
assigned a lifetime class (10ms, 100ms,...) and objects are
initially assigned to huge pages with the same lifetime class.
Once a page is full, emerging gaps are filled with objects
that are at least one lifetime class lower. Once all original
objects are free, LLAMA reduces the lifetime class of the
page by one. This process continues until the page is empty.
LLAMA detects mispredictions. If a page is not free before
the expected time, LLAMA under-predicted the lifetime of
an object, and it increases the lifetime class of the page by
one to correct the misprediction. This mechanism minimizes
fragmentation while tolerating mispredictions. The latter
is critical, since a single misprediction may fragment an
entire huge page and misprediction probability increases
exponentially with the number of allocations.

We take inspiration from LLAMA, designing our models
and allocators to detect and correct mispredictions. We
cannot directly adopt LLAMA because VM allocation is
multi-dimensional and bin packing is not the only business
objective. We do, however, incorporate the key insights of
LLAMA into new algorithms, NILAS, LAVA, and LARS.

3 ML LIFETIME PREDICTION MODEL

We design ML models that predict the remaining lifetime of
a VM both at the time it is scheduled and when re-evaluating
the VM and host later, to correct previous mispredictions.
Intuitively, reprediction addresses two fundamental issues.

1. VM lifetimes depend on many factors that cannot be
described by its features, e.g., human behavior or ex-
ternal events. As such, some VMs are fundamentally
impossible to predict. Predicting a single VM lifetime
thus limits accuracy, as shown in Figure 2.

2. Estimating the actual lifetime of a previously scheduled
VM throughout its execution is not always possible
with a single prediction. For example, if a particular
VM type’s lifetime is bi-modal (e.g., 1 day or 1 week),
observing that the VM has been running for 2 days
means that it is expected to live for another 5 days.
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Our model addresses these limitations by predicting a proba-
bility distribution as opposed to a single value. This ap-
proach is well-known in survival analysis (Wang et al.,
2019). Survival models capture the “uncertainty” associated
with a particular set of feature values. If a VM is highly
predictable based on the features, the distribution will be
narrow, while difficult-to-predict VMs have wider distribu-
tions. Here, we use distributions to update our VM estimates
based on the lifetime so far (uptime). Instead of relying on
the initial prediction, we compute the conditional expecta-

tion E(Tr|Tu) for an updated estimate of a VM’s lifetime
over time: “Given a VM has been running for interval Tu,
what is the expected remaining lifetime Tr?”. This value is
directly calculated from the PDF in Figure 2.

This approach avails itself to a range of models and we
compare a few (Appendix B), including different forms
of survival models, neural networks, and gradient-boosted
decision trees (GBDTs). GBDTs performed best in our
experiments. Since they are not distribution-based, we pass
an additional parameter Tu into the model that represents
the uptime of the VM so far (i.e., the x axis of the PDF), and
we predict the remaining lifetime Tr. We augment every
training example by turning it into multiple examples with
different values of Tu: specifically, 12.5%, 25%, ... of the
original lifetime. This implementation turns a regression
model into a survival model with good accuracy. We train
the model directly on E(Tr|Tu) as the label.

There are two ways to use such a model: 1) When schedul-
ing a VM, run the model repeatedly to materialize a mapping
from uptime to the expected remaining lifetime, which may
require a large number of model invocations to get sufficient
precision. 2) Run the model repeatedly when re-evaluating
a VM, which saves resources since it only runs the model
for values that are actually needed, but only works if model
latency is low. We choose the latter.

Our models use a range of features, including the zone, VM

family, VM shape, whether or not the VM attaches to lo-
cal SSD, and internal project metadata (Appendix A). We
use a production-grade machine learning library called Yg-
gdrasil (Guillame-Bert et al., 2023). We generate our train-
ing data by querying a large-scale internal data warehouse
that contains historical data of VMs. We use a combination
of distributed SQL queries and data processing pipelines to
generate a set of labeled examples and feed them into the
training framework. Our data sets are on the order of 1M
examples for training. The resulting model is loaded from
a file system and runs in binaries via a range of language
bindings. We periodically retrain our model on recent data.

We train a single joint model for our entire global fleet,
across a large number of our data centers. We experimented
with training a separate model for each pool, but this ap-
proach is disadvantageous from a rollout perspective, more

difficult to maintain, and we found that it neither performs
better nor significantly improves resource savings. Our
model achieves 99% precision at 70% recall when used to
classify VMs between short and long-lived according to a
7 day threshold. We use this model throughout all of our
experiments, to ensure comparability across all algorithms.

An important design consideration is how to deploy the
models. For instance, Barbalho et al. (Barbalho et al., 2023)
run their models on separate inference servers. They cache
prediction results to tolerate unavailability of servers, in-
creasing complexity. Running model inference on separate
servers also requires handling model rollouts and verifica-
tion separately since they are not integrated with existing
rollout mechanisms. We choose instead to embed the model
directly into the Borg binary. This deployment reduces pos-
sible failure modes. By piggybacking on Borg rollouts, we
update models with the same frequency as Borg, testing
the two together. This approach lowers model overhead
and achieves a median latency of 9 us (Figure 8), which is
780⇥ lower than the median latency for LA (Barbalho et al.,
2023). With this low latency, we can run our model more
frequently, including for lifetime-guided defragmentation
(Section 4.4) and to update and correct mispredictions.

We deployed our model in production over a year ago. It
maintained all our production standards, while improving
empty machines, stranding, and VM migrations.

4 SCHEDULING ALGORITHMS

We show that repredicting lifetimes offers a fundamental ad-
vantage over one-shot prediction in our multi-dimensional
scheduling approach. We introduce three algorithms. NI-
LAS is non-invasive and becomes active when a set of hosts
satisfy all other criteria and thus have the same score with-
out the bin packing score (Section 4.2). LAVA, in contrast,
makes lifetime-aware scheduling a fundamental part of the
scheduler (Section 4.3). Note that while LA and NILAS
place VMs with similar lifetime together, the key idea of
LAVA is the opposite – it adds many short lived VMs to
hosts with one or more long lived VM. The intent is to create
hosts that have a wider range of different lifetimes, with an
upper bound that is decreasing over time. LARS exploits
lifetimes to reduce VM migrations during defragmentation
and maintenance (Section 4.4).

4.1 Theoretical Foundation

We show analytically that repredicting lifetimes and correct-
ing for mispredictions fundamentally improves how well
any algorithm can do. Specifically, if the initial error in
lifetime prediction is a positive constant, then the number
of hosts required without correcting for mispredictions will
exceed the number for the same best fit algorithm with
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Figure 4. Overview of the NILAS algorithm.

repredictions by ⌦(m), where m is the number of hosts.
Appendix E includes the precise theorem and proof.

4.2 NILAS: Non-Invasive Lifetime-Aware Scheduling

The goal of NILAS (Figure 4) is to create more empty
machines by scheduling VMs on a host where all other
VMs are likely to exit at a similar time or later. Given a
VM, NILAS ranks potential hosts based on the exit times
for the VMs already scheduled on that host. It computes
the maximum of the predicted exit time of all VMs on the
host. This score is conceptually similar to LA (Barbalho
et al., 2023), with a crucial difference: Instead of using
the original VM lifetime predictions, NILAS repredicts the
remaining lifetime (i.e., the updated exit time) for all VMs,
using their uptime so far.

NILAS corrects any earlier mispredictions as follows. Con-
sider a host where all remaining VMs have exceeded their
originally predicted lifetime. Without correcting mispredic-
tions, the scheduler has to assume that this host will soon
become empty and will avoid scheduling long-lived VMs on
this host. We hypothesize that this choice is the reason why
LA is sensitive to prediction accuracy, leading the authors
to not deploy LA. In contrast, NILAS schedules new VMs
on hosts using the repredicted remaining lifetimes of all
VMs on each host. As such, NILAS continues to improve
its predictions if the original prediction was wrong.

NILAS is integrated into an existing hierarchical sched-
uler (Section 2.2) in a non-invasive way. When scoring
a host, we compute �T = max(predicted vm exit time -
host exit time, 0), where the host exit time is the maximum
of the repredicted remaining VM lifetimes on the host. We
then quantize this value with bucket boundaries {0m, 30m,
60m, 90m, 2h, 3h, 4h, 6h, 12h, 24h, 168h}. We call the
index of the bucket that �T falls into the temporal cost. For
example, if �T = 70m, the temporal cost is 2. This quan-
tization integrates into our lexicographic scoring function
(Section 2.2). By quantizing the temporal cost, we create
equivalence classes within which hosts can be packed based
on additional considerations. This feature integrates well
with our multi-dimensional and shape-based bin packing.

We add the temporal cost into our lexicographic scoring
function one level above the bin packing score. The tempo-
ral cost never has an effect on any higher-ranked business

metrics. It only becomes the deciding factor if all those
scores are the same. The score is thus non-invasive. It is
local to the bin packing score and is equivalent to modifying
the bin packing score to add a third dimension (lifetime).

4.3 LAVA: Lifetime-Aware VM Allocation

A limitation of NILAS is that mispredictions may gradually
bump up the host lifetime. By trying to match the new VM
to the exit times of other VMs on a host, the host may never
free up because each under-predicted VM further bumps
up the exit time, causing even more VMs to be scheduled,
which in turn bumps up the exit time further.

In preference to filling resource gaps on hosts with VMs
that exit at a similar time, LAVA attempts to fill gaps with
VMs that are at least 10⇥ shorter lived, so that even mispre-
dictions are unlikely to increase the host lifetime. Further,
LAVA updates the host’s exit time when detecting a major

(more than 10⇥) misprediction. We use order of magnitude
differences to limit the impact of small amounts of over or
under prediction. We now describe LAVA in more detail.

LAVA divides lifetime predictions into lifetime classes:
<1h, 1-10h, 10-100h, 100-1000h. We refer to these lifetime
classes as LC1, LC2, L3, and L4. Each host is also assigned
a lifetime class. LAVA runs an additional coarse-grained
host scoring function based on their lifetime classes and
breaks ties with NILAS.

Each host has a lifetime class and is in one of three states:
empty, open, or recycling, similar to LLAMA (Maas et al.,
2020). When a new VM arrives and there is no eligible
open or recycling host, LAVA places the VM on an empty
host, assigns the host the open state, and assigns the host
the lifetime class of the VM. As long as this host is open,
LAVA will only schedule other VMs of the same lifetime
class on it (Figure 5a). Once over 90% of the resources
(CPU or memory) of an open host are occupied, LAVA
transitions the host to the recycling state. All the VMs
that were present on the host when it transitioned state are
labeled residual VMs (i.e., the VMs of the original lifetime
class of the host). Recycling hosts only receive VMs that
are at least one lifetime class lower, e.g., LAVA only places
new VMs with a predicted lifetime of 10 hours or shorter
on 100-hour recycling hosts.

LAVA handles mispredictions as follows. If all predictions
are correct, the total lifetime of a host does not exceed 1.1⇥
its original lifetime class. There are two cases: overpre-
dicted and underpredicted lifetimes.

If lifetimes are overpredicted, VMs will exit early, creating
new gaps on the host. The approach of placing shorter-lived
VMs in gaps ensures that we keep a host occupied, while
minimizing the likelihood that we extend its lifetime. Once
all residual VMs exit, we know that all remaining VMs are
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(a) LAVA preferentially places new VMs on recycling hosts of a
higher lifetime class. If none is available, it chooses open hosts of
the same lifetime class. Otherwise, it opens a new host.
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(b) When all residual VMs (highlighted) on a host exit, LAVA
reduces the lifetime class by one. All remaining VMs turn residual.
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(c) If a host exceeds its deadline, there was a misprediction and
LAVA increases its lifetime class by one. Its VMs become residual.

Figure 5. Overview the LAVA Algorithm.

of the next-shorter lifetime class. We therefore re-classify
the host as one lifetime class lower (Figure 5b), classify all
remaining VMs as the new residual VMs, and fill emerging
gaps with even shorter-lived VMs. This process repeats
until the host is empty.

Conversely, when lifetimes are underpredicted, the host will
not become empty within the expected time interval. We
detect this case by establishing a time-out for each host
after which we move it to the next-higher lifetime class
(Figure 5c). All VMs that are on the host at the time of
expiration become the new residual VMs.

LAVA is also integrated into Borg’s existing hierarchical
scheduler, but adds another scoring function before NILAS.
This higher-ranked scoring function keeps track of addi-
tional states such as predicted host lifetime class, host state,
and deadline for each host. The size of this additional state
is negligible compared to other per-VM state.

When a new VM request arrives, LAVA scores the hosts in
the following order (in decreasing preference): recycling

hosts whose lifetime classes are greater than the VM lifetime
class (the closer the more preferred), open hosts whose
lifetime class are equal to the VM lifetime class, any non-
empty host, and lastly empty hosts. In contrast to NILAS,
which acts as a tie-breaker for the existing algorithm, LAVA

makes decisions that the baseline could not have made, and
is therefore invasive.

4.4 LARS: Defragmentation & Maintenance

The above algorithms focus on reducing fragmentation by
improving VM placement. Borg also performs software
and hardware maintenance activities, applying security, mi-
crocode, host OS, and VM software updates. It also actively
defragments hosts for some VM families. These activities
live migrate VMs (Ruprecht et al., 2018). Live migration
uses pre- and post-copy techniques that minimize VM exe-
cution time disruptions to seconds. However, total migration
times are proportional to VM memory and SSD usage, and
consume capacity on both hosts. In simulations, we model
that both hosts are busy for a conservative 20 minutes.

Borg reserves a small fraction of hosts for defragmentation,
maintenance, and to tolerate hardware failures, and thus
these activities do not impact available capacity. We show
how using lifetimes can reduce the number of VMs that are
disrupted during defragmentation and maintenance. We call
the algorithm LARS. The rest of our exposition focuses on
defragmentation for conciseness (details in Appendix H).

For some VM families, we defragment hosts when the avail-
ability of empty hosts in a particular pool drops below a
certain threshold. The defragmenter searches for suitable
hosts to defragment, preferring hosts with few VMs and ex-
cess resources and to move the VMs to hosts with available
slots that match the VM shapes.

LARS first chooses a small number of hosts to defragment
based on their excess resources and marks them as unavail-
able for scheduling. It then uses predicted lifetimes to de-
termine the order in which to migrate VMs. It starts with
the longest-predicted VM and selects a target host to which
to migrate it. Choosing this VM reduces the number of
migrations, as shorter-lived VMs exit while LARS migrates
longer-lived VMs. Once the host is empty, LARS marks it
as available to schedule for any lifetime class.

Note that LARS uses the same algorithm to choose a target
host for migration as for initial VM placement. As such,
NILAS and LAVA use repredictions from our distribution-
based model to place the VM on a better-suited host com-
pared to the prior algorithm that was not lifetime-aware.

5 IMPLEMENTATION

Our algorithms are integrated into Borg’s scheduling code.
The scheduler runs within Borg Prime, which handles in-
coming VM requests and assigns them to hosts. The Borg
Prime binary is replicated across a number of instances, with
one of them serving as the elected leader. All replicas run
the same binary and a lower layer implements consensus.
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As mentioned in Section 3, we compile our model into the
Borg Prime binary and roll it out with Borg. This coupling
has the advantage that canary deployments (the first step
of our rollout process) test the entire end-to-end approach.
We deploy our software regularly and could update our
model as often as once a week. However, we found that
the models’ accuracy remains high even a month later as
shown in Figure 10. Note that while we found it highly
advantageous from a latency and complexity perspective
to compile the model into the binary, our approach is not
restricted to this deployment scenario.

We carefully measured the CPU and DRAM overheads
of our approach in production. Binary size increases by
less than 10 MB, and both the memory and CPU consump-
tion of our approach are (generally) indistinguishable from
noise. This lack of observable overhead may seem counter-
intuitive, but since a VM record has so much other state and
Borg performs many other computation during scoring, the
extra bytes of memory and the 9 us of model latency are
not visible. We process on the order of 10-100 scheduling
requests per second in each cluster, and even hypothetically
repredicting 100 VMs in the process would add less than 1
ms. In practice, we generally repredict many fewer VMs,
since higher-ranking scoring functions filter out many hosts
and we re-score in parallel VMs only on considered hosts.

In some very large zones, re-scoring still became a bot-
tleneck. We therefore added a host lifetime score cache
(Appendix G.3). For any host that 1) is assigned a new VM,
or 2) an existing VM exits, or 3) the host expected lifetime
expires, we re-score the host. For all other hosts, we re-score
them according to a configurable time interval (e.g., 60s).

5.1 Simulations

NILAS/LAVA: We developed an event-driven simulator to
explore our approach. We extract production traces of VM
start, exit, and restart events within a particular pool and
then replay this trace against a simulated instance of the
scheduler. The simulated scheduler uses our production
code base and is thus highly accurate. We validated our
simulator against production (Appendix F has more details).

LARS: To calculate the benefit of LARS (lifetime-based
defragmentation), we built a modified simulator, using the
same production traces. From our traces, we collect the list
of migrations that were performed during a time interval. In
production, we limit the number of live migrations that can
be in progress simultaneously to batches of 3. We simulate
this behavior by assuming that all migrations are performed
in a certain order (in our baseline, defined by the trace), but
have to wait until a slot is available. This approach has the
effect that some VMs exit while others are migrating. LARS
modifies this order based on lifetime predictions.

5.2 Production Measurements

Measuring the impact of scheduling policies in production
is challenging. Since workloads and total capacity in a pool
are constantly changing, it is difficult to attribute changes
in a metric to a particular modification. We therefore use
an A/B testing methodology. We split the hosts into two
halves and apply our scheduling algorithm to one of them.
Our production metrics report empty hosts, stranding, and
model prediction for the entire pool. However, stranding is
only accurate for entire pools and cannot differentiate A/B
hosts. We report live production experiments in four pools,
where we apply the algorithm to the entire pool and evaluate
scheduling quality. These experiments also ensure that our
A/B approach does not distort behavior. Note that these
A/B deployments are at production scale. The cluster/zone
sizes for this product range from 100s to 10,000+ hosts with
O(100-10,000) VMs active at a time.

NILAS has been deployed fleet-wide for one VM family
for about a year, at the time of publication. Time series
data from the fleet-wide production rollout confirmed our
simulation numbers and A/B experiments, and show a fleet-
wide increase of empty hosts by 4 pp for this VM family.

5.3 LA-Binary Comparison

Our main comparison is to LA-Binary, a faithful implemen-
tation of LA, but embedded in the Borg binary versus a
separate model service (Barbalho et al., 2023). Since our
data center environment is different, perfectly replicating
their setup is impossible as, e.g., the ML model features
are different. We are faithful to LA’s description and favor-
able to LA-Binary when in doubt. For an apples-to-apples
comparison, we use the exact same model when comparing
LA-Binary to NILAS and LAVA, but without repredictions
for LA-Binary. The predictor classifies VMs as short or
long lived, using all our model features, but with the same
two-hour cutoff threshold as in their paper.

6 EVALUATION

This section reports results from production and simulations
on production data center traces. Our simulations are highly
accurate (Appendix F). We report relative improvements
and omit industry-competitive sensitive data.

6.1 End-to-end Simulation Results (NILAS & LAVA)

We first compare the performance of the different algorithms
in simulation using C2 family production traces. Figure 6
shows simulation data from C2 traces from 24 pools that
cover a wide range of sizes, geographies, and usage patterns.
The traces are from May-June 2024 and have a duration of
seven weeks. We measure the average percentage of empty



LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

Figure 6. Empty host improvements comparing NILAS, LAVA with LA-Binary, to our production baseline for 24 C2 pools in simulation.
On average, LAVA increases empty hosts by 6.5 pp, compared to 6.1 pp for NILAS, and 5.0 pp for LA-Binary.

hosts and report changes relative to the production base-
line. For instance, if LAVA achieves 21% and the baseline
achieved 20%, we report a 1 percentage point (pp) improve-
ment. We run all algorithms both with our actual lifetime
model and a perfect (oracular) predictor as a comparison
point. Similar to the LA paper (which increased packing
density by 2% in production), a consistent 1 pp improve-
ment represents a large gain in this scenario, and can be
equivalent to 1% of a cluster’s capacity if used to power
down or divest hosts, or offset holdbacks.

NILAS outperforms LA-Binary on average, achieving an
additional 1.1 pp increase in empty hosts. With more op-
timized misprediction mitigation, LAVA achieves the best
average improvement of 1.5 pp compared to LA-Binary.
We also observe that NILAS consistently outperforms LA
when both have oracular lifetimes: 9.5 pp vs. 7.5 pp on
average, confirming our theoretical results that reprediction
is fundamentally more powerful than one-shot prediction.

As with many NP-hard problems, we observe occasional
inversions when comparing techniques on large numbers
of production pools with highly varying workloads. The
different production pools we evaluated in Figure 6 vary
significantly in size, utilization, VM workload distribution,
and accuracy of the lifetime model. Isolating the specific
factors driving these performance variations is challenging
due to the complex interplay of these variables and direct
correlations with individual factors were weak at best.

6.2 Production Results (NILAS)

Prior to fleet-wide rollout, we ran production pilots in waves
on C2 and E2 traces. For the first two waves, we conducted
A/B experiments in three pools and measured the impact.
Table 1 shows our statistically significant empty host im-
provements, ranging from 2% to 10% for the entire pool.

For the third wave, we piloted NILAS on the entire pool.
We employ a Bayesian Structural Time Series method
CausalImpact (Brodersen et al., 2015) to evaluate the pre-
post causal effect of NILAS (Figure 7). We observed a sig-
nificant empty host improvement of 4.9% (Table 1). More-
over, for the whole-pool pilot, we additionally measure
the causal effect of NILAS on stranded CPU and memory,
where 1 pp of stranding reduction translates directly into 1%
of capacity. NILAS reduced CPU stranding by 3% (95%

Table 1. NILAS Empty Host Improvements in Pilot Pools

Pilot Pool Type Change in Empty Hosts
C2 Wave 1 pool A/B +2.3 pp (p-value = 0.01)
C2 Wave 2 pool 1 A/B +2.7 pp (p-value < 0.01)
C2 Wave 2 pool 2 A/B +9.2 pp (p-value < 0.01)
C2 Wave 3 pool All +4.9 pp (95% CI: [0.54, 9.2])
E2 Wave 1 pool All +6.1 pp (95% CI: [1.9, 10.0])

Table 2. VM Migration Reductions Using LARS on Two Traces.
Migrations

Scheduled Baseline LARS Reduction
1 48,239 37,108 35,505 4.32%
2 53,597 36,307 34,655 4.55%

CI: [-5.5%, -0.49%]) and memory stranding by 2% (95%
CI: [-3.8%, -0.23%]). We also conducted a whole-pool pilot
for an E2 pool. We note that C2 is slice-of-hardware while
E2 is dynamically sized. The fact that the approach worked
for both types of VM families is a non-obvious result, since
dynamic resizing of VMs further complicates bin packing.

6.3 Lifetime-based Host Defragmentation (LARS)

Using production traces, we simulate defragmentation on
two different one-month time intervals from a number of
pools with customer workloads, including C2 and E2 VMs.
In this experiment, we use oracle lifetimes. LARS does not
affect which hosts are picked for migration at a given time,
but orders the VMs on each in-migration host so that the
VMs with the longest remaining lifetime are migrated first
(Appendix H). The effect is that a larger number of VMs
terminate before they would have been migrated, resulting
in a reduction of around 4.5% of live migrations.

6.4 ML Model

Our lifetime model achieves 70% recall at 99% precision,
which is significantly higher than other model types we tried
(Appendix B). We measured the latency of our model and
find that most predictions complete in under 10 us (Figure 8).
This latency improves upon (Barbalho et al., 2023) by 780⇥,
and shows the benefit of compiling the model into the Borg
Prime binary. Fast predictions make it practical to frequently
re-run the model to correct mispredictions and to use it
during maintenance and defragmentation.
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(a) Empty hosts.

(b) CPU stranding.

Figure 7. Time series from our Wave 3 rollout, produced by
CausalImpact (Brodersen et al., 2015). Each sub-figure has three
panels. The first panel shows empty machines and a counterfactual
prediction (dotted line) post-launch (labels omitted due to sensitiv-
ity). The second panel shows the difference between observed data
and counterfactual predictions, i.e., the point-wise causal effect,
as estimated by the model. The third panel adds the point-wise
contributions from the second panel, plotting the cumulative effect.

We analyze the impact of model features in Appendix A. We
also analyze the sensitivity of NILAS and LAVA to predic-
tion accuracy and show that our improvements apply across
accuracies (Appendix G.1). Finally, we performed a num-
ber of ablations to show that NILAS with oracle lifetimes
and positioned high in the scoring function achieves close
to the theoretical maximum of empty hosts (Appendix G.2).
The gap between production performance and theoretical op-
timum is a combination of prediction accuracy and priority
within the scoring function.

6.5 Impact of Repredictions

To further understand the utility of repredictions based on
the current VM uptime, we vary the amount of uptime used
as input feature to the model and assess its impact on model
accuracy. For each VM in the test trace, we divide its total
lifetime into 20 quantiles. We then show the F1 score for
predicting whether or not a VM lives beyond 168 hours
(7 days) when the uptime is set to a particular quantile.
Figure 9 illustrates the relationship between varying amount
of uptime and model accuracy. We observe that without
using reprediction (no uptime/0th quantile), the model only
has a F1 score of 0.8. The F1 score quickly rises above
0.9 after the 8th quantile (i.e., once the VM’s uptime has

Figure 8. Histogram of model execution latencies.

Figure 9. Making repredictions of VM remaining lifetime using its
uptime significantly improves the model accuracy.

reached 40% of its total lifetime). Observing how long a
VM has lived and repredicting its remaining lifetime thus
leads to more accurate predictions. We find repredicting
longer-lived VMs is critical to avoid spreading them across
hosts and causing fragmentation.

One surprising result is that the the F1 score of quantiles 1-5
is, in fact, lower than the accuracy at the 0th quantile. This is
because these uptimes are very close to 0 in absolute terms
and thus difficult for the model to disambiguate, particularly
since we are operating in the log domain. In contrast, the
accuracy at 0% uptime is higher because it is always 0 and
the model has seen many training samples with uptime=0.
A potential optimization would be to only pass the uptime
to the model if it reaches a particular threshold (e.g., 30
seconds), to avoid this initial dip in accuracy.

6.6 Decrease in Model Accuracy Over Time

We find that the accuracy of our model remains stable for
several months after deployment (Figure 10), but does re-
quire periodic retraining on the order of once a month to
maintain its high accuracy. There are at least two reasons
why accuracy drops over time. 1) New workloads arrive
that the model was not trained on. 2) Workloads change
their behavior. We looked at production data during this
time period and observed gradual shifts in resource usage
that is consistent with shifting workloads.

7 PRODUCTION EXPERIENCE

NILAS has been running in production since early 2024.
We now share general insights from our experience of inte-
grating ML into a mature production system. Our project
started in 2020 and we quickly developed initial versions of
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Figure 10. The model remains high accuracy weeks after training,
making its maintenance overhead low for production deployment.

our VM lifetime models and algorithms in simulation. Most
time was spent on putting the approach in production.

Explainable models One key requirement was that mod-
els had to be interpretable and explainable to be accepted in
a production environment. We started with a lookup table
approach where each entry contained a survival curve pro-
duced using Kaplan Meier (Kaplan & Meier, 1958). How-
ever, we found that the resulting models underperformed
(Appendix B) and were not space-efficient. GBDTs showed
the best combination of accuracy and explainability.

Model Deployment We initially considered running the
model within separate inference servers, but switched to an
in-binary approach. Running our models at <10us latency
became critical for our reprediction-based approach. We
also found that depending on separate servers would have
added a circular dependency from a reliability standpoint,
since those servers would themselves run on top of Borg.
For the same reason, we included the model in the binary as
opposed to loading it from, e.g., a distributed file system.

Rollout A major concern in our production environment
was how to roll out the model. Rolling out the model inde-
pendently of Borg risked the model becoming a single point
of failure by bypassing existing verification approaches (e.g.,
gradual rollout and canary deployments). We found that
treating the model like any other code change and rolling it
out with new versions of the binary side-stepped this issue
by subjecting models to the same careful production testing.
We also relied extensively on simulations for backtesting
and tuning design parameters, to avoid production changes.

Production Monitoring During production rollout, we
carefully monitored the behavior of NILAS, by adding addi-
tional telemetry and monitoring dashboards. This telemetry
captures, e.g., the increase in CPU and memory caused by
loading the model in production, the increase in time each
scheduling pass takes, and how often the new cost compo-
nent becomes the tie breaker. This instrumentation confirms
the system is working as intended and debugs production
issues. For example, in one of our initial deployments, we
found a bug where the model was called incorrectly.

8 RELATED WORK

Prediction-based job scheduling has a long history. Some
work uses reinforcement learning (Mao et al., 2019; Li
et al., 2021; Wang et al., 2022), e.g., for placing containers.
Other work predicts properties of jobs and uses them to
improve scheduling for scale-out (Delimitrou & Kozyrakis,
2014a), interference (Delimitrou & Kozyrakis, 2013), or
goodput (Jayaram Subramanya et al., 2023).

Job lifetimes are particularly useful for scheduling. Jockey
(Ferguson et al., 2012) and Aria (Verma et al., 2011) predict
lifetimes (called runtimes) in data processing frameworks
and use them to improve scheduling of dataflow-based jobs.
TetriSched (Tumanov et al., 2016) uses runtime predictions
in conjunction with an MILP solver to schedule jobs in an
HPC-style setting. Wrangler predicts stragglers (Yadwadkar
et al., 2014). 3Sigma (Park et al., 2018) predicts various
properties of Google job traces and uses them for scheduling.
Note that most of this work uses runtime predictions in
domain-specific scenarios and does not leverage general
machine learning techniques to schedule.

In Cloud Computing, Microsoft’s Resource Central system
(Cortez et al., 2017) performs predictions on VMs and uses
them for various tasks, including VM scheduling and admis-
sion control (Sajal et al., 2023). Microsoft’s LA algorithm
that performs lifetime-based VM scheduling is most sim-
ilar to our work (Barbalho et al., 2023; Buchbinder et al.,
2021). Our work differs in that instead of performing one-
shot predictions when the VM starts running, it repredicts
VM lifetimes as needed, updating lifetimes based on new
knowledge, delivering good improvements in empty hosts
over LA, as shown in Section 6. We show how to incorpo-
rate lifetimes in our existing scheduler by integrating the
models into the binary. Our models run in-process at very
low latency and our new scheduling algorithms tolerate mis-
predictions. LAVA changes the objective function from LA
and NILAS – instead of placing VMs with similar lifetimes
on the same host, LAVA seeks to make more hosts empty by
not extending the host lifetime, by placing short lived VMs
on a host with one or more long lived VM(s).

9 CONCLUSION

We presented a new approach to lifetime-aware VM al-
location in cloud data centers. Our approach continually
repredicts VM and host lifetimes, and corrects for past mis-
takes. NILAS is deployed fleet-wide for one VM family
at Google, where it shows significant improvements by in-
creasing empty hosts and reducing stranding.
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