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ABSTRACT

Transfer Learning has shown great potential to enhance the single-agent Rein-
forcement Learning (RL) efficiency, by sharing learned policies of previous tasks.
Similarly, in multiagent settings, the learning performance can also be promoted
if agents can share knowledge with each other. However, it remains an open ques-
tion of how an agent should learn from other agents’ knowledge. In this paper, we
propose a novel multiagent option-based policy transfer (MAOPT) framework to
improve multiagent learning efficiency. Our framework learns what advice to give
to each agent and when to terminate it by modeling multiagent policy transfer as
the option learning problem. MAOPT provides different kinds of variants which
can be classified into two types in terms of the experience used during training.
One type is the MAOPT with the Global Option Advisor which has the access to
the global information of the environment. However, in many realistic scenarios,
we can only obtain each agent’s local information due to partial observation. The
other type contains MAOPT with the Local Option Advisor and MAOPT with
the Successor Representation Option (SRO) which are suitable for this setting and
collect each agent’s local experience for the update. In many cases, each agent’s
experience is inconsistent with each other which causes the option-value estima-
tion to oscillate and to become inaccurate. SRO is used to handle the experience
inconsistency by decoupling the dynamics of the environment from the rewards
to learn the option-value function under each agent’s preference. MAOPT can be
easily combined with existing deep RL approaches. Experimental results show it
significantly boosts the performance of existing deep RL methods in both discrete
and continuous state spaces.

1 INTRODUCTION

Transfer Learning has shown great potential to accelerate single-agent RL via leveraging prior
knowledge from past learned policies of relevant tasks (Yin & Pan, 2017; Yang et al., 2020). In-
spired by this, transfer learning in multiagent reinforcement learning (MARL) (Claus & Boutilier,
1998; Hu & Wellman, 1998; Bu et al., 2008; Hernandez-Leal et al., 2019; da Silva & Costa, 2019)
is also studied with two major directions: 1) transferring knowledge across different but similar
MARL tasks and 2) transferring knowledge among multiple agents in the same MARL task. For the
former, several works explicitly compute similarities between states or temporal abstractions (Hu
et al., 2015; Boutsioukis et al., 2011; Didi & Nitschke, 2016) to transfer across similar tasks with
the same number of agents, or design new network structures to transfer across tasks with different
numbers of agents (Agarwal et al., 2019; Wang et al., 2020). In this paper, we focus on the latter
direction due to the following intuition: in a multiagent system (MAS), each agent’s experience is
different, so the states each agent encounters (the degree of familiarity to the different regions of the
whole environment) are also different; if we figure out some principled ways to transfer knowledge
across different agents, all agents could form a big picture about the MAS even without exploring
the whole space of the environment, and this will definitely facilitate more efficient MARL (da Silva
et al., 2020).

Transferring knowledge among multiple agents is still investigated at an initial stage, and the as-
sumptions and designs of some recent methods are usually simple. For example, LeCTR (Omid-
shafiei et al., 2019) and HMAT (Kim et al., 2020) adopted the teacher-student framework to learn to
teach by assigning each agent two roles (i.e., the teacher and the student), so the agent could learn
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when and what to advise other agents or receive advice from other agents. However, both LeCTR
and HMAT only consider two-agent scenarios. Liang & Li (2020) proposed a method under the
teacher-student framework where each agent asks for advice from other agents through learning an
attentional teacher selector. However, they simply used the difference of two unbounded value func-
tions as the reward signal which may cause instability. DVM (Wadhwania et al., 2019) and LTCR
Xue et al. (2020) are two proposed multiagent policy distillation methods to transfer knowledge a-
mong more than two agents. However, both methods decompose the solution into several stages in a
coarse-grained manner. Moreover, they consider the distillation equally throughout the whole train-
ing process, which is counter-intuitive. A good transfer should be adaptive rather than being equally
treated, e.g., the transfer should be more frequent at the beginning of the training since agents are
less knowledgeable about the environment, while decay as the training process continues because
agents are familiar with the environment gradually and should focus more on their own knowledge.

In this paper, we propose a novel MultiAgent Option-based Policy Transfer (MAOPT) framework
which models the policy transfer among multiple agents as an option learning problem. In contrast to
the previous teacher-student framework and policy distillation framework, MAOPT is adaptive and
applicable to scenarios consisting of more than two agents. Specifically, MAOPT adaptively selects
a suitable policy for each agent as the advised policy, which is used as a complementary optimization
objective of each agent. MAOPT also uses the termination probability as a performance indicator
to determine whether the advice should be terminated to avoid negative transfer. Furthermore, to
facilitate the scalability and robustness, MAOPT contains two types: one type is MAOPT with the
global option advisor (MAOPT-GOA), the other type consists of MAOPT with the local option
advisor (MAOPT-LOA) and MAOPT with the successor representation option advisor (MAOPT-
SRO). Ideally, we can obtain the global information to estimate the option-value function, where
MAOPT-GOA is used to select a joint policy set, in which each policy is advised to each agent.
However, in many realistic scenarios, we can only obtain each agents’ local experience, where
we adopt MAOPT-LOA and MAOPT-SRO. Each agent’s experience may be inconsistent due to
partial observations, which may cause the inaccuracy in option-value’s estimation. MAOPT-SRO is
used to overcome the inconsistency in multiple agents’ experience by decoupling the dynamics of
the environment from the rewards to learn the option-value function under each agent’s preference.
MAOPT can be easily incorporated into existing DRL approaches and experimental results show that
it significantly boosts the performance of existing DRL approaches both in discrete and continuous
state spaces.

2 PRELIMINARIES

Stochastic Games (Littman, 1994) are a natural multiagent extension of Markov Decision Pro-
cesses (MDPs), which model the dynamic interactions among multiple agents. Considering the
fact agents may not have access to the complete environmental information, we follow previ-
ous work’s settings and model the multiagent learning problems as partially observable stochastic
games (Hansen et al., 2004). A Partially Observable Stochastic Game (POSG) is defined as a tuple
〈N ,S,A1, · · · ,An, T ,R1, · · · ,Rn,O1, · · · ,On〉, where N is the set of agents; S is the set of s-
tates;Ai is the set of actions available to agent i (the joint action spaceA = A1×A2×· · ·×An); T is
the transition function that defines transition probabilities between global states: S×A×S → [0, 1];
Ri is the reward function for agent i: S × A → R and Oi is the set of observations for agent i. A
policy πi: Oi × Ai → [0, 1] specifies the probability distribution over the action space of agent i.
The goal of agent i is to learn a policy πi that maximizes the expected return with a discount factor
γ: J = Eπi

[∑∞
t=0 γ

trit
]
.

The Options Framework. Sutton et al. (1999) firstly formalized the idea of temporally extended
action as an option. An option ω ∈ Ω is defined as a triple {Iω, πω, βω} in which Iω ⊂ S is an
initiation state set, πω is an intra-option policy and βω : Iω → [0, 1] is a termination function that
specifies the probability an option ω terminates at state s ∈ Iω . An MDP endowed with a set of
options becomes a Semi-Markov Decision Process (Semi-MDP), which has a corresponding opti-
mal option-value function over options learned using intra-option learning. The options framework
considers the call-and-return option execution model, in which an agent picks an option o according
to its option-value function Qω(s, ω), and follows the intra-option policy πω until termination, then
selects a next option and repeats the procedure.
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Deep Successor Representation (DSR). The successor representation (SR) (Dayan, 1993) is a basic
scheme that describes the state value function by a prediction about the future occurrence of all
states under a fixed policy. SR decouples the dynamics of the environment from the rewards. Given
a transition (s, a, s′, r), SR is defined as the expected discounted future state occupancy:

M(s, s′, a) = E

[ ∞∑
t=0

γt1[st = s′]|s0 = s, a0 = a

]
, (1)

where 1[.] is an indicator function with value of one when the argument is true and zero otherwise.
Given the SR, the Q-value for selecting action a at state s can be formulated as the inner product of
the SR and the immediate reward: Qπ(s, a) =

∑
s′∈SM(s, s′, a)R(s′).

DSR (Kulkarni et al., 2016) extends SR by approximating it using neural networks. Specifical-
ly, each state s is represented by a D-dimensional feature vector φs, which is the output of the
network parameterized by θ. Given φs, SR is represented as msr(φs, a|τ) parameterized by τ , a
decoder gθ̄(φs) parameterized by θ̄ outputs the input reconstruction ŝ, and the immediate reward at
state s is approximated as a linear function of φs: R(s) ≈ φs · w, where w ∈ RD is the weight
vector. In this way, the Q-value function can be approximated by putting these two parts togeth-
er as: Qπ(s, a) ≈ msr(φs, a|τ) · w. The stochastic gradient descent is used to update parameters
(θ, τ,w, θ̄). Specifically, the loss function of τ is:

L(τ, θ) = E
[
(φs + γm′sr(φs′ , a

′|τ ′)−msr(φs, a|τ))
2
]
, (2)

where a′ = arg maxamsr(φ
′
s, a) ·w, and m′sr is the target SR network parameterized by τ ′ which

follows DQN (Mnih et al., 2015) for stable training. The reward weight w is updated by minimizing
the loss function: L(w, θ) = (R(s)− φs ·w)

2
. The parameter θ̄ is updated using an L2 loss:

L(θ̄, θ) = (ŝ− s)2
. Thus, the loss function of DSR is the composition of the three loss functions:

L(θ, τ,w, θ̄) = L(τ, θ) + L(w, θ) + L(θ̄, θ).

3 MULTIAGENT OPTION-BASED POLICY TRANSFER (MAOPT)

3.1 FRAMEWORK OVERVIEW
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Figure 1: Framework overview.

In this section, we describe our MAOPT framework in detail. Fig-
ure 1 illustrates the MAOPT framework which contains n agents
interacting with the environment and corresponding option advi-
sors. At each step, each agent i obtains its own observation oi,
selects an action ai following its policy πi, and receives its re-
ward ri. Each option advisor initializes the option set, and selects
an option for each agent. During the training phase, the option
advisor uses samples from all agents to update the option-value
function and corresponding termination probabilities. Each agent
is advised by an option advisor, and the advice is to exploit this
advised policy through imitation, which serves as a complemen-
tary optimization objective (each agent does not know which pol-
icy it imitates and how the extra loss function is calculated)∗. The
exploitation of this advised policy is terminated as the selected option terminates and then another
option is selected. In this way, each agent efficiently exploits useful information from other agents
and as a result, the learning process of the whole system is accelerated and improved. Note that in
the following section we assume the agents using the option advisor are homogeneous, i.e., agents
share the same option set. While our MAOPT can also support the situation where each agent is
initialized with different numbers of options, e.g., each agent only needs to imitate its neighbours.
To achieve this, instead of input states into the option-value network, we just input the pair of states
and options to the network and output a single option-value.

Our proposed MAOPT can be classified into two types in terms of the experience used during train-
ing. One type is MAOPT with the global option advisor (MAOPT-GOA) which has the access to the
∗We provide the theoretical analysis to show this objective ensures to converge to an improved policy and

will not affect the convergence of the original RL algorithm.
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global information (i.e., (s,~a, r, s′), where r =
∑n
i=1 r

i) of the environment. Thus, MAOPT-GOA
selects a joint option as the advice set given the global observation of the environment and then eval-
uates the performance of the selected joint option. Selecting a joint option means that each advice
given to each agent begins and ends simultaneously. However, in many realistic scenarios, we can
only obtain each agent’s local information due to the partial observation. Moreover, the degree of
familiarity to the environment of each agent is different, then some agents may need to imitate their
teachers for a longer time. Therefore, a more flexible way to control each advice when to terminate
individually is necessary. The other type contains MAOPT with the local option advisor (MAOPT-
LOA), and MAOPT with the successor representation option advisor (MAOPT-SRO) which collects
each agent’s local experience for the update. In many cases, each agent’s experience is inconsistent
with each other, e.g., each agent has an individual goal to achieve or has different roles, and the
rewards assigned to each agent are different. If we simply use all experiences for the update, the
option-value estimation would oscillate and become inaccurate. MAOPT-SRO is used to handle the
experience inconsistency by decoupling the dynamics of the environment from the rewards to learn
the option-value function under each agent’s preference.

3.2 MAOPT-GOA

In cases where we have access to the global information of the environment, the global option
advisor is used to advise each agent. The procedure of MAOPT-GOA is described as follows
(pseudo-code is included in the appendix). First, MAOPT-GOA initializes the joint option set
Ω1×Ω2×· · ·×Ωn (where Ωi = {ω1, · · · , ωn}). Each option ωi corresponds to agent i’s policy πi.
The joint option-value function is defined as Q~ω(s, ~ω|ψ) parameterized by ψ which evaluates the
performance of each joint option ~ω. The corresponding target network is parameterized by ψ′ which
copies from ψ every k steps. The termination network parameterized by $ outputs the termination
probability β(s′, ~ω|$) of the joint option ~ω.

The update of the joint option-value network update follows previous work (Sutton et al., 1999;
Bacon et al., 2017). We first samples B transitions uniformly from the global replay buffer, for each
sample (s,~a, r, s′), we calculate the joint U function, the joint option-value function upon arrival:

U(s′, ~ω|ψ′) = (1− β(s′, ~ω|$))Q~ω(s′, ~ω|ψ′) + β(s′, ~ω|$) max
~ω′∈~Ω

Q~ω(s′, ~ω′|ψ′). (3)

Then, the option-value network minimizes the following loss:

L~ω =
1

B

∑
b

(rb + γU(sb+1, ~ω|ψ′)−Q~ω(sb, ~ω|ψ))
2
. (4)

where rb =
∑
n r

i
b.

According to the call-and-return option execution model, the termination probability β~ω controls
when to terminate the selected joint option and then to select another joint option accordingly, which
is updated w.r.t $ as follows (Bacon et al., 2017):

$ = $ − α$
∂β(s′, ~ω|$)

∂$
A(s′, ~ω|ψ′) + ξ, (5)

where, A(s′, ~ω|ψ′) is the advantage function which can be approximated as Q~ω(s′, ~ω|ψ′) −
max~ω′∈~ΩQ~ω(s′, ~ω′|ψ′), and ξ is a regularization term to ensure explorations (Bacon et al., 2017).
Then, given each state s, MAOPT-GOA selects a joint option ~ω following the ε-greedy strategy
over the joint option-value function. Then MAOPT-GOA calculates the cross-entropyH(πω|πi) be-
tween each intra-option policy πω and each agent’s policy πi, and gives it to each agent respectively,
serving as a complementary optimization objective of each agent, which means that apart from max-
imizing the cumulate reward, the agent also imitates the intra-option policy πω by minimizing the
loss function Litr. The imitation for the intra-option policy is terminated as the option terminated,
and then another option is selected to provide advice for the agent. The formula of the loss function
Litr is given as follows:

Litr = f(t)H(πω|πi), (6)
where, f(t) = 0.5 + tanh(3 − µt)/2 is the weighting factor of H(πω|πi). µ is a hyper-parameter
that controls the decrease degree of the weight. This means that at the beginning of learning, each
agent exploits knowledge from other agents mostly. As learning continues, knowledge from other
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Figure 2: MAOPT-LOA.
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Figure 3: The SRO architecture.

agents becomes less useful and each agent focuses more on the current self-learned policy. Note that
we cannot calculate the cross-entropy between the discrete action policies directly. To remedy this,
we apply the softmax function with some temperature to the discrete action vectors to transform the
actions into discrete categorical distributions.

In MAOPT-GOA, each advice given to each agent begins and ends simultaneously. While for each
agent, when to terminate the reusing of other agents’ knowledge should be decided asynchronously
and individually since the degree of familiarity to the environment of each agent is probably not
identical. Moreover, in many realistic scenarios, we can only obtain each agent’s local information
due to partial observation. Therefore, a more flexible way to advise each agent is necessary. In the
following section, we describe the second type of MAOPT in detail.

3.3 MAOPT-LOA

MAOPT-LOA equips each agent an option advisor, and each advisor uses local information from
all agents for estimation. How MAOPT-LOA is applied in actor-critic methods is illustrated in
Figure 2 (pseudo-code is included in the appendix). Firstly, MAOPT-LOA initializes n options
Ω = {ω1, ω2, · · · , ωn}. Each option ωi corresponds to agent i’s policy πi. The input of option
network parameterized by ψ and termination network parameterized by $ is the local observation
oi of each agent i. The option-value function Qω(oi, ω|ψ) and termination probability β(oi, ω|$)
are used to evaluate the performance of each option ωi ∈ Ω.

The update of the option-value function and the termination probability is similar to that in MAOPA-
GOA. For the update of each agent i, MAOPT-LOA first selects an option ω from {ω1, ω2, · · · , ωn}
following ε-greedy strategy over the option-value function. Then MAOPT-LOA calculates the cross-
entropy H(πω|πi) between each intra-option policy πω and each agent’s policy πi, and gives it to
each agent respectively, contributing to a complementary loss function Litr for each agent.

Note that the option-value network and termination network collect experience from all agents for
the update. What if the experience from one agent is inconsistent with others? In a POSG, each
agent can only obtain the local observation and individual reward signal, which may be different
for different agents even at the same state. If we use inconsistent experiences to update one shared
option-value network and termination network, the estimation of the option-value function would
oscillate and become inaccurate. We propose MAOPT-SRO to address this problem. MAOPT-SRO
decouples the dynamics of the environment from the rewards to learn the option-value function
under each agent’s preference. In this way, MAOPT-SRO can address such sample inconsistency and
learn the option-value and the corresponding termination probabilities under each agent’s preference
which is described in the next section.

3.4 MAOPT-SRO

MAOPT-SRO applies a novel option learning algorithm, Successor Representation Option (SRO)
learning to learn the option-value function under each agent’s preference. The SRO network archi-
tecture is shown in Figure 3, with each observation oi from each agent i as input. oi is input through
two fully-connected layers to generate the state embedding φoi , which is transmitted to three net-
work sub-modules. The first sub-module contains the state reconstruction model which ensures
φoi well representing oi, and the weights for the immediate reward approximation at local obser-
vation oi. The immediate reward is approximated as a linear function of φoi : Ri(φoi) ≈ φoi · w,
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where w ∈ RD is the weight vector. The second sub-module is used to approximate SR for options
msr(φoi , ω|τ) which describes the expected discounted future state occupancy of executing the op-
tion ω. The corresponding target network is parameterized by τ ′ which copies from τ every k steps.
The last sub-module is used to update the termination probability β(φ

oi
′ , ω|$), which is similar to

that in MAOPT-LOA described in Section 3.3.

Algorithm 1 MAOPT-SRO.

1: Initialize: option set Ω = {ω1, ω2, · · · , ωn}, state feature parameters θ, reward weights w, state
reconstruction network parameters θ̄, termination network parameters $, SR network parame-
ters τ , SR target network parameters τ ′, batch size T for PPO, replay buffer Di, actor network
parameters ρi, and critic network parameters υi for each agent i

2: for each episode do
3: Start from state s
4: for each agent i do
5: Select an option ω
6: Select an action ai ∼ πi(oi)
7: end for
8: Perform the joint action ~a = {a1, · · · , an}
9: Observe reward ~r = {r1, · · · , rn} and new state s′

10: for each agent i do
11: Store transition (oi, ai, ri, oi

′

, ω, i) to replay buffer Di
12: Select another option ω

′
if ω terminates

13: end for
14: for every T steps do
15: for each agent i do
16: Set πiold = πi

17: Calculate the advantage Ai =
∑
t′>t γ

t′−trit − Vυi(oit)

18: Optimize the critic loss Lic = −
∑T
t=1(

∑
t′>t γ

t′−trit − Vυi(oit))
2

19: The option advisor calculates the transfer loss Litr = f(t)H(πω|πi)
20: Optimize the actor loss L̄ia =

∑T
t=1

πi(ait|o
i
t)

πi
old(ait|oit)

Ait − λKL[πiold|πi] + Litr w.r.t ρi

21: end for
22: end for
23: Sample a batch of B/N transitions (oi, ai, ri, oi

′

, i) from each Di

24: Optimize L(θ̄, θ) =
(
gθ̄(φoi)− oi

)2
w.r.t θ̄, θ

25: Optimize L(w, θ) =
(
ri − φoi ·w

)2
w.r.t w, θ

26: for each ω do
27: if πω selects action ai at observation oi then
28: Calculate Ũ(φ

oi
′ , ω|τ ′)

29: Set y ← φoi + γŨ(φ
oi

′ , ω|τ ′)
30: Optimize the following loss w.r.t τ : L(τ, θ) = 1

B

∑
b (yb −msr(φoi , ω|τ))

2

31: Optimize the termination network w.r.t $: $ = $ − α$
∂β(φ

oi
′ ,ω|$)

∂$ A(φ
oi

′ , ω|τ ′) + ξ
32: end if
33: end for
34: Copy τ to τ ′ every k steps
35: end for

Given msr(φoi , ω|τ), the SRO-value function can be approximated as: Qω(φoi , ω) ≈
msr(φoi , ω|τ) · w. Since options are temporal abstractions (Sutton et al., 1999), SRO also needs
to calculate the Ũ function which is served as SR upon arrival, indicating the expected discount-
ed future state occupancy of executing an option ω upon entering a state. Given the transition
(oi, ai, ri, oi

′

), we firstly introduce the SR upon arrival Ũ as follows:

Ũ(φ
oi

′ , ω|τ ′) = (1− β(φ
oi

′ , ω|$))msr(φoi′ , ω|τ
′) + β(φ

oi
′ , ω|$)msr(φoi′ , ω

′|τ ′), (7)

where ω′ = arg maxω∈Ωmsr(φoi′ , ω|τ
′) ·w.
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We consider MAOPT-SRO combing with PPO (Schulman et al., 2017), a popular single-agent
policy-based RL. The way MAOPT-SRO combines with other policy-based RL algorithms is sim-
ilar. Algorithm 1 illustrates the whole procedure of MAOPT-SRO. First, we initialize the network
parameters for the state embedding network, reward prediction network, state reconstruction net-
work, termination network, SR network, SR target network, and the actor and critic networks of
each agent (Line 1). For each episode, each agent i first obtains its local observation oi which cor-
responds to the current state s (Line 3). Then, MAOPT-SRO selects an option ω for each agent i
(Line 5), and each agent selects an action ai following its policy πi (Line 6). The joint action ~a is
performed, then the reward r and new state s′ is returned from the environment (Lines 8,9). The
transition is stored in the replay buffer Di (Line 11). If ω terminates, MAOPT-SRO selects another
option for agent i (Line 12). For each update step, each agent updates its critic network by minimiz-
ing the loss Lic (Line 18), where T is the length of the trajectory segment. Then each agent updates
its actor network by minimizing the summation of the original loss and the transfer loss Litr (Line
20). For the update of SRO, it first samples a batch of B/N transitions from each agent’s buffer
Di, which means there are B transitions in total for the update (Line 23). SRO loss is composed of
three components: the state reconstruction loss L(θ̄, θ), the loss for reward weights L(w, θ) and SR
loss L(τ, θ). The state reconstruction network is updated by minimizing two losses L(θ̄, θ) (Line
24) and L(w, θ) (Line 25). The second sub-module, SR network approximates SR for options and
is updated by minimizing the standard L2 loss L(τ, θ) (Lines 26-30). At last, the termination prob-
ability of the selection option is updated (Line 31), where A(φ

oi
′ , ω|τ ′) is the advantage function

and approximated as msr(φoi′ , ω|τ
′) ·w −maxω∈Ωmsr(φoi′ , ω|τ

′) ·w, and ξ is a regularization
term to ensure explorations.

4 EXPERIMENTAL RESULTS
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Figure 4: The performance on
Pac-Man.

In this section, we evaluate the performance of MAOPT combined
with the common single-agent RL algorithm (PPO (Schulman et al.,
2017)) and MARL algorithm (MADDPG (Lowe et al., 2017)). The
test domains include two representative multiagent games, Pac-Man
and multiagent particle environment (MPE) (illustrated in the ap-
pendix). Specifically, we first combine MAOPT-LOA and MAOPT-
SRO with PPO on Pac-Man to validate whether MAOPT-SRO suc-
cessfully solves the sample inconsistency due to the partial ob-
servation. Then, we combine MAOPT-GOA, MAOPT-LOA, and
MAOPT-SRO with two baselines (MADDPG and PPO) on MPE to
further validate whether MAOPT-SRO is a more flexible way for
knowledge transfer among agents and enhances the advantage of
our framework. We also compare with DVM (Wadhwania et al.,
2019), which is the most recent multiagent transfer method†.

4.1 PAC-MAN

Pac-Man (van der Ouderaa, 2016) is a mixed cooperative-
competitive maze game with one pac-man player and two ghost
players. The goal of the pac-man player is to eat as many pills as
possible and avoid the pursuit of ghost players. For ghost players,
they aim to capture the pac-man player as soon as possible. In our
settings, we aim to control the two ghost players and the pac-man
player as the opponent is controlled by well pre-trained PPO poli-
cy. The game ends when one ghost catches the pac-man player or
the episode exceeds 100 steps. Each player receives −0.01 penalty
each step and +5 reward for catching the pac-man player.

We consider two Pac-Man scenarios (OpenClassic and MediumClassic) with the game difficulties
increasing. Figure 4 (a) presents the average rewards on the OpenClassic scenario. We can see that
both MAOPT-LOA and MAOPT-SRO perform better than other methods and achieve the average

†The details of neural network structures and parameter settings are in the appendix, and we share network
parameters among all homogeneous agents (Gupta et al., 2017; Rashid et al., 2018).
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discount rewards of +3 approximately with smaller variance. In contrast, PPO and DVM only
achieve the average discount rewards of +2.5 approximately with larger variance. This phenomenon
indicates that both MAOPT-LOA and MAOPT-SRO enable efficient knowledge transfer between
two ghosts, thus facilitating better performance.

Next, we consider a more complex Pac-Man game scenario, where the layout size is larger than the
former and it contains obstacles (walls). From Figure 4 (b) we can observe that the advantage of
MAOPT-LOA and MAOPT-SRO is much more obvious compared with PPO and DVM. Further-
more, MAOPT-SRO performs best among all methods, which means that MAOPT-SRO effectively
selects more suitable advice for each agent. The reason that MAOPT performs better than DVM is
that MAOPT enables each agent to effectively exploit useful information from other agents through
the option-based call-and-return mechanism, which successfully avoids negative transfer when other
agents’ policies are only partially useful. However, DVM just transfers all information from other
agents through policy distillation. By comparing the results of the two scenarios, we see that the
superior advantage of MAOPT-SRO increases when faced with more challenging scenarios. Intu-
itively, as the environmental difficulties increase, agents are harder to explore the environment and
to learn the optimal policy. In such a case, agents need to exploit the knowledge of other agents more
efficiently, which would greatly accelerate the learning process as demonstrated by MAOPT-LOA
and MAOPT-SRO.

4.2 MPE
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Figure 5: The performance on
predator and prey.

MPE (Lowe et al., 2017) is a simple multiagent particle world with
continuous observation and discrete action space. We evaluate the
performance of MAOPT on two scenarios: predator and prey, and
cooperative navigation. The predator and prey contains three a-
gents which are slower and want to catch one adversary (rewarded
+10 by each hit). The adversary is faster and wants to avoid be-
ing hit by the other three agents. Obstacles block the way. The
cooperative navigation contains four agents, and four correspond-
ing landmarks. Agents are penalized with a reward of −1 if they
collide with other agents. Thus, agents have to learn to cover al-
l the landmarks while avoiding collisions. Both games end when
exceeding 100 steps.

Both domains contain the sample inconsistency problem since each
agent’s local observation contains the relative distance between
other agents, obstacles, and landmarks. Moreover, in cooperative
navigation, each agent is assigned a different task, i.e., approach-
ing a different landmark from others, which means each agent may
receive different rewards under the same observation. Therefore,
we cannot directly use all experience to update one shared option-
value network. In such a case, we design an individual option
learning module for each agent in MAOPT-LOA, which only col-
lects one agent’s experience to update the option-value function.

Figure 5 (a) shows the average rewards on predator and prey. We
can see that all our proposed MAOPT-GOA, MAOPT-LOA, and MAOPT-SRO (combined with
PPO) achieve higher average rewards than PPO and DVM. Figure 5 (b) demonstrates a similar
phenomenon that both MAOPT-GOA and MAOPT-SRO (combined with MADDPG) perform bet-
ter than vanilla MADDPG, and MAOPT-SRO performs best among all methods. This is because
MAOPT-SRO uses all agents’ experience for the update and efficiently distinguishes which part of
the information is useful and provides positive advice for each agent. Furthermore, it uses the indi-
vidual termination probability to determine when to terminate each agent’s advice, which is a more
flexible manner, thus facilitating more efficient and effective knowledge transfer among agents.

Table 1 shows the average distance between each agent and its nearest landmark (line 1), and the
average collision frequencies of agents (line 2) in cooperative navigation. In this game, agents are
required to cover all landmarks while avoiding collisions. Therefore, a better result means to get a
closer average distance between agents and landmarks, and less collision frequencies among agents.

8
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Table 1: Average of collisions and average distance from a landmark in cooperative navigation.

PPO DVM MADDPG MAOPT-
GOA

MAOPT-
LOA

MAOPT-
SRO

Avg. dist. 1.802 1.685 1.767 1.446 1.476 1.366

Collisions 0.163 0.144 0.209 0.153 0.124 0.122

We can see that MAOPT-GOA, MAOPT-LOA, and MAOPT-SRO achieve the less collisions and the
shorter average distance from landmarks than other methods. Furthermore, MAOPT-SRO performs
best among all methods. The superior advantage of MAOPT is due to the effectiveness in identifying
the useful information from other agents’ policies. Therefore, each agent exploits useful knowledge
of other agents and as a result, thus leading to the least collisions and the minimum distance from
landmarks.
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Figure 6: Analysis of agent 1’s policy
and MAOPT-SRO’s policy.

Finally, we provide an ablation study to investigate
whether MAOPT-SRO selects a suitable policy for each
agent, thus efficiently enabling agents to exploit useful
information from others. Figure 6 presents the action
movement in the environment, each arrow is the direc-
tion of movement caused by the specific action at each
location. Four figures show the direction of movement
caused by the action selected from the policy of an agen-
t at t1 = 6 × 105 steps (Figure 6(a), top left), and at
t2 = 2 × 106 (Figure 6(c), bottom left); the direction of
movement caused by the action selected from the intra-
option policies of MAOPT-SRO at t1 = 6 × 105 steps
(Figure 6(b), top right), and at t2 = 2 × 106 steps (Fig-
ure 6(d), bottom right) respectively. The preferred direc-
tion of movement should be towards the blue circle. We
can see that actions selected by the intra-option policies
of MAOPT-SRO are more accurate than those selected
from the agent’s own policy, namely, more prone to pur-
sue the adversary (blue). This indicates that the advised
policy selected by MAOPT-SRO performs better than the
agent itself, which means MAOPT-SRO successfully dis-
tinguishes useful knowledge from other agents. There-
fore, the agent can learn faster and better after exploiting
knowledge from this advised policy than learning from scratch.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel MultiAgent Option-based Policy Transfer (MAOPT) framework
for efficient multiagent learning by taking advantage of option-based policy transfer. Our framework
learns what advice to give to each agent and when to terminate it by modeling multiagent transfer as
the option learning problem. Furthermore, to facilitate the robustness of our framework, we provide
two types: one type is MAOPT-GOA, which is adopted in fully cooperative settings (with access
to global state and reward). The other type contains MAOPT-LOA and MAOPT-SRO, which are
proposed for mixed settings (only access to local state with inconsistency and also individual re-
wards). MAOPT-SRO is proposed to solve the sample inconsistency due to the partial observation,
by decoupling the dynamics of the environment from the rewards to learn the option-value function
under each agent’s preference. MAOPT can be easily combined with existing DRL approaches.
Experimental results show it significantly boosts the performance of existing DRL methods. As
for future work, it is worth investigating how to achieve coordination among agents by designing
MAOPT-GOA in a centralized training, decentralized execution manner. For example, it is worth in-
vestigating how to decompose the joint option-value function into individual option-value functions
and update each termination probability separately.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Akshat Agarwal, Sumit Kumar, and Katia P. Sycara. Learning transferable cooperative behavior in
multi-agent teams. CoRR, abs/1906.01202, 2019.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
AAAI, pp. 1726–1734, 2017.

Georgios Boutsioukis, Ioannis Partalas, and Ioannis P. Vlahavas. Transfer learning in multi-agent
reinforcement learning domains. In Recent Advances in Reinforcement Learning - 9th European
Workshop, pp. 249–260, 2011.

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, 38(2):156–172, 2008.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. In Proceedings of AAAI/IAAI, pp. 746–752, 1998.

Felipe Leno da Silva and Anna Helena Reali Costa. A survey on transfer learning for multiagent
reinforcement learning systems. Journal of Artificial Intelligence Research, 64:645–703, 2019.

Felipe Leno da Silva, Garrett Warnell, Anna Helena Reali Costa, and Peter Stone. Agents teaching
agents: a survey on inter-agent transfer learning. Auton. Agents Multi Agent Syst., 34(1):9, 2020.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613–624, 1993.

Sabre Didi and Geoff Nitschke. Multi-agent behavior-based policy transfer. In Proceedings of
European Conference on the Applications of Evolutionary Computation, pp. 181–197, 2016.

Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent control
using deep reinforcement learning. In Autonomous Agents and Multiagent Systems - AAMAS
2017 Workshops, pp. 66–83, 2017.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In Proceedings of AAAI, volume 4, pp. 709–715, 2004.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. A survey and critique of multiagent
deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theoretical framework
and an algorithm. In Proceedings of ICML, pp. 242–250, 1998.

Yujing Hu, Yang Gao, and Bo An. Accelerating multiagent reinforcement learning by equilibrium
transfer. IEEE Trans. Cybernetics, 45(7):1289–1302, 2015.

Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew Riemer, Golnaz
Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and Jonathan P. How. Learning hierar-
chical teaching policies for cooperative agents. In Proceedings of the 19th International Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 620–628, 2020.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

Yongyuan Liang and Bangwei Li. Parallel knowledge transfer in multi-agent reinforcement learning.
CoRR, abs/2003.13085, 2020.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of ICML, pp. 157–163, 1994.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Proceedings of NeurIPS, pp. 6379–
6390, 2017.

10



Under review as a conference paper at ICLR 2021

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer, Christopher
Amato, Murray Campbell, and Jonathan P. How. Learning to teach in cooperative multiagent
reinforcement learning. In Proceedings of AAAI, pp. 6128–6136, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Foer-
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A PSEUDO-CODE FOR MAOPT-GOA AND MAOPT-IOA

Algorithm 2 MAOPT-GOA.

1: Initialize: the joint option set Ω1 × · · · ,×Ωn, each Ωi = {ω1, ω2, · · · , ωn}, joint option-value
network parameters ψ, joint option-value target network parameters ψ′, termination network
parameters $, replay buffer D, actor network parameters ρi for each agent i, critic network
parameters υi for each agent i, batch size T for PPO

2: for each episode do
3: Start from state s
4: Select a joint option ~ω
5: for each agent i do
6: Select an action ai ∼ πi(oi)
7: end for
8: Perform the joint action ~a = {a1, · · · , an}
9: Observe reward r = {r1, · · · , rn} and new state s′

10: Store transition (s,~a, r, ~ω, s′) replay buffer D
11: Select another joint option ~ω

′
if ~ω terminates

12: for every T steps do
13: for each agent i do
14: Set πiold = πi

15: Calculate the advantage Ai =
∑
t′>t γ

t′−trit − Vυi(oit)

16: Optimize the critic loss Lic = −
∑T
t=1(

∑
t′>t γ

t′−trit − Vυi(oit))
2

17: The option advisor calculates the transfer loss Litr = f(t)H(πωi |πi)
18: Optimize the actor loss L̄ia =

∑T
t=1

πi(ait|o
i
t)

πi
old(ait|oit)

Ait − λKL[πiold|πi] + Litr w.r.t ρi

19: end for
20: end for
21: Sample a batch of B transitions from D
22: for each sample (s,~a, r, s′) do
23: for each ~ω do
24: if πωi

selects action ai for all ωi ∈ ~ω then
25: Calculate U(s′, ~ω|ψ′)
26: Set y ← r + γU(s′, ~ω|ψ′)
27: Optimize the following loss w.r.t ψ: L~ω = 1

B

∑
b (yb −Q~ω(sb, ~ω|ψ))

2

28: Optimize the termination loss w.r.t $ = $ − α$ ∂β(s′,~ω|$)
∂$ A(s′, ~ω|ψ′) + ξ

29: end if
30: end for
31: end for
32: Copy ψ to ψ′ every k steps
33: end for

Algorithm 2 illustrates the whole procedure of MAOPT-GOA. First, we initialize the network pa-
rameters for the joint option-value network, termination network, joint option target network, and
the actor and critic networks of each agent i. For each episode, each agent i first obtains its local
observation oi which corresponds to the current state s (Line 3). Then, MAOPT-GOA selects a joint
option ~ω for all agents (Line 4), and each agent selects an action ai following its policy πi (Lines
5-7). The joint action ~a is performed, then the reward r and new state s′ is returned from the envi-
ronment (Lines 8, 9). The transition is stored in the replay buffer D (Line 10). If ~ω terminates, then
MAOPT-IOA selects another joint option ~ω

′
(Line 11). For each update step, each agent updates its

critic network by minimizing the loss Lic (Line 16), and updates its actor network by minimizing the
summation of the original loss Lia and the transfer loss Litr (Line 18).

For the update of GOA, it first samples a batch of B transitions from the replay buffer D (Line 21).
Then GOA updates the joint option-value network by minimizing the standard L2 loss L(~ω) (Lines
22-27). At last, the termination probability of the selection joint option is updated (Line 28).
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Algorithm 3 MAOPT-IOA.

1: Initialize: the option set {ω1, · · · , ωn}, option-value network parameters ψ, option-value target
network parameters ψ′, termination network parameters $, replay buffer Di for each agent i,
actor network parameters ρi for each agent i, critic network parameters υi for each agent i,
batch size T for PPO

2: for each episode do
3: Start from state s
4: for each agent i do
5: Select an option ω
6: Select an action ai ∼ πi(oi)
7: end for
8: Perform the joint action ~a = {a1, · · · , an}
9: Observe reward r = {r1, · · · , rn} and new state s′

10: for each agent i do
11: Store transition (oi, ai, ri, oi

′

, ω, i) replay buffer Di
12: Select another option ω

′
if ω terminates

13: end for
14: for every T steps do
15: for each agent i do
16: Set πiold = πi

17: Calculate the advantage Ai =
∑
t′>t γ

t′−trit − Vυi(oit) f
18: Optimize the critic loss Lic = −

∑T
t=1(

∑
t′>t γ

t′−trit − Vυi(oit))
2

19: The option advisor calculates the transfer loss Litr = f(t)H(πω|πi)
20: Optimize the actor loss L̄ia =

∑T
t=1

πi(ait|o
i
t)

πi
old(ait|oit)

Ait − λKL[πiold|πi] + Litr w.r.t ρi

21: end for
22: end for
23: Sample a batch of B/N transitions from each Di

24: for each sample (oi, ai, ri, oi
′

) do
25: for each ω do
26: if πω selects ai at oi then
27: Calculate U(oi

′

, ω|ψ′)
28: Set y ← ri + γU(oi

′

, ω|ψ′)
29: Optimize the option-value network by minimizing the following loss w.r.t τ :

Lω = 1
B

∑
b

(
yb −Qω(oi, ω|ψ)

)2
30: Optimize the termination network w.r.t $: $ = $ − α$ ∂β(oi

′
,ω|$)

∂$ A(oi
′

, ω|ψ′) + ξ
31: end if
32: end for
33: end for
34: Copy ψ to ψ′ every k steps
35: end for

Algorithm 3 illustrates the whole procedure of MAOPT-IOA. First, we initialize the network param-
eters for the option-value network, termination network, option target network, and the actor and
critic networks of each agent i. For each episode, each agent i first obtains its local observation oi
which corresponds to the current state s (Line 3). Then, MAOPT-IOA selects an option ω for each
agent i (Line 5), and each agent selects an action ai following its policy πi (Line 6). The joint action
~a is performed, then the reward r and new state s′ is returned from the environment (Lines 8, 9). The
transition is stored to each agent’s replay bufferDi (Line 11). If ω terminates, then MAOPT-IOA se-
lects another option for agent i (Line 12). For each update step, each agent updates its critic network
by minimizing the loss Lic (Line 18), and updates its actor network by minimizing the summation of
the original loss Lia and the transfer loss Litr (Line 20).
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For the update of IOA, it first samples a batch of B/N transitions from each agent’s buffer Di (Line
23). Then MAOPT-IOA updates the option-value network by minimizing the standard L2 loss L(ω)
(Lines 24-29). At last, the termination probability of the selection option is updated (Line 30).

B ENVIRONMENT ILLUSTRATIONS AND DESCRIPTIONS

Pac-Man (van der Ouderaa, 2016) is a mixed cooperative-competitive maze game with one pac-man
player and two ghost players (Figure 7).The most complex scenario is shown in Figure 10 with
four ghost players and one pac-man player. The goal of the pac-man player is to eat as many pills
(denoted as white circles in the grids) as possible and avoid the pursuit of ghost players. For ghost
players, they aim to capture the pac-man player as soon as possible. In our settings, we aim to control
the two ghost players and the pac-man player as the opponent is controlled by well pre-trained PPO
policy. The game ends when one ghost catches the pac-man player or the episode exceeds 100 steps.
Each player receives −0.01 penalty each step and +5 reward for catching the pac-man player.

MPE (Lowe et al., 2017) is a simple multiagent particle world with continuous observation and
discrete action space. We evaluate the performance of MAOPT on two scenarios: predator and prey
(Figure 8 with four agents and Figure 11 with twelve agents), and cooperative navigation (Figure
9 with four agents and Figure 12 with ten agents). The predator and prey contains three (nine in
Figure 11) agents (green) which are slower and want to catch one adversary (blue)(rewarded +10
by each hit). The adversary is faster and wants to avoid being hit by the other three agents. Obstacles
(grey) block the way. The cooperative navigation contains four (ten in Figure 11) agents (green),
and four corresponding landmarks (cross). Agents are penalized with a reward of −1 if they collide
with other agents. Thus, agents have to learn to cover all the landmarks while avoiding collisions.
At each step, each agent receives a reward of the negative value of the distance between the nearest
landmark and itself. Both games end when exceeding 100 steps.

(a) Open Classic

(b) Medium Classic

Figure 7: Pac-Man. Figure 8: Predator and prey
(N = 4).

Figure 9: Cooperative naviga-
tion (N = 4).

Figure 10: OriginalClassic. Figure 11: Predator and prey
(N = 12).

Figure 12: Cooperative naviga-
tion (N = 10).

State Description

Pac-Man The layout size of two scenarios are 25× 9 (OpenClassic), 20× 11 (MediumClassic) and
28 × 27 (OriginalClassic) respectively. The observation of each ghost player contains its position,
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the position of its teammate, walls, pills, and the pac-man, which is encoded as a one-hot vector. The
input of the network is a 68-dimension in OpenClassic, 62-dimension in MediumClassic and111-
dimension in OriginalClassic.

MPE The observation of each agent contains its velocity, position, and the relative distance between
landmarks, blocks, and other agents, which is composed of 18-dimension in predator and prey with
four agents (36-dimension with twelve agents), 24-dimension in cooperative navigation with four
agents (60-dimension with ten agents) as the network input.

C ADDITIONAL RESULTS AND ANALYSIS

We here summarize the components and properties of our framework, and list the suitable scenarios
of each option advisor. MAOPT-GOA contains n agent models and 1 model for learning the joint-
option value function and termination probabilities. MAOPT-GOA is used when we can obtain the
global information. While in practice, only partial observations are available in some environments.
Therefore, we also provide MAOPT-LOA to enable knowledge transfer among agents. MAOPT-
GOA contains n agent models and 1 model for learning the individual option value function and
termination probabilities. The option model adopts the parameter sharing similar to common MARL
training. However, each agent only obtains the local observation and individual reward signals,
which may be different for different agents even at the same state. If we use inconsistent experiences
to update the option-value network and termination network, the estimation of the option-value
function would oscillate and become inaccurate. Due to partial observability and reward conflict,
we design a novel option learning based on successor features. MAOPT-SRO contains n agent
models and 1 model for learning the individual SRO value function and termination probabilities.
The SRO model adopts the parameter sharing similar to common MARL training.

Table 2: Aspects of MAOPT with three kinds of option adivsors.

MAOPT-GOA MAOPT-LOA MAOPT-SRO

Components n agent’s models
1 joint option model

n agent’s models
1 option model

(parameter sharing)

n agent’s models
1 SRO model

(parameter sharing)
Partial observation − X X
Reward conflicts X − X
The degree of flexibility weak strong strong

Figures 13 and 14 are the enlarged version corresponding to Figures 5 (a) and (b). Table 3 and 4
presents the average return achieved in predator and prey under two baselines: PPO and MADDPG.

Table 3: Average return with standard deviation in predator and prey (N = 4). First maximum value
is bolded.

PPO DVM MAOPT-GOA MAOPT-LOA MAOPT-SRO
170.17±32.4 241.87± 12.38 285.27± 24.66 268.67± 23.18 296.58±18.75

Table 4: Average return with standard deviation in predator and prey (N = 4). First maximum value
is bolded.

MADDPG MAOPT-GOA MAOPT-SRO
229.68±6.21 301.48± 36.22 338.8± 8.78

Experimental results on games shown in Figure 10, 12 and 11 are shown in the following Figure 15.
We can observe that MAOPT-SRO outperforms PPO and DVM, scales well with the increase in the
number of agents.
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Figure 13: The performance on predator and prey (N = 4).
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Figure 14: The performance on predator and prey (N = 4).
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(b) Predator and prey (N = 12)
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(c) Cooperative navigation (N =
10)

Figure 15: The performance on various games.
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D THEORETICAL ANALYSIS

We first explain that the advised policy is better than the agent’s own policy. If none of other agents’
policies is better than the agent’s own policy, then the advised policy is the agent’s own policy, which
means there is no need to imitate.

The intuitive explanation of such transfer among agents is based on mutual imitation among agents.
If an agent imitates a policy which is better than its own policy, it can achieve higher performance.
Which policy should be imitated by which agent is decided by our option advisor. The option-value
function estimates the performance of each option, as well as the intra-option policy, therefore we
select the option with the maximum option-value for each agent to imitate the intra-option policy of
this option. The convergence of option-value learning has been proved and verified (Sutton et al.,
1999; Bacon et al., 2017). Therefore, the advised policy is the best among all policies at current
timestep.

Then we provide the theoretical analysis to show the agent’s policy will finally converge to the
imitated policy through imitation. Give n agents, n options, for each agent i, the option advisors
selects an option ω = arg maxΩQω(s, ω) and ω contains the policy π∗i,t(ρ

∗
t ) with the maximum

expected return η∗i,t(s). Each agent imitates the advised policy π∗i,t(ρ
∗
t ) to minimizes the difference

between two policies π∗i,t(ρ
∗
t ) and πi,t(ρit): M ρi = αi(η

∗
i,t(s|ρ∗t ) − ηi,t(s|ρit))(ρ∗t − ρit). If we set

xi = ρ∗t − ρit then we calculate the difference of xi as follows: M xi = −αi(η∗i,t(s)− ηi,t(s))xi,
Then we have

M ~x =

−α1(η∗1,t(s|ρ∗t )− η1,t(s|ρ1
t )) 0 · · · 0

0 −α2(η∗2,t(s|ρ∗t )− η2,t(s|ρ2
t )) · · · 0

0 0 · · · 0
0 0 · · · −αn(η∗n,t(s|ρ∗t )− ηn,t(s|ρnt ))

 ~x
=A~x

Note that η∗i,t(s)−ηi,t(s) ≥ 0, then−αi(η∗i,t(s)−ηi,t(s)) ≤ 0, the main diagonal of the diagonal ma-
trix A only contains non-positive values. Therefore, the real part of all eigenvalues is non-positive.
By means of Lyapunov’s stability theorem (Shil’nikov, 2001), it is proved that A is globally and
asymptotically stable. The extreme of each xi approaches 0: limt→∞ xi = 0 for i ∈ {1, 2, · · · , n}.
Therefore, each policy would converge to the advised policy through imitation.

To conclude, we show that for each agent, the advised policy is better than the policy of the agent
itself, and each policy would converge to the advised policy through imitation. Thus, each agent’s
policy will converge to an improved policy through imitation, and this will not affect the convergence
of the vanilla RL algorithm.

E NETWORK STRUCTURE AND PARAMETER SETTINGS

Network Structure Here we provide the network structure for PPO and MAOPT-SRO shown in
Figure 16 (a) and (b) respectively.

Parameter Settings

Here we provide the hyperparameters for MAOPT, DVM as well as two baselines, PPO and MAD-
DPG shown in Table 5 and 6 respectively.
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Figure 16: Network structures.
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Table 5: Hyperparameters for all methods based on PPO.

Hyperparameter Value

Learning rate 3e− 4

Length of trajectory segment T 32

Gradient norm clip λ 0.2

Optimizer Adam

Batch size B of the option advisor 32

Replay memory size 1e5

Learning rate 1e− 5

Action-selector ε-greedy
ε-start 1.0

ε-finish 0.05

ε anneal time 5e4 step

target-update-interval 1000

distillation-interval for DVM 2e5 step

distillation-iteration for DVM 2048 step

Table 6: Hyperparameters for all methods based on MADDPG.

Hyperparameter Value

Learning rate 1e− 2

Batch size 1024

Optimizer Adam

Batch size B of the option advisor 32

Replay memory size 1e5

Learning rate 1e− 5

Action-selector ε-greedy
ε-start 1.0

ε-finish 0.05

ε anneal time 5e4 step

target-update-interval 1000
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