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ABSTRACT

Test-time adaptation (TTA) fine-tunes pre-trained deep neural networks for unseen
test data. The primary challenge of TTA is limited access to the entire test dataset
during online updates, causing error accumulation. To mitigate it, TTA methods
have utilized the model output’s entropy as a confidence metric that aims to de-
termine which samples have a lower likelihood of causing error. Through experi-
mental studies, however, we observed the unreliability of entropy as a confidence
metric for TTA under biased scenarios and theoretically revealed that it stems
from the neglect of the influence of latent disentangled factors of data on predic-
tions. Building upon these findings, we introduce a novel TTA method named De-
stroy Your Object (DeYO), which leverages a newly proposed confidence metric
named Pseudo-Label Probability Difference (PLPD). PLPD quantifies the influ-
ence of the shape of an object on prediction by measuring the difference between
predictions before and after applying an object-destructive transformation. DeYO
consists of sample selection and sample weighting, which employ entropy and
PLPD concurrently. For robust adaptation, DeYO prioritizes samples that dom-
inantly incorporate shape information when making predictions. Our extensive
experiments demonstrate the consistent superiority of DeYO over baseline meth-
ods across various scenarios, including biased and wild. Project page is publicly
available at https://whitesnowdrop.github.io/DeYO/.

1 INTRODUCTION

Although deep neural networks (DNNs) demonstrate powerful performance across various domains,
they lack robustness against distribution shifts under conventional training (He et al., 2016; Pan &
Yang, 2009). Therefore, research areas such as domain generalization (Blanchard et al., 2011; Gul-
rajani & Lopez-Paz, 2021), which involves training models to be robust against arbitrary distribution
shifts, and unsupervised domain adaptation (UDA) (Ganin & Lempitsky, 2015; Park et al., 2020),
which seeks domain-invariant information for label-absent target domains, have been extensively in-
vestigated in the existing literature. Test-time adaptation (TTA) (Wang et al., 2021a) has also gained
significant attention as a means to address distribution shifts occurring during test time. TTA lever-
ages each data point once for adaptation immediately after inference. Its minimal overhead compared
to existing areas makes it particularly suitable for real-world applications (Azimi et al., 2022).

Because UDA assumes access to the entire test samples before adaptation, it utilizes its informa-
tion on a task by analyzing the distribution of the entire test set (Kang et al., 2019). Oppositely,
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due to limited access to the entire test data concurrently, TTA struggles to accurately estimate the
entire test data distribution. It leads to inaccurate predictions, and incorporating them into model up-
dates results in error accumulation within the model (Arazo et al., 2020). Hence, it is vital to utilize
samples that are less prone to be incorrectly predicted in order to reduce error accumulation. Prior
researches (Geifman et al., 2019a; Lee et al., 2022) have adopted the concept of a confidence met-
ric aiming to determine trustworthy samples. Currently, maximum softmax probability (Sohn et al.,
2020) and entropy (Saito et al., 2020), utilizing the model’s prediction, are the most employed confi-
dence metrics in label-absent tasks. Several TTA methods have also proposed entropy-based sample
selection approaches to identify trustworthy samples (Niu et al., 2022; 2023). Although entropy has
advantages as a confidence metric, a natural question arises: Can it reliably identify trustworthy
samples under various distribution shifts? Notably, we found out that entropy’s reliability largely
diminishes when a severe spurious correlation shift (Beery et al., 2018) exists in the dataset. To jus-
tify the observation, we draw inspiration from Wiles et al. (2022) and elucidate why the sole use of
entropy is less reliable for adaptation by introducing latent disentangled factors of inputs.

Based on the observation, we introduce a theoretical proposition for identifying harmful samples,
those that decrease the model’s discriminability during adaptation: a sample is harmful if its predic-
tion is more influenced by TRAin-time only Positively correlated with label (TRAP) factors (e.g.,
background, weather) rather than Commonly Positively-coRrelated with label (CPR) factors (e.g.,
structure, shape), even if its entropy is low. TRAP factors boost training performance but decrease
inference performance, attributable to a discrepancy in the correlation sign with labels. If predictions
mainly rely on TRAP factors, there is a high risk of wrong predictions under distribution shifts.
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Figure 1: The accuracy within
the worst group of the Waterbirds
benchmark.

In this paper, we present a new TTA method called Destroy
Your Object (DeYO), which leverages our proposed confi-
dence metric, Pseudo-Label Probability Difference (PLPD),
to identify harmful samples that entropy cannot detect. DeYO
uses a single image transformation that distorts the shape of
objects, which is a basic element of human visual percep-
tion (Geirhos et al., 2019) and is considered a representative
CPR factor. PLPD measures the extent to which the probabil-
ity of pseudo-label decreases after applying the transforma-
tion. A high PLPD value indicates that the CPR factor has a
large impact on the prediction of the model. DeYO involves
two key processes: sample selection and sample weighting. By incorporating PLPD as an additional
selection criterion, the model selects samples that are more clearly rooted in CPR factors within the
same entropy level for updates. As a result, to emphasize the effect of high-confidence samples on
model updates, we assign a greater sample weight to those with low entropy and high PLPD values.

We evaluated DeYO on the ImageNet-C (Hendrycks & Dietterich, 2019) benchmark, not only in
the mild scenario but also in wild scenarios, which encompass mixed shifts, label shifts, and batch
size 1 scenarios. While baseline methods typically exhibit strength in either a mild or wild scenario,
DeYO consistently outperforms the baseline methods in all scenarios. Additionally, we tested DeYO
on the ColoredMNIST (Arjovsky et al., 2019) and Waterbirds (Sagawa et al., 2020) benchmarks,
characterized by an extreme spurious correlations shift, where conventional TTA methods failed
to perform adequately (Zhao et al., 2023). In the case of the Waterbirds, as illustrated in Figure 1,
baseline methods show lower performance than the pre-adaptation model, whereas DeYO succeeded
in showing superiority over it. Furthermore, in the case of the ColoredMNIST, DeYO is the only
method that exceeds random guessing (50%) in terms of the worst group accuracy. We conducted
diverse analyses to validate the rationale behind DeYO’s performance.

Contributions. 1) We show that using entropy alone as a measure of confidence is insufficient for
TTA. Remarkably, we observed that even (extremely) low-entropy samples can potentially dimin-
ish the TTA performance. Motivated by it, we establish a new proposition for identifying harmful
samples based on disentangled factors. 2) We propose a novel TTA method called DeYO, which
leverages both our proposed confidence metric called PLPD and entropy. PLPD examines the influ-
ence of CPR factors, which is impossible to discern through entropy alone, via the change in model
predictions resulting from an object-destructive transformation applied to objects. 3) We demon-
strate that DeYO significantly outperforms existing TTA methods through extensive experiments.
The improvement is pronounced in more challenging wild scenarios, and specifically, on the Col-
oredMNIST, DeYO is the first TTA method that exceeds random guessing.
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2 REVISITING TTA: FROM THE PERSPECTIVE OF DISENTANGLED FACTORS

Sec. 2 shows that the entropy is not enough for TTA through the following subsections: in Sec. 2.1,
we present observations that examine the unreliability of entropy and elucidate its inherent charac-
teristics. Inspired by these insights, Sec. 2.2 offers preliminary concepts and essential notations for
further analysis. Subsequently, in Sec. 2.3, we provide an in-depth exploration of why relying solely
on entropy may not be considered reliable as a confidence metric.

2.1 MOTIVATING OBSERVATIONS

Entropy-based sample selection methods can be found in diverse tasks (Saito et al., 2020; Wang
et al., 2022). When a model’s probabilistic output closely resembles one-hot encoding, it suggests a
high likelihood of a sample being drawn from the training data distribution. These samples, charac-
terized by low entropy, are commonly used as trustworthy samples. In the TTA literature, Niu et al.
(2022; 2023) provided empirical evidence of the efficacy of entropy-based sample selection on the
ImageNet-C benchmark (Hendrycks & Dietterich, 2019).

DNNs easily leverage spurious features as well as semantically meaningful features, resulting in
decreased performance when these spurious correlations are prominent (Beery et al., 2018; Geirhos
et al., 2020). For example, butterfly images often co-occur with flowers (Singla & Feizi, 2022),
leading the model to misclassify the image without a flower. As highlighted by Wiles et al. (2022), a
spurious correlation shift is one of the crucial real-world inspired distribution shifts and commonly
exists in datasets with varying degrees. Hence, it is necessary to confirm the reliability of entropy
during TTA in the presence of a spurious correlation shift.

In order to furnish empirical results related to a spurious correlation shift, we conducted an analysis
of entropy on the Waterbirds (Sagawa et al., 2020). This benchmark enables the manipulation of the
degree of a spurious correlation shift between class categories and background, and it is classified
into four categories depending on the types of classes and backgrounds. More details for the Wa-
terbirds are provided in Appendix E.2. Remarkably, as shown in Fig. 2(a), we observed that within
the worst-performing group, samples with entropy values below the first quartile exhibit lower pre-
diction accuracy compared to other intervals. This observation demonstrates that the application of
entropy-based sample selection to adaptation may, instead, result in a performance decline. Indeed,
when we applied entropy-based adaptation on the Waterbirds benchmark, as shown in Fig. 1, it
resulted in lower performance compared to the pre-adaptation model.

To visually investigate the differences between correct and wrong samples with extremely high
confidence, we employ Grad-CAM (Selvaraju et al., 2017) in Fig. 2(b), (c). It reveals that correct
samples primarily focus on the birds (target object), while wrong samples relatively focus on the
background (spurious feature). Theoretically, Zhou et al. (2021) demonstrated that even in situations
with only input distribution shifts (i.e., covariate shifts), deep models also learn spurious features
present in the training data. Therefore, relying solely on entropy may not be consistently reliable
under distribution shifts, as it cannot distinguish whether the model focuses on the spurious feature.

2.2 PRELIMINARIES

In TTA, we have a model Mθ trained on Dtrain = {(xtrain
i , ytraini )}Ntrain

i=1 with parameter θ =

{θi}|θ|i=1, where xtrain
i ∈ X train and ytraini ∈ Y . The purpose of TTA is successfully adaptingMθ

using the test data Dtest = {(xtest
i , ytest

i )}Ntest

i=1 , where xtest
i ∈ X test and ytest

i ∈ Y . During adapta-
tion, we cannot access ytest. Instead, existing TTA methods update θ in the direction of minimizing
Entθ(xtest), the entropy of xtest.

Entθ(x) = −pθ(x)· logpθ(x) = −
C∑
i=1

pθ(x)i log pθ(x)i, (1)

where pθ(x) = softmax(Mθ(x)) = (pθ(x)1, . . . , pθ(x)C) ∈ RC is the model’s output probability
on x and C is the number of classes.

Motivated by Wiles et al. (2022), we assume that there is a disentangled latent vector v(x) =
(v1(x), · · ·, vdv

(x)) ∈ V corresponding to an input x, where vi(x) is called i-th factor of x.
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Figure 2: (a) A graph that represents accuracy by entropy levels. The lowest entropy interval 0∼Q1
exhibits the lowest accuracy. (b) and (c) display Grad-CAM visualization of samples with correct
and incorrect predictions with extremely low entropy, respectively.

For convenience, we will interchangeably use v and v(x), assume vi ∈ [0, 1], and focus on bi-
nary classification, where y ∈ {−1, 1}. We first define two values: corrtraini and corrtesti , where
corrtraini = corr(ytrain, vtraini ) is the correlation between the train label ytrain and the i-th factor
vtraini corresponding to xtrain, and corrtesti = corr(ytest, vtesti ) is the counterpart to xtest. Then we
can divide v into four partitions based on corrtraini and corrtesti :

vpp = {vi|corrtraini > 0, corrtesti > 0}, vpn = {vi|corrtraini > 0, corrtesti ≤ 0},
vnp = {vi|corrtraini ≤ 0, corrtesti > 0}, vnn = {vi|corrtraini ≤ 0, corrtesti ≤ 0}.

(2)

2.3 ENTROPY IS NOT ENOUGH

As mentioned in Sec. 2.1, entropy cannot be considered a reliable confidence score in situations
involving a spurious correlation shift. In this subsection, we validate the inadequacy of the sole
use of entropy as the confidence score from the perspective of disentangled factors. Let us assume
thatMθ is a linear classifier. Then, the parameter θ also have four partitions {θpp,θpn,θnp,θnn}
corresponding to {vpp,vpn,vnp,vnn}. Then, we can express the logit aθ, probabilistic scalar output
pθ, and pseudo-label ŷ as follows:

aθ(x) =Mθ(x) = θ·v(x) = θpp·vpp + θpn·vpn + θnp·vnp + θnn·vnn, (3)

pθ(x) = σ(aθ(x)) =
1

1 + exp (−aθ(x))
, ŷ =

{
1 aθ(x) > 0
−1 otherwise , (4)

where σ(·) is the sigmoid function. Then, in the case of TTA, the following proposition holds.
Proposition 1. Let us consider a pre-trained linear classifierMθ that uses the latent disentangled
factors v(x) of sample x as input. We define a harmful sample as one that reduces the difference in
the mean logits between classes when used for adaptation. A sample x ∈ X test is a harmful sample
for adaptation using entropy minimization loss if it satisfies the following condition:

ŷv(x)·(Extest∼X test
+1

[v(xtest)]− Extest∼X test
−1

[v(xtest)]) < 0, (5)

where X test
y = {x|(x, y) ∈ Dtest, y = y}, and y ∈ {1,−1}.

A detailed proof is provided in Appendix A. In the rest of this section, with Proposition 1, we will
explain why the samples with low entropy can be harmful.

According to the definition of the partition of disentangled factors, the partitions of optimal param-
eters θ∗ for the training data satisfy θ∗

pp,θ
∗
pn > 0, θ∗

np,θ
∗
nn ≤ 0. Since θi shares the same sign as

θ∗i in the early stages of adaptation, x with a high-confidence pseudo-label of ŷ = 1 satisfies

aθ(x) = θpp·vpp + θpn·vpn + θnp·vnp + θnn·vnn ≫ 0,

|θpp·vpp + θpn·vpn| ≫ |θnp·vnp + θnn·vnn|.
In other words, the elements of vnp and vnn tend to become zero, while vpp and vpn become the
dominant factors that compose x. We denote vpp as Commonly Positively-coRrelated with label
(CPR) factors and vpn as TRAin-time only Positively-correlated with label (TRAP) factors. The
expected value of v(xtest) follows the relationship by the defined CPR and TRAP factors:

Extest∼X test
+1

[vpp(x
test)] > Extest∼X test

−1
[vpp(x

test)],

Extest∼X test
+1

[vpn(x
test)] ≤ Extest∼X test

−1
[vpn(x

test)].
(6)
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Figure 3: Examples of a transformed image x′ created by different object-destructive transformation
methods. x is an example of WaterBirds.

For x with a highly confident ŷ = 1, Eq. 5 can be approximated as follows:

ŷv(x)·(Extest∼X test
+1

[v(xtest)]− Extest∼X test
−1

[v(xtest)])

≈ vpp(x)·(Extest∼X test
+1

[vpp(x
test)]− Extest∼X test

−1
[vpp(x

test)])︸ ︷︷ ︸
(7.a)

+ vpn(x)·(Extest∼X test
+1

[vpn(x
test)]− Extest∼X test

−1
[vpn(x

test)])︸ ︷︷ ︸
(7.b)

< 0

(7)

In Eq. 7, as per Eq. 6, (7.a) related to CPR factors becomes positive, while (7.b) related to TRAP
factors becomes negative. Therefore, xC≪T , indicating x with ∥(7.a)∥ ≪ ∥(7.b)∥ is a harmful
sample even if it shows high confidence in terms of entropy. This highlights that entropy, which
relies solely on the compressed information expressed as θ·v, cannot distinguish harmful samples
by its value. If an adaptation is performed that does not take into account CPR and TRAP factors,
in extreme cases, the relative order between two class logits may even change, leading to entirely
incorrect predictions. Hence, we aimed to introduce a novel confidence metric that addresses various
distribution shifts in the test dataset by avoiding TRAP factors and incorporating CPR factors.

3 METHODOLOGY

In Sec. 2, we highlighted the issue of using entropy that ignores the influence of disentangled factors.
In Sec. 3, we propose a novel TTA method named Destroy Your Object (DeYO) that incorporates the
newly proposed Pseudo-Label Probability Difference (PLPD) score to account for the influence of
CPR factors on the model’s predictions, particularly the shape information of objects. By integrating
the PLPD score that enforces the consideration of CPR factors while suppressing TRAP factors, we
alleviate the limitations tied to the exclusive reliance on entropy. Our DeYO consists of sample
selection (Sec. 3.1) and weighting (Sec. 3.2) based on the PLPD score.

3.1 SAMPLE SELECTION

For sample selection in Niu et al. (2022; 2023), they employ a well-known confidence metric: en-
tropy (Eq. 1). However, as elaborated on in Sec. 2, where there exists a substantial distribution
disparity between X train and X test such as a spurious correlations shift, the entropy becomes highly
dependent on the TRAP factors, undermining its reliability. To be robust against distribution shifts,
it is crucial to capture CPR factors. While capturing all CPR factors is challenging, we leverage the
prominent and certain CPR factor: the shape information of objects (Geirhos et al., 2019).

Incorporating the shape information of objects can be achieved through image transformations such
as pixel, patch-shuffling, or center occlusion. As illustrated in Fig. 3, each object destruction tech-
nique possesses distinct characteristics. With pixel-shuffling, the mean color of the image is main-
tained, but it becomes difficult to discern both the object and the background. Patch-shuffling dis-
rupts the shape of the object but preserves local information through the patches. Center occlusion
allows for the preservation of the background. However, when the object is not centered or excep-
tionally large, it may not fully disrupt the object’s shape. We conducted experiments with all three
techniques, and as illustrated in Sec. 4.3, we observed the best performance with patch-shuffling
which solely eliminates the shape information of objects, as opposed to affecting other components.

We propose a novel sample selection strategy based on entropy and PLPD to identify reliable sam-
ples for model updates. Our method employs the following sample selection criteria:

Sθ(x) = {x|Entθ(x) < τEnt, PLPDθ(x,x
′) > τPLPD}, (8)
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Figure 4: The overview of DeYO. DeYO comprises sample selection (Sec. 3.1) and sample weight-
ing (Sec. 3.2) mechanisms. The areas within the green box are distinguished based on entropy and
PLPD intervals, with Area 4 corresponding to Sθ(x) in Sec. 3.1.

PLPDθ(x,x
′) = (pθ(x)− pθ(x

′))ŷ, (9)
where x is an input and x′ is a patch-shuffled input. τEnt and τPLPD are pre-defined thresholds for
entropy and PLPD, respectively, and ŷ = argmaxpθ(x) is a pseudo-label estimated by the pre-
diction of x. PLPD can be expressed as (σ(θ·v) − σ(θ·v − θpp·vpp))ŷ under the assumptions in
Sec. 2. It represents that entropy-based sample selection does not consider the influence of CPR
factors on predictions because it relies on a single prediction. In contrast, PLPD assesses the influ-
ence of CPR factors by quantifying a prediction difference contingent on the presence or absence of
the shape information. Therefore, the use of PLPD supplements the entropy-based sample selection
that may hold samples primarily influenced by TRAP factors. This selection process necessitates
only a single additional forward pass, incurring negligible overhead, as it does not require additional
back-propagation.

3.2 SAMPLE WEIGHTING

Our approach enables identified samples to make varying contributions to the model updates through
sample weighting. Specifically, samples belonging to Areas 1, 2, and 3 in Fig. 4 are excluded, yet
the contribution of samples in Area 4 to the model update varies based on their reliability. Formally,
we express the weighting function αθ(x) as follows:

αθ(x) =
1

exp{(Entθ(x)− Ent0)}
+

1

exp{−PLPDθ(x,x′)}, (10)

where Ent0 is a normalization factor. The first entropy-based weighting term has been employed
in existing methods (Wang et al., 2021b; Niu et al., 2022) and is generally effective on varying
benchmarks. However, based on the observed unreliability, we introduce an additional PLPD-based
weighting term. This term assigns a larger weight as the predictions are more grounded in the ob-
ject’s shape. We confirm that each weighting term is effective, however combining them leads to
improved performance, as presented in Sec. 4.3.

3.3 OVERALL PROCEDURE OF DEYO

DeYO performs sample selection by exploiting only the samples belonging to Sθ(x) (Eq. 8) and
calculates the sample-wise weights αθ(x) (Eq. 10) to prioritize samples that particularly roots its
prediction in the CPR factors. Then, the overall sample-weighted loss is given by:

LDeYO(x;θ) = αθ(x) · I{x∈Sθ(x)}Entθ(x), (11)

which combines entropy-based and PLPD-based terms in both selection and weighting. The algo-
rithmic representation of DeYO can be found in Algorithm 1 of Appendix B.

4 EXPERIMENTS

We designed our experiments to answer the following questions: 1) How does DeYO perform in
comparison to baseline methods across various scenarios, including biased and wild scenarios that
resemble real-world situations? 2) What role does the newly proposed confidence metric, PLPD,
play within DeYO? 3) How do the different components contribute to its performance, and to what
degree is DeYO influenced by hyperparameters?
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Table 1: Comparisons with baselines on ImageNet-C at severity level 5 under a mild scenario re-
garding accuracy (%). The bold value signifies the top-performing result.

Noise Blur Weather Digital
Mild Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50-BN 2.2 2.9 1.8 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 16.9 20.7 31.7 18.0
•MEMO 7.5 8.8 8.9 19.8 13.0 20.7 27.7 25.3 28.7 32.2 61.0 11.0 23.8 33.0 37.6 23.9
• Tent 29.2 31.2 30.1 28.1 27.7 41.4 49.4 47.2 41.5 57.7 67.4 29.2 54.8 58.5 52.4 43.1
• EATA 34.9 37.1 35.8 33.4 33.0 47.1 52.7 51.6 45.7 60.0 68.1 44.4 57.9 60.6 55.1 47.8
• SAR 30.6 30.6 31.3 28.5 28.5 41.9 49.4 47.1 42.2 57.5 67.3 37.8 54.6 58.4 52.1 43.9
• DeYO (ours) 35.6±0.2 37.9±0.1 37.1±0.1 33.8±0.2 34.1±0.2 48.5±0.1 52.8±0.1 52.7±0.0 46.4±0.1 60.6±0.0 68.0±0.1 46.1±0.1 58.4±0.1 61.5±0.1 55.7±0.1 48.6±0.0

Table 2: Comparisons with baselines on Col-
oredMNIST regarding accuracy (%).

Biased Avg Acc Worst-Group Acc

ResNet-18-BN 63.40 20.05
• Tent 57.06 9.80
• MEMO 63.77 6.23
• SENTRY 63.23 15.78
• EATA 60.81 17.98
• SAR 58.37 12.36
• DeYO (ours) 78.24 67.39

Table 3: Comparisons with baselines on Water-
Birds regarding accuracy (%).

Biased Avg Acc Worst-Group Acc

ResNet-50-BN 83.16 64.90
• Tent 82.95 54.14
• MEMO 82.34 50.47
• SENTRY 85.77 60.90
• EATA 82.38 52.38
• SAR 82.60 53.41
• DeYO (ours) 87.42 73.92

Benchmarks, Test Scenarios, and Models. For comparison, we conducted experiments on five
benchmarks: 1) ImageNet-C (Hendrycks & Dietterich, 2019), a well-known TTA benchmark cate-
gorized into 15 corruption types encompassing 5 severity levels for each type, 2) ColoredMNIST
and WaterBirds, two benchmarks assessing performance under an extreme spurious correlation shift
presented in the dataset, and 3) ImageNet-R (Hendrycks et al., 2021) and VisDA-2021 (Bashkirova
et al., 2022), two benchmarks encompassing diverse distribution shifts due to data collected from
different style domains (e.g., cartoon, sketch, etc.) compared to ImageNet-C to assess the efficacy
for more challenging wild test scenarios. For test scenarios, we followed the mild scenario proposed
by Wang et al. (2021a) and three wild test scenarios suggested by Niu et al. (2023). Furthermore,
we propose new biased scenarios with ColoredMNIST and WaterBirds, which encompass severe
distribution shifts. Regarding the choice of models, we conducted experiments using ResNet-18-BN
and ResNet-50-BN (batch normalization), ResNet-50-GN (group normalization), and VitBase-LN
(layer normalization), taking into consideration TTA’s utilization across various normalization lay-
ers. More implementation and baseline details and hyperparameters can be found in Appendix E.

4.1 MAIN RESULTS

Table 4: Comparisons with base-
lines on ImageNet-C at severity
level 3 and 5 under a mixture of 15
corruption regarding accuracy (%).

Mixed Shifts Level 5 Level 3

ResNet-50-GN 30.6 54.0
•MEMO 31.2 54.5
• Tent 34.2 33.1
• EATA 38.2 56.1
• SAR 38.3 57.4
• DeYO (ours) 38.6±1.3 59.2±0.05

VitBase-LN 29.9 53.8
•MEMO 39.1 62.1
• Tent 24.1 70.2
• EATA 56.4 69.6
• SAR 57.1 70.7
• DeYO (ours) 59.4±0.1 72.1±0.01

Comparison on Mild Scenario. For the mild scenario, the
comparison results on ImageNet-C are reported in Tab. 1.
DeYO consistently outperforms the baseline methods across
all 15 corruption types in terms of accuracy, affirming the ef-
fectiveness of our approach. Notably, even when compared to
EATA (Niu et al., 2022), which demonstrates outstanding per-
formance in the mild scenario, DeYO exhibited a 0.8% higher
performance. We also confirmed that DeYO yields comparable
computational efficiency to EATA and SAR (Niu et al., 2023)
as summarized in Appendix C).

Comparison on Biased Scenario. Furthermore, DeYO show-
cased clearly remarkable performance on test benchmarks that
are susceptible to being influenced by TRAP factors. As shown
in Tab. 2 and 3, we observed substantial performance improve-
ments of 17.43% and 4.47% respectively on ColoredMNIST
and WaterBirds, which inherently include a spurious correlation shift, compared to the second best
results. For the worst group accuracy on ColoredMNIST, only DeYO surpasses random guessing.

Comparison on Wild Scenario. TTA has been demonstrated to enhance the model’s robustness
against domain shifts. However, its outstanding performance is often achieved under certain mild test
conditions. For instance, adapting with a batch of test samples featuring the same type of distribution
shift. In complex real-world scenarios, test data can arrive in a more unpredictable manner. Thus,
SAR has proposed three more realistic test scenarios: i) dynamic shifts in the ground-truth test label
distribution, which leads to imbalanced distributions at each corruption, ii) a single test sample, and
iii) a combination of multiple distribution shifts.
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Table 5: Comparisons with baselines on ImageNet-C at severity level 5 under online imbalanced
label shifts (imbalance ratio =∞) or under batch size 1 regarding accuracy (%).

Noise Blur Weather Digital
Label Shifts Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50-GN 17.9 19.9 17.9 19.7 11.3 21.3 24.9 40.4 47.4 33.6 69.3 36.3 18.7 28.4 52.2 30.6
•MEMO 18.4 20.6 18.4 17.1 12.7 21.8 26.9 40.7 46.9 34.8 69.6 36.4 19.2 32.2 53.4 31.3
• Tent 3.6 4.2 4.4 16.5 5.9 26.9 28.4 17.9 26.2 2.3 72.2 46.1 7.3 52.3 56.2 24.7
• EATA 25.7 28.6 24.8 18.5 19.6 24.1 28.4 35.3 33.0 41.2 65.2 33.3 28.0 42.4 43.1 32.7
• SAR 33.7 36.9 35.3 19.3 20.3 33.8 29.8 21.9 44.7 34.9 71.9 46.7 6.6 52.3 56.2 36.3
• DeYO (ours) 42.5±0.5 44.9±0.2 43.8±0.3 22.2±0.0 16.3±10.2 41.0±0.2 13.2±9.8 52.2±0.4 51.5±0.5 39.7±27.4 73.4±0.1 52.6±0.2 46.9±1.2 59.3±0.1 59.3±0.0 43.9±2.0

VitBase-LN 9.4 6.7 8.3 29.1 23.4 34.0 27.1 15.8 26.4 47.4 54.7 44.0 30.5 44.5 47.6 29.9
•MEMO 21.6 17.4 20.6 37.1 29.6 40.6 34.4 25.0 34.8 55.2 65.0 54.9 37.4 55.5 57.7 39.1
• Tent 33.9 1.8 27.2 54.8 52.9 58.6 54.3 12.4 11.7 69.7 76.3 66.3 59.6 69.7 66.6 47.7
• EATA 36.2 34.7 35.5 43.4 44.3 49.3 48.5 53.2 53.5 62.3 72.7 18.8 58.0 64.7 62.8 49.2
• SAR 42.3 34.9 44.1 50.0 50.5 55.6 53.1 59.7 47.2 66.2 75.2 50.3 60.1 67.3 65.0 54.8
• DeYO (ours) 53.5±0.5 36.0±25.2 54.6±0.8 57.6±0.2 58.7±0.2 63.7±0.1 46.2±18.7 67.6±0.1 66.0±0.1 73.2±0.2 77.9±0.1 66.7±0.1 69.0±0.1 73.5±0.1 70.3±0.2 62.3±1.7

Noise Blur Weather Digital
Batch Size 1 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6
•MEMO 18.5 20.5 18.4 17.1 12.6 21.8 26.9 40.4 47.0 34.4 69.5 36.5 19.2 32.1 53.3 31.2
• Tent 3.1 4.2 4.0 16.5 5.3 27.4 30.3 17.7 24.9 2.0 72.1 46.2 7.8 52.6 56.3 24.7
• EATA 24.8 27.9 25.8 17.9 17.3 28.7 29.3 44.7 44.4 40.2 71.0 44.5 27.0 46.8 55.6 36.4
• SAR 23.3 26.6 23.9 18.5 15.2 28.6 30.3 44.0 44.7 29.0 72.3 44.6 13.1 46.8 56.1 34.5
• DeYO (ours) 41.8±0.7 44.7±0.4 43.0±0.7 22.5±0.1 24.7±0.3 41.8±0.1 24.4±9.8 54.5±0.2 52.2±0.2 20.7±26.8 73.5±0.0 53.5±0.2 48.5±0.3 60.2±0.0 59.8±0.1 44.4±1.2

VitBase-LN 9.5 6.8 8.2 29.0 23.5 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9
•MEMO 21.6 17.3 20.6 37.1 29.6 40.4 34.4 24.9 34.7 55.1 64.8 54.9 37.4 55.4 57.6 39.1
• Tent 43.0 1.6 43.9 52.8 48.8 55.9 51.3 22.9 21.1 66.9 75.1 65.0 54.0 67.0 64.3 48.9
• EATA 32.2 26.7 30.3 43.8 40.1 47.7 42.6 35.7 43.4 60.8 65.6 61.1 46.5 60.5 58.2 46.3
• SAR 40.6 36.9 41.9 53.7 50.5 57.4 52.8 58.9 52.7 68.9 76.0 65.8 57.9 68.9 65.8 56.6
• DeYO (ours) 54.0±0.7 52.1±3.6 55.1±0.8 58.8±0.1 59.5±0.1 64.2±0.1 53.5±5.5 68.2±0.1 66.4±0.0 73.7±0.1 78.3±0.0 68.2±0.1 68.9±0.1 73.8±0.1 70.8±0.3 64.4±0.7

i) Online Imbalanced Label Distribution Shifts: We compared the performance of baseline methods
and DeYO in situations where the class imbalance ratio is infinity. As shown in Tab. 5, DeYO
exhibited significantly better performance than the baseline methods in both ResNet50-GN and
VitBase-LN. For VitBase-LN, except for Zoom where Tent (Wang et al., 2021a) showed the best
performance, DeYO showcased its superiority across the 14 corruption types.
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Figure 5: The Risk-Coverage curve
of the worst group on Waterbirds.

ii) Batch Size 1: As depicted in Tab. 5, DeYO demonstrated
superior performance even in scenarios involving a single test
sample. For VitBase-LN, DeYO showcased a performance im-
provement of 7.8% compared to SAR and notably outperforms
the baseline methods on all other corruption types.

iii) Mixed Distribution Shifts: We evaluated the performance
on a mixture of 15 corruption types at severity levels 5 and
3, as shown in Tab. 4. DeYO still exhibited the most superior
performance while the performance improvement may not be
as pronounced as in the previous two wild test scenarios.

The significant results are consistently observed on ImageNet-C at severity level 3 (Appendix F)
and more challenging benchmarks, ImageNet-R and Visda-2021, belonging to wild test scenarios
(Appendix G). The overall results verify that DeYO provides stronger robustness against various
distribution shifts. The detailed analysis of PLPD in wild scenarios is provided in Appendix L.

4.2 ROLE AND EFFECT OF PLPD
Total 50,000 samples 

Area 1
42,095 samples (84.2%)

Acc : 9.9%

1,513 samples (3.0%)

Acc : 33.7%

1,426 samples (2.9%)

Acc : 33.5%

4,966 samples (9.9%)

Acc : 49.1%

Area 2

Area 3 Area 4

Figure 6: Performance and per-
centage of identified samples on
each area on ImageNet-C.

Discussion on Spurious Correlation. As evident from Tab. 3,
on the Waterbirds benchmark characterized by extreme spu-
rious correlation shifts, DeYO outperformed other baselines.
The primary distinction between DeYO and the baselines lies
in the inclusion of PLPD as an additional criterion for filtering.
To analyze PLPD as a confidence metric, we employ the Risk-
Coverage curve (Geifman et al., 2019b), where risk denotes
the error rate, and coverage denotes the percentage of input.
According to Ding et al. (2020), a reliable confidence metric
should exhibit a low area under the risk-coverage curve (AURC). As demonstrated in Fig. 5, entropy,
in the RC curve of the worst group, yields a large AURC compared to PLPD variations, indicating
its limited reliability as a confidence metric. Detailed AURC values can be found in Appendix H.
As a result, DeYO significantly outperformed the baselines with entropy filtering.
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Figure 7: Hyperparameter experiments of DeYO on ImageNet-C at severity level 5.

Performance of Filtered-out Samples. While we have established the unreliability of entropy on
the Waterbirds benchmark, it is essential to investigate whether PLPD can leverage information that
entropy might overlook even on ImageNet-C, which contains a relatively weak spurious correlation
shift. This examination is presented in Fig. 6, which illustrates the accuracy of areas in Fig. 4 with
the pre-adaptation model. When comparing the accuracy of areas with the same entropy level under
Gaussian noise corruption on ImageNet-C at severity level 5, it is evident that Area 2 and Area
4, areas with high PLPD, exhibit higher accuracy compared to Area 1 and Area 3, respectively.
This result highlights that PLPD can identify more reliable samples by leveraging information that
entropy cannot capture, even in benchmarks with less emphasis on a spurious correlation shift.

4.3 HYPERPARAMETER AND ABLATION STUDIES ON DEYO

Table 6: Ablation study on the proposed
components. Second best = underline.

Sθ(x) αθ(x)

Entθ PLPDθ Entθ PLPDθ Avg.

(1) Tent 43.09
(2) ✓ 44.92
(3) ✓ 45.92
(4) ✓ ✓ 47.06
(5) ✓ 44.78

(6) PLPDθ ✓ ✓ 46.37
(7) ✓ ✓ 47.73
(8) ✓ ✓ ✓ 48.44
(9) ✓ 44.28

(10) ✓ ✓ 46.06
(11) Entθ ✓ ✓ 47.35

(12) ✓ ✓ ✓ 47.61
(13) ✓ ✓ 44.68
(14) ✓ ✓ ✓ 46.38
(15) ✓ ✓ ✓ 47.95

(16) DeYO ✓ ✓ ✓ ✓ 48.60

Hyperparameter Sensitivity. We experimented with
three transformations: pixel-shuffling, patch-shuffling,
and center occlusion, to distort object shapes (=x′).
Among these, as shown in Fig. 7(a), patch-shuffling,
which eliminates only the shape information while pre-
serving other details, yielded the best performance. When
selecting patch-shuffling as transformation, we further
tested a different number of patches for an image size of
224×224. As depicted in Fig. 7(b), the number of patches
of 4×4 exhibited the highest performance, while con-
sistently surpassing EATA from the number of patches
of 3×3 onwards. Lastly, DeYO requires the threshold,
τPLPD, during the sampling selection process (Fig. 7(c)).
A higher τPLPD leads to the removal of more samples, po-
tentially hindering sufficient adaptation knowledge acqui-
sition. We observed that DeYO achieves excellent perfor-
mance when τPLPD belongs to [0.2, 0.3].

Ablation Studies. To assess the significance of each component of DeYO, we conducted abla-
tion studies on ImageNet-C at severity level 5. Under otherwise identical conditions, using PLPDθ

yielded higher performance compared to Entθ, and we achieved the best performance when both
PLPDθ and Entθ are used simultaneously. We also conducted experiments on the biased scenario,
WaterBirds. We observed similar trends to ImageNet-C, however, in the case of WaterBirds, we
found that utilizing only PLPDθ in Sθ leads to better performance than utilizing both in Sθ. This
validates our observation that entropy significantly decreases in reliability under severe distribution
shifts. Further details and analyses of the results are provided in Appendix H.

5 CONCLUSION

In contrast to the common consensus, we have theoretically shown that even when utilizing ex-
tremely low-entropy samples in adaptation, performance can be degraded if we do not consider the
influence of the disentangled factors. Expanding upon the theoretical evidence, we propose DeYO,
a TTA method that combines our confidence metric PLPD, designed to account for the influence of
the shape information of objects, with entropy. To the best of our knowledge, DeYO is the first TTA
method that demonstrates the best performance in both mild and wild scenarios, showing significant
performance improvements across various distribution shifts.
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A PROOF OF PROPOSITION 1

Proof. The gradient when adapting through entropy minimization loss is as follows:

∂Entθ(x)
∂θi

=
∂Entθ(x)
∂pθ(x)

· ∂pθ(x)
∂aθ(x)

· ∂aθ(x)
∂θi

=
∂(−p log p− (1− p) log (1− p))

∂p
· ∂σ(a)

∂a
· ∂θ·v
∂θi

= log
(1− pθ(x))

pθ(x)
· σ(aθ(x))(1− σ(aθ(x))) · vi

= sign
(
log

(1− pθ(x))
pθ(x)

)
·C·vi

= −ŷ·C·vi, where C =

∣∣∣∣log (1− pθ(x))
pθ(x)

· pθ(x)(1− pθ(x))
∣∣∣∣ > 0,

where p, a are substitutes of pθ(x), aθ(x), respectively. Hence, the update of the model through
entropy minimization loss is as follows:

∆θi = −η
∂Entθ(x)

∂θi
= ηŷCvi = ŷC

′
vi

⇒ ∆θ(x) = ŷC
′
v(x), where C

′
= ηC > 0.

The change in logit of xtest due to the model’s update by x is as follows:

∆(θ·v(xtest)) = ∆θ(x)·v(xtest) = ŷC
′
v(x)·v(xtest).

The change in the gap between the mean logits of samples belonging to the two classes is as follows:

∆(Extest∼X test
+1

[θ·v(xtest)]− Extest∼X test
−1

[θ·v(xtest)])

= Extest∼X test
+1

[∆(θ·v(xtest))]− Extest∼X test
−1

[∆(θ·v(xtest))]

= Extest∼X test
+1

[∆θ·v(xtest)]− Extest∼X test
−1

[∆θ·v(xtest)]

= C
′
ŷv(x)·(Extest∼X test

+1
[v(xtest)]− Extest∼X test

−1
[v(xtest)]).

If the change is negative, it means that the distribution in the logit space of the two classes is getting
closer, leading to a decrease in class discriminability. Since C

′
is positive, ultimately, when using x

in adaptation that satisfies the following condition, discriminability decreases:

ŷv(x)·(Extest∼X test
+1

[v(xtest)]− Extest∼X test
−1

[v(xtest)]) < 0.
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B PSEUDO CODE OF DEYO

We present the pseudo-code for DeYO, which encompasses several key steps. Firstly, we compute
entropy for each test sample xi according to Eq. 1. Next, we employ PLPD on the test samples that
satisfy the condition specified in lines 4-6 of Algorithm 1. That is, we compute PLPD in conjunction
with entropy to select a reliable set denoted as Sθ(x) (Eq. 8). Subsequently, we calculate the weights
αθ(x) for the samples within Sθ(x), taking into account both entropy and PLPD as specified in
Eq. 10. Lastly, we optimize the parameter θ̃ by minimizing LDeYO, a combination of αθ(x) and
entropy minimization loss as described in Eq. 11. Algorithm 1 provides a detailed pseudo-code
representation of these procedures.

Algorithm 1: Destroy Your Object (DeYO)

Input: Test samples Dtest = {xi}N
test

i=1 , modelMθ(·) with trainable parameters θ̃ ⊂ θ, an
object-destructive transformation A, step size η > 0, hyperparameters
Ent0, τEnt, τPLPD > 0.

Output: Predictions {ŷi}N
test

i=1 .
1 Initialize θ̃ = θ̃0;
2 for xi ∈ Dtest do
3 Compute entropy Entθ(xi) and predict ŷi=argmax

j
Mθ(xi)j ; // (Eq. 1)

4 if Entθ(xi) > τEnt then
5 continue;
6 end
7 Obtain x′

i=A(xi) ;
8 Compute PLPDθ(xi,x

′
i) ; // (Eq. 9)

9 if PLPDθ(xi,x
′
i) < τPLPD then

10 continue;
11 end
12 Compute sample weight αθ(xi) ; // (Eq. 10)
13 Compute the overall loss LDeYO and its gradient∇θ̃LDeYO ; // (Eq. 11)

14 Update θ̃ ← θ̃ − η∇θ̃LDeYO;
15 end
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C EFFICIENCY

Table 7: The runtime of state-of-the-art methods. We assess the computational efficiency of various
TTA methods using the ResNet-50-BN model on ImageNet-C, specifically examining the case of
Gaussian noise at severity level 5, comprising a total of 50,000 images. The practical runtime is
evaluated using a single A6000 GPU.

Method Need source data? Online update? #Forward #Backward Other computation GPU time (50,000 images)
No adapt. ✗ ✗ 50,000 - n/a 72 seconds
MEMO ✗ ✗ 50,000×65 50,000×64 AugMix 30,818 seconds
Tent ✗ ✓ 50,000 50,000 n/a 86 seconds
EATA ✓ ✓ 50,000 19,085 regularizer 97 seconds
SAR ✗ ✓ 50,000 + 18,608 18,608 + 12,491 Additional model updates 123 seconds
DeYO (ours) ✗ ✓ 50,000 + 33,943 25,836 Eq. 9 114 seconds

Tab. 7 presents the results of measuring the time required for adaptation in our proposed DeYO and
baselines under ImageNet-C, Gaussian noise, and severity level 5 environments. MEMO demands
significantly more time due to the necessity of numerous additional augmentations compared to
other methods. Generally, other methods show an increase in computation time commensurate with
the improvement in performance. DeYO achieves the highest performance while requiring less time
than SAR. SAR consumes more GPU time because of its two-step model updates although it has a
smaller sum of forward and backward samples than DeYO.

D RELATED WORK

D.1 TEST-TIME ADAPTATION

Test-time adaptation (TTA) (Wang et al., 2021a; Sun et al., 2020; Choi et al., 2022; Lim et al., 2023;
Song et al., 2023) aims to enhance inference performance, balancing resource efficiency and effec-
tiveness without access to ground-truth labels. Whereas continual learning (Jung et al., 2023b;a)
aims to mitigate distribution shifts occurring while learning a sequence of tasks, TTA aims to ef-
ficiently adapt to a target benchmark at inference time by adjusting the pre-trained feature space.
Because a ground-truth label is inaccessible in TTA, it requires the use of unsupervised loss to adapt
the model. Therefore, entropy minimization serves as a crucial unsupervised regularizer across var-
ious tasks (Berthelot et al., 2019; Shu et al., 2018; Liang et al., 2020). By regularizing entropy, we
can penalize decisions made in regions of high data density to enhance accuracy for distinct classes.

TTA can be broadly categorized into two groups based on its involvement in the training stage. The
first category, known as Test-Time Training (TTT) (Sun et al., 2020), modifies the training loss in the
training stage for enhanced test-time adaptation. Typically, TTT involves the simultaneous optimiza-
tion of the source model using both supervised and self-supervised losses. In other words, TTT relies
on a proxy (self-supervised) task, and its loss is contingent upon the selection of a proxy. Depend-
ing on the choice of the proxy, TTT may incorporate objectives such as rotation prediction (Gidaris
et al., 2018) or contrastive-based losses (Liu et al., 2021b; Bartler et al., 2022).

The second category, Fully Test-Time Adaptation (fully TTA) (Wang et al., 2021a), constitutes a
research domain that refrains from intervening in the training stage and, thus, is applicable to all
pre-trained models. Our proposed DeYO falls within the realm of fully TTA as it can be applied
to any pre-trained model. While fully TTA exhibits distinct advantages compared to TTT, there
are limitations in terms of computational cost and stability. Tent (Wang et al., 2021a) utilizes an en-
tropy minimization loss, focusing on updating batch normalization parameters to maintain efficiency
while improving performance. Unlike Tent using all samples for adaptation, EATA (Niu et al., 2022)
and SAR (Niu et al., 2023) achieved improved performance by filtering-out high entropy samples.
However, EATA necessitates a relatively unrealistic assumption of class balance and a clean dataset,
and SAR involves a longer computational time due to the additional backward passes. On the other
hand, MEMO (Zhang et al., 2022) aims for stable single-sample adaptation by minimizing marginal
entropy through multiple augmentations, but it suffers from a longer computational time due to
the use of multiple augmentations. DeYO, requiring no additional assumptions and avoiding extra
backward passes, achieves significantly improved performance with minimal overhead by utilizing
a single augmentation.
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D.2 DISENTANGLED FACTORS

The disentanglement literature (Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Dittadi
et al., 2021; Lee et al., 2021; 2023) primarily centers around the task of decomposing images into
disentangled factors, which represent distinct and independent attributes. This literature operates
under the assumption that the data encompasses multiple (potentially numerous) factors and expects
models to become invariant to these factors after being exposed to various values of them. This,
in turn, enables the models to generalize to novel instances and diverse factor distributions. For
instance, in a dataset containing factors like shape and color, the aim is for the model to predict
shapes even when confronted with previously unseen colors or different color distributions. Wiles
et al. (2022) discusses distribution shifts based on the joint distribution of these disentangled factors.
To enhance robustness against such shifts, various methods like weighted resampling (Liu et al.,
2021a), data augmentation (Hendrycks et al., 2020), and representation learning (Higgins et al.,
2017) are available. Our specific focus lies on weighted resampling, and, to bolster its reliability, we
incorporate a single data augmentation step.

D.3 SELF-TRAINING

Self-training methods have demonstrated state-of-the-art performance in semi-supervised learn-
ing (Xie et al., 2020), adversarial robustness (Long et al., 2013), and unsupervised domain adapta-
tion (Shu et al., 2018). Pseudo-labeling and conditional entropy minimization emerge as two promi-
nent forms of self-training. This typically involves supervised training on confidently predicted tar-
get pseudo-labels (Tan et al., 2020), or conditional entropy minimization on target instances (Grand-
valet & Bengio, 2004). However, unconstrained self-training may result in the accumulation of er-
rors. Consequently, in the field of semi-supervised learning, the error accumulation issues are ad-
dressed through using a supervised loss as guidance. In unsupervised domain adaptation, entropy is
also employed as a metric to identify reliable target instances (Prabhu et al., 2021).

Despite the success of self-training methods, there exists a limited understanding of the conditions
and factors contributing to their effectiveness amid domain shifts. In the theoretical work by Chen
et al. (2020b), it is demonstrated that in the particular setting, self-training can avoid using spurious
features. While this work contributes to an understanding of self-training in domain shifts, the par-
ticular setting discussed, “the spurious feature which correlates with the label in the source domain
does not exist in the target domain” and “the source model must be accurately trained”, are difficult
to be considered as practical.

D.4 CONSISTENCY UNDER AUGMENTATIONS

The utility of predictive consistency under augmentations has been recognized in various appli-
cations, which can be broadly categorized into two main approaches. Firstly, it is employed as a
regularizer (Berthelot et al., 2019; Sajjadi et al., 2016). In this context, consistency regularization is
applied by introducing data augmentation, capitalizing on the principle that a classifier should yield
identical class distributions for an unlabeled example, even post-augmentation. This approach finds
extensive applicability in supervised learning (Cubuk et al., 2020), self-supervised representation
learning (Chen et al., 2020a), semi-supervised learning (Berthelot et al., 2019; Sajjadi et al., 2016),
and unsupervised domain adaptation (Li et al., 2020).

The second approach is centered around the utilization of predictive consistency under augmenta-
tions for detecting reliable instances (Prabhu et al., 2021). This approach is rooted in the under-
standing that consistency under image transformations serves as a dependable indicator of model
errors (Bahat et al., 2019). Specifically, in the context of self-training, this approach is employed to
mitigate error accumulation. It leverages predictive consistency under a committee of random trans-
forms to identify instances deemed reliable for alignment. Subsequently, the model is selectively
optimized on these identified instances.

19



Published as a conference paper at ICLR 2024

E MORE IMPLEMENTATION DETAILS

E.1 BASELINE METHODS

We compare DeYO with the following state-of-the-art TTA methods: MEMO (Zhang et al., 2022)
enhances the consistency of predictions across various augmented copies for adaptation. SEN-
TRY (Prabhu et al., 2021) is an UDA method which enhances target instance reliability by opti-
mizing selective entropy based on consistency under varied image transformations and balances
target class distributions using pseudo-labels. For use in the TTA, we remove the supervised loss of
SENTRY. Tent (Wang et al., 2021a) guides model updates by reducing the entropy of test samples.
EATA (Niu et al., 2022) introduced a novel approach that combines sample selection based on en-
tropy and weighted adjustments to minimize entropy for selected samples. SAR (Niu et al., 2023)
minimizes entropy with sharpness awareness for stable adaptation under wild test scenarios. Except
for MEMO, the TTA methods including DeYO make real-time (online) adjustments to the model
during testing. Once adaptation for each dataset is complete, the model parameters are reset.

E.2 MORE DETAILS ON BENCHMARK

We assess DeYO’s performance across five benchmarks: ImageNet-C (Hendrycks & Dietterich,
2019), ImageNet-R (Hendrycks et al., 2021), Visda-2021 (Bashkirova et al., 2022), ColoredM-
NIST (Arjovsky et al., 2019), and Waterbirds (Sagawa et al., 2020). ImageNet-C, created by ap-
plying 15 distinct corruptions to the ImageNet (Krizhevsky et al., 2012) benchmark, is widely em-
ployed to conduct experiments observing robustness against shifts in distribution. For the evaluation
of DeYO under more challenging scenarios, we extend our analysis beyond the ImageNet-C bench-
mark by including ImageNet-R (Hendrycks et al., 2021) and Visda-2021 (Bashkirova et al., 2022)
benchmarks. ImageNet-R consists of a diverse array of artistic renditions (e.g., art, cartoons, graf-
fiti, sculptures, etc.) representing 200 ImageNet classes. The Visda-2021 benchmark collects data
from both ImageNet-R/C and ObjectNet (Barbu et al., 2019). Unlike ImageNet-C, which primarily
focuses on synthetic corruption, ImageNet-R, and Visda-2021 present more challenges due to the
natural shifts inherent in the data domain.

For the ColoredMNIST and Waterbirds benchmarks, the training data exhibits substantial spurious
correlation, whereas the test data is characterized by minimal or no spurious correlation. The Col-
oredMNIST benchmark is a derived version of the MNIST (LeCun et al., 1998). In this benchmark,
images with digits ranging from 0 to 4 are assigned to class 0, while those with digits from 5 to 9 are
assigned to class 1. The color ID is green when it is 0 and red when it is 1. The default color ID fol-
lows the class ID and is flipped with a probability of 0.2 on the training data and 0.9 on the test data.
The Waterbirds benchmark combines objects from the CUB (Wah et al., 2011) with backgrounds
from the Places (Zhou et al., 2017). The correlations between the class and background are present
in the training data but not in the test data. In the training set, 95% of waterbird images are positioned
on water backgrounds, while the remaining 5% are placed on land backgrounds. Similarly, 95% of
landbird images are on land backgrounds, with 5% positioned on water backgrounds.

E.3 MORE DETAILS ON EXPERIMENTAL PROTOCOLS

For the ColoredMNIST benchmark, we opt for ResNet-18-BN, given its lower complexity compared
to other benchmarks. For Waterbirds and ImageNet-C (mild scenario), we employ ResNet-50-BN,
while for ImageNet-C (wild scenarios), ImageNet-R, and Visda-2021, we employ ResNet-50-GN
and ViTbase-LN. Pre-training for ColoredMNIST and Waterbirds involves 20 and 200 epochs, re-
spectively, with a batch size of 64. As for ImageNet-C, ImageNet-R, and Visda-2021, we utilize
publicly available pre-trained models from the torchvision and timm (Wightman, 2019) libraries.
Our testing adaptation protocol basically adheres to the one proposed by Niu et al. (2023). We op-
timize only normalization layer parameters. Under label shift scenarios of ImageNet-R and Visda-
2021, we assume an imbalance ratio of infinity, randomizing the order of classes and samples within
each class. Stochastic Gradient Descent (SGD) with a momentum of 0.9 serves as our optimizer.
Typically, the batch size is set to 64, except for experiments where it is configured as 1 (batch size
1). The learning rate is fixed at 0.00025 for the ResNet model and 0.001 for the Vit model, except
when the batch size equals 1. In such cases, the learning rate is adjusted to 0.00025 divided by 16
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for the ResNet model and 0.001 divided by 32 for the Vit model. For the Waterbirds benchmark,
DeYO filters out a substantial number of samples, so we increase the learning rate by a factor of 5.

The required hyperparameters for DeYO are τEnt, τPLPD, and Ent0. We set Ent0 and τEnt to 0.4× lnC
and 0.5 × lnC, respectively. The analysis of two hyperparameters (τEnt, and Ent0) is presented in
Appendix H, and the analysis of τPLPD sensitivity can be found in Section 4.3 of the main paper.
As shown in the sensitivity results, DeYO exhibits robustness with respect to hyperparameters. Re-
garding τPLPD for the reported results, its value is configured at 0.3 for ImageNet-C (mild scenario),
0.5 for the biased scenario, and 0.2 for the rest of the experiments. ColoredMNIST and Waterbirds
are binary benchmarks, and since they mostly produce one-hot predictions due to their simplicity,
we use 0.5 for a threshold of label flip. We do not use entropy filtering and set Ent0 = lnC for
ColoredMNIST.

F FURTHER EXPERIMENTS ON IMAGENET-C AT SEVERITY LEVEL 3

The results at severity level 3 under the mild scenario and two wild scenarios (online imbalanced
label distribution shift, and batch size 1) are reported in Tab. 8 and 9, respectively. The results are
consistent with those of severity level 5, demonstrating superior performance across the 15 corrup-
tion types on average.

F.1 COMPARISONS ON MILD SCENARIO

Table 8: Comparisons with baselines on ImageNet-C at severity level 3 under a mild scenario re-
garding accuracy (%). The bold value signifies the top-performing result.

Noise Blur Weather Digital
Mild Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50-BN 27.6 25.0 25.2 37.9 16.9 37.7 35.2 35.2 32.1 46.7 69.6 46.0 55.6 46.2 59.3 39.7
• Tent 54.8 54.3 53.7 49.2 46.5 58.8 57.7 55.9 48.6 65.8 72.1 67.1 69.4 67.5 65.9 59.2
• EATA 57.0 56.8 56.2 52.4 50.2 61.0 59.7 58.6 51.3 67.1 72.2 68.2 69.9 68.1 66.7 61.0
• SAR 54.6 54.1 53.5 49.3 46.3 58.6 57.6 55.6 48.6 65.6 72.0 67.1 69.3 67.3 65.7 59.0
• DeYO (ours) 58.1±0.0 58.0±0.1 57.1±0.1 53.4±0.0 51.2±0.1 61.9±0.1 59.8±0.0 59.6±0.0 51.9±0.2 67.6±0.1 72.0±0.1 68.5±0.0 69.8±0.1 68.6±0.0 66.6±0.0 61.6±0.0

F.2 COMPARISONS ON WILD SCENARIO

Table 9: Comparisons with baselines on ImageNet-C at severity level 3 under online imbalanced
label shifts (imbalance ratio =∞) or under batch size 1 regarding accuracy (%).

Noise Blur Weather Digital
Label Shifts Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50-GN 54.5 52.9 53.1 44.4 21.2 49.8 39.3 54.9 54.1 55.8 75.3 69.7 59.6 59.7 66.4 54.1
•MEMO 55.9 54.3 54.1 40.1 23.1 49.5 41.4 54.8 54.1 57.6 75.7 70.2 60.2 61.5 66.7 54.6
• Tent 59.1 58.6 58.3 39.0 27.9 54.7 41.1 51.3 41.4 62.0 75.2 70.1 62.3 63.7 66.4 55.4
• EATA 52.3 52.9 51.7 35.7 30.1 46.4 39.6 43.8 39.8 55.7 72.4 66.6 54.7 56.0 56.2 50.3
• SAR 60.8 60.5 60.2 47.9 36.7 58.2 49.7 57.9 53.6 65.0 76.4 71.0 67.0 65.8 67.6 59.9
• DeYO (ours) 64.0±0.2 63.9±0.1 63.2±0.2 54.0±0.3 44.9±0.7 62.2±0.1 55.1±0.2 61.2±0.2 57.9±0.4 69.2±0.1 76.9±0.0 73.2±0.1 71.2±0.1 70.2±0.1 69.8±0.0 63.8±0.0

VitBase-LN 51.5 46.8 50.4 48.7 37.1 54.7 41.6 35.1 33.3 68.0 69.3 74.9 65.9 66.0 63.6 53.8
•MEMO 62.1 57.9 61.5 57.2 45.6 62.0 49.9 46.5 43.1 74.1 75.8 79.7 72.6 72.3 70.6 62.1
• Tent 68.7 68.0 68.1 68.2 63.8 70.9 63.8 67.6 41.9 76.3 78.8 79.5 75.9 76.7 73.7 69.5
• EATA 65.3 62.6 63.6 63.0 57.1 66.3 59.3 64.5 61.0 73.3 76.9 75.9 74.2 74.8 73.1 67.4
• SAR 68.8 68.2 68.4 68.3 64.7 71.0 64.2 68.1 66.0 76.4 79.0 79.6 76.2 77.1 74.1 71.3
• DeYO (ours) 71.7±0.1 71.6±0.1 71.4±0.1 70.6±0.1 68.9±0.1 73.9±0.1 69.2±0.2 72.4±0.2 69.7±0.1 77.9±0.2 80.2±0.1 79.5±0.0 78.2±0.1 78.7±0.0 76.7±0.2 74.0±0.1

Noise Blur Weather Digital
Batch Size 1 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50-GN 54.5 52.8 53.1 44.3 21.2 49.7 39.2 54.8 54.0 55.8 75.4 69.8 59.6 59.7 66.3 54.0
•MEMO 55.7 54.2 53.9 40.0 22.8 49.2 41.2 54.8 54.1 57.6 75.5 69.9 60.0 61.3 66.6 54.5
• Tent 58.8 58.5 58.7 38.2 26.8 54.9 42.6 51.6 38.8 61.9 75.3 70.0 62.3 63.6 66.3 55.2
• EATA 59.2 58.7 58.8 45.7 32.6 55.5 45.9 56.4 52.7 63.6 75.9 71.1 64.7 64.5 67.8 58.2
• SAR 60.3 59.6 59.5 46.6 33.0 57.5 47.8 57.8 52.8 65.1 76.7 71.4 67.3 66.0 67.8 59.3
• DeYO (ours) 64.4±0.1 64.5±0.1 63.7±0.1 55.2±0.1 46.0±0.1 63.1±0.1 55.9±0.3 62.3±0.2 58.8±0.2 69.8±0.1 77.0±0.1 73.5±0.2 71.5±0.0 70.7±0.1 70.2±0.1 64.5±0.0

VitBase-LN 51.6 46.9 50.5 48.7 37.2 54.7 41.6 35.1 33.5 67.8 69.3 74.8 65.8 66.0 63.7 53.8
•MEMO 61.9 57.7 61.4 57.0 45.4 61.8 49.8 46.6 43.1 73.9 75.7 79.6 72.6 72.1 70.5 61.9
• Tent 67.1 66.2 66.3 66.3 60.9 69.1 61.4 65.2 60.4 75.2 78.1 78.8 74.9 75.8 72.4 69.2
• EATA 60.7 58.5 61.6 60.1 51.8 64.2 54.8 53.3 52.6 72.5 73.6 77.9 71.3 71.3 69.7 63.6
• SAR 68.5 67.8 68.0 67.8 63.1 70.7 63.5 66.9 62.8 75.8 77.7 78.4 74.7 75.7 72.7 70.3
• DeYO (ours) 72.3±0.0 72.1±0.1 71.9±0.0 71.1±0.0 69.4±0.0 74.2±0.0 69.3±0.1 72.8±0.1 70.1±0.1 78.6±0.0 80.7±0.0 80.4±0.0 78.6±0.0 79.2±0.0 77.2±0.1 74.5±0.0
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G FURTHER EXPERIMENTS ON IMAGENET-R AND VISDA-2021

We conducted additional experiments for wild scenarios using the ImageNet-R and Visda-2021
benchmarks with ResNet-50-GN and ViTBase-LN. Both benchmarks involve collecting data from
various distribution shifts, including data with completely different styles aside from corruption.
Therefore, for overall experiments, we consistently assumed mixed shift scenarios and then included
label shifts or batch size 1 scenarios.

Tab. 10 and 11 report the results on online imbalanced label distribution shifts and batch size 1
scenarios, respectively. Similar to the results in the main for ImageNet-C, DeYO exhibited the best
performance across scenarios and architectures on the ImageNet-R benchmark.

Table 10: Comparisons with baselines on
ImageNet-R under a wild scenario (online im-
balanced label distribution shifts) regarding ac-
curacy (%).

Method ResNet-50-GN VitBase-LN

No Adapt. 40.8 43.1
Tent 42.8 49.9
EATA 42.8 51.0
SAR 42.5 51.7
DeYO (ours) 47.0 59.3

Table 11: Comparisons with baselines on
ImageNet-R under a wild scenario (single sam-
ple adaptation (batch size 1)) regarding accuracy
(%).

Method ResNet-50-GN VitBase-LN

No Adapt. 40.8 43.1
Tent 44.3 50.4
EATA 41.8 46.7
SAR 43.1 52.0
DeYO (ours) 48.4 60.3

We also conducted similar experiments on the Visda-2021 benchmark. Tab. 12 and 13 report the re-
sults on online imbalanced label distribution shifts and batch size 1 scenarios, respectively. Similarly,
DeYO demonstrated the best performance across scenarios and architectures on Visda-2021.

Table 12: Comparisons with baselines on Visda-
2021 under a wild scenario (online imbalanced
label distribution shifts) regarding accuracy (%).

Method ResNet-50-GN VitBase-LN

No Adapt. 43.5 44.3
Tent 43.8 50.2
EATA 43.2 51.1
SAR 43.7 50.4
DeYO (ours) 44.9 57.3

Table 13: Comparisons with baselines on Visda-
2021 under a wild scenario (single sample adap-
tation (batch size 1)) regarding accuracy (%).

Method ResNet-50-GN VitBase-LN

No Adapt. 43.5 44.3
Tent 43.9 50.4
EATA 43.9 47.9
SAR 43.8 51.2
DeYO (ours) 45.9 58.7

An important observation in each of these tables is that, despite the inclusion of entropy-based
sample selection in EATA and SAR, the performance improvement is minimal or even leads to a
decrease in performance. This verifies that the effectiveness of entropy-based sample selection is
either negligible or, in some cases, negative for the datasets with various distribution shifts. DeYO
demonstrated that significant performance gains are not solely reliant on entropy and that the use of
PLPD with consideration for CPR factors contributes to improved adaptation.

H FURTHER HYPERPARAMETER AND ABLATE RESULTS
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Figure 8: Hyperparameter (τEnt,Ent0, and PLPD0) experiments on ImageNet-C at severity level 5.
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DeYO relies on three essential hyperparameters: τEnt, τPLPD, and Ent0. As shown in the main paper,
the results for τPLPD indicate that DeYO with τPLPD below 0.4 performs better than EATA, as long
as they do not overly restrict sample selection. For τEnt, as depicted in Fig. 8(a), there are quite
numerous samples not selected by τPLPD, making the choice of 0.5 × lnC more effective than the
original 0.4 × lnC used by EATA. However, notably, even with 0.4 × lnC, DeYO outperformed
EATA. Regarding Ent0 (Fig. 8(b)), it performed best when set to 0.4 × lnC, identical to EATA.
Lastly, PLPD0 represents the normalization factor of the PLPD term in sample weighting. As the
best performance was achieved when set to 0, we opted not to include the normalization factor when
proposing the term, as shown in Fig. 8(c).

Tab. 14 presents the results of a AURC measurement aimed at assessing the reliability of entropy
and PLPD variants as a confidence score in the worst group of the Waterbirds benchmark. Entropy
exhibits the highest AURC value, making it the most unreliable confidence metric, while among the
PLPD variants, the use of x′

occ (Occlusion PLPD) demonstrates the lowest value which means the
highest reliability. This observation is attributed to the fact that the Waterbirds inherently involve
objects precisely centered in the image. Furthermore, an ablation study was conducted to investigate
the effects of DeYO’s components on Waterbirds, and the results are documented in Tab. 15. While
the overall trends align with the findings in Tab. 6, notably, the absence of entropy filtering in case
(8) yields higher performance than our proposed DeYO. It additionally illuminates the notion that
entropy lacks reliability in the presence of spurious correlation shifts.

Table 14: The AURC value of
Fig. 5.

AURC (%)

Entropy 56.30
4×AugMix PLPD 35.58
Pixel PLPD 20.71
Patch PLPD 14.75
Occlusion PLPD 13.77

Table 15: Ablation study on
the proposed components on
Waterbirds in biased scenario
(ResNet-50-BN). Second best
= underline.

Sθ(x) αθ(x)

Entθ PLPDθ Entθ PLPDθ Avg.

(1) Tent 55.29
(2) ✓ 58.46
(3) ✓ 55.23
(4) ✓ ✓ 59.97
(5) ✓ 66.58

(6) PLPDθ ✓ ✓ 72.88
(7) ✓ ✓ 66.42
(8) ✓ ✓ ✓ 75.95
(9) ✓ 54.87

(10) ✓ ✓ 56.90
(11) Entθ ✓ ✓ 54.87

(12) ✓ ✓ ✓ 57.57
(13) ✓ ✓ 62.62
(14) ✓ ✓ ✓ 70.33
(15) ✓ ✓ ✓ 63.30

(16) DeYO ✓ ✓ ✓ ✓ 73.14

Table 16: Ablation study on
the proposed components on
ImageNet-C in label shifts
scenario (ViTBase-LN). Sec-
ond best = underline.

Sθ(x) αθ(x)

Entθ PLPDθ Entθ PLPDθ Avg.

(1) Tent 52.71
(2) ✓ 54.78
(3) ✓ 54.04
(4) ✓ ✓ 54.08
(5) ✓ 59.98

(6) PLPDθ ✓ ✓ 61.74
(7) ✓ ✓ 61.02
(8) ✓ ✓ ✓ 61.44
(9) ✓ 52.71

(10) ✓ ✓ 56.18
(11) Entθ ✓ ✓ 52.15

(12) ✓ ✓ ✓ 54.21
(13) ✓ ✓ 59.96
(14) ✓ ✓ ✓ 61.58
(15) ✓ ✓ ✓ 60.78

(16) DeYO ✓ ✓ ✓ ✓ 61.30

I FURTHER HYPERPARAMETER SENSITIVITY RESULTS
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Figure 9: Hyperparameter sensitivity experiments of DeYO on ImageNet-C at severity level 5 under
online imbalanced label shifts (imbalance ratio =∞).

As shown in Fig. 9 and Tab. 17, we experimented with the parameter sensitivity of DeYO under
a different model architecture (ViTBase), dataset (WaterBirds), and test scenario (wild scenario:
online imbalanced label shifts and biased scenario: spurious correlation). We observed consistent
results with that of Fig. 7 (ResNet-50-BN, ImageNet-C, and mild scenario) in the main manuscript.
For Waterbirds, it involves a 2-class classification task. Therefore, the value of τPLPD should be
larger than that of ImageNet-C, which has 1000 classes, to adequately capture the changes induced
by transformations.
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Table 17: Hyperparameter sensitivity experiments of DeYO on WaterBirds in terms of augmentation
type (left), number of patches (center), and τPLPD (right).

Type Avg (%) Worst (%)

Pixel 85.84 65.42
Patch 88.16 74.18
Occ 87.69 73.55

#Patch Avg (%) Worst (%)

2X2 86.98 74.96
3X3 87.26 75.43
4X4 88.16 74.18
5X5 87.12 72.14
6X6 87.40 72.14

τPLPD Avg (%) Worst (%)

0.0 84.54 58.84
0.2 87.31 71.67
0.3 87.72 72.93
0.4 87.45 71.67
0.5 88.16 74.18
0.6 88.06 74.8
0.7 87.59 74.02

J EFFECT OF MULTIPLE OBJECT-PRESERVING AUGMENTATIONS

We compared the average PLPD measured by augmenting x multiple times through Aug-
Mix (Hendrycks et al., 2020) with the PLPD of pixel-shuffling, patch-shuffling, and center occlusion.
AugMix employs various object-preserving augmentations such as autocontrast, equalize, rotate,
and solarize, randomly applying them to create multiple augmented instances. Then, the augmented
instances are mixed with the original input. AugMix is also utilized in MEMO.

When using the average PLPD for a total of 4 mixed inputs in DeYO, it showed lower performance
than all three object-destructive transformation methods in both ColoredMNIST and Waterbirds as
shown in the Tab. 18. The AURC, which evaluates the reliability of PLPD, also exhibited worse
performance compared to the object-destructive transformations as shown in Tab. 14. Our proposed
PLPD needs to disrupt the shape of the object to function effectively. Through the AURC values, we
empirically confirmed that AugMix (object-preserving augmentation technique) cannot contribute
to measuring the impact on the CPR factor.

We conducted experiments in EATA and DeYO using average entropy over four AugMix augmen-
tations for entropy filtering. As indicated in the Tab. 19, this modification resulted in only marginal
performance improvements. The results show that the use of average entropy from augmented im-
ages is not beneficial to enhancing robustness against distribution shifts between training and infer-
ence phases.

Additionally, in DeYO, we experimented using multiple AugMix(x) as x′ for calculating PLPD.
AugMix employs various object-preserving augmentations such as autocontrast, equalize, rotate,
and solarize, randomly applying them to create multiple augmented instances. Then, the augmented
instances are mixed with the original input. AugMix is also utilized in MEMO.

Table 18: The effect of multiple object-preserving augmentations on PLPD.

ColoredMNIST Waterbirds

Avg Acc (%) Worst Acc (%) Avg Acc (%) Worst Acc (%)

DeYO with 8× x′
AugMix 53.53 4.19 82.94 60.75

DeYO with x′
pix 69.68 50.78 85.11 64.17

DeYO with x′
occ 74.56 62.06 86.78 74.96

DeYO with x′
pat 77.61 65.51 86.56 74.18

Table 19: The effect of multiple object-preserving augmentations on EATA and DeYO.

ColoredMNIST Waterbirds

Avg Acc (%) Worst Acc (%) Avg Acc (%) Worst Acc (%)

EATA 60.29 16.99 83.42 57.48
EATA with 4× AugMix(x) 60.29 17.00 83.60 57.94
DeYO 77.61 65.51 86.56 74.18
DeYO with 4× AugMix(x) 77.83 65.58 86.81 74.45
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K EFFECT OF PLPD DURING PRE-TRAINING

We experimented with utilizing PLPD-based filtering during pre-training. For Waterbirds, during
a total of 200 epochs, the initial 50 epochs were trained conventionally, followed by 150 epochs
where only samples with PLPD greater than the threshold of 0.2 were used for pre-training. As
shown in Tab. 20, after implementing PLPD filtering, the performance is 5.82% higher compared to
the original result on Tent. Similarly, the performance of DeYO also improves by 3.48%.

Table 20: The effect of PLPD during pre-training stage. With a PLPD filtering, the model shows
performance improvements after TENT and DeYO.

Tent DeYO

Avg Acc (%) Worst Acc (%) Avg Acc (%) Worst Acc (%)

pre-training w/o PLPD 82.98 52.90 86.74 74.18
pre-training w/ PLPD 84.45 58.72 87.90 77.66

L EFFECT OF PLPD IN WILD SCENARIOS

Essentially, the enhancement in performance arising from excluding TRAP factors during adap-
tation, thereby increasing robustness against covariate shifts and spurious correlations in the wild
scenarios (label shifts and batch size 1), is the same as the mild scenario.

Label shifts and batch size 1 scenarios have the following characteristics.

i) Label shifts:

• An Input data stream is dependent on the ground truth class.

• When i.i.d. samples are present within a batch (a mild scenario), it’s possible to discern
which disentangled factors are emphasized for each class. However, in a label shifts sce-
nario, since all samples in a batch belong to the same class, this cannot be determined.

ii) Batch size 1:

• A model only uses a single image to update its parameter.

• When i.i.d. samples are present within a batch (a mild scenario), sample-specific noise is
reduced through loss averaging. However, in a batch size 1 scenario, this noise cannot be
reduced, increasing sample dependency.

According to our theoretical analysis, the increase in the weight of disentangled factors is propor-
tional to the value of the corresponding factors, as described in Appendix A. In general, without
PLPD filtering, during updates with batches where all samples have the ground truth label c in a
label shifts scenario, the weight of disentangled factors common to samples in the batch increases
proportionally to the corresponding factors’ values. In a batch size 1 scenario, the weight of all dis-
entangled factors in the current sample increases proportionally to the values of the corresponding
factors.

Using only entropy, weights for class c still increase regardless of its CPR and TRAP factors. Con-
sequently, in samples with a different ground truth c′ ̸= c, the increased weights related to class c
result in larger logits of c, raising the likelihood of an incorrect prediction as class c. To maintain
the prediction of samples with ground truth c′, the value of updated weights’ corresponding factors
should be small to reduce logit changes. Without prior knowledge of distribution shifts, we infer that
CPR factors of class c hold smaller values in class c′. Thus, updating only the weights correspond-
ing to CPR factors of class c can preserve the prediction. Utilizing PLPD filtering, which focuses on
samples where the influence of CPR factors outweighs that of TRAP factors, allows for the selective
update of weights corresponding to CPR factors of class c while minimizing the change in weights
for TRAP factors. Therefore, using PLPD filtering can preserve the original predictions of samples
with different ground truths.
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Compared to a mild scenario, wild scenarios suffer from a lack of diversity in batch information
of the distribution of disentangled factors or even proceed with updates using a single image. It
exacerbates optimization stability and provokes stochasticity issues. Consequently, the drawbacks
of entropy are more pronounced in wild scenarios than in mild ones, leading to a significant per-
formance decline of baseline methods. In contrast, information on CPR/TRAP factors, which only
DeYO discriminates, is less affected by the batch size or class dependency of an input stream com-
pared to entropy, offering improved robustness.

M LIMITATIONS

Identifying all the CPR factors present in an input image is practically impossible. In other words,
achieving a perfect PLPD is practically impossible. Therefore, we focused on one of the fundamental
components of human visual perception – the shape of objects – for a reliable PLPD. In cases where
a model provides accurate predictions based on specific local features, these predictions remain
unaltered even after patch-shuffling augmentation, resulting in a low PLPD value. Therefore, it might
be less useful to identify beneficial samples for TTA through a high PLPD strategy. Through the
ablation studies, it is evident that PLPD-based sample selection has an advantage over entropy.
However, observing that entropy retains its strength in sample weighting, it appears that the effects
of PLPD in sample weighting can be explored. These limitations suggest moving beyond the current
approach, which relies solely on the last layer (softmax). We think that exploring the intermediate
feature maps makes it possible to obtain other CPR factors in different hierarchies.
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