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Abstract

Humans inherently consider the consequences of their actions during decision-
making, often visualizing the outcomes before executing a choice. Actor-critic
algorithms, a cornerstone in reinforcement learning, typically involve a critic
evaluating actions proposed by the actor. This evaluation mechanism, unlike in
value-based methods such as Deep Q-Network, explicitly incorporates action infor-
mation. However, this setup imposes a dual burden on the critic: (I) understanding
the immediate utility of an action on the environment, and (II) discerning its future
implications. Our research aims to offload the first component by leveraging a
model-based RL framework to enhance the critic’s predictive capabilities. We posit
that actions culminating in the same subsequent state are functionally equivalent.
Through experiments in continuous control tasks like robot operation and artis-
tic creation, we demonstrate the superiority of our approach, establishing a new
paradigm in actor-critic methodologies.

1 Introduction

Addressing complex tasks through high-dimensional sensory inputs remains a formidable challenge
in the realm of reinforcement learning, where Actor-Critic algorithms are frequently employed.
These algorithms typically involve a dual learning process: the critic assesses future outcomes
using temporal-difference learning, while the actor is refined to select optimal actions. Recent
advancements have predominantly focused on enhancing the actor, such as introducing sophisticated
loss formulations or multi-phase decision frameworks.

In the actor-critic paradigm, the critic’s role is pivotal. It not only appraises actions based on explicit
action representations but also processes this information to predict future states, akin to human
strategizing in games like Tic-tac-toe. This analogy underscores the critic’s dual function: evaluating
action utility and forecasting subsequent states.

The concept of afterstate, as articulated in Sutton & Barto (2018) and Powell (2007), aligns with
this intuitive human approach, evaluating the state following an action’s execution. While existing
applications, ranging from board games to power network management, have explored this concept,
they often rely on predefined knowledge of the environment.

Our approach synergizes the model-based framework with the afterstate concept, shifting the burden
of discerning action utility onto the dynamics model. This allows the critic to concentrate on
evaluating the future value of actions. Our experiments across diverse continuous control tasks
validate the efficacy of this methodology, showcasing its ability to outperform traditional actor-critic
algorithms.

Our contributions are twofold: (i) highlighting the critic’s challenge in processing action utility
and (ii) integrating the afterstate concept into the critic’s evaluation process, thereby enhancing
decision-making efficiency in continuous control tasks.
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2 Problem setup

We consider a standard reinforcement learning setup consisting of an agent interacting with an
environment in discrete timesteps. Specifically, we consider a Markov Decision Process (MDP),
defined by a tuple {S,A, T ,R, γ} of states, actions, transition probability, reward function, and
a discount factor, respectively. When the action space A is continuous, it has a D-dimensional
continuous parameterization, ca ∈ RD. This kind of continuous parameterization of action space
has been applied to other domains, e.g., item-set in recommender systems where each item has
D-dimensional representations encoding product-specific information (Chen et al., 2019; Jain et al.,
2020). At each timestep t the agent receives an observation st, selects an action at then receives a
reward rt as well as the next observation st+1. Thus, the objective of the agent is to learn a policy
π(a|s) that maximizes the expected discounted reward over evaluation episodes, Eπ

[∑
t γ

t−1rt
]
.

In actor-critic methods, the policy πϕ (also known as the actor) is learning from the critic (Q(s, a)
evaluates action a in state s) via the deterministic policy gradient theorem (Silver et al., 2014):
∇ϕJ(ϕ) = Es∼pπ

[∇aQ
π(s, a)|a=πϕ(s)∇ϕπϕ(s)] where Qπ(s, a) = Esi∼pπ,ai∼π[Rt|s, a], the ex-

pected return given action a in state s and following the policy π after.

The critic is essentially different from the conventional state-action value-based methods (Mnih et al.,
2015) as it is processing the action representation directly. Thus, the critic’s task can be decomposed
as follows; (I) learning the utility of action on the environment, (II) learning the future consequence
of the action.

3 Relevant Works

3.1 Afterstate in RL

The concept of ’Afterstate’ or ’Poststate’ has been discussed in reinforcement learning literature,
particularly in Sutton & Barto (2018) and Powell (2007). Its application extends from board games,
as demonstrated in Szubert & Jaśkowski (2014), to larger-scale discrete tasks and power-supply
network management Matsuzaki (2021); Antonoglou et al. (2021); Yoon et al. (2021). In the domain
of computer vision, the use of DDPG Lillicrap et al. (2015) for tasks like painting, where a pre-trained
rendering function simulates environment dynamics, is notable. This contrasts with our method,
which involves training the dynamics model throughout the training process.

3.2 Equivalence in Tasks

The reduction of MDP complexity through task equivalence has been explored in various studies,
including MDP Homomorphisms and Bisimulation metrics Ravindran & Barto (2001, 2004); Van der
Pol et al. (2020); Rezaei-Shoshtari et al. (2022). These approaches focus on grouping states with
similar task characteristics, whereas our work emphasizes action representation through subsequent
states, suggesting an intriguing future research direction.

3.3 Model-based Reinforcement Learning

Contrasting with Environment Approximation Techniques in MBRL: Our approach marks a
departure from established MBRL methodologies, such as Model-Based Policy Optimization (MBPO)
by Janner et al. (2019), Stochastic Latent Actor-Critic by Lee et al. (2020), and the Dreamer series
by Hafner et al. (2019a, 2020, 2023). These methods typically utilize environment approximation
models for enhancing experience samples in replay buffers or aiding in planning. In contrast, our
approach is distinct in that it integrates these models directly into the agent’s loss formulation, carving
out a new trajectory in the application of MBRL.

Integration of Dynamics Models and Value Expansion: Our work also diverges from recent
advancements in the application of dynamics models within MBRL. Noteworthy methods in this
domain include Trajectory Planning techniques like Dreamer Hafner et al. (2019a, 2020, 2023),
TD-MPC Hansen et al. (2022), and REDQ Chen et al. (2021), as well as Value Expansion strategies
such as MVE Feinberg et al. (2018), MuZero Schrittwieser et al. (2020), and SVG Heess et al. (2015).
While these methods demonstrate significant progress in MBRL, they primarily focus on leveraging
action information in value expansion or policy updates. Our method, however, uniquely incorporates
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the environment approximation models directly into the loss formulation of the agent, representing a
distinct approach in the utilization of dynamics models in MBRL.

4 Proposition: Approximated Afterstate RL

In this section, we present the concept of the Afterstate framework and explain how we incorporate
this into the critic in the actor-critic framework.

4.1 Afterstate framework for reinforcement learning

By definition, using the state-value (V) the Q-value can be expanded as follows;
Q(st, at) = r(st, at) + γV (st+1) (1)

where V (st+1) =
∑

a∈A π(at+1|st+1)Q(st+1, at+1). Here, we assume that the environment is
deterministic so we have no expectation over st+1. In the supplementary material (Sec.2) we discuss
the limitation of this assumption in the aftertaste framework. Thus, the temporal difference update can
be formulated as V (s)← V (st) + α(r(st+1, at+1) + γV (st+2)− V (st)) where α is the learning
rate and γ is the discounting factor. In this formulation, we need the knowledge of future time-
steps, e.g., r(st+1, at+1), st+2. This can be done by either directly exploiting the knowledge of the
environment (Huang et al., 2019; Singh & Zheng, 2021; Xu & Zhang; Singh et al., 2021, 2022)(they
used the rendering function being used in the environment to train agents) or learning the dynamics
model (ftrans : S × A → S) and the reward model (frew : S × A → R). Thus, the policy can be
formulated as follows

π(s) = argmaxa∈A[frew(st, at) + γV (ftrans(st, at))]

This formulation shows that the value-based method delegates the task of imagining the next state
given the current step to the dynamics and the reward models. With this formulation, Szubert &
Jaśkowski (2014) proposed the afterstate value-based method and empirically showed its capability.

4.2 Afterstate RL for continuous control

Discrete policies cannot be directly scaled to continuous tasks. Yet, there is a number of work
addressing the continuous RL tasks in the community. Thus, we take DDPG (Lillicrap et al., 2015)
as an example to show how to realise the afterstate version of the critic in the actor-critic algorithms.

In the formulation of DDPG, let (si, ai, ri, si+1) a tuple that is randomly sampled from a replay
buffer and Q(s, a|θQ) and Q′(s, a|θQ′

) denote the critic network and the target critic network with
the corresponding weights, respectively, and µ(s|θµ) be the actor with the corresponding weights.

First, we derive the aftertaste modification to the critic’s temporal difference update with the state-
value network V (s|θV ) and the target state-value network V ′(s|θV ′

) by plugging Eq.1 in;

L =
1

N

∑
t

(
r(st, at) + γ(rt+2 + V ′(st+2|θV

′
))︸ ︷︷ ︸

r(st,at)+γQ′(st+1,at+1|θQ′ )

−
(
r(st, at) + γV (st+1|θV )︸ ︷︷ ︸

Q(st,at|θQ)

))2

(2)

Similarly, we can define the actor loss using the sampled policy gradient;

∇θµJ ≈ 1

N

∑
t

[
∇a

(
frew(s, a) + γ ∗ V (s′)︸ ︷︷ ︸

Q(s,a|θQ)

)∣∣∣∣∣ s=st
a=µ(st)

s′=ftrans(s,a)

×∇θµµ(s|θµ)
∣∣∣
s=st

]
(3)

As the aftertaste is a simple plug-in framework, all the other parts of the algorithm (Algorithm 1 of
(Lillicrap et al., 2015)) of DDPG remain the same.

The above formulation requires the dynamics model (ftrans) and the reward model (frew). In this
work, we do not assume the knowledge of the environment nor offline dataset to pretrain such models.
We use the model-based framework to train those models throughout training. The dynamics model
is trained to reconstruct the next state st+1 given the pair of (st, at) and the reward model is trained
to estimate the reward at the time-step. The details of the dynamics and the reward models can be
found in Sec.5. And the final algorithm, Approximated Afterstate DDPG, is described in Algorithm 1.
The important design choices have been explored in Sec.6.3.
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Algorithm 1 Approximated Afterstate DDPG
1: while not converged do
2: for update-step c = 1, · · ·C do
3: // Dynamics and Reward learning
4: Draw a batch of data samples {(at, ot, rt)}k+L

t=k from the replay buffer
5: Update ftrans and frew to minimize the predefined loss functions
6:
7: // Policy update
8: Update the critic by minimizing the loss Eq.2
9: Update the actor by the critic Eq.3

10: end for
11:
12: // Environment Interaction
13: for t = 1, · · ·T do
14: Select action a ∼ π(s) + ϵ where ϵ ∼ N (0, σ)
15: Observe reward r and new state s′

16: Store transition tuple (s, a, r, s′) in the replay buffer
17: end for
18: end for

5 Environments / Simulators

To illustrate the heaviness of learning the action utility on the environment and the effectiveness of
our method of approaching the issue, we evaluate our method on the following three simulators;
(1) Toy simulator of Pendulum where the state transition is predictable, (2) More advanced physics
simulators where the state transition is obscure, and (3) Painting on the canvas where the next state is
very difficult to predict due to the immense freedom of creativity. Figure 1 provides an overview of
the tasks.

5.1 Pendulum and Mujoco simulators

For physical control tasks, we used the suite of MuJoCo continuous control tasks (Todorov et al.,
2012), interfaced through OpenAI Gym (Brockman et al., 2016).

Dynamics and Reward Models: To focus on investigating the effectiveness of the afterstate frame-
work, we let agents directly observe the internal state of robots as working on the partial observation
(POMDP) comes with additional complexity, e.g., dealing with the vision-based observation that
requires an extra network to process images. The dynamics model in these asks is kept simple such
that we use the autoencoder (Bank et al., 2020) with encoder and decoder being a 2-layer MLP with
ReLU (Agarap, 2018) activation function in the middle. Thus, it minimises the following mean
squared loss (MSE); 1

N

∑N
i=1(si − ŝi)

2 where s represents the state sampled from the replay buffer.
Similarly, the reward model is an autoencoder with the same architecture as the dynamics model
except the output now being one-dimensional as the reward in these tasks is scalar. And the loss
function is also the same MSE as above with the state being the reward.

5.2 PaintGym

The task here is to reconstruct the target image by painting on the canvas with the given brush.
Given a target image I and an empty canvas C0, the agent learns to find a sequence of strokes
(a0, a1, · · · , an−1) such that rendering a stroke at on Ct returns Ct+1. Through a sequence of
interactions between the agent and canvas, the agent needs to produce the final canvas Cn that is as
visually similar to the target image I as possible. This task has been modelled as a Markov Decision
Process as follows (Huang et al., 2019; Singh & Zheng, 2021);
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Figure 2: Results on Pendulum and PaintGym aggregated over 5 to 7 random seeds.
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Figure 1: Task description of PaintGym.

MDP formulation: For state and State Transition, the state consists of three components st =
(Ct, It, t); the canvas, the target image, and the timestep index that conveys the information about the
remaining number of steps to the agent. The transition function is the rendering of the stroke on the
canvas. For action, we adopt the quadratic Bezier curve (QBC) as stroke representation to simulate
the effects of brushes. The shape of the Bezier curve is specified by three control points in the 2D
coordinate space of the canvas. Formally, the stroke is defined as the following;

at = (x0, y0, x1, y1, x2, y2, r0, t0, r1, t1, R,G,B) ∈ R13

where (xi, yi) is the coordinates of the i-th control points of the QBC, and (ri, ti) controls the
thickness and transparency of the two endpoints of the QBC respectively. Finally, for reward,
r(st, at) = Lt − Lt+1 is designed to encourage the agent to take action that can paint towards the
target image as similar as possible. Prior works Huang et al. (2019); Singh & Zheng (2021) used the
discriminator in WGAN Arjovsky et al. (2017) to give out rewards. Formally, the reward is obtained
by D(Ct+1, I)−D(Ct, I) where D is the discriminator.

Dataset: We employed the following three datasets: (I) MNIST (LeCun, 1998) is a classic image
classification dataset of hand-written digits consisting of 60,000 training images and 10,000 validation
images. Each example is a grayscale image of 28 × 28 pixels. (II) CUB-200 Birds (Wah et al., 2011)
is a large-scale bird-image dataset of 200 bird species commonly used in benchmarking visual
classification models. The dataset is considered as challenging as the images present high variation in
object background as well as scale, position and the relative saliency of the foreground bird. (III)
Anime dataset (Chen et al., 2018) is constructed by sampling images from the videos of stories from
Hayao Miyazaki. Since the dataset was not publicly available, we have decided to use another source1

for this dataset. The dataset consists of 1752 images that have been taken from "The Wind Rises" by
Hayao Miyazaki.

Dynamics and Reward Models: Similar to the ones in Mujoco tasks, we decided to use a conditional
Variational Auto-Encoder (VAE) (Sohn et al., 2015). Thus, the model takes as input st = Ct the
canvas (we do not use other state components as they are contributing little to the state transition) and
at being a brush stroke and learns to reconstruct the next canvas after executing the brush stroke. The
loss formulation follows the conventional VAE such that a combination of the generation loss and the
Kullback–Leibler divergence loss.

1https://github.com/TachibanaYoshino/AnimeGANv2
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Task AS-SAC (Ours) SAC TD3 DDPG
Ant 3778.6 ± 1107.6 3722.6 ± 926.5 3326.2 ± 1110.9 468.7 ± 205.1

Cheetah 10012.8 ± 960.3 8478.4 ± 1704.1 9585.8 ± 1304.2 7932.9 ± 1857.4
Hopper 2929.4 ± 488.6 1491.1 ± 1517.6 3201.2 ± 237.7 665.2 ± 311.8

Humanoid 2325.1 ± 1758.5 2325.2 ± 2235.2 4593.7 ± 1739.4 1908.9 ± 199.6
Pusher -476.0 ± 74.1 -390.3 ± 33.4 -401.2 ± 15.9 -465.1 ± 85.3

Reacher -41.5 ± 10.3 -52.0 ± 8.8 -55.6 ± 11.8 -91.4 ± 54.8
Swimmer 56.0 ± 17.8 48.5 ± 1.7 47.1 ± 3.3 136.1 ± 18.6
Walker2D 3641.4 ± 938.5 947.4 ± 756.8 1856.0 ± 969.4 1392.9 ± 559.2

Table 1: Episode return of evaluation episodes on Mujoco tasks. The numbers are in the format of
the mean ± STD. Results are aggregated over 4 to 7 random seeds. Bold numbers indicate the most
performant agent in each task.

6 Experiments

To examine the capability of the aftertaste framework, we design experiments to answer the following
questions; (1) If the afterstate framework is effective? (2) What is the effect of the learnt dynamics
and the reward models in Actor-critic algorithms? (3) What are important design choices? (4) Is the
effectiveness of the afterstate framework scale to other actor-critic algorithms?

6.1 Effectiveness of AS DDPG

We evaluate our proposition against the state of the art actor-critic algorithms, DDPG (Lillicrap et al.,
2015), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018), to validate the effectiveness of
the afterstate framework. Fig. 5.2 and Table. 5.2 show the comparison of our agent to the baselines
on the three continuous control environments and below we discuss the individual results.

Pendulum: Fig.5.2 shows that both our method and the baseline DDPG perform on par at the optimal
level in this toy task. This is expected as this task comes with an easily predictable transition that is
based on the action taken. We observed that our method shows a faster convergence than DDPG.

PaintGym: Fig.5.2 shows that in MNIST our method outperformed the baselines across all three
datasets. In CUB200 and ANIME datasets, the baselines show the sign of learning yet the convergence
speed is much slower than the one of our method. In particular, the handwritten characters in MNIST
images have a completely black background and this requires more crispy painting compared to the
images in the other datasets in the task. Thus, learning in MNIST can be more challenging than the
other datasets and we can see that all agents perform worse than the levels that they achieved in other
datasets.

Fig.3 shows the canvases at the final step in the evaluation episode as qualitative outcomes of agent
training. In MNIST images, our agents were able to paint clearly, especially the edge of handwritten
characters were reproduced. In more composite images from CUB200 and Anime datasets, the agent
was able to follow the colours in the target images but the boundary of objects, e.g., birds, people, or
some background objects in scenery.

Mujoco: Table.5.2 shows the comparison of our method to the baselines across different Mujoco tasks.
In the tasks of Cheetah, Reacher, Swimmer, and Walker2D, our method was able to outperform all
three baselines. But, in Ant, Humanoid, and Pusher, our agents fell short of the baseline performance.
In the following section, we further analysed those results from different perspectives.

In summary, as the effectiveness of the afterstate framework, we observed faster convergence in
Pendulum and PaintGym and better performance in PaintGym and some of Mujoco tasks.

6.2 Qualitative Analysis

We performed two different analyses to examine the effect of the afterstate framework.

Learnt value function: We analyse how the learnt value functions between ours and the baseline
are different by evaluating Q-values on all the discredited actions of the 1-dimensional action space
([−2, 2]) of the Pendulum simulator. In the initial state of the Pendulum task, the direction of swinging
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Figure 3: Qualitative performance painting after training. The first row is the target images and the
second row is the painted canvases. The same pair of roles apply to the following rows as well.

the pendulum does not matter as we can just swing in the opposite direction subsequently to utilise
the inertia. Fig.4 shows that our learnt value function (Left) models this well such that it puts a high
value to both edges of the action space whereas the one of the baseline (Right) has learnt to prefer the
right direction. We have to note that as Fig.5.2 shows, in the end, both methods achieve the same
optimality but ours had the faster convergence.

Figure 4: (Left) AS-SAC (Ours) and (Right) Baseline SAC: Screenshot of Pendulum simulation along
with the plot of Q-values evaluated at 200 discretised actions at the initial state.

6.3 Design choices

We performed a series of comparisons to investigate the performance differences with regard to the
design choices in Table.6.3. First, let us describe our variants in the following;

Latent-state or full-State for afterstate (AS-SAC-Latent): Recent works of the model-based
RL (Lee et al., 2020; Hafner et al., 2019b) show the promising capability of planning in the latent
space. So, we hypothesize that the latent state space can benefit in the afterstate framework by
offering lower dimensionality as well as smooth state transition capturing the underlying dynamics.
So, we implemented the AS-SAC-Latent that employs the critic which takes as input the following;
(st, zt+1 = ftrans-enc(st, at)), thus, the critic can focus on learning the state value in the latent state
space.

With or Without Current state as input (AS-SAC-SingleInput): In principle, the afterstate based
critic relies on the next state in value computation. However, we hypothesize that adding the previous
state as input can help the critic to induce the action taken between the current and the predicted next
states. So, we implemented the AS-SAC-SingleInput that does not input the current state as input and
purely relies on the predicted next state in value computation.
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With or Without Reward in Actor’s update (AS-SAC-AR): In the actor’s loss formulation (Eq.3),
we hypothesize that the actor can have choices whether to maximise the predicted immediate reward
from the reward model or follow the critic. So, we implemented the AS-SAC-AR that uses the
predicted reward in the actor’s update.

Result: We observed that missing the current state information harmed the performance of the agent
and the immediate reward signal helps the actor learn. Surprisingly, the latent afterstate did not seem
to help in our experiments.

Task AS-SAC (Ours) AS-SAC-SingleInput AS-SAC-Latent AS-SAC-AR
Ant 3778.6 ± 1107.6 -629.9 ± 1642.9 1283.1 ± 2869.3 4396.1 ± 1430.2

Cheetah 10012.8 ± 960.3 6221.2 ± 938.0 6221.2 ± 938.0 9430.8 ± 1917.2
Hopper 2929.4 ± 488.6 1220.6 ± 371.8 1330.9 ± 609.6 2925.8 ± 541.1

Humanoid 2325.1 ± 1758.5 150.3 ± 104.6 371.7 ± 111.1 3388.6 ± 1843.1
Swimmer 56.0 ± 17.8 41.7 ± 9.7 67.2 ± 38.3 49.5 ± 1.1
Walker2D 3641.4 ± 938.5 264.1 ± 134.2 811.3 ± 621.8 3533.1 ± 739.1

Table 2: Result of design choice experiments on different Mujoco tasks aggregated over 4 to 7 random
seeds.

6.4 Consistency check

Afterstate is a rather general framework so we investigated its applicability in all the baselines to see
if it improves the performance as we observed in Fig.5.2 and Table.5.2. Table.3 shows the results of
the application of the afterstate framework to the baselines and we observe that in many of Mujoco
tasks, the aftertaste framework helps in those agents. We also observe that there are some tasks
(Humanoid, Pusher, Reacher) afterstate-integrated agents consistently perform poorly. A thorough
investigation of these tasks can be an interesting future direction.

Task SAC AS-SAC-State TD3 AS-TD3-State DDPG AS-DDPG-State
Ant 3722.6 ± 926.5 3778.6 ± 1107.6 3326.2 ± 1110.9 4473.4 ± 837.4 468.7 ± 205.1 1863.1 ± 284.6

Cheetah 8478.4 ± 1704.1 10012.8 ± 960.3 9585.8 ± 1304.2 8971.5 ± 1715.3 7932.9 ± 1857.4 9520.1 ± 1578.0
Hopper 1491.1 ± 1517.6 2929.4 ± 488.6 3201.2 ± 237.7 3223.2 ± 370.7 665.2 ± 311.8 1187.1 ± 270.1

Humanoid 2325.2 ± 2235.2 2325.1 ± 1758.5 4593.7 ± 1739.4 2750.4 ± 2689.2 1908.9 ± 199.6 854.2 ± 462.4
Pusher -390.3 ± 33.4 -476.0 ± 74.1 -401.2 ± 15.9 -523.5 ± 67.7 -465.1 ± 85.3 -566.6 ± 167.6

Reacher -52.0 ± 8.8 -41.5 ± 10.3 -55.6 ± 11.8 -69.7 ± 21.6 -91.4 ± 54.8 -117.1 ± 62.1
Swimmer 48.5 ± 1.7 56.0 ± 17.8 47.1 ± 3.3 50.1 ± 1.1 136.1 ± 18.6 143.5 ± 24.2
Walker2D 947.4 ± 756.8 3641.4 ± 938.5 1856.0 ± 969.4 3899.7 ± 521.0 1392.9 ± 559.2 299.0 ± 53.7

Table 3: Bold numbers indicate a greater value within the same class of algorithm.

6.5 Optimality check in Toy Pendulum

To investigate the optimality of the learnt agent in the toy experiment, we implemented the ground-
truth dynamics and reward models in the Pendulum task to train our agent. In the plot, AS-SAC (GT)
is the one implemented in this section such that SAC with the ground truth dynamics and the reward
models and AS-SAC (Ours), SAC are from the main experiment (Fig.5.2) of the main text. Fig.5
shows that Ours and GT have converged to almost the same optimality, meaning that our agent was
able to learn as well as the aftertaste framework with ground-truth access.
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Figure 5: Result of comparison with ground-truth dynamics and reward models in Pendulum task.
Aggregated over 4 random seeds.

6.6 Limitation: Benchmarking with Model-based RL State-of-the-Art

To analyse our method more, we have employed the State-of-the-Art model-based RL method,
Model-Based Policy Optimization (MBPO; (Janner et al., 2019)), to benchmark on Mujoco tasks.
Fig. ?? shows that the performances of SAC, MBPO on SAC (MBPO), and SAC with Afterstate
extension (AS-SAC). We followed all the hyper-parameter settings in the original work of (Janner
et al., 2019) and implemented our method based on the public repository2.
A word of warning: the public implementation of MBPO relies on a different version of Mujoco
and a different environment configuration where the agent only interact with one environment to
emphasise the sample efficency whereas all our experiments (e.g., Table.5.2) are conducted on the
vector environment that agents interact with a batch of environments. Thus, these factors led to the
difference in the results.

In all tasks, our method outperforms SAC, yet, in the tasks of Ant, Cheetah, and Hopper, we
observed the better sample efficiency of MBPO. Yet, in most tasks (Cheetah, Hopper, and Walker2d),
our method was able to reach the similar optimality. In particular in Walker2D, we were able to
beat MBPO. Although we omitted from the plots, interestingly, we empirically observed that the
combination of MBPO and the aftertaste framework did not offer improvements. This can be partly
because, in the afterstate framework, we compute r(st+1, at+1), st+2 (See Sec.4.1) based on those
hallucinated samples that can incorporate some errors and 95 per cent (Appendix C of (Janner et al.,
2019)) of samples used to update the agent are the model-generated ones. Thus, this can cause
compounding errors. Yet, further analysis is needed to conclude.

7 Conclusion

We present the afterstate framework combined with the model-based RL in the actor-critic algorithms
for continuous tasks. Our method leverages the environment models (i.e., the dynamics and the
reward models) in learning the future value for the critic and updating the actor. We demonstrate that
learning the knowledge of the environment is helpful for optimal decision-making in three continuous
tasks.

8 Reproducibility Statement

To guarantee that our findings can be replicated, we’ve included our code in the supplementary
materials. This code encompasses all the necessary environments and baseline methods mentioned in
our paper. Additionally, you can find information about the hyperparameters for our experimental
setting in Appendix C.

2https://github.com/Xingyu-Lin/mbpo_pytorch
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A Appendix

B DQN on Highly stochastic environment

Real-world tasks naturally come with certain stochasticity involved. Yet, the afterstate framework
assumes the correspondence of action and the next state, in other words, it assumes the 1-to-1 mapping
between the action and the next state. So, we decided to deploy our agent to a stochastic environment
to examine the heaviness of this assumption. Finally, as a representative of real-world stochastic tasks,
we chose to use the recommender systems that exhibit the stochasticity nature of user behaviour
(e.g., a user might consider the movie "Titanic 1997" as an epic romance movie but another user can
consider it as a disaster movie ) in the task.

B.1 RecSim

The simulated RecSys environment RecSim (Ie et al., 2019; Jain et al., 2021), requires an agent to
select an item that matches the user’s interest from a large item set. In this environment, users have
been implemented with a dynamically changing preference upon clicks. Thus, the task for agents
is to infer this changing user preference from user clicks and recommend the most relevant item to
maximize the total number of clicks in the episode. The details of the MDP setting can be found in
(Ie et al., 2019; Jain et al., 2021) but let us briefly describe the important components.

State and Transition: The user interest embedding (eu ∈ Rn where n denotes the number of
categories of items) represents the user interest in categories that change over time as the user
consumes items upon click. Upon the user clicks an item with the item representation (ei ∈ Rn; the
same n), the user interest embedding updates as follows;

∆(eu) = (−y|eu|+ y) · (1− eu), for y ∈ [0, 1]

ei ← eu +∆(eu) with probability[eTu ei + 1]/2

eu ← eu −∆(eu) with probability[1− eTu ei]/2

Action: The set of recommendable items is given to the agent. Thus, the agent has to find the most
relevant item to a user given this item set.

Reward: The reward is simulated user feedback (i.e., clicks). The user model (Ie et al., 2019) stochas-
tically skips or clicks the recommended item based on the present preference (eu) by computing the
following score;

scoreitem = ⟨eu, ei⟩

pitem =
escoreitem

esitem + escoreskip

pskip =
escoreskip

esitem + escoreskip

where ⟨·, ·⟩ is the dot product notation and scoreskip is a task hyper-parameter. Finally, the user model
stochastically selects either click(reward=1) or skip(reward=0) based on the categorical distribution
on [pitem, pskip].

Item Representations: Following Jain et al. (2021), we implement continuous item representations
sampled from a Gaussian Mixture Model (GMM) with centres around each item category. Note that,
in this work, we do not use the sub-category in the category system.

Dynamics and Reward Models: To focus on investigating the effectiveness of the afterstate frame-
work, we employ the same simple DNNs for the dynamics and the reward models as Mujoco tasks in
the main text. The same autoencoders (Bank et al., 2020) with encoder and decoder being a 2-layer
MLP with ReLU (Agarap, 2018) activation function in the middle are used for the dynamics and the
reward models. The same loss formulation as Mujoco tasks has been used.

B.2 Agents

To implement the afterstate framework in the agents for RecSim, we chose to use DQN (Mnih et al.,
2015) that has been augmented with the item representation as input Jain et al. (2020, 2021); Ie
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et al. (2019) such that DQN takes as input state (user representation eu ∈ Rn) and action (item
representation ei ∈ Rn). So in the experiments, we compared the following agents; (i) AS-DQN: We
integrated the afterstate framework in DQN by expanding the Q-value in the decision-making like
(Szubert & Jaśkowski, 2014; Matsuzaki, 2021);

π(s) = argmaxa∈Afrew(s, a) + V (ftrans(s, a))

The temporal difference loss (TD-loss) is the same as the critic formulated in the main text. (ii)
AS-DQN-Latent: To see if the dimension reduction of the latent space helps, we added this variation.

B.3 Result

Recall that we hypothesized that the afterstate framework suffers in a stochastic state transition, like
recommender systems, in the task. First of all, Fig.7 (Left) shows that AS-DQN fails to learn to solve
the task whereas the baseline DQN learns to perform well. To investigate the cause, we checked
the following factors; (i) Dynamics model training went well thus the loss curve looked almost the
same as the ones in the main experiment of Sec.5 so we do not show here, (ii) Reward model training
suffers from the stochasticity of the user model. This can be seen in Fig.7 (Middle), (iii) Plot of the
standard derivation of Q-values (Right-most plot of Fig.7) shows that our variants fail to differentiate
actions as the plot shows that our variants have assigned similar Q-values to all actions whereas
the baseline DQN increased the standard derivation, which implies that the baseline DQN learns to
distinguish actions.
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Figure 7: (Left) Comparisons of our variants to the baseline DQN regarding Episode return, (Middle)
Reward loss curve of our variants, (Right) Standard Deviation of Q-values in decision-making of our
variants. All results are aggregated over 4 random seeds.

C Implementation Details

We used PyTorch (Paszke et al., 2019) for our implementation, and the experiments were primarily
conducted on workstations with either NVIDIA P40 or V100 GPUs on NAVER Smart Machine
Learning platform (NSML) (Kim et al., 2018). Each experiment seed takes about 1 hour for
Mujoco and Pendulum tasks and 17 hours for PaintGym to converge. We use the Weights & Biases
tool (Biewald, 2020) for logging and tracking experiment runs. All the environments were developed
using the OpenAI Gym interface (Brockman et al., 2016).

C.1 Hyperparameters

C.2 Network architectures: Pendulum and Mujoco tasks

1 # Actor
2 Actor(
3 (l1): Linear(in_features=dim -action , out_features =256, bias=True)
4 (l2): Linear(in_features =256, out_features =256, bias=True)
5 (mean_linear): Linear(in_features =256, out_features =8, bias=True)
6 (log_std_linear): Linear(in_features =256, out_features =8, bias=True)
7 )
8 # Critic
9 dim = dim -state if if_afterstate else dim -state + dim -action

10 Critic(
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Hyperparameter Pendulum MUJOCO PaintGym RecSim

Environment

Total timesteps 1M 10M 2.5M 1M
Parallel environments 16 16 16 16
max episode steps 100 1000 50 20

RL Training

Actor lr 0.001 0.001 0.0001 0.0001
Critic lr 0.001 0.001 0.001 0.001
Batch size 256 256 256 256
Buffer size 500K 500K 500K 500K
Critic gamma 0.99 0.99 0.99 0.99
Actor eval epsilon 0 0 0 0
Critic eval epsilon 0 0 0 0

Table 4: Environment/Policy-specific Hyperparameters

11 (l1): Linear(in_features=dim , out_features =256, bias=True)
12 (l2): Linear(in_features =256, out_features =256, bias=True)
13 (l3): Linear(in_features =256, out_features =1, bias=True)
14 (l4): Linear(in_features =64, out_features =256, bias=True)
15 (l5): Linear(in_features =256, out_features =256, bias=True)
16 (l6): Linear(in_features =256, out_features =1, bias=True)
17 )
18

19 # State Model
20 Model(
21 (_enc): Sequential(
22 (0): Linear(in_features=dim -state + dim -action , out_features =256,

bias=True)
23 (1): ReLU()
24 (2): Linear(in_features =256, out_features =32, bias=True)
25 )
26 (_dec): Sequential(
27 (0): Linear(in_features =32, out_features =256, bias=True)
28 (1): ReLU()
29 (2): Linear(in_features =256, out_features =27, bias=True)
30 )
31 (criterion): MSELoss ()
32 )
33

34 # Reward Model
35 Model(
36 (_enc): Sequential(
37 (0): Linear(in_features=dim -state + dim -action , out_features =256,

bias=True)
38 (1): ReLU()
39 (2): Linear(in_features =256, out_features =32, bias=True)
40 )
41 (_dec): Sequential(
42 (0): Linear(in_features =32, out_features =256, bias=True)
43 (1): ReLU()
44 (2): Linear(in_features =256, out_features =1, bias=True)
45 )
46 (criterion): MSELoss ()
47 )
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C.3 Network architectures: PaintGym

We employed the same architecture for Actor, Critic, and the reward model as (Huang et al., 2019)3

so let us describe our cVAE-based state model.

1 cVAE(
2 (encoder): Encoder(
3 (encode): Sequential(
4 (0): Conv2d(3, 16, kernel_size =(5, 5), stride =(1, 1))
5 (1): BatchNorm2d (16, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
6 (2): ReLU(inplace=True)
7 (3): Conv2d (16, 32, kernel_size =(5, 5), stride =(1, 1))
8 (4): BatchNorm2d (32, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
9 (5): ReLU(inplace=True)

10 (6): MaxPool2d(kernel_size =2, stride=2, padding=0, dilation=1,
ceil_mode=False)

11 (7): Conv2d (32, 64, kernel_size =(3, 3), stride =(1, 1))
12 (8): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
13 (9): ReLU(inplace=True)
14 (10): Conv2d (64, 64, kernel_size =(3, 3), stride =(1, 1))
15 (11): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
16 (12): ReLU(inplace=True)
17 (13): MaxPool2d(kernel_size =2, stride=2, padding=0, dilation=1,

ceil_mode=False)
18 (14): Flatten ()
19 (15): MLP(
20 (mlp): Sequential(
21 (Linear_0): Linear(in_features =50176 , out_features =256, bias

=True)
22 (BatchNorm_0): BatchNorm1d (256, eps=1e-05, momentum =0.1,

affine=True , track_running_stats=True)
23 (ReLU_0): ReLU(inplace=True)
24 (Linear_1): Linear(in_features =256, out_features =128, bias=

True)
25 (BatchNorm_1): BatchNorm1d (128, eps=1e-05, momentum =0.1,

affine=True , track_running_stats=True)
26 (ReLU_1): ReLU(inplace=True)
27 )
28 )
29 )
30 (calc_mean): MLP(
31 (mlp): Sequential(
32 (Linear_0): Linear(in_features =160, out_features =64, bias=True

)
33 (BatchNorm_0): BatchNorm1d (64, eps=1e-05, momentum =0.1, affine

=True , track_running_stats=True)
34 (ReLU_0): ReLU(inplace=True)
35 (Linear_1): Linear(in_features =64, out_features =32, bias=True)
36 )
37 )
38 (calc_logvar): MLP(
39 (mlp): Sequential(
40 (Linear_0): Linear(in_features =160, out_features =64, bias=True

)
41 (BatchNorm_0): BatchNorm1d (64, eps=1e-05, momentum =0.1, affine

=True , track_running_stats=True)
42 (ReLU_0): ReLU(inplace=True)
43 (Linear_1): Linear(in_features =64, out_features =32, bias=True)
44 )

3See Appendix 7.1: https://arxiv.org/pdf/1903.04411.pdf
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45 )
46 )
47 (decoder): Decoder(
48 (decode): Sequential(
49 (0): MLP(
50 (mlp): Sequential(
51 (Linear_0): Linear(in_features =64, out_features =64, bias=

True)
52 (BatchNorm_0): BatchNorm1d (64, eps=1e-05, momentum =0.1,

affine=True , track_running_stats=True)
53 (ReLU_0): ReLU(inplace=True)
54 (Linear_1): Linear(in_features =64, out_features =128, bias=

True)
55 (BatchNorm_1): BatchNorm1d (128, eps=1e-05, momentum =0.1,

affine=True , track_running_stats=True)
56 (ReLU_1): ReLU(inplace=True)
57 (Linear_2): Linear(in_features =128, out_features =256, bias=

True)
58 (BatchNorm_2): BatchNorm1d (256, eps=1e-05, momentum =0.1,

affine=True , track_running_stats=True)
59 (ReLU_2): ReLU(inplace=True)
60 (Linear_3): Linear(in_features =256, out_features =49152 , bias

=True)
61 )
62 )
63 (1): Sigmoid ()
64 )
65 )
66 (label_embedding): Sequential(
67 (0): Linear(in_features =65, out_features =32, bias=True)
68 )
69 (a2img_encoder): Sequential(
70 (0): Conv2d (67, 64, kernel_size =(1, 1), stride =(1, 1))
71 (1): TReLU ()
72 (2): Conv2d (64, 64, kernel_size =(1, 1), stride =(1, 1))
73 (3): TReLU ()
74 (4): Conv2d (64, 32, kernel_size =(1, 1), stride =(1, 1))
75 (5): TReLU ()
76 (6): Flatten ()
77 (7): Linear(in_features =131072 , out_features =128, bias=True)
78 (8): TReLU ()
79 (9): Linear(in_features =128, out_features =32, bias=True)
80 )
81 (_criterion): BCELoss ()
82 )

C.4 Network architectures: RecSim

1 # Note: DQN’s input is 3D-tensor -> (batch -size x num -actions x dim -
state + dim -action)

2 DQN(
3 (0): Linear(in_features=dim -state + dim -action , out_features =128,

bias=True)
4 (1): ReLU()
5 (2): Linear(in_features =128, out_features =64, bias=True)
6 (3): ReLU()
7 (4): Linear(in_features =64, out_features =1, bias=True) # Output Q-

values for each action: batch -size x num -actions
8 )
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