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Abstract

Calculation of Bayesian posteriors and model evidences typically requires numer-
ical integration. Bayesian quadrature (BQ), a surrogate-model-based approach to
numerical integration, is capable of superb sample efficiency, but its lack of paralleli-
sation has hindered its practical applications. In this work, we propose a parallelised
(batch) BQ method, employing techniques from kernel quadrature, that possesses
an empirically exponential convergence rate. Additionally, just as with Nested Sam-
pling, our method permits simultaneous inference of both posteriors and model evi-
dence. Samples from our BQ surrogate model are re-selected to give a sparse set of
samples, via a kernel recombination algorithm, requiring negligible additional time
to increase the batch size. Empirically, we find that our approach significantly out-
performs the sampling efficiency of both state-of-the-art BQ techniques and Nested
Sampling in various real-world datasets, including lithium-ion battery analytics.2

1 Introduction

Many applications in science, engineering, and economics involve complex simulations to explain the
structure and dynamics of the process. Such models are derived from knowledge of the mechanisms
and principles underlying the data-generating process, and are critical for scientific hypothesis-
building and testing. However, dozens of plausible simulators describing the same phenomena often
exist, owing to differing assumptions or levels of approximation. Similar situations can be found in
selection of simulator-based control models, selection of machine learning models on large-scale
datasets, and in many data assimilation applications [28].

In such settings, with multiple competing models, choosing the best model for the dataset is crucial.
Bayesian model evidence gives a clear criteria for such model selection. However, computing
model evidence requires integration over the likelihood, which is challenging, particularly when
the likelihood is non-closed-form and/or expensive. The ascertained model is often applied to
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produce posteriors for prediction and parameter estimation afterwards. There are many algorithms
specialised for the calculation of model evidences or posteriors, although only a limited number of
Bayesian inference solvers estimate both model evidence and posteriors in one go. As such, costly
computations are often repeated (at least) twice. Addressing this concern, nested sampling (NS)
[71, 46] was developed to estimate both model evidence and posteriors simultaneously, and has been
broadly applied, especially amongst astrophysicists for cosmological model selection [63]. However,
NS is based on a Monte Carlo (MC) sampler, and its slow convergence rate is a practical hindrance.

To aid NS, and other approaches, parallel computing is widely applied to improve the speed of
wall-clock computation. Modern computer clusters and graphical processing units enable scientists
to query the likelihood in large batches. However, parallelisation can, at best, linearly accelerate NS,
doing little to counter NS’s inherently slow convergence rate as a MC sampler.

This paper investigates batch Bayesian quadrature (BQ) [65] for fast Bayesian inference. BQ solves
the integral as an inference problem, modelling the likelihood function with a probabilistic model
(typically a Gaussian process (GP)). Gunter et al. [37] proposed Warped sequential active Bayesian
integration (WSABI), which adopts active learning to select samples upon uncertainty over the
integrand. WSABI showed that BQ with expensive GP calculations could achieve faster convergence
in wall time than cheap MC samplers. Wagstaff et al. [78] introduced batch WSABI, achieving even
faster calculation via parallel computing and became the fastest BQ model to date. We improve upon
these existing works for a large-scale batch case.

2 Background

Vanilla Bayesian quadrature While BQ in general is the method for the integration, the functional
approximation nature permits solving the following integral Z and obtaining the surrogate function
of posterior p(x) simultaneously in the Bayesian inference context:

p(x) =
ℓtrue(x)π(x)

Z
=

ℓtrue(x)π(x)∫
ℓtrue(x)π(x) dx

, (1)

where both ℓtrue(x) (e.g. a likelihood) and π(x) (e.g. a prior) are non-negative, and x ∈ Rd is a
sample, and is sampled from prior x ∼ π(x). BQ solves the above integral as an inference problem,
modelling a likelihood function ℓ(x) by a GP in order to construct a surrogate model of the expensive
true likelihood ℓtrue(x). The surrogate likelihood function ℓ(x) is modelled:

ℓ | y ∼ GP(ℓ;my, Cy), (2a)

my(x) = K(x,X)K(X,X)−1y, (2b)

Cy(x, x
′) = K(x, x′)−K(x,X)K(X,X)−1K(X, x′), (2c)

where X ∈ Rn×d is the matrix of observed samples, y ∈ Rn is the observed true likelihood values,
K is the kernel. 3 Due to linearity, the mean and variance of the integrals are simply

E[Z | y] =
∫

my(x)π(x) dx, (3a)

Var[Z | y] =
∫∫

Cy(x, x
′)π(x)π(x′) dxdx′. (3b)

In particular, (3) becomes analytic when π(x) is Gaussian and K is squared exponential kernel,
K(X, x) = v

√
|2πW|N (X;x,W), where v is kernel variance and W is the diagonal covariance

matrix whose diagonal elements are the lengthscales of each dimension. Since both the mean and
variance of the integrals can be calculated analytically, posterior and model evidence can be obtained
simultaneously. Note that non-Gaussian prior and kernel are also possible to be chosen for modelling
via kernel recombination (see Supplementary). Still, we use this combination throughout this paper
for simplicity.

3In GP modelling, the GP likelihood function is modelled as GP(0,K), and (2) is the resulting posterior GP.
Throughout the paper, we refer to a symmetric positive semi-definite kernel just as a kernel. The notations ∼
and | refer to being sampled from and being conditioned, respectively.
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Warped Bayesian quadrature (WSABI) WSABI with linearisation approximation (WSABI-
L) adopts the square-root warping GP for non-negativity with linearisation approximation of the
transform ℓ̃ 7→ ℓ = α + 1

2 ℓ̃
2. 4 The square-root GP is defined as ℓ̃ ∼ GP(ℓ̃; m̃y, C̃y), and we have

the following linear approximation:

ℓ | y ∼ GP(ℓ;mL
y , C

L
y ), (4a)

mL
y (x) = α+

1

2
m̃y(x)

2, (4b)

CL
y (x, x′) = m̃y(x)C̃y(x, x

′)m̃y(x
′). (4c)

Gaussianity implies the model evidence Z and posterior p(x) remain analytical (see Supplementary).

Kernel quadrature in general kernel quadrature (KQ) is the group of numerical integration rules
for calculating the integral of function classes that form the reproducing kernel Hilbert space (RKHS).
With a KQ rule Qw,X given by weights w = (wi)

n
i=1 and points X = (xi)

n
i=1, we approximate the

integral by the weighted sum

Qw,X(h) :=

n∑
i=1

wih(xi) ≈
∫

h(x)π(x) dx, (5)

where h is a function of RKHS H associated with the kernel K. We define its worst-case error by
wce(Qw,X) := sup∥h∥H≤1|Qw,X(h)−

∫
h(x)π(x) dx|. Surprisingly, it is shown in [48] that we have

Var[Z | y] = inf
w

wce(Qw,x)
2. (6)

Thus, the point configuration in KQ with a small worst-case error gives a good way to select points to
reduce the integral variance in Bayesian quadrature.

Random Convex Hull Quadrature (RCHQ) Recall from (5) and (6) that we wish to approximate
the integral of a function h in the current RKHS. First, we prepare n− 1 test functions φ1, . . . , φn−1

based on M sample points using the Nyström approximation of the kernel: φi(x) := u⊤
i K(Xnys, x),

where ui ∈ RM is the i-th eigenvector of K(Xnys,Xnys). If we let λi be the i-th eigenvalue of the
same matrix, the following gives a practical approximation [55]:

K0(x, y) :=

n−1∑
i=1

λ−1
i φi(x)φi(y). (7)

Next, we consider extracting a weighted set of n points (wquad,Xquad) from a set of N points Xrec
with positive weights wrec. We do it by the so-called kernel recombination algorithm [59, 75], so that
the measure induced by (wquad,Xquad) exactly integrates the above test functions φ1, . . . , φn−1 with
respect to the measure given by (wrec,Xrec) [44].

In the actual implementation of multidimensional case, we execute the kernel recombination not
by the algorithm [75] with the best known computational complexity O(CφN + n3 log(N/n))

(where Cφ is the cost of evaluating (φi)
n−1
i=1 at a point), but the one of [59] using an LP solver

(Gurobi [38] for this time) with empirically faster computational time. We also adopt the randomized
SVD [40] for the Nyström approximation, so we have a computational time empirically faster than
O(NM +M2 log n+Mn2 log(N/n)) [44] in practice.

3 Related works

Bayesian inference for intractable likelihood Inference with intractable likelihoods is a long-
standing problem, and a plethora of methods have been proposed. Most infer posterior and evidence
separately, and hence are not our fair competitors, as solving both is more challenging. For posterior
inference, Markov Chain Monte Carlo [62, 43], particularly Hamilton Monte Carlo [47], is the gold
standard. In a Likelihood-free inference context, kernel density estimation (KDE) with Bayesian

4α := 0.8× min(y). See Supplementary for the details on α
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optimisation [39] and neural networks [36] surrogates are proposed for simulation-based inference
[25]. In a Bayesian coreset context, scalable Bayesian inference [60], sparse variational inference
[19, 20], active learning [68] have been proposed for large-scale dataset inference. However, all of the
above only calculate posteriors, not model evidences. For evidence inference, Annealed Importance
Sampling [64], and Bridge Sampling [9], Sequential Monte Carlo (SMC) [27] are popular, but only
estimate evidence, not the posterior.

Bayesian quadrature The early works on BQ, which directly replaced the likelihood function
with a GP [65, 66, 69], did not explicitly handle non-negative integrand constraints. Osborne et al.
[67] introduced logarithmic warped GP to handle the non-negativity of the integrand, and introduced
active learning for BQ, a method that selects samples based on where the variance of the integral will
be minimised. Gunter et al. [37] introduced square-root GP to make the integrand function closed-
form and to speed up the computation. Furthermore, they accelerated active learning by changing
the objective from the variance of the integral Var[Z|y] to simply the variance of the integrand
Var[ℓ(x)π(x)]. Wagstaff et al. [78] introduced the first batch BQ. Chai et al. [22] generalised warped
GP for BQ, and proposed probit-transformation. BQ has been extended to machine learning tasks
(model selection [21], manifold learning [30], kernel learning [41]) with new acquisition function
(AF) designed for each purpose. For posterior inference, VBMC [1] has pioneered that BQ can
infer posterior and evidence in one go via variational inference, and [2] has extended it to the noisy
likelihood case. This approach is an order of magnitude more expensive than the WSABI approach
because it essentially involves BQ inside of an optimisation loop for variational inference. This paper
employs WSABI-L and its AF for simplicity and faster computation. Still, our approach is a natural
extension of BQ methods and compatible with the above advances. (e.g. changing the RCHQ kernel
into the prospective uncertainty sampling AF for VMBC)

Kernel quadrature There are a number of KQ algorithms from herding/optimisation [23, 6, 48]
to random sampling [5, 8]. In the context of BQ, Frank-Wolfe Bayesian quadrature (FWBQ) [13]
using kernel herding has been proposed. This method proposes to do BQ with the points given by
herding, but the guaranteed exponential convergence O(exp(−cn)) is limited to finite-dimensional
RKHS, which is not the case in our setting. For general kernels, the convergence rate drops to
O(1/

√
n) [6]. Recently, a random sampling method with a good convergence rate was proposed for

infinite-dimensional RKHS [44]. Based on Carathéodory’s theorem for the convex hull, it efficiently
calculates a reduced measure for a larger empirical measure. In this paper, we call it random convex
hull quadrature (RCHQ) and use it in combination with the BQ methods. (See Supplementary)

4 Proposed Method: BASQ

4.1 General idea

We now introduce our algorithm, named Bayesian alternately subsampled quadrature (BASQ).

Kernel recombination for batch selection Batch WSABI [78] selects batch samples based on the
AF, taking samples having the maximum AF values greedily via gradient-based optimisation with
multiple starting points. The computational cost of this sampling scheme increases exponentially with
the batch size and/or the problem dimension. Moreover, this method is often only locally optimal [79].
We adopt a scalable, gradient-free optimisation via KQ algorithm based on kernel recombination [44].
Surprisingly, Huszár et al. [48] pointed out the equivalence between BQ and KQ with optimised
weights. KQ can select n samples from the N candidate samples Xrec to efficiently reduce the
worst-case error. The problem in batch BQ is selecting n samples from the probability measure π(x)
that minimises integral variance. When subsampling N candidate samples Xrec ∼ π(x), we can
regard this samples Xrec as an empirical measure πemp(x) approximating the true probability measure
π(x) if n≪ N . Therefore, applying KQ to select n samples that can minimise Var[ℓ(x)πemp(x)] is
equivalent to selecting n batch samples for batch BQ. As more observations make surrogate model
ℓ(x) more accurate, the empirical integrand model ℓ(x)πemp(x) approaches to the true integrand
model ℓtrue(x)π(x). This subsampling scheme allows us to apply any KQ methods for batch BQ.
However, such a dual quadrature scheme tends to be computationally demanding. Hayakawa et al.
[44] proposed an efficient algorithm based on kernel recombination, RCHQ, which automatically

4



true likelihood

prior

posterior

GP-modelled
likelihood

sampling
function

updated
GP

subsamples
x  ~ g(x)

(f) Recombination

Log MAE
sparse

-1.82 -5.42

true

r

Log MAE

(c)

(b)

(d)

Lo
g 

M
A

E 
of

 in
te

gr
al

Lo
g 

w
al

l t
im

e 
(s

)

Lo
g 

M
A

E 
of

 in
te

gr
al

Lo
g 

nu
m

be
r o

f s
am

pl
es

Log batch size wall time (s)

wall time (s)number of samples
BASQ (Ours) batch WSABI

acquisition
function A(x)

dense

(e) Uncertainty Sampling
(a)

Figure 1: Performance comparison of our algorithm BASQ against batch WSABI [78]. All evaluation
was performed with the likelihood of a mixture of N-dimensional Gaussians. (a), (b), (c), (d)
10-dimensional Gaussians, (e), (f) univariate Gaussians.

returns a sparse set of n samples based on Carathéodory’s theorem. The computational cost of batch
size n for our algorithm, BASQ, is lower than O(NM +M2 log n+Mn2 log(N/n)) [44].

Alternately subsampling The performance of RCHQ relies upon the quality of a predefined kernel.
Thus, we add BQ elements to KQ in return; making RCHQ an online algorithm. Throughout the
sequential batch update, we pass the BQ-updated kernels to RCHQ.5 This enables RCHQ to exploit
the function shape information to select the best batch samples for minimising Var[ℓ(x)πemp(x)].
This corresponds to the batch maximisation of the model evidence for ℓ(x). Then, BQ optimises the
hyperparameters based on samples from true likelihood ℓtrue(x), which corresponds to an optimised
kernel preset for RCHQ in the next round. These alternate updates characterise our algorithm, BASQ.
(See Supplementary)

Importance sampling for uncertainty We added one more BQ element to RCHQ; uncertainty
sampling. RCHQ relies upon the quality of subsamples from the prior distribution. However, sharp,
multimodal, or high-dimensional likelihoods make it challenging to find prior subsamples that overlap
over the likelihood distribution. This typically happens in Bayesian inference when the likelihood
is expressed as the product of Gaussians, which gives rise to a very sharp likelihood peak. The
likelihood of big data tends to become multimodal [70]. Therefore, we adopt importance sampling,
gravitating subsamples toward the meaningful region, and correct the bias via its weights. We
propose a mixture of prior and an AF as a guiding proposal distribution. The prior encourages global
(rather than just local) optimisation, and the AF encourages sampling from uncertain areas for faster
convergence. However, sampling from AF is expensive. We derive an efficient sparse Gaussian
mixture sampler. Moreover, introducing square-root warping [37] enables the sampling distribution
to factorise, yielding faster sampling.

Summary of contribution We summarised the key differences between batch WSABI and BASQ
in Figure 1.6 (a) shows that BASQ is more scalable in batch size. (b) clarifies that BASQ can sample

5For updating kernel, the kernel to be updated is Cy, not the kernel K. The kernel K just corresponds to
the prior belief in the distribution of ℓ, so once we have observed the samples X (and y), the variance to be
minimised becomes Cy.

6We randomly varied the number of components between 10 and 15, setting their variance uniformly at
random between 1 and 4, and setting their means uniformly at random within the box bounded by [-3,3] in all
dimensions. The weights of Gaussians were randomly generated from a uniform distribution, but set to be one
after integration. mean absolute error (MAE) was adopted for the evaluation of integral estimation.
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Table 1: BASQ algorithm

Algorithm 1: Bayesian Alternately Subsampled Quadrature (BASQ)

Notation: xinit: initial guess, k: a convergence criterion,
n: batch size, M : Nyström sample size, N : recombination sample size,
ℓ: GP-modelled likelihood, ℓtrue: true likelihood,
π(x): prior, p(x): posterior, A(x): AF, K: kernel,
Snys, Srec: samplers for Nyström and recombination, respectively

Input: prior π(x), true likelihood function ℓtrue
Output: posterior p(x), the mean and variance of model evidence E[Z | y], var[Z | y]

1: CL
y , A(x)← InitialiseGPs(xinit) # Initialise GPs with initial guess

2: Snys, Srec ← SetSampler(A(x), π(x)) # Set samplers
3: while var[Z | y] > k:
4: Xnys ∼ Snys(M) # Samples M points for test function φ
5: (wrec,Xrec) ∼ Srec(N) # Samples N points for recombination
6: φ1, ..., φn−1 ← Nyström(Xnys, C

L
y ) # Define n− 1 test functions

7: solve a kernel recombination problem
8: Find an n-point subset Xquad ⊂ Xrec and wquad ≥ 0
9: s.t. w⊤

quadφi(Xquad) = w⊤
recφi(Xrec), w⊤

quad1 = w⊤
rec1

10: return Xquad # The sparse set of n samples
11: y = Parallel(ℓtrue(Xquad)) # Parallel computing of likelihood
12: K ← Update(Xquad, y) # Train GPs
13: CL

y , A(x)← OptHypersThenUpdate(K) # Type II MLE optimisation
14: Snys, Srec ← ResetSampler(A(x), π(x)) # Reset samplers with the updated A(x)
15: E[Z | y], var[Z | y]← BayesQuad(mL

y , C
L
y , π(x)) # Calculate via Eqs. (3) and (4)

16: return p(x),E[Z | y], var[Z | y]

10 to 100 times as many samples in the same time budget as WSABI, supported by the efficient
sampler and RCHQ. (c) states the convergence rate of BASQ is faster than WSABI, regardless of
computation time. (d) demonstrates the combined acceleration in wall time. While the batch WSABI
reached 10−1 after 1,000 seconds passed, BASQ was within seconds. (e) and (f), visualised how
RCHQ selects sparser samples than batch WSABI. This clearly explains that gradient-free kernel
recombination is better in finding the global optimal than multi-start optimisation. These results
demonstrate that we were able to combine the merits of BQ and KQ (see Supplementary). We further
tested with various synthetic datasets and real-world tasks in the fields of lithium-ion batteries and
material science. Moreover, we mathematically analyse the convergence rate with proof in Section 6.

4.2 Algorithm

Table 1 illustrates the pseudo-code for our algorithm. Rows 4 - 10 correspond to RCHQ, and rows 11
- 15 correspond to BQ. We can use the variance of the integral Var[Z|y] as a convergence criterion.
For hyperparameter optimisation, we adopt the type-II maximum likelihood estimation (MLE) to
optimise hyperparameters via L-BFGS [18] for speed.

Importance sampling for uncertainty Lemma 1 in the supplementary proves the optimal upper
bound of the proposal distribution g(x) ≈

√
K(x, x)f(x) =

√
CL

y (x, x)f(x), where f(x) :=

π(x). However, sampling from square-root variance is intractable, so we linearised to g(x) ≈
0.5(1 + CL

y (x, x))f(x). To correct the linearisation error, the coefficient 0.5 was changed into the
hyperparameter r, which is defined as follows:

g(x) = (1− r)f(x) + rÃ(x), 0 ≤ r ≤ 1 (8)

Ã(x) =
CL

y (x, x)π(x)∫
CL

y (x, x)π(x)dx
, (9)

wIS(x) = f(x)/g(x), (10)
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where wIS is the weight of the importance sampling. While r = 1 becomes the pure uncertainty
sampling, r = 0 is the vanilla MC sampler.

Efficient sampler Sampling from A(x), a mixture of Gaussians, is expensive, as some mixture
weights are negative, preventing the usual practice of weighted sampling from each Gaussian. As the
warped kernel CL

y (x, x) is also computationally expensive, we adopt a factorisation trick:

Z =

∫
ℓ(x)π(x) dx = α+

1

2

∫
|ℓ̃(x)|2π(x) dx ≈ α+

1

2

∫
|ℓ̃(x)|f(x) dx, (11)

where we have changed the distribution of interest to f(x) = |m̃y(x)|π(x). This is doubly beneficial.
Firstly, the distribution of interest f(x) will be updated over iterations. The previous f(x) = π(x)
means the subsample distribution eventually obeys prior, which is disadvantageous if the prior does
not overlap the likelihood sufficiently. On the contrary, the new f(x) narrows its region via |m̃y(x)|.
Secondly, the likelihood function changed to |ℓ̃(x)|, thus the kernels shared with RCHQ changed into
cheap warped kernel C̃y(x, x). This reduces the computational cost of RCHQ, and the sampling cost
of A(x). Now A(x) = C̃y(x)π(x), which is also a Gaussian mixture, but the number of components
is significantly lower than the original AF (9). As C̃y(x) is positive, the positive weights of the
Gaussian mixture should cover the negative components. Interestingly, in many cases, the positive
weights vary exponentially, which means that limited number of components dominate the functional
shape. Thus, we can ignore the trivial components for sampling.7 Then we adopt SMC [53] to
sample A(x). We have a highly-calibrated proposal distribution of sparse Gaussian mixture, leading
to efficient resampling from real A(x) (see Supplementary).

Variants of proposal distribution Although (8) has mathematical motivation, sometimes we wish
to incorporate prior information not included in the above procedure. We propose two additional
“biased” proposal distributions. The first case is where we know both the maximum likelihood
points and the likelihood’s unimodality. This is typical in Bayesian inference because we can
obtain (sub-)maximum points via a maximum a posteriori probability (MAP) estimate. In this case,
we know exploring around the perfect initial guess is optimal rather than unnecessarily exploring
an uncertain region. Thus, we introduce the initial guess believer (IGB) proposal distribution,
gIGB(x). This is written as gIGB(x) = (1 − r)π(x) + r

∑
i=1 wi,IGBN (x;Xi,W), where wi,IGB =

{0 if yi ≤ 0, else 1}, Xi ∈ X. This means exploring only the vicinity of the observed data X.
The second case is where we know the likelihood is multimodal. In this case, determining all peak
positions is most beneficial. Thus more explorative distribution is preferred. As such, we introduce
the uncertainty believer (UB) proposal distribution, gUB(x). This is written as gUB(x) = A(x),
meaning pure uncertainty sampling. To contrast the above two, we term the proposal distribution in
Eq. (8) as integral variance reduction (IVR) gIVR(x).

5 Experiments

Given our new model BASQ, with three variants of the proposal distribution, IVR, IGB, and UB, we
now test for speed against MC samplers and batch WSABI. We compared with three NS methods
[71, 29, 46, 14, 15], coded with [72, 17]. According to the review [16], MLFriends is the state-of-the-
art NS sampler to date. The code is implemented based on [77, 34, 42, 76, 38, 31, 10, 7], and code
around kernel recombination [24, 44] with additional modification. All experiments on synthetic
datasets were averaged over 10 repeats, computed in parallel with multicore CPUs, without GPU for
fair comparison.8 The posterior distribution of NS was estimated via KDE with weighted samples
[33]. For maximum speed performance, batch size was optimised for each method in each dataset,
in fairness to the competitors. Batch WSABI needs to optimise batch size to balance the likelihood
query cost and sampling cost, because sampling cost increases rapidly with batch size, as shown
in Figure 1(a). Therefore, it has an optimal batch size for faster convergence. By wall time cost,
we exclude the cost of integrand evaluation; that is, the wall time cost is the overhead cost of batch
evaluation. Details can be found in the Supplementary.

7Negative elements in the matrices only exist in K(X,X)−1, which can be drawn from the memory of the
GP regression model without additional calculation. The number of positive components is half of the matrix on
average, resulting in O(n2/2). Then, taking the threshold via the inverse of the recombination sample size N ,
the number of components becomes ncomp ≪ n2, resulting in sampling complexity O(n2/2 + ncompN).

8Performed on MacBook Pro 2019, 2.4 GHz 8-Core Intel Core i9, 64 GB 2667 MHz DDR4
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5.1 Synthetic problems

We evaluate all methods on three synthetic problems. The goal is to estimate the integral and posterior
of the likelihood modelled with the highly multimodal functions. Prior was set to a two-dimensional
multivariate normal distribution, with a zero mean vector, and covariance whose diagonal elements
are 2. The optimised batch sizes for each methods are BASQ: 100, batch WSABI: 16. The synthetic
likelihood functions are cheap (0.5 ms on average). This is advantageous setting for NS: Within 10
seconds, the batch WSABI, BASQ, and NS collected 32, 600, 23225 samples, respectively. As for
the metrics, posterior estimation was tested with Kullback-Leibler (KL) upon random 10,000 samples
from true posterior. Evidence was evaluated with MAE, and ground truth was derived analytically.

Likelihood functions Branin-Hoo [49] is 8 modal function in two-dimensional space. Ackley [73]
is a highly multimodal function with point symmetric periodical peaks in two-dimensional space.
Oscillatory function [32] is a highly multimodal function with reflection symmetric periodical peaks
of highly-correlated ellipsoids in two-dimensional space.

5.2 Real-world dataset

We consider three real-world applications with expensive likelihoods, which are simulator-based
and hierarchical GP. We adopted the empirical metric due to no ground truth. For the posterior, we
can calculate the true conditional posterior distribution along the line passing through ground truth
parameter points. Then, evaluate the posterior with root mean squared error (RMSE) against 50
test samples for each dimension. For integral, we compare the model evidence itself. Expensive
likelihoods makes the sample size per wall time amongst the methods no significant difference,
whereas rejection sampling based NS dismiss more than 50% of queried samples. The batch sizes are
BASQ: 32, batch WSABI: 8. (see Supplementary)

Parameter estimation of the lithium-ion battery simulator : The simulator is the SPMe [61], 9

estimating 3 simulation parameters at a given time-series voltage-current signal (the diffusivity of
lithium-ion on the anode and cathode, and the experimental noise variance). Prior is modified to log
multivariate normal distribution from [4]. Each query takes 1.2 seconds on average.

Parameter estimation of the phase-field model : The simulator is the phase-field model [61],
10 estimating 4 simulation parameters at given time-series two-dimensional morphological image
(temperature, interaction parameter, Bohr magneton coefficient, and gradient energy coefficient).
Prior is a log multivariate normal distribution. Each query takes 7.4 seconds on average.

Hyperparameter marginalisation of hierarchical GP model The hierarchical GP model was
designed for analysing the large-scale battery time-series dataset from solar off-grid system field data
[3].8 For fast estimation of parameters in each GP, the recursive technique [74] is adopted. The task
is to marginalise 5 GP hyperparameters at given hyperprior, which is modified to log multivariate
normal distribution from [3]. Each query takes 1.1 seconds on average.

5.3 Results

We find BASQ consistently delivers strong empirical performance, as shown in Figure 2. On all
benchmark problems, BASQ-IVR, IGB, or UB outperform baseline methods except in the battery
simulator evidence estimation. The very low-dimensional and sharp unimodal nature of this likelihood
could be advantageous for biased greedy batch WSABI, as IGB superiority supports this viewpoint.
This suggests that BASQ could be a generally fast Bayesian solver as far as we investigated. In the
multimodal setting of the synthetic dataset, BASQ-UB outperforms, whereas IVR does in a simulator-
based likelihoods. When comparing each proposal distribution, BASQ-IVR was the performant. Our
results support the general use of IVR, or UB if the likelihood is known to be highly multimodal.

9SPMe code used was translated into Python from MATLAB [11, 12]. This open-source code is published
under the BSD 3-clause Licence. See more information on [11]

10Code used was from [54, 3]. All rights of the code are reserved by the authors. Thus, we do not redistribute
the original code.
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Figure 2: Time in seconds vs. KL divergence for posterior, and MAE for evidence in the synthetic
datasets. Time in seconds vs. RMSE for posterior and evidence itself in the real-world dataset.

6 Convergence analysis

We analysed the convergence over single iteration on a simplified version of BASQ, which assumes
the BQ is modelled with vanilla BQ, without batch and hyperparameter updates. Note that the kernel
K on Rd in this section refers to the given covariance kernel of GP at each step. We discuss the
convergence of BASQ in one iteration. We consider the importance sampling: Let f be a probability
density on Rd and g be another density such that f = λg with a nonnegative function λ. Let us call
such a pair, (f, g), a density pair with weight λ.

We approximate the kernel K with K0 =
∑n−1

i=1 ciφi(x)φi(y). In general, we can apply the ker-
nel recombination algorithm [59, 75] with the weighted sample (wrec,Xrec) to obtain a weighted
point set (wquad,Xquad) of size n satisfying w⊤

quadφi(Xquad) = w⊤
recφi(Xrec) (i = 1, . . . , n − 1)

and w⊤
quad1 = w⊤

rec1. By modifying the kernel recombination algorithm, we can require

w⊤
quadk

1/2
1 (Xquad) ≤ w⊤

reck
1/2
1 (Xrec), where k

1/2
1 (x) :=

√
K(x, x)−K0(x, x) [44]. We call such

(wquad,Xquad) a proper kernel recombination of (wrec,Xrec) with K0.11 We have the following
guarantee (proved in Supplementary):

Theorem 1. Suppose
∫ √

K(x, x)f(x) dx < ∞, ℓ ∼ GP(m,K), and we are given an (n − 1)-
dimensional kernel K0 such that K1 := K − K0 is also a kernel. Let (f, g) be a density pair
with weight λ. Let Xrec be an N -point independent sample from g and wrec := λ(Xrec). Then, if
(wquad,Xquad) is a proper kernel recombination of (wrec,Xrec) for K0, it satisfies

Exrec

[√
var[Zf | xquad]

]
≤ 2

(∫
K1(x, x)f(x) dx

)1/2

+

√
CK,f,g

N
, (12)

where Zf :=
∫
ℓ(x)f(x) dx and CK,f,g :=

∫
K(x, x)λ(x)f(x) dx−

∫∫
K(x, y)f(x)f(y) dxdy.

The above approximation has one source of randomness which stems from sampling N points xrec
from g. One can also apply this estimate with a random kernel and thereby introduce another source
of randomness. In particular, when we use the Nyström approximation for K0 (that ensures K1 is a
kernel [44]), then one can show that

∫
K1(x, x)f(x) dx can be bounded by∫

K1(x, x)f(x) dx ≤ nσn +

∞∑
m=n+1

σm +Op

(
nKmax√

M

)
, (13)

where σn is the n-th eigenvalue of the integral operator L2(f) ∋ h 7→
∫
K(·, y)h(y)f(y) dx,

Kmax := supx K(x, x). However, note that unlike Eq. (12), this inequality only applies with high
probability due to the randomness of K0; see Supplementary for details.

11Note that the inequality constraint on the diagonal value here is only needed for theoretical guarantee, and
skipping it does not reduce the empirical performance [44].
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If, for example, K is a Gaussian kernel on Rd and f is a Gaussian distribution, we have σn =
O(exp(−cn1/d)) for some constant c > 0 (see Supplementary). So in (12) we also achieve an
empirically exponential rate when N ≫ CK,f,g . RCHQ works well with a moderate M in practise.
Note that unlike the previous analysis [50], we do not have to assume that the space is compact. 12

7 Discussion

We introduced a batch BQ approach, BASQ, capable of simultaneous calculation of both model
evidence and posteriors. BASQ demonstrated faster convergence (in wall-clock time) on both
synthetic and real-world datasets, when compared against existing BQ approaches and state-of-the-art
NS. Further, mathematical analysis shows the possibility to converge exponentially-fast under natural
assumptions. As the BASQ framework is general-purpose, this can be applied to other active learning
GP-based applications, such as Bayesian optimisation [52], dynamic optimisation like control [26],
and probabilistic numerics like ODE solvers [45]. Although it scales to the number of data seen in
large-scale GP experiments, practical BASQ usage is limited to fewer than 16 dimensions (similar to
many GP-based algorithms). However, RCHQ is agnostic to the input space, allowing quadrature in
manifold space. An appropriate latent variable warped GP modelling, such as GPLVM [58], could
pave the way to high dimensional quadrature in future work. In addition, while WSABI modelling
limits the kernel to a squared exponential kernel, RCHQ allows to adopt other kernels or priors
without a bespoke modelling BQ models. (See Supplementary). As for the mathematical proof, we
do not incorporate batch and hyperparameter updates, which should be addressed in future work. The
generality of our theoretical guarantee with respect to kernel and distribution should be useful for
extending the analysis to the whole algorithm.
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(c) Did you discuss any potential negative societal impacts of your work? [N/A]
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Supplementary
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3. If you ran experiments...
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[Yes] see section 5 and Supplementary
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internal cluster, or cloud provider)? [Yes] see section 5
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(b) Did you mention the license of the assets? [Yes] see section 5
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
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