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Abstract

Recent advances in large language models (LLMs) for math reasoning have
largely focused on tasks with easily verifiable final answers; however, generat-
ing natural language math proofs remains an open challenge. We identify the
absence of a reliable, fine-grained evaluator for LLM-generated math proofs as
a critical gap. To address this, we propose a systematic methodology for devel-
oping and validating evaluators that assign fine-grained scores on a 0-7 scale to
model-generated math proofs. We first introduce PROOFBENCH, the first expert-
annotated dataset of fine-grained proof ratings, spanning 145 problems from six
major math competitions and 435 LLM-generated solutions from Gemini-2.5-Pro,
03, and DeepSeek-R1. With PROOFBENCH, we systematically explore the evalua-
tor design space across key axes: the backbone model, input context, instructions
and evaluation workflow. Our analysis delivers PROOFGRADER, an evaluator
that combines a strong reasoning backbone LM, rich context from reference so-
lutions and marking schemes, and a simple ensembling method; it achieves a low
Mean Absolute Error (MAE) of 0.926 against expert scores, significantly outper-
forming naive baselines. Finally, we demonstrate its practical utility in a best-of-n
selection task: at n = 16, PROOFGRADER achieves an average score of 4.14/7,
closing 78% of the gap between a naive binary evaluator (2.48) and the human
oracle (4.62), highlighting its potential to advance downstream proof generation.

1 Introduction

Large language models (LLMs) have recently achieved remarkable progress in mathematical rea-
soning, attaining strong performance on a variety of benchmarks. Such models are especially strong
at solving final-answer problems because they can be trained using reinforcement learning with ver-
ifiable rewards [1, 10, |13H15]]. However, these methods do not transfer to proof generation because:
(1) many proof problems do not admit an easily checkable final answer; and (ii) even when a fi-
nal answer exists, verifying it is insufficient to assess proof validity, as the reasoning may contain
substantial intermediate errors [2, 9]. Because proof-generation tasks constitute a large share of
mathematical problem solving in research and education, reliable proof evaluation is essential-for
faithful capability assessment and as a reward signal for training.

Existing options for this task still fall short. Expert grading, while accurate, is slow and costly. While
formal math (e.g., Lean) offers absolute certainty, it remains detached from the natural language used
in most human mathematics education and research; furthermore, automatically translating natural-
language proofs into formal languages is brittle and remains extremely challenging [4, [7]. Our
work therefore focuses on the critical and complementary task of evaluating proofs in their natural
representation. While LL.M-as-a-judge [2, 16,11} |16] is promising, its application to math proofs is
unsettled, and how design reliable proof evaluators is poorly understood.
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Figure 1: Data statistics and model evaluation results. (a) Problem statistics across six compe-
titions. (b) Score distribution showing mean and median. (c) Model performance comparison via
box plots. Each box represents the interquartile range (middle 50% of scores). (d) Per-generator
score distribution. Stacked horizontal bar chart showing the percentage of problems receiving each
score (0-7) for each model. (e) Performance heatmap by generator and competition. (f) Competition
difficulty ranking with error bars: TST is the most challenging and Putnam is the easiest.

To address this, we conduct a comprehensive study of proof-evaluator design. To support this analy-
sis, we establish PROOFBENCPﬂ, the first expert-annotated dataset for fine-grained proof evaluation
that spans problems from multiple contests and years. It contains 435 LLM-generated solutions to
145 problems from major math competitions (EGMO, USAMO, IMO, USA TST, APMO and Put-
nam), produced via a two-stage process: first, problem-specific marking schemes are generated to
ensure consistency; then, human experts use these schemes as a guide to score proofs, while allow-
ing for valid alternative solutions. Next, we explore and quantify the impact of different backbone
models, context components (such as reference solutions and problem-specific marking schemes),
and instruction sets. We also investigate ensembling multiple evaluation runs to improve robustness.

Our analysis yields PROOFGRADERﬁ an LLM-based evaluator integrating a strong backbone with
informative context (both reference solutions and a marking scheme) and simple ensembling. This
design achieves a low Mean Absolute Error (MAE) of 0.926 against expert scores, significantly
outperforming naive baselines. We further validate the evaluators’ practical utility in a downstream
best-of-n selection task, a standard proxy for assessing its potential as a reward signal [3] 3, [8]]. At
n = 16, PROOFGRADER achieves an average score of 4.14/7, closing 78% of the performance gap
between a naive binary evaluator (2.48) and the human oracle (4.62).

2 PROOFBENCH: Expert-Rated Math Proof Solutions

We assess proof evaluators for human alignment on a 0-7 scale, which requires fine-grained expert
annotations on model-generated proofs across diverse sources and years. Prior work focuses on a
single contest [9] or is limited to binary judgments of proof correctness [2]]. We thus construct our
own dataset, PROOFBENCH. The 0-7 scale aligns the dataset with the established grading standards
of premier mathematics competitionsﬂ which we source problems from.

3The full dataset is available at huggingface.co/datasets/wenjiema02/ProofBenchl

*The code is available at|github.com/euclidgame/proofgrader,

3The official Putnam Competition uses a 0—10 scale. For consistency across competitions, we normalize all
expert annotations to a unified 0-7 scale.
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Problem Sources and Proof Generation. We collected 145 problems from the official websites
of prestigious mathematics competitions, including the APMO, EGMO, IMO, Putnam, USA TST,
and USAMO, from year 2022 to 2025. Distribution of contests is shown in [Figure Th. Problems
were parsed from official PDFs and normalized, and all available human solutions were included.
For each problem, we generate a proof using a standardized prompt (§A.8) that asks for a complete,
self-contained proof from three frontier reasoning models (generators): OpenAl 03, Gemini-2.5-
Pro, and DeepSeek-R1-0528, which span both proprietary and open-source families.

Expert Annotations. Finally, annotation proceeds in two stages: marking scheme generation and
model-generated proof grading. All annotations were conducted by a team of five experts with
Putnam-level or national Math Olympiad experience, using a carefully designed web interface.

Step 1: Automated Marking Scheme Generation: A central challenge in creating this benchmark
was ensuring consistent and scalable expert grading. In our method, the marking scheme is produced
by an LLM Ms which is prompted to output (i) a list of conditions under which scores are awarded
or deducted, and (ii) a list of trivial cases that should not be awarded any points. This generator
was developed through a rigorous refinement process where experts also graded the quality of the
generated MS, providing feedback that led to the selection of Gemini-2.5-Pro as the final Mg
(see §A.2] for details). An example of a generated marking scheme is shown in Appendix §A.3]
Approximately 85% of our marking schemes were judged to be highly reasonable by experts.

Step 2: Proof Grading: With a problem-specific marking scheme, an expert annotator scores a
given model-generated proof on a 0-7 scale. Experts were instructed to treat the marking scheme as
a detailed reference for the expected solution path, rather than a rigid checklist. This is important
for fairly evaluating proofs that employed a novel method different from the reference solutions. We
assign 40% of the solutions to more than one annotator and ensure their agreement is 90% or higher.

Dataset Statistics. In total, PROOFBENCH consists of 145 proof problems and 435 expert-
annotated evaluations of proofs. Our analysis reveals several key findings about state-of-the-art
reasoning models. First, current models remain far from achieving high scores: even the strongest
models obtain scores of 6 or higher on fewer than 30% of problems, as shown in[Figure T{d. Second,
OpenAl-o03 performs best overall, with a mean score of 2.87, and is closely followed by Gemini-
2.5-Pro, according to [Figure Tc. Third, performance varies considerably across competitions
[ure Tk.f): all models perform best on PUTNAM, where the mean score is 3.11, but struggle on TST.

3 Systematic Study of Evaluator Designs

Using PROOFBENCH, we then study the key design factors for math proof evaluators that produce
fine-grained scores. We show that (i) a strong reasoning backbone with informative context yields
substantial gains, (ii) simple ensembling further improves performance.

3.1 Evaluator Designs

We study single-pass evaluators along several dimensions and extend it with ensembling methods.

Single-Pass Methods. A single-pass evaluator prompts a backbone model M (which may or may
not be the same as Mys) to grade a solution s in one step. We analyze single-pass evaluator along
three dimensions: the backbone LM, the context provided and the instructions given.

¢ Backbone Model Choice. This refers to the LLM that is prompted to execute the evaluation.
We compare five models that span different model families, size and reasoning capabilities: 03,
GEMINI (Gemini-2.5-Pro), 04-MINI, R1 (DeepSeek-R1-0528), and GPT-40.

» Context. We consider four different context configurations, including: providing both the pre-
generated marking scheme and the reference solution(s) (REF+MS); providing only the marking
scheme (MS); providing only the reference solution(s) (REF); and a naive baseline where only
basic grading instructions without any problem-specific context are provided (NONE).

* Instruction. The instruction set refers to the specific prompt that guides the evaluator on how
to interpret and apply the provided context information and perform the task. In our study, for
the most informative context setting, REF+MS, we compared three types of instructions: NORM



(Normal), a flexible instruction that directs the model to follow the marking scheme but allows it to
accept valid alternative approaches; STRICT, a rigid instruction that requires the model to adhere
strictly to the provided marking scheme; and BASIC, an instruction with minimal guidance.

Ensemble. We consider a simple ensembling technique, which runs the same evaluator indepen-
dently multiple times and combines the individual ratings with an aggregation operator.
Evaluation Metrics. We report macro-averaged RMSE, MAE, Bias, and WTA <, where WTA <
is the fraction of predictions within £1 point of the expert score. Metrics are computed per problem
(each with n responses) and then averaged over problems. For within-problem ranking agreement
we use Kendall’s 7, (ties-adjusted). Formal definitions and aggregation appear in App.[A.3]

3.2 [Evaluation Results

Model Context RMSE | MAE | WTA<; (%)1 Kendall-r1 Bias~ Quality

REF+MS 1.273 +o0.16 0.964 +0.12 76.5 £43 0.502 -0.008 HEn
o3 MS 1.418 £0.17  1.069 +0.14 72.8 £43 0.477 -0.381
REF 1.575 £ 014 1.330 +0.12 65.3 +46 0.481 0.478
NONE 1.901 £0.15 1.680 £0.15 495 +538 0.435 0.924
REF+MS  1.696 +£0.17 1.342 +0.15 62.7 +49 0.529 0.626
GEMINI MS 1.502 +0.17 1.142 +0.14 70.0 £42 0.488 0.151
REF 2.177 £0.14 1910 £0.15 399 +52 0.410 1.285
NONE 2.397 £0.15 2.107 +£0.16 36.6 + 49 0.319 1.496
REF+MS 1.816 £022 1.367 £0.19 67.6 + 4.6 0.476 0.762
O4-MINI MS 1.636 £ 022 1.234 +0.18 69.5 +438 0.505 0.309
REF 1.858 £0.19 1.504 +o0.16 61.3 +48 0.465 0.950
NONE 2.276 £023 1914 +0.21 495 +53 0.430 1.569
REF+MS 1.735+022 1.357 +0.18 66.4 +52 0.429 0.732
R1 MS 1.682 +022 1.298 +0.18 68.5 £49 0.450 0.422
REF 3.187 £023  2.736 £0.22 30.3 £50 0.289 2.450 | [ [ ]
NONE 3.273 £025 2.842 4+0.25 33.5+49 0.102 2.581 [ [ [ |
REF+MS 2599 +020 2.197 +£0.20 39.7 +5.0 0.479 1.824
GPT-40 MS 2.245 + 021  1.827 +0.19 50.4 £53 0.377 1.001
REF 2.726 £0.19 2.371 £0.18 36.0 +49 0.343 1.887
NONE 3.402 £ 026 3.001 +0.26 31.9 +49 0.208 2.614 | [ |

Table 1: Comparison of five LLMs under different context designs. Contexts: REF+MS (refer-
ence solution + marking scheme), MS (marking scheme only), REF (reference solution only), NONE
(no context). Values shown as mean + 95% confidence interval (CI) margin of error. Best values
per model in bold; best () and worst () context highlighted. Arrows: | lower better, 1 higher
better, ~ closer to zero better. Quality: Bl Excellent, = Good, @ Fair, M Poor, M Bad.

Effects of backbone model and contextual information. shows the results of single-pass
evaluators across different backbone models and context settings. First, the strength of the backbone
model strongly correlates with performance: moving from weaker to stronger models brings better
calibrations (03 leads in nearly all metrics). Second, contextual information consistently improves
all metrics for every backbone, with the marking scheme (MS) contributing the majority of the
gain relative to the reference solution alone (REF); combining both (REF+MS) provides a small
additional improvement primarily for the strongest backbone (03).

Instruction style under REF+MS should match the backbone. With context fixed at REF+MS,
instruction choice modulates the calibration-ranking trade-off (Table 2). The strongest backbone
(03) attains the best overall accuracy and near-zero bias with the more flexible NORM prompt,
whereas mid-tier models (04-MINI) benefit from the more prescriptive STRICT prompt. This pattern
suggests that stronger models can reliably and flexibly apply the marking scheme, while mid-tier
models require more prescriptive guidance to reduce over-crediting and variance.

Ensembling helps. For ensembling, we aggregate five independent 03 evaluation runs under
REF+MS, with results reported in Table Compared to the best single run, averaging all runs
reduces RMSE by ~0.06 (1.225—1.169) and improves Kendall-7 from 0.540 to 0.578.



Model  Inst.  RMSE| WTA-; (%) Bias~  RuR RMSE| MAE] kendall-7

NORM 1.273 76.5 —0.008 Single 1.265 0.981 0.509
03 STRICT 1.420 72.8 —0.304 (meanzstd) (#0.039)  (x0.028) (£0.022)
Basic 1.348 73.0 0.165 -
NorM 1816 7.6 0762 Best single 1.225 0.944 0.540
04-MINI ~ STRICT 1.718 69.2 0.396 MEAN 1.169 0.940 0.578
Basic 1817 67.6 0724 MEDIAN 1.185  0.926 0.540
Table 2: Instruction ablation under opi—= Ensembling over multiple runs

REF+MS. Three instruction styles: NORM
(flexible use of the marking scheme, allowing
valid alternatives), STRICT (literal adherence
with penalties for deviations), and BASIC
(minimal guidance).

boosts performance and reduces variance
for the 03 evaluator. We compare five in-
dividual runs against three aggregation strate-
gies. Both mean and median aggregation
achieve a lower RMSE than the best single run.

4 Downstream Utility: Best-of-N Proof Selection

Reliable evaluators should enable better selection

under BoN sampling. This section answers a critical ;o Best-of-N Performance across Evaluators
question: Does the superiority of our fine-grained o oot
evaluators, as measured by offline metrics, translate || T e therest

bt
o

Fine-grained (None)
~—e— Binary (Ref)
—e— Binary (None)

—— Mean Baseline

to an improvement in a downstream selection task?

Setup. We use 03 to generate 16 candidates per
problem for 29 problems from 2025 (464 proofs to-
tal), and obtain human scores via the pipeline in
§2] For each problem, 8/16 responses are graded
by at least two experts with disagreements resolved
through discussion. We compare our fine-grained
evaluators, including PROOFGRADER (an ensemble
of five 03 runs with REF+MS), to a binary baseline
(Correct/Incorrect). The performance of each selec-
tion method is measured using a best-of-n (BoN) 204 & o
curve. We estimate the BoN curve using Monte — T T & 5
Carlo subsampling (detailed can be found in Ap- n (number of samples)

pendix §A.4). We include two key baselines: an
oracle baseline and a mean baseline. The HUMAN
ORACLE represents the performance ceiling, calcu-
lated as the average score of the best possible selec-
tion among the sampled n candidates. The MEAN BASELINE is calculated as the cumulative average
score of the sampled n candidates. All evaluators and selectors use 03 as the backbone model.

Results. shows the BoN curves across multiple evaluators. Comparing the four different
fine-grained evaluators from §3| we confirm that the marking scheme is a critical component and en-
sembling is beneficial. We further compare with binary evaluators: the 03-based models prompted
to classify each proof as “Correct” or “Incorrect”. In contrast to PROOFGRADER, which reaches
a score of 4.14 at n=16, the binary evaluator performs only slightly better than the average score
of all candidates. This limitation comes from collapsing all “correct” (or “incorrect”) proofs into
a single category, losing the ability to rank solutions. When multiple correct candidates exist, it
cannot distinguish an adequate proof (e.g., a 5/7) from an excellent one (7/7). We thus conclude that
fine-grained scoring preserves relative ordering, making it essential for effective reward modeling.

>
o

w
o

w
o

N
o

Average human score of selected proofs

Figure 2: Best-of-n with different evalua-
tors. Average score over 29 problems for 03
(generator) as n increases from 1 to 16.

5 Conclusion

We advance reliable evaluation of natural-language math proofs by introducing PROOFBENCH, a
multi-contest, multi-year dataset with fine-grained (0-7) expert grades. Using PROOFBENCH, we
map the evaluator design space and find that performance is driven by backbone model capabilities
and context, with problem-specific marking schemes most impactful; simple ensembling further
improves robustness. We obtain PROOFGRADER with the strongest evaluator across design choices.
As a downstream test, PROOFGRADER serves as an effective reward model for best-of-n selection.
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Appendix

Data Information

Table 4] provides short descriptions of the contests which we sourced problems from. The data
information for the collected problems are available in Problem 4 from EGMO 2023 was
intentionally removed because it contains figure in problem text.

A2

Annotation Pipeline Details

Stage 1: Marking Scheme Finalization. Pilot. We compare marking scheme generators from
two model families, each with and without in-context examples, using an initial prompt distilled
from authoritative grading materials.
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Contest

Description

APMO

The Asia Pacific Mathematical Olympiad is a regional proof-based contest for high school
students across Asia—Pacific. It features five challenging problems solved over a fixed time
window, proctored locally.

EGMO

The European Girls’ Mathematical Olympiad is an international two-day proof contest for fe-
male students, modeled after the IMO. It promotes participation and excellence among young
women in mathematics.

IMO

The International Mathematical Olympiad is the premier global high school math competition.
Over two days, students tackle six proof problems that test creativity, rigor, and depth.

PUTNAM

The William Lowell Putham Mathematical Competition is a highly challenging proof exam
for undergraduates in the U.S. and Canada. It consists of 12 problems emphasizing ingenuity
and precise argumentation.

TST

Team Selection Tests are national-level olympiad exams used by USA to select their IMO
teams. Problems mirror international difficulty and assess readiness for global competition.

USAMO

The United States of America Mathematical Olympiad is an invitational proof contest follow-
ing AMC/AIME qualification. It identifies top U.S. high school problem solvers and feeds
into further training and team selection.

Table 4: Brief descriptions of core contests.

Contest 2022 2023 2024 2025 Total
APMO 5 5 5 5 20
EGMO 6 5 6 6 23
IMO 6 6 6 6 24
PUTNAM 12 12 12 - 36
TST - 6 6 6 18
USAMO 6 6 6 6 24

Total per year 35 40 41 29 145
Table 5: Core problem counts by contest and year.

Quality rating. For each problem—solution pair, annotators independently rate the generated marking
scheme on a 0-3 scale (0 = invalid; 3 = high-fidelity), then discuss to consensus.

Selection and refinement. We select the best configuration (gemini-2.5-pro, no in-context example),
iteratively refine the prompt based on annotator feedback, and re-evaluate on additional problems
until agreement stabilizes. We then freeze the marking scheme generator for subsequent use.

Stage 2: Solution annotation.

Pilot calibration. Using the frozen rubric generator, we produce

per-problem marking schemes and calibrate the scoring protocol. Two experts will both annotate
36 problems, 3 responses each. They will discuss disagreement to reach consensus and adjust their
grading protocol.

Scale and quality control. We apply the calibrated protocol to 145 problems with 3 solutions each,
yielding 435 rubric-guided annotations. We double-score 40% of items, run periodic drift checks,
and adjudicate all flagged disagreements.

Screenshots of the annotation interface are shown in|Figure 3|and |Figure 4|

A.3 Additional Details for Evaluation Metrics

Within-problem ranking agreement.

For problem p, consider all pairs (¢, j) with i < j. Define

AT = ypi —yp; and A = g, — §p;. Let C and D be the numbers of concordant and discordant
pairs, respectively, and let

Texp = #{(l,j) : A?;(p = O}a Toval = #{(l,j) : A(;;/al = 0}
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Figure 3: View of Evaluation Platform Setup

Kendall’s 73, for problem p is
C—-D
V(C+D+Top) (C+ D+ Toval)

and is undefined if the denominator is zero (we omit such p from aggregation).

m(p) =

Macro averaging. We macro-average per-problem metrics across problems. Writing P for the set
of problems with defined 7, and P’ = |P]|:

P P P
— 1 - 1 = 1 .
MAE = 2 E MAE,, RMSE = 2 E RMSE,, Bias= P pEZl Bias,,

p=1 p=1

1

P
— 1
WTA(< 1) = 5 > WTA(S 1), = 5 > 7(p)-
p=1 pPEP

(As noted in the main text, all problems have the same response count 7.)

A.4 Best-of-n

A good reward model for proof generation should be able to accurately distinguish good and bad
responses. To understand if improving evaluator reliability also improves reward model quality,
we study the performance of evaluators under best-of-n (BoN) sampling, which evaluates a reward
model by its ability to select the best response under the same budgeted sampling that training uses:
n candidates are sampled from a fixed policy 7, the best solution is chosen as § = arg max; RM(y;),
and the true quality is measured R(y). Unlike global correlations or calibration metrics, BoN is
conditioned on the policy of the generator and the inference budget, directly reflecting operations
that drives post-training (from sampling to scoring to selecting the best rollout). It reveals reward
over-optimization, demonstrates robustness under affine score drift, and yields a practical utility
curve as n varies (typically 8). In general, higher BoON means the RM more reliably upgrades the
data the learner trains on—predicting real downstream gains.



v

Problem

Find all integers 7 satisfying 1 2 2 and ety = n, in which
a(n) denotes the sum of all positive divisors of m, and p(n)

denotes the largest prime divisar of .

Human Solution

Answer: n = 6)section*{Solution}

Letn = pf*+ ... pi* be the prime factorization of n with
Pr<..0fa>lorf>1

(e )

Therefore a = § = 1 and the only answer isn. = 6.
Camment: There are other ways to deal with the case

n =223, For instance, we have

204238 — (2041 1) (341 — 1), Since 2°* — 1is not
divisible by 2, and 3#1! — 1is not dvisible by 3, we have

{2-“'—1::55 ‘:‘{ 2 _1=3F ‘:5{
3811 1= garz 3.0 _1)—1—g.901

andn =238 = 6.

4 G >

Al Grading -

Marking Scheme

An experienced Olympiad grader would create a rubric that
s structured, fair, and easy for other graders to apply
consistently. Here is a complete rubric for the given problem
and solution.

222 Marking Scheme

1. Checkpoints (max 7 pts total]™
* =*[1 pi]** Reformulates the equation to 22 — p(n) — 1.
Let p = p(n). \ladditive]

= =*[2 pts]™* Analyzes the case where n is 3 prime power (
= p") and praves there are no solutions for n > 2.\
[adiditive]

*(A complete argument involves setting up the equation
p-c: & = p— 1and showing it has no integer solutions for
p prime and a = 1. For example, by showing it implies

P —3p+1+1/p® =0, which is impossible for integers.
P>2a>1)

* =14 pts]** Analyzes the case where n has k 2 2 distinct
prime factors. This block is scored as a sum of its parts. \
[odditive]

= =[1 pt]** Establishes the key inequality p — 1 < T]__ %

i 5T
byusingp—1= " < [l 757

= *=[1 pt]" For the subcase k — 2, proves that the prime
factors of n must be 2 and 3.

*(This typically involves letting n = g°p" with \(a * *[1 pti™*
Having established n = 2°3% proves that n = .is the only
solution in this subcase.

*(This requires solving <232 = 2 for integers a, b > 1and
showing that (a,B) = (1, 1) is the unique solution)”

“ *“[1 pt]** For the subcase k 2 3, proves there are no
solutions.

=(This requires a bounding argument. Forinstance, for k = 3
with prime factors qi < g2 < p, showing p must be a prime
satistying g2 < p < S22 = 479, which is impossible if
4237

Al Solution

To solve the equation sy = n for integers n > 2 where

a(n) is the sum of the positive divisors of n and p(n) is the

largest prime divisor of n, we proceed as follows.
First, note that if m.is prime, then p(m) = n.and
o(n) = 1+ n. Substituting into the equation gives:
1tn _
w1
Multiplying both sides by n — 1 {sincen 2 2, — 1 £ 0):

l4+n=nn-1)=nl-n

Rearranging terms:

n?—2n-1=0

The solutions are n = 1 + v/3, which are not integers. Thus,
there are no prime solutions, and n must be compasite.

The equation 75 = n is equivalent to

o(n) =n(p(n) — 1)

Denote g = p(n), the largest prime divisor of n. Then:

o(n) =nlg—1)

Since nis composite and g > 2, but as n s composite and
not prime, g = 3(since forg =2, n is a power of 2, and we
will show o solution), The ratio 22 — g — 1is an integer,
asg— 1is an integer.

Consider the case where n is a prime pawer, say 7 = p* for
prime p and integer a > 1. Then g = pand:

1

= =Total (max 7)** o(p) =1+p+p +--+p" =

**2. Zero-credit items™*

Figure 4: View of Evaluation Platform Setup

Best-of-n is also well-explored in other works as a metric for evaluating reward model and evaluator

robustness [3},[12]].

Setup. To create a testbed, we use 03 to generate 16 candidate proofs for each of 29 selected prob-
lems from 2025, resulting in 464 unique proofs. All 464 of these candidates were then scored by
three human experts using the pipeline described in §2] This dataset is distinct from the ?? split and
serves a different purpose. For each problem, 8 responses are graded by two experts with disagree-
ments resolved through discussion. For this analysis, we test a selection of the fine-grained evalua-
tors studied previously (§??) and several comparison-based selection strategies including Knockout
tournament style selection (§??). The performance of each selection method is measured using a
best-of-n (BoN) curve. Since an exhaustive evaluation over all (17?) subsets is computationally in-
tensive, we estimate the BoN curve using Monte Carlo subsampling. For each n € {1,2,---,16},
we sample a large number of subsets of size n without replacement. For each subset, the evalua-
tor selects the single proof with the highest assigned score, using the initial ordering to break ties.
The performance at n is the average human score of these selected proofs, aggregated over all sub-
samples and all 29 problems. We also include two key baselines: an oracle baseline and a mean
baseline. The HUMAN ORACLE represents the performance ceiling, calculated as the average score
of the best possible selection among the first n candidates. The MEAN BASELINE is calculated as
the cumulative average score of the first n candidates. All evaluators and selectors use O3 as the
backbone model.

A.5 Marking Scheme Example

A.6 Generator Prompt

Your task is to write a proof solution to the following
problem. Your proof will be graded by judges for correctness
and completeness. When you write your proof, follow these
guidelines:

10



Problem. Let n > k > 1 be integers. Let P(z) € R[xz] be a polynomial of degree n with no repeated roots and
P(0) # 0. Suppose that for any real numbers ag, . . ., aj, such that agz® + - - - + a2 + ag divides P(z), the product
aoai . ..ay is zero. Prove that P(z) has a nonreal root.

Reference Solution. By considering any &+ 1 roots of P, WLOG assume n = k+ 1. Suppose P(z) = (z+7r1) ... (z+
rn) has P(0) # 0. Then each polynomial P;(z) = P(z)/(x + r;) of degree n — 1 has > 1 zero coefficient.

The leading and constant coefficients of each P; are nonzero, leaving n — 2 other coefficients. By pigeonhole, P; and P>
share a zero coefficient position, say * for some 1 < k < n — 1.

Claim. If Py and P, both have 2* coefficient zero, then Q(z) = (z +73) ... (z 4 75 ) has consecutive zero coefficients
b =bp_1 =0.

Proof. By Vieta, let Q(z) = "2 4 by_3x™ 3 + - + by. The z* coefficient of Py, P» being zero means 71 by +
bp_1 =rabg +bip_1 =0,

hence by, = by._1 = 0 (using r; nonzero, distinct). O
Lemma. If F(x) € R[z] has two consecutive zero coefficients, it cannot have all distinct real roots.

Proof 1 (Rolle). Say zt, 2+ coefficients are zero. - - - But F®) () has a double root at 0, contradiction. d

Proof 2 (Descartes). Real roots are bounded by sign changes in F'(z) plus sign changes in F'(—z). - - -
With b nonzero coefficients and z runs of zeros, real roots < b — 1 4+ z < deg F'. Two consecutive zeros make this strict.
O

Marking Scheme (max 7 pts). Checkpoints (additive):

(1) [1pt] Problem reduction to n = k + 1 and setup. Alt: complete proof for k£ = 1.

(2) [2pts] Pigeonhole: n polynomials, n — 2 internal coefficient positions; two share a zero position.

(3) [2pts] Deduce consecutive zeros: from [Py = [x™]|P> = 0 and P; = (z + r;)Q, show by, = byp—1 = 0.

(4) [2pts] Prove lemma (2pts for complete Rolle or Descartes proof; 1pt for partial).

Deductions: Cap 6/7 if no reduction justification; cap 5/7 if lemma flawed; cap 3/7 if stops after PHP; —1pt for minor gaps
(e.g., not using r1 # r3).

Zero credit: Unjustified WLOG; merely stating theorems; specific examples only; noting P(0) 7# 0 = nonzero roots.

Figure 5: Example problem (USAMO 2025 P2) with its reference solution and marking scheme.

- You are creating a proof, not a proof outline. Each step
should be carefully explained and documented. If not properly
explained, the judge will assume that you cannot explain it,
and therefore decrease your grade.

- You can use general theorems and lemmas, but only if they
are well-known. As a rule of thumb: if the result has a name
and is famous enough to have a Wikipedia page or something
similar to describe it, it is allowed. Any result from papers
that would not be taught in high school or low-level bachelor
courses in mathematics should not be used. Any use of such
results will immediately give you a zero grade.

- Do not skip computation steps in your proof. Clearly
explain what transformations were done and why they are
allowed in each step of a calculation.

- Your proof should be self-contained.

- If you are not sure about a specific step, or do not

know how to prove an intermediate result, clearly state

this. It is much preferable to indicate your uncertainty
rather than making incorrect statements or claims.

FORMATTING GUIDELINES:

- You should write Markdown with LaTeX math. Do NOT use
code fences (no ‘¢9).

- You should use correct LaTeX notation to write equations
and mathematical symbols. You should encompass these
equations in correct delimiters ("\\(" and "\\)" for
inline math, "\\[" and "\\]" for block math) to enhance
the clarity of your proof. **Do not use any unicode
characters.**

11




- For multi-line derivations, wrap an aligned block
INSIDE display math.
- Do not use other LaTeX environments or packages.

PROBLEM: {problem}

A.7 Marking Scheme Generation Prompt

Marking Scheme

You are an experienced Olympiad grader.

*Treat the official solution as fully correct and
authoritative; do not claim it contains errors or gaps.*
Your task is to write a complete, grader-friendly rubric for
the problem and official solution below. The rubric must map
a student’s proof to an integer score from **0 to 7x**.

### INSTRUCTIONS

Produce the marking scheme in **exactly** the following three
sections.
1. x*Checkpoints (max 7 pts total)*x*

* Break the solution into logically independent checkpoints
with **integer** point values.

* Allocate **>= 4 pts** to the main idea/critical steps;
**<= 3 pts** to routine work.
* If two items are mutually exclusive (solve the *same*
logical gap), **nest** them and write **\award the larger
only"**.
* **xParallel solution paths (non-additive) :**
* If the official solution (or a student submission)
admits more than one legitimate approach, write
x*parallel checkpoint chains** labeled \Chain A
/ Chain B / ... (idea: ...)".
* *xxStart this section with a bold rule:** **Score
exactly one chain | take the **maximum** subtotal
among chains; do **not** add points across chains.**
* Within a chain, checkpoints may be \[additive]. For
steps **shared across chains** (e.g., a lemma usable by
multiple approaches), place them under a \Shared
prerequisites" group with **\[max k]#**, and state
x*\count at most once regardless of chain."#*x*
* For every bullet (or group), append either
*#*\ [additive] ** or **\[max k]** to make the scoring
rule unambiguous.
* Finish with a one-line **\Total (max 7)"** check that is
consistent with the non-additivity rule.
* Never demand cosmetic labels or specific variable names
unless essential to the logic.

2. *xZero-credit items*x*

* List common arguments or observations that **earn 0O

12



points** (e.g., conjectures without proof|especially in
geometry, routine restatements of the problem, or
dead-ends) .

3. *xDeductionsx**

* Bullet each typical mistake with a **flat** penalty
Ckx{1*x, *x{2%%, or **\cap at x/7"*x).

* Apply **at most the single largest** deduction; never
reduce a score below O.

* Target logic gaps, invalid claims, circular reasoning,
or contradictions. Cosmetic slips (notation, arithmetic,
wording) do **not** trigger deductions unless they break
validity.

* If a student gives **multiple distinct proofs**, **grade
the best one only** (no stacking). If proofs contain
**contradictory claims**, apply an appropriate deduction
(e.g., **cap at 5/7*x).

### IMPORTANT REQUIREMENTS

* Use **concise bullets** | no prose exposition of the
official solution.

* *kArithmetic sanity checks:** per-chain checkpoint sums
and \[max k]

caps must make it impossible to exceed **7** overall; at
least one chain must allow a perfect **7/7x*x.

* Do **not** introduce, \fix," or critique the official
solution.

* Avoid over-fragmenting: do not split routine algebra
into 3+ separate 1-pt bullets.

* Keep notation consistent with the official solution;
define any new symbols you introduce.

### PROBLEM
{problem}
### OFFICIAL SOLUTION

{solution}

A.8 Evaluator Prompts

Below we list all prompts used in our evaluation. Each prompt is shown verbatim.

With Reference Solution and Marking Scheme

You are an **expert math proof grader**. You are judging the
correctness of an LLM-generated proof for a math problem.

### Input
Your input will consist of:

* xxProblem Statement**: A mathematical problem that the proof
is attempting to solve.

13



* xxReference Solution**: A correct solution or proof provided

for reference. This is **not necessarily the only valid solution*x*.
If the problem requires a final numeric or algebraic answer, this
section contains the correct answer, which should be the only
accepted final answer (though alternative reasoning paths are valid).
* *xMarking Scheme**: A problem-specific grading rubric (0{7 scale)
with checkpoints, zero-credit items, and deductions. **Treat this
scheme as advisory guidance, not a script.** Use it to anchor
scoring, but **do not requirex* the proof to follow the same

order, lemmas, or technique if its reasoning is mathematically
sound.

* **Proof Solution**: The proof that you need to evaluate. This
proof may contain errors, omissions, or unclear steps. The proof
was generated by another language model.

### Task
Analyze the proof carefully.

x*Core principles (in order of precedence) :*x*

1) **Mathematical validity** of the proof’s reasoning and conclusion.
2) **Problem constraints*x (e.g., unique required final value;
forbidden tools if stated).

3) **xAdvisory mapping to the marking scheme** (checkpoints/
deductions), allowing different orders and techniques.

4) **Reference solution** as an anchor for sufficiency, not
exclusivity.

*xAlternative-approach policy:**

- If the proof uses a different but valid method, **map its
steps to equivalent rubric checkpoints** (same logical role)
and award points accordingly.

- **Do not penalize** solely for re-ordering steps, using
different lemmas, or giving a correct shortcut, **unless**

the problem forbids it.

- Apply zero-credit items/deductions **only when the underlying
issue actually occurs** in the given proof’s approach; **do not
auto-penalizex* for omitting a rubric step that is unnecessary
under the alternative method.

- Avoid double-counting mutually exclusive items; if two items
solve the same logical gap, **award the larger only**.

- If the final numeric/algebraic answer is wrong where uniqueness
is required, award only partial credit justified by correct
intermediate reasoning.

**xRigor and evidence:*x*

- Award credit for intermediate claims **only if adequately
justified** within the proof (not merely asserted).

- If a step is plausible but under-justified, award **conservative
partial credit** and note what is missing.

**What to produce:x*x*
- Identify logical errors, incorrect steps, or unclear reasoning.
- Give a **score between O and 7** with a **detailed assessment*x*.
- *xWithin the assessment text**, show clearly how the score was
derived:

- Which rubric checkpoints (or their *#*mapped equivalents**)

were earned and the points you awarded.

- Any zero-credit items or deductions you applied (and why) .

- How these add up to the final integer score in [0-7].

### Output Format
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Respond with **only** well-formed XML using the structure below.
Do not include any extra text or Markdown.

**Requirements: *x*

- ‘<score>‘ must be an integer in [0, 7].

- ‘<assessment>‘ must be a **detailed analysis** that explains

your reasoning step-by-step and provides a clear **rationale for
the scorex*. Reference specific claims/lines if present. Include
the scoring breakdown **in prose** here (earned checkpoints or
mapped equivalents, deductions, and subtotal - final score).

- ‘<errors>‘ must be a list of specific issues (empty if score = 7).

Example output:

<score>0</score>
<assessment>The proof shows a good understanding of the main idea,
but has some unclear reasoning and minor mistakes...</assessment>
<errors>

1. specific error 1,

2. specific error 2,

</errors>

**Problem Statement**
{problem}

**xReference Solution*x*
{human_solution}

**xMarking Scheme*x*
{marking_scheme}

**xProof Solution**
{solution}

Basic Evaluation Template

You are an **expert math proof grader**. You are judging the
correctness of an LLM-generated proof for a math problem.

### Input

Your input will consist of:

* xxProblem Statement**: A mathematical problem that the proof is
attempting to solve.

* xxProof Solution**: The proof that you need to evaluate. This
proof may contain errors, omissions, or unclear steps. The proof
was generated by another language model.

### Task

Analyze the proof carefully.

* Identify logical errors, incorrect steps, or unclear reasoning.
* Give an **integer** score between O and 7 with a brief overall
assessment.

### Output Format

Respond with **only** well-formed XML using the structure below.
Do not include any extra text or Markdown.

15



**Requirements: **

- ‘}<score>‘ must be an integer in [0, 7].

- ‘<assessment>‘ must be a **detailed analysis** that explains your
reasoning step-by-step and provides a clear **rationale for the
score**. Reference specific claims/lines if present.

- ‘<errors>‘ must be a list of specific issues (empty if score = 7).

Example output:

<score>0</score>
<assessment>The proof shows a good understanding of the main idea,
but has some unclear reasoning and minor mistakes...</assessment>
<errors>

1. specific error 1,

2. specific error 2,

</errors>
### Scoring Guidelines (0-7 scale)

* **x0*x*: Completely incorrect; proof is irrelevant, nonsensical, or
shows no understanding.

* xx1-2%%: Very poor; major logical flaws, does not solve the problem,
but may contain fragments of relevant reasoning.

* xx3-4%*: Partial progress; captures some correct reasoning or key
ideas, but has significant logical errors, missing steps, or
incomplete arguments that make the proof invalid overall.

* **x5-6%*: Largely correct; the proof is overall valid and reaches
the correct conclusion. Contains only **minor issues**x (e.g., small
calculation mistakes, notation slips, or slightly unclear wording)
that do not undermine correctness.

* *xx7%*: Fully correct; the proof is complete, logically sound, and
clearly presented with no substantive errors.

**xProblem Statement*x*
{problem}

**Proof Solution**
{solution}

With Reference Solution

You are an **expert math proof grader**. You are judging the
correctness of an LLM-generated proof for a math problem.

### Input
Your input will consist of:

* xxProblem Statement**: A mathematical problem that the proof is
attempting to solve.

* xxReference Solution**: A correct solution or proof provided for
reference. This is **not necessarily the only valid solution**. If
the problem requires a final numeric or algebraic answer, this
section contains the correct answer, which should be the only
accepted final answer (though alternative reasoning paths are valid).
* **Proof Solution**: The proof that you need to evaluate. This proof
may contain errors, omissions, or unclear steps. The proof was
generated by another language model.

### Task

16



Analyze the proof carefully.

* Compare the proof against the reference solution where relevant.
* Identify logical errors, incorrect steps, or unclear reasoning.
* Give a score between 0 and 7 with a brief overall assessment.

### Output Format

Respond with **only** well-formed XML using the structure below.
Do not include any extra text or Markdown.

**Requirements: **

- ‘<score>‘ must be an integer in [0, 7].

- ‘<assessment>‘ must be a **detailed analysis** that explains your
reasoning step-by-step and provides a clear **rationale for the
scorex*. Reference specific claims/lines if present.

- ‘<errors>‘ must be a list of specific issues (empty if score = 7).

Example output:

<score>0</score>
<assessment>The proof shows a good understanding of the main idea
but has some unclear reasoning and minor mistakes...</assessment>
<errors>

1. specific error 1,

2. specific error 2,

</errors>
### Scoring Guidelines (0-7 scale)

* **x0*x*: Completely incorrect; proof is irrelevant, nonsensical, or
shows no understanding.

* **x1-2%x: Very poor; major logical flaws, does not solve the problem,
but may contain fragments of relevant reasoning.

* **3-4%x: Partial progress; captures some correct reasoning or key
ideas, but has logical errors, missing steps, or incomplete arguments
that make the proof invalid overall.

* *xx5-6%%: Largely correct; the proof is overall valid and reaches
the correct conclusion. Contains only **minor issues**x (e.g., small
calculation mistakes, notation slips, or slightly unclear wording)
that do not undermine correctness.

* *xx7%%: Fully correct; the proof is complete, logically sound, and
clearly presented with no substantive errors.

**xProblem Statement*x*
{problem}

**xReference Solution*x*
{human_solution}

**xProof Solution**
{solution}

With Reference Solution and Marking Scheme (Strict)

You are an **expert math proof grader**. You are judging the
correctness of an LLM-generated proof for a math problem.

### Input

Your input will consist of:
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* **Problem Statement**: A mathematical problem that the proof is
attempting to solve.
* x*xReference Solution**: A correct solution or proof provided for
reference. This is **not necessarily the only valid solution**. If
the problem requires a final numeric or algebraic answer, this
section contains the correct answer, which should be the only
accepted final answer (though alternative reasoning paths are valid).
* *xMarking Schemex*: A problem-specific grading rubric (0-7 scale)
with checkpoints, zero-credit items, and deductions. You must
follow this scheme when assigning points.
* **Proof Solution**: The proof that you need to evaluate. This
proof may contain errors, omissions, or unclear steps. The proof
was generated by another language model.

### Task
Analyze the proof carefully.

* Compare the proof against the reference solution and the marking
scheme.
* Award points according to the marking scheme’s checkpoints,
zero-credit items, and deductions.
* Identify logical errors, incorrect steps, or unclear reasoning.
* Give a score between O and 7 with a brief overall assessment.
* Show clearly how the score was derived:

* Which checkpoints were earned (with awarded points).

* Any zero-credit items or deductions applied.

* How the subtotal leads to the final score (0-7).

### Output Format

Respond with **only** well-formed XML using the structure below.
Do not include any extra text or Markdown.

**Requirements: *x*

- ‘<score>‘ must be an integer in [0, T7].

- ‘<assessment>‘ must be a **detailed analysis** that explains

your reasoning step-by-step and provides a clear **rationale for
the scorex*. Reference specific claims/lines if present.

- ‘<errors>‘ must be a list of specific issues (empty if score = 7).

Example output:

<score>0</score>
<assessment>The proof shows a good understanding of the main idea
but has some unclear reasoning and minor mistakes...</assessment>
<errors>

1. specific error 1,

2. specific error 2,

</errors>

**xProblem Statement*x*
{problem}

**Reference Solution**
{human_solution}

**xMarking Scheme*x*
{marking_scheme}

**Proof Solution**
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‘ {solution}

With Reference Solution and Marking Scheme (most basic)

You are an expert grader for math proofs. Judge the proof’s
mathematical correctness based on the reference solution and
the marking scheme, return an integer score between O and 7.

INPUTS:

- Problem Statement

- Reference Solution (correct but not exclusive)

- Marking Scheme (0-7) with checkpoints and deductions | use
as guidance, not a script

- Proof Solution (from an LLM)

OUTPUT (XML only; no extra text):

<score>[integer 0-7]</score>

<assessment>[step-by-step rationale with scoring breakdown in prose]
</assessment>

<errors>[numbered list of specific issues; empty if none]</errors>

**Problem Statement**
{problem}

**xReference Solution*x*
{human_solution}

*xMarking Scheme*x*
{marking_scheme}

**xProof Solution**
{solution}

With Reference Solution and Marking Scheme (basic)

You are an expert grader for math proofs.

INPUTS:

- Problem Statement

- Reference Solution (correct but not exclusive)

- Marking Scheme (0-7) with checkpoints and deductions wuse as
guidance, not a script

- Proof Solution (from an LLM)

TASK:

Judge the proof’s mathematical correctness. Prefer validity > problem
constraints > marking scheme alignment > reference solution. If the
proof uses a different valid method, map its steps to equivalent
marking scheme checkpoints and award points. If a unique final answer
is wrong, give partial credit only for justified intermediate
reasoning.

OUTPUT (XML only; no extra text):

<score>[integer 0-7]</score>

<assessment>[step-by-step rationale with scoring breakdown in prose]
</assessment>

<errors>[numbered list of specific issues; empty if none]</errors>
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**Problem Statement**
{problem}

**xReference Solution*x*
{human_solution}

*xMarking Scheme*x*
{marking_scheme}

**xProof Solution**
{solution}

With Marking Scheme (no reference solution)

You are an **expert math proof grader**. You are judging the
correctness of an LLM-generated proof for a math problem.

### Input
Your input will consist of:

* **Problem Statement**: A mathematical problem that the proof is
attempting to solve.

* *xMarking Schemex*: A problem-specific grading rubric (0-7 scale)
with checkpoints, zero-credit items, and deductions. You must follow
this scheme when assigning points.

* xxProof Solution**: The proof that you need to evaluate. This proof
may contain errors, omissions, or unclear steps. The proof was
generated by another language model.

### Task
Analyze the proof carefully.

* Follow the marking scheme exactly: award checkpoints, apply
zero-credit items, and apply any deductions/caps as specified.
* Identify logical errors, incorrect steps, or unclear reasoning.
* Give a score between 0 and 7 with a brief overall assessment.
* Show clearly how the score was derived:

* Which checkpoints were earned (with awarded points).

* Any zero-credit items or deductions applied.

* How the subtotal leads to the final score (0-7).

### Output Format

Respond with **only** well-formed XML using the structure below.
Do not include any extra text or Markdown.

**Requirements: **

- ‘}<score>‘ must be an integer in [0, 7].

- ‘<assessment>‘ must be a **detailed analysis** that explains your
reasoning step-by-step and provides a clear **rationale for the
score**. Reference specific claims/lines if present.

- ‘<errors>‘ must be a list of specific issues (empty if score = 7).

Example output:

<score>0</score>
<assessment>The proof shows a good understanding of the main idea,
but has some unclear reasoning and minor mistakes...</assessment>
<errors>

1. specific error 1,

2. specific error 2,
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</errors>

**Problem Statement**
{problem}

**Marking Schemexx*
{marking_scheme}

**xProof Solution**
{solution}

With Reference Solution and Marking Scheme (more detailed)

You are an **expert math proof grader**. You are judging the
correctness of an LLM-generated proof for a math problem.

### Input
Your input will consist of:

* xxProblem Statement**: A mathematical problem that the proof is
attempting to solve.

* x*xReference Solution**: A correct solution or proof provided for
reference. This is **not necessarily the only valid solutionx*. If
the problem requires a final numeric or algebraic answer, this section
contains the correct answer, which should be the only accepted final
answer (though alternative reasoning paths are valid).

* *xMarking Scheme**: A problem-specific grading rubric (0-7 scale)
with checkpoints, zero-credit items, and deductions. You must follow
this scheme when assigning points.

* **Proof Solution**: The proof that you need to evaluate. This proof
may contain errors, omissions, or unclear steps. The proof was
generated by another language model.

### How to Use the Marking Scheme (mandatory)

1. Checkpoints parsing & awarding
- Treat each checkpoint exactly as written. Respect its tag:
- [additive]: award all applicable items in that bullet/group.
- [max k]: award up to k points from the items in that
bullet/group (choose the best-matching ones; do not exceed k).
- If items are nested with \award the larger only", and more than
one applies, award only the larger point value.
- If the scheme presents parallel checkpoint chains (alternative
legitimate paths), score the single chain or combination that yields
the highest valid total without violating exclusivity or [max k]
caps. Do not double-count equivalent steps across mutually
exclusive paths.
- If a catch-all checkpoint is provided for a fully correct
alternative proof using the same underlying idea, you may award up
to its stated maximum only when the student’s argument is complete
and logically valid for that idea.

2. Zero-credit items
If the proof relies on any listed zero-credit arguments, award O
for those parts. Do not add points for restatements, conjectures

without proof (especially in geometry), or dead-ends.

3. Deductions (apply at most one)
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- Identify applicable deductions and apply only the single largest
(e.g., -1, -2, or cap at x/7).

- Apply a cap by truncating the post-checkpoint subtotal to x before
finalizing the score.

- Never reduce the score below 0. Cosmetic slips (notation, arithmetic,
wording) do not trigger deductions unless they break validity.

4. Final answer consistency (when applicable)

If the reference solution gives a definitive final answer, the
candidate solution’s final answer must be **correct/equivalent**.

If not, follow the marking scheme’s checkpoints/deductions; typically,
a wrong final answer prevents awarding the \conclusion" checkpoint.

5. Arithmetic & bounds

Checkpoint awards are integers. Subtotal <= 7 by construction.

- After applying the single largest deduction/cap, the final score
is an integer in [0, 7].

### Task
Analyze the proof carefully.

* Compare the proof against the reference solution and the marking
scheme.

* Award points according to the marking scheme’s checkpoints,
zero-credit items, and deductions.

Identify logical errors, incorrect steps, or unclear reasoning.
Give a score between 0 and 7 with a brief overall assessment.
Show clearly how the score was derived:

Which checkpoints were earned (with awarded points).

Any zero-credit items or deductions applied.

How the subtotal leads to the final score (0-7).

* X X ¥ * ¥

### Output Format

Respond with **only** well-formed XML using the structure below.
Do not include any extra text or Markdown.

**Requirements: *x*

- ‘<score>‘ must be an integer in [0, 7].

- ‘<assessment>‘ must be a **detailed analysis** that explains your
reasoning step-by-step and provides a clear **rationale for the
scorex*. Reference specific claims/lines if present.

- ‘<errors>‘ must be a list of specific issues (empty if score = 7).

Example output:

<score>0</score>
<assessment>The proof shows a good understanding of the main idea,
but has some unclear reasoning and minor mistakes...</assessment>
<errors>

1. specific error 1,

2. specific error 2,

</errors>

**Problem Statement**
{problem}

**xReference Solution*x*
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{human_solution}

**Marking Scheme*x*
{marking_scheme}

**xProof Solution**
{solution}
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