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ABSTRACT

Mainstream Test-Time Adaptation (TTA) techniques aim to select confident views
with lower entropy from a set of augmented views to process instance-level adap-
tation for vision-language models, e,g, CLIP. However, entropy-based strategy,
relying only on the current instance probability distribution, struggles to estimate
reliable entropy for outliers. Surprisingly, we observe that using ground-truth
cross-entropy loss on labeled data to select confident views can achieve over-
whelming performance, which motivates us to directly establish a regression map-
ping between augmented views and their corresponding cross-entropy loss. This
paper proposes Regression-based Test-time Adaptation (RTA) that exploits such
view-loss relationships as a ‘free lunch’ for CLIP-based image classification. By
training a regression model on diversely distributed pseudo-labeled data indepen-
dent of downstream tasks, we can predict the pseudo cross-entropy loss for each
augmented view during actual TTA, thereby achieving more accurate view se-
lection without access to true labels. The significant advantage of RTA is that
the view-loss mapping relationship can be estimated in advance on diverse data,
avoiding the current methods that rely solely on the probability distribution of a
single test instance. Extensive experiments on multiple single-label, multi-label,
and cross-domain benchmarks show that RTA significantly outperforms existing
entropy-based TTA methods with negligible additional cost. Our code is available
at https://anonymous.4open.science/r/RTA-2ADD.

1 INTRODUCTION

Vision-language models (VLMs) (Radford et al., 2021; Zeng et al., 2024) have demonstrated un-
precedented success in bridging visual and textual modalities on massive web-scale datasets (Sharma
et al., 2018; Schuhmann et al., 2022). Traditional prompt learning works (Zhou et al., 2022; Hu et al.,
2023; Xing et al., 2024) require extensive labeled data and computational resources, making them
impractical for many scenarios. Beyond that, Test-Time Adaptation (TTA) (Shu et al., 2022; Feng
et al., 2023; Zhu et al., 2024b; Farina et al., 2024; Zhao et al., 2024; Zhou et al., 2025; Wu et al.,
2025) has emerged as a compelling paradigm that enables models to adapt to new domains using
only unlabeled test data without accessing source model parameters and training data.

Generally, the task of TTA typically involves accurately selecting confident views from a set of
augmented views, aiming to reduce the inconsistency and uncertainty of the model. As depicted
in Figure 1(a), current sophisticated algorithms, denoted as f , such as entropy minimization (Shu
et al., 2022; Farina et al., 2024), image diffusion (Feng et al., 2023), CLIP reward (Zhao et al.,
2024), and bound entropy minimization (Wu et al., 2025), are predominantly designed to implement
view selection strategies. Subsequently, the final predicted result is integrated from all logits of
these selected views. To obtain reliable views, these methods strive to excavate discriminative and
distinguishing class information from limited individual instances during TTA.

The core idea of our method is illustrated in Figure 1(b). We discover a significant regression map-
ping relationship between the logits of augmented views and the label cross-entropy loss. Specif-
ically, the smaller the label cross-entropy loss, the more accurate the predictions brought by the
corresponding views, regardless of the distribution of test instances. Our research findings offer a
new direction for the study of TTA algorithms: the information sources that determine reliable views
are not limited to the current single test instance.
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Figure 1: (a). Current entropy-based TTA methods of-
ten design complex modules to accurately select confi-
dent views. (b). RTA treats the regression mapping as
a “free lunch” and directly predicts the regression loss
from the logits of the views, with the views with smaller
regression loss being selected as confident views.

We propose a novel Regression-based Test-
time Adaptation (RTA) method for vision-
language models, aiming to investigate how
regression mapping trends can enhance TTA
performance. The core insight of RTA is to
leverage regression mapping as a “free lunch”:
it directly computes regression loss from the
logits of augmented views, with views yield-
ing smaller regression loss selected as confi-
dent views. Essentially, RTA establishes a re-
gression mapping relationship across unlabeled
data with maximally broad and diverse distribu-
tions. This design is conducive to strengthening
the recognition capability of test-time adapta-
tion frameworks.

A key limitation of existing TTA algorithms
lies in their reliance on information from in-
dividual test instances, regardless of their ar-
chitectural complexity. Although some ex-
cellent works have designed memory modules
and cache mechanisms to provide additional
information guidance, these methods need to
continuously update and maintain dynamically
changing historical samples. Once the distri-
bution of test instances deviates significantly
from the historical distribution, these methods
will immediately fail. Crucially, the regression
mapping of RTA only needs to be trained once in the initial stage, and then it can directly adapt to
test instances with arbitrary distributions, making it more practical in real-world applications. In
summary, the contributions of this work are threefold:

• Key Finding: We discover a strong regression mapping between optimal augmented views
and label cross-entropy loss, i.e., lower loss consistently indicates more accurate predic-
tions across all distributions.

• Method: The proposed Regression-based Test-Time Adaptation (RTA) leverages this re-
gression relationship to select confident views directly, eliminating complex algorithmic
designs required by existing TTA methods.

• Advantage: Unlike current methods, limited to single test instances, RTA trains once on
diverse unlabeled data and adapts to any test distribution without updates.

2 RELATED WORKS

Test-Time Adaptation. Test-time adaptation (TTA) directly addresses the critical challenge of dis-
tribution shift encountered during model deployment. Its core objective is to enhance the robustness
using only unlabeled data from the test stream (Zhang et al., 2022; Shu et al., 2022; Karmanov
et al., 2024; Zhao et al., 2024; Zhu et al., 2024b; Zhou et al., 2025; Wu et al., 2025). The field
has evolved from basic batch normalization layer parameter update methods such as TENT (Wang
et al., 2021) to more sophisticated methods, including customized instance-level tuning (Shu et al.,
2022), diffusion generation of pseudo images (Feng et al., 2023), streaming adaptation for temporal
scenes (Lee & Chang, 2024; Liu et al., 2024), designing positive/negative cache to assist subse-
quent adaptation (Karmanov et al., 2024), and a theoretical framework for analyzing the impact of
entropy minimization on prediction confidence (Farina et al., 2024). Recent studies have extended
TTA to handle complex scenarios such as multi-label classification (Wu et al., 2025), incorporated
Bayesian uncertainty estimation (Zhou et al., 2025), dynamically sampled the optimal prompt from
prompt sets (Xiao et al., 2025), and developed debias strategies (Song et al., 2023; Zhu et al., 2024a).
These methods mainly rely on self-supervision objectives to encourage confident predictions while
maintaining model stability across different test distributions.
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Regression in Deep Learning. Regression aims at modeling continuous target variables. Classical
approaches include linear regression (Schleich et al., 2016), support vector regression (Anand et al.,
2020), and decision tree methods (Fong & Motani, 2024). Recent studies have applied regression
to scenarios such as transfer learning and multimodal uncertainty estimation (Maddox et al., 2021;
Ruppel et al., 2023; Parente et al., 2024; Zeng, 2024), but most rely on domain-specific optimizations
or prior knowledge of the target distribution. The most closely related work to RTA is the loss
predictor for test-time augmentation proposed by Kim et al (Kim et al., 2020), which is trained in
a supervised image classification setting. They employ a deep neural network loss predictor for
single-view augmentation selection, focusing mainly on optimizing test-time image augmentation
strategies, and require training within the target domain using target-domain samples. In contrast,
RTA aims to adapt CLIP to arbitrary target domains by selecting high-confidence views without
ground-truth labels. We use a lightweight tree-based regression model that only needs to be trained
once offline, and can then be applied directly to any target domain.

3 PRELIMINARIES

Consider a training set Dtrain = {(xtrain,ytrain) | xtrain∈X train,ytrain∈Y train}M train
and a downstream

test set Dtest = {(xtest,ytest) | xtest ∈ X test,ytest ∈ Y test}M test
with arbitrary distributions deviating

from training set. The standard Test-Time Adaptation (TTA) process mainly consists of random view
augmentation, confident view selection, and confident view integration. Mainstream TTA methods
focus on the second stage, i.e., how to obtain accurate and reliable views.

Random view augmentation. Given a test instance xtest from Dtest and a set A of N random
augmentation functions, xtest is first augmented N times to generate a set of different augmented
views, denoted as Xtest = {xtest

i | xtest
i = Ai(x

test)}Ni=1.

Confident views selection. Entropy-based methods, which directly select views with low entropy
as confident views, aim to enhance the certainty of model predictions. The Shannon Entropy (SE)
of each augmented view is defined as:

HSE(P(·|xtest
i )) = −

L∑
l=1

P(y = l|xtest
i ) log[P(y = l|xtest

i )], (1)

where l ∈ Y test represents class labels, and L is the number of labels in the test set. TPT (Shu
et al., 2022), DiffTPT (Feng et al., 2023), and RLCF (Zhao et al., 2024) update specific prompts
for each sample using the entropy loss of confident views. Zero (Farina et al., 2024) provides
a solid theoretical derivation for the effectiveness of entropy minimization while eliminating the
cumbersome steps of parameter updates. However, relying solely on the current single instance to
determine confident views is obviously limited in information.

Confident views ensemble. After parameter updates, TPT, DiffTPT, RLCF, and ML-TTA will re-
input the current test instance and obtain prediction results. In contrast, Zero derives the prediction
result by directly integrating confident views. Once the inference for one instance is completed, the
model will immediately adapt to subsequent test instances. Entropy minimization has become the
de facto standard uncertainty measure for confident view selection in modern TTA.

4 METHODS

Our method consists of two stages. (1). Explore a reference unlabeled database with distribution
diversity and learn a regression mapping function that can correlate views with pseudo-label cross-
entropy loss. (2). Standard Test-Time Augmentation process, with the difference being that the
optimal confidence view is selected through the learned function.

4.1 DISCUSSION OF THE REGRESSION RELATIONSHIP

Our intuition is this: Since entropy loss can serve as a benchmark for selecting confident views
in unlabeled scenarios, using actual label cross-entropy loss to select views in labeled scenarios
will undoubtedly outperform entropy loss by a significant margin — this is because the former can
directly eliminate interference from other incorrect labels.

3
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Table 1: Performance improvement of SE and LCE for
RN50 with different numbers of views.

IN-1k IN-A IN-V IN-R IN-K
RN50 59.8 23.2 52.9 60.7 35.5

HSE(8) 60.3 31.5 53.8 61.0 35.6
HLCE(8)↑ 75.415.150.218.769.515.773.712.749.614.0

HSE(16) 60.7 33.1 54.1 61.4 35.8
HLCE(16)↑78.517.858.725.674.019.977.916.553.918.1

HSE(32) 61.7 34.7 55.5 61.5 37.1
HLCE(32)↑82.420.765.130.477.622.181.119.657.720.6

HSE(64) 61.9 35.7 55.8 61.8 38.4
HLCE(64)↑85.823.970.935.280.424.683.721.962.323.9

Table 2: Performance improvement of SE and LCE for
ViT-B/16 with different numbers of views.

IN-1k IN-A IN-V IN-R IN-K
ViT-B/16 66.7 47.8 60.8 73.9 46.1

HSE(8) 69.4 60.1 63.6 78.8 48.6
HLCE(8)↑ 81.612.276.816.777.213.6 88.59.7 62.313.7

HSE(16) 69.6 62.4 63.4 79.1 48.8
HLCE(16)↑84.915.383.020.680.617.291.112.066.818.0

HSE(32) 70.3 63.6 64.5 80.2 49.8
HLCE(32)↑87.617.387.123.583.819.392.912.770.320.5

HSE(64) 70.6 64.3 65.2 80.4 50.1
HLCE(64)↑89.619.090.225.986.621.494.414.073.423.3

Ceiling TTA. Therefore, we first explore the maximum performance improvement of TTA using
actual label cross-entropy loss on multiple datasets with true labels, which we refer to as “Ceiling
TTA”. Given a set of augmented views of a test instance Xtest = {xtest

i }Ni=1 and its corresponding
label ytest ∈ Y test, similar to the entropy loss shown in Equation 1, the actual label cross-entropy
loss (LCE) can be expressed more concisely as the negative log-probability of the true label:

HLCE(y
test,P(·|xtest

i )) = − log[P(y = ytest|xtest
i )]. (2)

This loss directly measures the consistency between the model’s prediction and the ground-truth
label. Lower loss values indicate more accurate and reliable views. The final prediction is ob-
tained by ensembling the top-k views with the lowest label cross-entropy loss. As shown in
Tables 1 and 2, HLCE achieves significant performance gains across all datasets. For instance,
when using CLIP-ViT-B/16 with 64 augmented views, the accuracy on ImageNet-A/ImageNet-R
reaches 90.2%/94.4%. Confident view selection with LCE achieves very high accuracy that is near-
saturation with respect to the number of augmented views. This observation motivates us to explore
the direct correspondence between each view and its label cross-entropy loss, as such a mapping can
guide confident view selection and potentially benefit other test-time adaptation frameworks.

Figure 2: T-SNE of all instance views’ logits reveals their 2D distribution has significant (likely non-linear)
structural correlations to normalized label cross-entropy loss, can be well-fitted by regression models.
Logits-loss Visualization. We perform t-SNE visualization on all views of individual instances
along with their corresponding losses (as shown in Figure 2). Each dot in the figure represents the 2D
coordinates of a view’s logits after dimensionality reduction, while the shade of color corresponds
to the normalized loss value of that view. From the figure, in the distribution plots of all datasets,
there are obvious color clustering or gradient phenomena, indicating that there exists a significant
structural relationship between logits and label cross-entropy loss (and this relationship is most likely
non-linear), and regression models are highly suitable at fitting such relationships.

Spearman’s Rank Correlation. We analyzed the top 10 features (i.e., the top logits with the highest
correlation to the label cross-entropy loss) using Spearman’s Rank Correlation, as shown in Figure 3.
The figure reports the correlation coefficients and p-values for each feature, indicating the strength
and statistical significance of their monotonic relationships with the labels. The coefficients range
from near −1 to 1, revealing strong positive, strong negative, or weak/no correlations, while the
p-values assess their significance. This indicates that there are monotonic relationships of different
degrees between these features and the labels.

4
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Figure 3: Spearman’s analysis of top 10 features vs labels shows varying correlation coefficients (−1 to 1) and
p-values, indicating monotonic relationships with distinct statistical significance.

4.2 REGRESSION MAPPING LEARNING

In this section, we will elaborate on how to learn the regression mapping relationship between views
and their corresponding label cross-entropy losses. Note that although we explore the regression
correlation on the augmented views of the original image in the previous section, the original image
itself can actually be regarded as a view. Therefore, we only need to learn the regression mapping
function based on the original image and the pseudo-label cross-entropy loss (we obtain pseudo-
labels by filtering high-confidence samples to avoid accessing the ground-truth), without the need for
additional data augmentation, which greatly reduces the computational cost of fitting the regression
function.

Consider a regression set Dreg = {(xreg,yreg) | xreg ∈ X reg,yreg ∈ Y reg}M reg
. For a regression

sample (xreg,yreg), we initialize the prompts with template “a photo of [CLS]j”, in which [CLS]j
represents the j-th label name, e.g., dog or cat, results in tj , the logit for j-th class of xreg is computed
as:

sx
reg

j = ⟨EncI(xreg),EncT(tj)⟩, (3)

where EncI and EncT represent the frozen image encoder and text encoder of CLIP, ⟨·, ·⟩ signifies
the dot product. The pseudo-label is yreg, which corresponds to the class index l, the pseudo-label
cross-entropy loss is given by the negative log-probability of the yreg:

LCE(yreg|sx
reg
) = − log

(
exp(sx

test

l )∑L
k=1 exp(s

xreg

k )

)
. (4)

In this paper, we adopt the classic regression decision tree algorithm to fit the input features sx
reg

and
the target values LCE(yreg|sxreg

). The fitting function is defined as:

f(sx
reg
) =

M∑
m=1

cm · I(sx
reg
∈ Rm), (5)

where M is the number of leaf nodes, Rm is the input space region corresponding to the m-th
leaf node, cm is the predicted value of the m-th leaf node, and I(·) is the indicator function. The
predicted value cm of the m-th leaf node is defined as the average of LCE(yreg, sx

reg
) of all training

samples that fall into the region Rm of this leaf node:

cm =
1

|Rm|
∑

w:sx
reg∈Rm

Lw
CE(y

reg|sx
reg
). (6)

We use the mean squared error to determine the optimal predicted value for each leaf. Then, the
optimization objective of the entire tree is to minimize the mean squared error between the pseudo
cross-entropy losses of all training samples and the cross-entropy losses predicted by the decision
tree:

M∑
m=1

∑
w:sx

reg∈Rm

[
Lw
CE(y

reg|sx
reg
)− cm

]2
. (7)

5
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Algorithm 1 Regression Mapping via Decision Tree

1: Input: Regression set Dreg = {(xreg,yreg) | xreg∈X reg,yreg∈Y reg}M reg
, encoder EncI/EncT.

2: Output: A trained regression decision tree f .
3: Text prompt tj ← “a photo of [CLS]j” for each class. Initialize empty regression set Dtree.
4: for each sample (xreg,yreg) in Dreg do
5: Let l be the class index corresponding to yreg.
6: for j = 1, . . . , L do
7: Compute sx

reg

j for j-th class using Eq.(3).
8: end for
9: Compute LCE(yreg|sxreg

) using Eq.(4).
10: Add the pair (sx

reg
,LCE) to Dtree.

11: end for
12: Train a regression decision tree f using fitting function 5 on Dtree. The tree is fitted to minimize

the Mean Squared Error using Eq.(7).
13: return f

Algorithm 2 Regression-based Test-time Adaptation (RTA)

1: Input: Test instance xtest, a set of N augmentation functionsA = {Ai}Ni=1, image/text encoder
EncI/EncT, the trained regression decision tree f .

2: Output: The final prediction for xtest.
3: Generate augmented views Xtest ← {Ai(x

test)}Ni=1.
4: Initialize the temporary set Dpred.
5: for each augmented view xtest

i in Xtest do
6: for j = 1, . . . , L do
7: Compute sx

test

ij for j-th class using Eq.(8).
8: end for
9: Predict the cross-entropy loss for the view using the decision tree: Lpred

i ← f(sx
test
i ).

10: Add the pair (xtest
i ,Lpred

i ) to a temporary set Dpred.
11: end for
12: Select the top-k views in Dpred with the smallest predicted losses to get Vconf using Eq.(10).
13: return Average the predictions in Vconf.

4.3 REGRESSION-BASED TEST-TIME ADAPTATION (RTA)

Once we obtain the regression decision tree, we can directly predict the label cross-entropy loss of
each augmented view and select the optimal confidence view in the second stage.

Like other TTA methods, RTA first obtains a set of augmented views Xtest = {xtest
i | xtest

i =
Ai(x

test)}Ni=1 of the test instance xtest, and then uses the same vision-language model as in the
first stage to get the logit for each class of each view and l text prompts:

s
xreg
i

ij = ⟨EncI(xreg
i ),EncT(tj)⟩, (8)

Then, substituting s
xreg
i

i into Equation 5 allows us to obtain the predicted label cross-entropy loss for
each view:

f(sx
reg

i ) =

M∑
m=1

cm · I(sx
reg

i ∈ Rm) (9)

The top-k views with the smallest losses form the optimal confidence view set:

Vconf = {xreg
i | i ∈ arg min

i=1,2,...,N

{
f(sx

reg

i )
}

top k
} (10)

The final prediction result is obtained by directly fusing the views in Vconf. We summarize the two
stages of our method through Algorithms 1 and 2.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. RTA aims to learn the mapping function from logits to label cross-entropy loss,
which is independent of any downstream classification task. Therefore, we include two benchmarks:
single-label following Zero (Farina et al., 2024), and multi-label following ML-TTA (Wu et al.,
2025). The single-label datasets include ImageNet (Deng et al., 2009), ImageNet-A (Hendrycks
et al., 2019), ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2020), ImageNet-
K (Wang et al., 2019) and 10 cross domain datasets (e.g., Cars (Krause et al., 2013), Pets (Parkhi
et al., 2012), and Aircraft (Maji et al., 2013)). The multi-label datasets include MSCOCO (Lin et al.,
2014), VOC2007 (Everingham et al., 2010), and NUSWIDE (Chua et al., 2009).

Implementation Details We use the pre-trained CLIP model with RN50 and ViT-B/16 as the
backbone. For the first stage, we selecte ImageVal-12k as the regression mapping data. To balance
performance and efficiency, we only sample 1, 000 examples (filtered by setting the threshold as 0.8
on CLIP’s predicted confidence) for training, although more data can yield higher performance. We
use LightGBM (Ke et al., 2017) as the regression model, training to convergence after 100 rounds.
The maximum depth is 5, the maximum number of leaves is 16, the learning rate is 0.01, and all
other parameters are set to default. For the second stage, the TTA process follows the settings of
Zero and ML-TTA, with the number of augmented views N = 64 and the confidence-based filtering
ratio 0.1. All experiments are conducted on a single NVIDIA V100 GPU.

Table 3: Comparison of the accuracy (%) of CLIP RN50 and ViT-B/16 on ImageNet and its variants with
the state-of-the-art methods.

Method IN-1k IN-A IN-V2 IN-R IN-S Average OOD Avg

CLIP [ICML 2022] 59.81 23.24 52.91 60.72 35.48 46.43 43.09

TPT [NeurIPS 2022] 60.74 26.67 54.70 59.11 35.09 47.26 43.89
DiffTPT [ICCV 2023] 60.80 31.06 55.80 58.80 37.10 48.71 45.69
C-TPT [CVPR 2024] 61.2 25.6 54.8 59.7 35.7 47.4 44.0
TDA [CVPR 2024] 61.35 30.29 55.54 62.58 38.12 49.58 46.63
BCA [CVPR 2025] 61.81 30.35 56.58 62.89 38.08 49.94 46.98

R
N

50

RTA 62.30 36.79 56.92 64.31 38.94 51.85 49.24
CLIP [ICML 2022] 68.34 49.89 61.88 77.65 48.24 61.20 59.42

TPT [NeurIPS 2022] 68.98 54.77 63.45 77.06 47.94 62.44 60.81
DiffTPT [ICCV 2023] 70.30 55.68 65.10 75.00 46.80 62.28 60.52
C-TPT [CVPR 2024] 69.3 52.9 63.4 78.0 48.5 62.4 60.7
TDA [CVPR 2024] 69.51 60.11 64.67 80.24 50.54 65.01 63.89
MTA [CVPR 2024] 70.08 58.06 64.24 78.33 49.61 64.06 62.56
Zero [NeurIPS 2024] 70.89 64.03 65.11 80.82 50.32 66.24 65.03
Dyna [ICLR 2025] 69.61 56.17 64.67 78.17 48.22 63.37 61.81
BCA [CVPR 2025] 70.22 61.14 64.90 80.72 50.87 65.37 64.16

V
iT

-B
/1

6

RTA 71.13 65.65 65.43 81.05 51.23 66.90 65.84

Single-label image classification For the single-label classification on ImageNet and its variants
datasets, we systematically evaluate the performance of two CLIP-based architecture models, RN50
and ViT-B/16, as well as current mainstream TTA methods (as shown in Table 3). For the RN50
architecture, RTA significantly outperforms existing methods on all evaluation metrics: it achieves
62.30% accuracy on the ImageNet-1k dataset, an improvement of 2.49% over the base CLIP model
and 1.0 − 1.5% higher than state-of-the-art methods such as TDA and BCA. RTA’s advantages
are even more pronounced on variant datasets with more pronounced distribution shifts, with an
accuracy of 36.79% on ImageNet-A, 5.73% higher than DiffTPT, and an accuracy of 64.31% on
ImageNet-R, achieving a new best performance on this dataset.

Overall, RTA achieves an average accuracy of 51.85% across the five datasets, and an OOD average
accuracy (average of ImageNet-A, V2, R, and S) of 49.24%, improvements of 5.42% and 6.15%,
respectively, over the base CLIP model, validating its robustness to distribution-shifted scenarios.
For the ViT-B/16 architecture, RTA also demonstrates leading performance: it surpasses methods
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such as Zero and BCA with an accuracy of 71.13% on ImageNet-1k, achieves an accuracy of 65.65%
on ImageNet-A, an increase of 1.62% over the Zero method, and reaches an accuracy of 81.05% on
ImageNet-R, further consolidating its ability to recognize complex variant data; its overall average
accuracy reaches 66.90%, and the OOD average accuracy reaches 65.84%, which are 5.70% and
6.42% higher than the CLIP base model respectively.

Table 4: Accuracy comparison (%) on 10 cross-domain datasets for CLIP RN50 and ViT-B/16.

Method
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Average

CLIP [ICML 2022] 82.97 62.77 16.11 40.37 25.79 55.89 74.82 60.85 87.26 59.48 56.63

TPT [NeurIPS 2022] 84.49 62.69 17.58 40.84 28.33 58.46 74.88 61.46 87.02 60.82 57.66
DiffTPT [ICCV 2023] 83.40 63.53 17.60 40.72 41.04 60.71 79.21 62.72 86.89 62.67 59.85
C-TPT [CVPR 2024] 84.0 65.3 17.5 43.1 29.4 57.3 76.0 62.1 87.4 60.7 58.3
TDA [CVPR 2024] 86.18 68.74 17.61 43.74 42.11 57.78 77.75 62.53 89.70 64.18 61.03
BCA [CVPR 2025] 85.58 66.30 19.89 48.58 42.12 58.13 77.19 63.38 89.70 63.51 61.44

R
N

50

RTA 86.08 66.23 18.80 46.58 40.65 60.95 78.64 63.58 89.94 65.42 61.78

CLIP [ICML 2022] 86.92 66.99 23.22 45.04 50.42 66.11 82.86 65.63 93.55 65.16 64.59

TPT [NeurIPS 2022] 87.79 68.98 24.78 47.75 42.44 66.87 84.67 65.50 94.16 68.04 65.10
DiffTPT [ICCV 2023] 88.22 70.10 25.60 47.00 43.13 67.01 87.23 65.74 92.49 62.67 65.47
C-TPT [CVPR 2024] 87.4 69.9 23.9 46.8 48.7 66.7 84.5 66.0 94.1 66.7 65.5
TDA [CVPR 2024] 88.63 71.42 23.91 47.40 58.00 67.28 86.14 67.62 94.24 70.66 67.53
MTA [CVPR 2024] 88.24 68.06 25.20 45.90 45.36 68.47 85.00 66.67 94.21 68.69 65.58
Zero [NeurIPS 2024] 87.20 66.82 24.42 45.86 43.77 68.48 84.58 66.90 94.14 68.57 65.07
Dyna [ICLR 2025] 88.28 69.95 24.33 47.96 42.28 67.65 85.42 66.32 94.32 68.72 65.52
BCA [CVPR 2025] 90.43 73.12 28.59 53.49 56.63 66.86 85.97 68.41 94.69 67.59 68.59

V
iT

-B
/1

6

RTA 89.98 71.80 29.32 50.45 53.65 70.40 86.45 68.12 95.80 70.98 68.70

Cross-domain image classification Table 4 presents the classification accuracy on 10 cross-domain
datasets. Across 10 cross-domain datasets, RTA consistently outperforms prior adaptation meth-
ods for both CLIP RN50 and ViT-B/16 backbones. For RN50, it raises the average accuracy to
61.78%, surpassing all baselines and yielding notable gains on domains such as Cars and UCF. For
ViT-B/16, RTA achieves the highest average accuracy of 68.70%, edging out the previous best
(BCA) while attaining top scores on fine-grained (Aircraft, Cars) and large-scale (Caltech) tasks.
These results highlight RTA’s strong generalization ability and its effectiveness in handling diverse
and domain-shifted scenarios with both convolution-based and transformer-based CLIP models.

Table 5: Comparison of the mean average precision
(%) of CLIP RN50 on multi-label datasets.

Method MSCOCOVOC2007NUSWIDE

CLIP [ICML 2022] 47.53 75.91 41.53
TPT [NeurIPS 2022] 48.52 75.54 41.97
DIffTPT [ICCV 2023] 48.56 75.89 41.33
DMN [CVPR 2024] 47.53 75.91 41.53
TDA [CVPR 2024] 48.91 76.64 42.34
RLCF [ICLR 2024] 36.87 65.75 29.83
ML-TTA [ICLR 2025] 51.58 78.62 42.53

RTA 53.25 80.20 45.52

Table 6: Comparison of the mean average precision
(%) of CLIP ViT-B/16 on multi-label datasets.

Method MSCOCOVOC2007NUSWIDE

CLIP [ICML 2022] 54.42 79.58 45.65
TPT [NeurIPS 2022] 53.32 77.54 46.15
DIffTPT [ICCV 2023] 53.91 77.93 46.13
DMN [CVPR 2024] 52.52 79.83 46.27
TDA [CVPR 2024] 55.21 80.12 46.72
RLCF [ICLR 2024] 54.21 79.29 43.18
ML-TTA [ICLR 2025] 57.52 81.28 46.55

RTA 58.95 82.75 48.43

Multi-label image classification On the mainstream multi-label classification datasets MSCOCO,
VOC2007, and NUSWIDE, we compare the mean average precision (mAP) performance of CLIP-
based models with RN50 and ViT-B/16 architectures against state-of-the-art TTA methods (as
shown in Table 5 and 6). For the RN50 architecture, RTA achieves significant leading performance
across all datasets: on the MSCOCO dataset, it attains an mAP of 53.25%, surpassing the suboptimal
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method ML-TTA (51.58%) by 1.67% and outperforming the baseline CLIP model by 5.72%. On the
VOC2007 dataset, it reaches an mAP of 80.20%, which is not only higher than TDA’s 76.64% but
also 1.58% higher than ML-TTA. On the NUSWIDE dataset with diverse categories, RTA achieves
a new optimal result with an mAP of 45.52%, outperforming TDA and ML-TTA by 3.18% and 3.0%
respectively, demonstrating strong adaptability to multi-label scenarios.

For the ViT-B/16 architecture, RTA also maintains comprehensive advantages: on MSCOCO, it
achieves an mAP of 58.95%, exceeding ML-TTA (57.52%) by 1.43% and the baseline CLIP by
4.53%. On VOC2007, it reaches an mAP of 82.75%, which is 2.63% higher than TDA (80.12%)
and 1.47% higher than ML-TTA (81.28%). On NUSWIDE, it led all comparative methods with an
mAP of 48.43%, outperforming TDA by 1.71% and ML-TTA by 1.88%.

Overall, RTA effectively improves multi-label classification performance across datasets for both
model architectures, with more pronounced advantages in large-scale complex scenarios (e.g.,
MSCOCO and NUSWIDE), verifying its generalization effectiveness in general visual tasks.

5.2 FURTHER ANALYSIS

Figure 4: IN and its variants results on the different
numbers of augmented views

Number of augmented views. Figure 4 com-
pares the classification accuracy of ImageNet
(blue line) and ImageNet-variant (red line) at
different numbers of augmented views. As
the number of views increases, the accuracy of
both datasets increases rapidly. Initially, the
ImageNet-variant accelerates faster, even sur-
passing ImageNet at lower numbers of views.
When the number of views exceeds 128, the ac-
curacy stabilizes and the gap between the two
approaches narrows, demonstrating that a suffi-
cient number of views can reduce the impact of
the dataset on model performance.

Figure 5: IN and its variants results on the different
numbers of regression mapping samples

Number of regression mapping samples.
Figure 5 presents the classification accuracy of
the ImageNet and ImageNet-variant datasets as
the number of regression mapping samples in-
creases in the first stage. As the number of re-
gression mapping samples increases, the accu-
racy of both datasets rises. In the early stage
(when the number of samples increases from 1k
to around 5k), the growth is significant, and the
initial accuracy of ImageNet is slightly higher;
as the number of samples continues to increase
(up to 50k), the accuracy of both continues to
improve slowly and gradually stabilizes.

6 CONCLUSION

This paper proposes a Regression-based Test-Time Adaptation method (RTA) that aims at addressing
the adaptation performance of vision-language models (such as CLIP) when there is a deviation be-
tween the test distribution and the pre-training data. Experiments reveal a strong regression mapping
relationship between optimal augmented views and label cross-entropy loss, where a smaller loss in-
dicates more accurate predictions from the corresponding view. Based on this, RTA pre-establishes
the mapping relationship between views and cross-entropy loss by training a regression model on
diversely distributed data. During testing, it can predict the loss of each augmented view without
access to true labels and select confident views for integration. Experimental results show that RTA
significantly outperforms existing entropy-based TTA methods on both single-label and multi-label
datasets. Moreover, it only requires one training session to adapt to arbitrary test distributions, with
negligible computational cost.
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Appendix for Regression-based Test-Time Adaptation of
Vision-Language Models

A THE RISK OF DATA LEAKAGE

To address potential concerns regarding the use of the ImageVal-12K dataset and the possibility
of data leakage, we provide detailed clarification and experimental results.

A.1 DATASET USAGE

In our experiments, we utilize 1, 000 samples from the ImageNet-12K validation set solely for
regression mapping. Tables 3, 4, 5, and 6 show that regression models trained on ImageNet-12K
maintain stable and effective performance even under large distribution shifts. The entire data col-
lection for the first stage is as follows:

Step 1: Initial Filtering by Confidence. Starting from the ImageNet-12K validation set, we
first remove any samples overlapping with the target dataset to avoid data leakage. From the remain-
ing set, we select 5, 000 samples whose classification confidence scores are greater than or equal to
0.8.

Step 2: Logit Range Partitioning. For all selected samples, we calculate the maximum logit
(logit max) and minimum logit (logit min). The logit range

[logit min, logit max]

is evenly partitioned into 10 intervals.

Step 3: Stratified Sampling over Logit Intervals. From each interval, we randomly select 100
samples, resulting in a final regression training set of 1, 000 samples. This procedure ensures cover-
age of the entire logit value spectrum, enabling the regression model to learn a stable “logit→ loss”
mapping across varying magnitudes of logits.

A.2 FURTHER EVALUATION OF GENERALIZATION

To more rigorously evaluate RTA’s generalization ability, we additionally trained regression map-
pings using two alternative sources:

1. ImageNet-1K as the training samples
2. ImageNet-V as the training samples

In each case, the remaining datasets are used solely for the target sets.

Table 7: RTA generalization performance across different training and target sets. Results reported
using CLIP-ViT-B/16.
Training Set ImageNet-I ImageNet-A ImageNet-R ImageNet-K ImageNet-V
CLIP baseline 68.34 49.89 77.65 48.24 61.88
RTA (ImageNet-12K) 71.13 65.65 81.05 51.23 65.43
RTA (ImageNet-I) — 65.34 81.02 51.76 65.38
RTA (ImageNet-V) 71.25 65.42 80.85 51.28 —

Even when the training and target datasets have different distributions, RTA demonstrates consistent
and stable performance. During regression mapping, RTA learns a mapping from logits to label
cross-entropy losses, which is inherently independent of the specific dataset distribution.

The only requirement for maintaining performance is the consistent use of the same vision-language
backbone across both stages of the pipeline. For example, if CLIP-ViT-B/16 is used to obtain logits
in the first stage, the TTA stage must also be performed on CLIP-ViT-B/16.
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B INFERENCE PROCESS OF RTA

This section clarifies how the RTA framework handles target datasets with arbitrary numbers of
categories, without requiring re-training of the regression model.

Stage 1: Regression Model Training. The regression model, denoted as Model R, is trained
on the ImageNet-12K dataset, which contains 1, 000 categories serving as a fixed base
category set. The training objective is as follows:

1. Input: Logits (similarity between image and class prompts) corresponding to the 1, 000
base categories. Each logit denotes a feature dimension.

2. Output: One scalar value, representing the predicted label cross-entropy loss.

Stage 2: Adapting to Target Sets. Given a target dataset with arbitrary novel categories (e.g.,
Flower102 with 102 categories), the RTA inference stage proceeds as follows:

1. For each test sample, generate n augmented views.
2. For each view, compute two sets of logits:

• logit a: [n×1000] logits w.r.t. the fixed 1, 000 base categories, used solely for loss
prediction via Model R.

• logit b: [n × 102] logits w.r.t. the novel categories in the target dataset
(Flower102), used for final classification output.

3. Feed logit a into Model R to predict the per-view loss:

Preloss ∈ Rn×1

4. Rank the predictions in Preloss and select the topk views with the lowest predicted losses
as confident views.

5. Average logit b across these confident views to produce the final prediction:

Prediction ∈ R1×102

Discussion. In this design, the 1, 000 base categories from Stage 1 serve solely as a reference cat-
egory set for learning the “logit → loss” mapping. This mapping is inherently decoupled from the
specific label set of the target dataset. Consequently, for any dataset with arbitrary and novel cate-
gories, RTA uses the same base category logits to drive loss prediction, ensuring task independence
and preserving generalization capability across variations in label cardinality.

C INTEGRATING RTA INTO EXISTING TTA FRAMEWORKS

Table 8: Performance evaluation of integrating RTA into existing SOTA methods.
Method ImageNet-I ImageNet-A ImageNet-R ImageNet-K ImageNet-V
TPT 68.98 54.77 77.06 47.94 54.77
TPT+RTA 70.21 58.43 79.32 49.05 55.98
AWT 71.32 60.33 80.64 51.60 65.15
AWT+RTA 72.45 66.86 82.35 51.95 66.21
DPE 71.91 59.63 80.40 52.26 59.63
DPE+RTA 72.34 66.32 82.05 53.65 65.96

The core principle of RTA is to replace the conventional entropy-based loss used for confident-view
selection with a regression-predicted pseudo cross-entropy loss. This design enables RTA to be
readily integrated into any TTA framework whose view-selection module is based on entropy loss,
without requiring additional modifications.

We integrate our RTA into 3 TTA methods: TPT Shu et al. (2022), AWT Zhu et al. (2024b), and
DPE Zhang et al. (2024), replacing the original entropy-loss selection module with RTA’s loss pre-
dictor.
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Across all datasets, integrating RTA consistently improves performance over the original methods.
This demonstrates that RTA acts as an orthogonal enhancement, allowing it to serve as a plug-and-
play module in diverse TTA frameworks.

D LOGIT VISUALIZATION AND CORRELATION ANALYSIS USING PCA

Figure 6: Logit visualization by PCA.

We employ PCA to visualize the correlation between logits
and label cross-entropy loss as shown in Figure 6.

While the 2D PCA projection exhibits weaker color sepa-
ration and clustering in compared to the t-SNE visualiza-
tion in Figure 2 (due to inevitable information loss when
nonlinear relationships are linearly projected), we conduct
a quantitative correlation analysis between each principal
component (PC) and the corresponding label cross-entropy
loss in Table 9.

Results indicate that the first principal component is still
significantly correlated with the loss (Pearson r = 0.167, p ≈ 9.1 × 10−48; Spearman ρ = 0.159,
p ≈ 1.0× 10−43), and several other principal components also demonstrate weaker yet statistically
significant correlations. This confirms that even under purely linear projection, the relationship
between logits and loss remains detectable.

Table 9: Correlation between principal components of logits (PCA) and label cross-entropy loss.
PC Index Pearson Corr p-value Spearman Corr p-value

1 0.167 9.1× 10−48 0.159 1.0× 10−43

2 0.025 3.2× 10−2 0.021 6.3× 10−2

3 -0.054 3.5× 10−6 -0.075 6.1× 10−11

4 -0.087 3.8× 10−14 -0.078 1.5× 10−11

5 -0.002 0.87 0.008 0.46

However, the correlation strength observed in PCA components is clearly lower than that observed
in the nonlinear t-SNE visualization, indicating that the mapping relationship predominantly ex-
hibits a nonlinear structure. This finding validates our choice of a nonlinear regression model in
RTA and motivates the selection of t-SNE, as it can more intuitively reveal the nonlinear structural
characteristics between logits and label cross-entropy loss.

E IMPACT OF PSEUDO-LABEL QUALITY ON REGRESSION MODEL AND TTA
PERFORMANCE

To evaluate the influence of pseudo-label quality on fitting the regression model and the resulting
TTA performance, we conduct experiments on ImageNet-A in which ground-truth labels are pro-
gressively replaced with randomly assigned incorrect labels. The proportion of incorrect labels is
varied from 0% (true labels) to 100% (all labels incorrect).

Table 10: Effect of pseudo-label noise levels on ImageNet-A accuracy (%). “True Label”: regression
model trained with ground truth. “Pseudo Label”: regression model trained with CLIP pseudo-
labels. n%: n% pseudo-labels replaced with random incorrect labels.

Model Zero-shot True Label Pseudo Label 20% 40% 60% 80% 100%
CLIP-ViT/B-16 49.89 – – – – – – –
Shannon Entropy 64.03 – – – – – – –
RTA – 66.42 65.65 65.98 65.81 65.62 65.35 63.94

From Table 10, RTA achieves its highest accuracy (66.42%) when trained with true labels. As the
noise proportion in pseudo-labels increases, performance gradually decreases; however, the decline
is relatively small. Even in the 100% noise setting, RTA’s accuracy (63.94%) remains only slightly
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below that of Shannon entropy-based selection (64.03%), while substantially outperforming the
zero-shot CLIP baseline (49.89%).

These results indicate that RTA is robust to moderate inaccuracies in pseudo-labels. In practice,
pseudo-labels with approximately correct accuracy are sufficient to train a reliable regression model
for confident-view selection during TTA.

F ANALYSIS OF ENTROPY VS. LABEL CROSS-ENTROPY UNDER
DISTRIBUTION SHIFTS

F.1 QUANTITATIVE COMPARISON IN ID AND OOD SCENARIOS

To investigate the deviation between Shannon entropy (HSE) and label cross-entropy (HLCE) un-
der distribution shift, we compare their performance in all cross-domain out-of-distribution (OOD)
scenarios.

Table 11: Accuracy (%) comparison for CLIP-ViT-B/16 with 64 views in cross-domain OOD
datasets. HLCE consistently outperforms HSE across all domains.
Method Pets Flowers Aircraft DTD EuroSAT Cars Food SUN Caltech UCF

CLIP-ViT-B/16 86.92 66.99 23.22 45.04 50.42 66.11 82.86 65.63 93.55 65.16
HSE(64) 86.89 65.98 24.81 45.39 42.93 66.29 85.89 67.84 92.37 68.54
HLCE(64) 94.99 80.05 52.87 63.12 71.48 90.42 96.65 88.42 98.99 87.44

In OOD scenarios—including the 10 cross-domain datasets, HLCE yields substantially higher accu-
racy than HSE, often by more than 20 percentage points. These results validate that entropy is an
unreliable confidence signal under strong distribution shifts, whereas HLCE provides a more robust
basis for confident view selection.

F.2 VISUALIZATION OF VIEW-SELECTION DIFFERENCES

Here, we compare confident view selection based on HSE and HLCE. For an image with 8 augmented
views, we compute both logits and rank the views from lowest to highest loss.
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Figure 7: Comparison of confident view selection based on HSE and HLCE

As shown in Figure 7, HSE ranks one correct target-object view at the top, but places other views
containing the target object lower in the ranking. In contrast, HLCE consistently ranks nearly all
semantically correct, high-confidence views at the top, leading to better semantic consistency and
final prediction accuracy.

F.3 DEFINITION OF CORRELATION COEFFICIENTS IN FIGURE 3

Computation Process. Let xi,j denote the j-th feature dimension (i.e., class logit) of the i-th
augmented view, and let ℓi be the corresponding LCE value computed as defined in Eq. (2). For
each feature dimension j:

1. Collect {xi,j}Ni=1 across all N augmented views in the regression-mapping dataset.

2. Collect the associated LCE values {ℓi}Ni=1 for the same views.
3. Compute the Spearman rank correlation coefficient ρj between {xi,j} and {ℓi}, which

measures the strength of their monotonic relationship:

ρj = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
,
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where di denotes the difference between the ranks of xi,j and ℓi.

4. Estimate the corresponding p-value pj to assess the statistical significance of ρj under the
null hypothesis of no monotonic correlation.

Interpretation. The resulting (ρj , pj) pairs capture both the strength and statistical significance
of the relationship between a specific logit dimension and its associated LCE. High |ρj | with low pj
indicates a strong and statistically significant monotonic dependence, which guides the regression
model in mapping logits to losses effectively.

G LOSS PREDICTION ACCURACY AND CROSS-DATASET GENERALIZATION
OF REGRESSION MODEL

G.1 LOSS PREDICTION ACCURACY AND CONSISTENCY

Figure 8: Logit visualization by PCA.

We assess the accuracy and trend consistency of the
regression model’s predicted cross-entropy loss ver-
sus the true label cross-entropy on ImageNet-A.
The regression model is trained with pseudo cross-
entropy derived from CLIP predictions.

For each augmented view, we obtain: (i) the pre-
dicted loss from the regression model and (ii) the
ground-truth LCE computed according to Eq. (2) in
the main text. These values are compared to evaluate
both numerical deviations and ranking consistency.

As shown in Figure 8, the absolute loss values differ numerically, but the overall trend between
predicted and true losses is consistent. Since RTA’s confident-view selection depends on ranking
loss values rather than their absolute values, minor numerical differences do not affect selection
accuracy as long as ranking trends are aligned.

G.2 REGRESSION PERFORMANCE ACROSS ID AND OOD DATA

To further verify distributional generalization, we conduct an additional experiment: training the
regression model on ImageNet-I or ImageNet-V and testing on the remaining datasets, ensuring that
training and target distributions differ substantially.

Table 12: Accuracy (%) across various datasets when training the regression model on different
sources. CLIP-ViT-B/16 backbone is used throughout. A slash “/” indicates that the dataset was
used in training and is excluded from evaluation. Boldface denotes the best result in each column.

Method ImageNet-I ImageNet-A ImageNet-R ImageNet-K ImageNet-V
CLIP-ViT-B/16 68.34 49.89 77.65 48.24 61.88
RTA (ImageNet-12K) 71.13 65.65 81.05 51.23 65.43
RTA (ImageNet-I) / 65.34 81.02 51.76 65.38
RTA (ImageNet-V) 71.25 65.42 80.85 51.28 /

The results indicate that RTA maintains stable accuracy even when training and target distributions
differ significantly. This robustness is due to the regression stage learning a generalizable logits→
loss mapping, which only requires logits extracted using the same vision–language backbone in both
stages (e.g., CLIP-ViT-B/16).

The regression mapping learned on one dataset can be directly transferred to datasets from arbitrary
distributions without retraining, ensuring that RTA can be deployed in diverse test-time adaptation
scenarios.
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H CHOICE OF REGRESSION MODEL IN RTA

H.1 EVALUATION OF NONLINEAR REGRESSION MODELS

To explore suitable regression models for predicting label cross-entropy from logits, we compare
multiple models, including kernel-based methods, multilayer perceptrons (MLPs), and gradient-
boosted decision trees.

Table 13: Accuracy (%) of various regression models integrated into RTA across different datasets.
CLIP-ViT-B/16 backbone is used for logit extraction.

Regressor ImageNet-I ImageNet-A ImageNet-R ImageNet-K ImageNet-V
SVM (RBF kernel) 70.34 64.89 80.54 51.03 65.05
XGBoost 70.65 65.12 80.87 50.98 65.34
CatBoost 71.02 65.45 80.89 51.05 65.25
LightGBM (RTA) 71.13 65.65 81.05 51.23 65.43

Analysis. Several nonlinear models achieve comparable accuracy; however, LightGBM offers the
best balance across three criteria:

1. Precision: Highest or near-highest accuracy in all datasets tested.
2. Robustness: Strong handling of redundant or noisy features, which are common in high-

dimensional logit vectors.
3. Training Speed: Requires only ∼5 seconds to train on 1,000 samples without complex

feature preprocessing.

Tree-based models inherently capture nonlinear relationships and feature interactions, making them
well-suited for modeling the logit-to-loss mapping.

Conclusion. While multiple nonlinear regression models are viable for RTA, LightGBM was se-
lected for its superior combination of accuracy, robustness, and efficiency, ensuring the framework
remains both effective and computationally lightweight in test-time adaptation scenarios.
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