
Published as a conference paper at ICLR 2022

DIFFERENTIABLE DAG SAMPLING

Bertrand Charpentier, Simon Kibler, Stephan Günnemann
Department of Informatics & Munich Data Science Institute
Technical University Munich
{charpent, kibler, guennemann}@in.tum.de

ABSTRACT

We propose a new differentiable probabilistic model over DAGs (DP-DAG). DP-
DAG allows fast and differentiable DAG sampling suited to continuous optimiza-
tion. To this end, DP-DAG samples a DAG by successively (1) sampling a linear
ordering of the node and (2) sampling edges consistent with the sampled linear
ordering. We further propose VI-DP-DAG, a new method for DAG learning from
observational data which combines DP-DAG with variational inference. Hence,
VI-DP-DAG approximates the posterior probability over DAG edges given the
observed data. VI-DP-DAG is guaranteed to output a valid DAG at any time during
training and does not require any complex augmented Lagrangian optimization
scheme in contrast to existing differentiable DAG learning approaches. In our ex-
tensive experiments, we compare VI-DP-DAG to other differentiable DAG learning
baselines on synthetic and real datasets. VI-DP-DAG significantly improves DAG
structure and causal mechanism learning while training faster than competitors.

1 INTRODUCTION

Directed Acyclic Graphs (DAGs) are important mathematical objects in many machine learning tasks.
For example, a direct application of DAGs is to represent causal relationships in a system of variables.
In this case, variables are represented as nodes and causal relationships are represented as directed
edges. Hence, DAG learning has found many applications for causal discovery in biology, economics
or planning (Pearl, 1988; Ramsey et al., 2017; Sachs et al., 2005; Zhang et al., 2013). However,
DAG learning is a challenging problem for two reasons. First, while DAG learning with data from
randomized and controlled experiments is the gold-standard for causal discovery, experimental data
might be hard or unethical to obtain in practice. Hence, a more common but also challenging setting is
DAG learning from observational data which is possible under proper conditions (Pearl, 2009; Spirtes
et al., 2000). Second, the number of possible DAGs scales super-exponentially with the number of
variables which makes DAG learning an NP hard problem (Chickering et al., 2012; Robinson, 1973).

A first traditional family of models for DAG learning are discrete score-based approaches. These
approaches aim at solving the following discrete optimization problem:

max
G

score(X, G) s.t. G ∈ discrete DAGs (1)

where X denotes the observed data and the discrete DAGs space is composed of DAGs with un-
weighted (present or absent) edges. Examples of score functions are Bayesian Information Criteria
(BIC) (Chickering & Heckerman, 1997) or Minimum Description Length (MDL) (Bouckaert, 1993).
Discrete approaches have two main limitations: (1) the optimization search space of discrete DAGs is
large and constrained which often makes the problem intractable without further assumptions, and
(2) the learning procedure is not differentiable and thus not amenable to gradient-based optimization,
as done by most deep learning approaches. To mitigate these issues, a second more recent family
of models for DAG learning proposes to leverage continuous optimization by using an augmented
Lagrangian formulation (Lachapelle et al., 2020; Ng et al., 2019; Wehenkel & Louppe, 2021; Yu
et al., 2019; Zheng et al., 2018). These approaches aim at solving the following optimization problem:

max
G

score(X, G) s.t. h(G) = 0 (2)

where h(G) is a smooth function over weighted graphs G which is equal to zero when the graph G
satisfies the DAG constraints. Standard examples of score functions are (negative) cross-entropy (Yu

1

Published as a conference paper at ICLR 2022

Π~𝑃𝜓(Π)

Permutation
Matrix

U~𝑃𝜙(𝑈)

Edge
Matrix

(2)

A = Π𝑇𝑈Π

Adjacency
Matrix

=(3)

𝑥(2)

𝑥(3)

𝑥(1)

𝑥(4)

𝑥(2)

𝑥(3)

𝑥(1)

𝑥(4)

1

2

3

4

(1)

Figure 1: Overview of differentiable DAG sampling.

et al., 2019) or Mean Squared Error (MSE) (Ng et al., 2019) when reconstructing the data. During
optimization, G is a weighted graph where the discreteness and acyclicity constraints are relaxed.
Hence, these continuous optimization approaches have two main limitations: (1) the augmented
Lagrangian optimization is computationally expensive as it requires multiple complex dual ascent
iterations, and (2) the discrete and acyclicity constraints are relaxed during optimization which does
not guarantee valid discrete DAGs without non-differentiable pre- and post-processing as proposed
by Causal Additive Model (CAM) (Bühlmann et al., 2014). For a more comprehensive description,
we recall the augmented Lagrangian optimization method in detail in App. A.

In this paper, we focus on differentiable DAG learning methods and make the following contributions:

• We propose a new probabilistic model over DAGs (DP-DAG) which is capable of fast and
differentiable sampling. DP-DAG can be implemented in few lines of code using Gumbel-
Sinkhorn, Gumbel-Top-k and Gumbel-Softmax distributions to parametrize differentiable
sampling over permutations and edges (see Fig. 1 and Fig. 2).

• We propose a new method for DAG learning from observational data (VI-DP-DAG) which in-
stantiates a general probabilistic formulation for DAG learning with DP-DAG and variational
inference. VI-DP-DAG guarantees valid DAG outputs at any time during training.

• We show in our experiments on established synthetic and real datasets that DP-DAG
outperforms other differentiable DAG learning baselines for DAG structure and causal
mechanisms learning while training one order of magnitude faster.

2 RELATED WORK

We differentiate between three types of DAG learning approaches: the discrete optimization ap-
proaches, the continuous optimization approaches and the sampling-based approaches. We refer to
the survey (Vowels et al., 2021) for a more detailed overview of DAG learning approaches.

Discrete optimization. First, to make the search space more tractable, discrete optimization ap-
proaches modify the original problem with additional assumptions on DAG treewidth (Nie et al.,
2014; Scanagatta et al., 2016), ancestral constraints (Chen et al., 2016) or on the number of parents of
each variable (Viinikka et al., 2020). Other methods are based on greedy search (Chickering, 2002) or
discrete optimization of the topological order (Park & Klabjan, 2017; Scanagatta et al., 2015; Teyssier
& Koller, 2005). Another type of discrete optimization approaches are constraint-based methods.
These methods explore the discrete DAG space by performing independence tests between observed
variables (Bühlmann et al., 2014; Spirtes et al., 2001).

Continuous optimization. Second, continuous approaches usually relax the discreteness and
acyclicity constraints by using an augmented Lagrangian formulation of the optimization prob-
lem (Lachapelle et al., 2020; Ng et al., 2019; Wehenkel & Louppe, 2021; Yu et al., 2019; Zheng et al.,
2018). Some approaches define the DAG structure from neural network weights (Lachapelle et al.,
2020; Zheng et al., 2018) while other approaches directly learn the DAG adjacency matrix (Ng et al.,
2019; Wehenkel & Louppe, 2021; Yu et al., 2019). In contrast to these methods, VI-DP-DAG learns
a probabilistic model over the DAG structure. Further, these approaches penalize DAG constraints
violation in the augmented Lagrangian formulation but do not guarantee that they are fulfilled during
training. Recently, Yu et al. (2021) propose to complement the augmented Lagrangian optimization
with a second step projecting the learned graph on admissible solutions. Hence, contrary to VI-DP-
DAG, most of these approaches use non-differentiable processing steps – e.g. removing cycles and

2

Published as a conference paper at ICLR 2022

spurious edges – to output valid and high-quality DAGs. Common examples of processing steps are
Preliminary Neighbors Selection (PNS) and CAM pruning (Bühlmann et al., 2014).

Sampling-based optimization. Third, other works use DAG sampling to estimate the posterior
distribution over DAGs with MCMC (Kuipers et al., 2020; Niinimäki et al., 2011; 2016; Talvitie
et al., 2020; Viinikka et al., 2020). While previous works improve the quality and speed of MCMC
computations by sampling (partial) orders or making assumptions on the number of parents per
node, they are still computationally extremely expensive (Kuipers et al., 2020; Niinimäki et al.,
2011; 2016; Viinikka et al., 2020). E.g., Viinikka et al. (2020) recommend to run MCMC methods
during 12 hours to sample from the posterior distribution over DAGs with 100 nodes. In contrast,
VI-DP-DAG approximates the posterior distribution over DAG edges with variational inference
and can sample very fast. E.g., our VI-DP-DAG trains in around 190 seconds and samples in less
than 1 second for a DAG with 100 nodes. Further, while the construction of the MCMC chains are
generally non-differentiable, our DP-DAG is capable of fully differentiable DAG learning and can
leverage gradient-based optimization. Other works propose optimization of discrete problems using
differentiable probabilistic distribution over various discrete objects like subsets or spanning trees but
not on DAG structures (Grathwohl et al., 2021; Karalias & Loukas, 2020; Paulus et al., 2020). Further,
recent works combine differentiable edge sampling with Gumbel trick and Lagrangian optimization
but do not define valid distributions over the full DAG structure (Brouillard et al., 2020; Ng et al.,
2019). In contrast, DP-DAG does not require complex Lagrangian optimization and guarantees valid
DAGs solutions at any time during training. Finally, Grosse et al. (2021) explores an orthogonal
direction where the search space in sequential decision making problems is represented with a DAG.

3 PROBABILISTIC MODEL OVER DAGS

A Directed Acyclic Graph (DAG) is a graph G = (V,E) with n nodes x1, ..., xn and m directed
edges which does not exhibit directed cycles. A DAG always admits a valid permutation (or linear
ordering) π : [[1, n]]→ [[1, n]] of the nodes such that a node cannot have a direct edge toward a node
with lower rank i.e., π(i) < π(j) implies no directed edge from node xπ(j) to node xπ(i). Valid
permutations are often not unique. Interestingly, this property has an equivalent matrix formulation:
Theorem 1. Lets A ∈ {0, 1}n be the (a priori non-triangular) adjacency matrix associated with an
arbitrary node labelling of the DAG G. The adjacency matrix A always admits a permutation matrix
Π ∈ {0, 1}n×n and an upper triangular matrix U ∈ {0, 1}n×n such that A = ΠTUΠ.

The permutation matrix Π directly corresponds to a valid component-wise permutation π. Hence,
Th. 1 simply states that the matrix U is the new adjacency matrix where the new node labels are
a valid permutation of the original node labels i.e. Aij = Uπ(i)π(j) such that Uπ(i)π(j) = 0 if
π(i) < π(j). The decomposition of the DAG adjacency matrix A in Th. 1 is generally not unique
as a DAG G generally admits multiple valid linear permutations Π. Hence, we define the following
probabilistic model over DAGs (DP-DAG) based on the adjacency matrix decomposition in Th. 1:

P(A) =
∑

Π∈P(G),U∈Un

P(U) P(Π) s.t. A = ΠTUΠ (3)

where P(G) is the set of valid permutation matrices for the DAG G, Un is the space of binary
upper-triangular matrices of size n× n, P(Π) is the distribution over permutations and P(U) is the
distribution over edges consistent with the sampled permutation of the nodes. Note that the number of
valid permutations |P(G)| can be exponentially large in the number of nodes which makes the exact
computation of the probability of a given DAG adjacency matrix P(A) intractable for large graphs.
However, DAG sampling does not require any enumeration of the valid linear permutations. Indeed,
we propose a new differentiable DAG sampling method (i.e. A ∼ Pφ,ψ(A)) based on differentiable
edge sampling (i.e. U ∼ Pφ(U)) and differentiable permutation sampling (i.e. Π ∼ Pψ(Π)). The
variables ψ and φ denote the parameters of the edge and permutation distributions.

Differentiable edge sampling. The Bernoulli distribution is a well-suited distribution to model
randomness over a discrete binary variable like an edge Uij ∈ {0, 1} ∼ Ber(p) where p ∈ [0, 1] is
the probability for the edge to exist. Unfortunately, standard random sampling operations from the
Bernoulli distribution are not differentiable. In contrast, the Gumbel-Softmax distribution allows for
differentiable sampling and approximates the Bernoulli distribution (Jang et al., 2017). The Gumbel-
Softmax distribution is defined on continuous variables, i.e. Ûij ∈ [0, 1] ∼ Gumbel-Softmaxτ (φ)

3

Published as a conference paper at ICLR 2022

with φ ∈ [0, 1], where the temperature parameter τ allows to interpolate between a one-hot-encoded
categorical distribution (τ → 0) and continuous categorical densities (τ → +∞). For differentiable
sampling, we can use the straight-through estimator (Bengio et al., 2013): we use the discrete
variable Uij = arg max[1− Ûij , Ûij] in the forward pass, and the continuous approximation Ûij in
the backward pass. Thus, sampling all the upper triangular indices of U ∈ {0, 1}n×n has complexity
O(n2). We recall the definition of the Gumbel-Softmax distribution in detail in App. B.1.

Differentiable permutation sampling. Similarly to an edge, a permutation Π is discrete, making
differentiable sampling challenging. We describe two alternative methods which allow for differ-
entiable permutation sampling. First, the Gumbel-Sinkhorn (Mena et al., 2018) is defined on a
continuous relaxation of the permutation matrix, i.e. Π̂ ∈ [0, 1]n×n ∼ Gumbel-Sinkhornτ (ψ) with
ψ ∈ [0, 1]n×n, where the temperature parameter τ also allows to interpolate between discrete and
continuous distributions similarly to the Gumbel-Softmax distribution. For differentiable sampling,
we can use the straight-through estimator (Bengio et al., 2013): we use the discrete permutation
Π = Hungarian(Π̂) by applying the Hungarian algorithm (Munkres, 1957) to compute a discrete
permutation in the forward pass, and the continuous approximation Π̂ in the backward pass. Sampling
a permutation matrix Π ∈ {0, 1}n×n is dominated by the Hungarian algorithm and has a complexity
of O(n3). We recall the definition of the Gumbel-Sinkhorn distribution in detail in App. B.2.

A second method orthogonal to the Gumbel-Sinkhorn method is to use the combination of the
Gumbel-Top-k trick (Kool et al., 2019) and the SoftSort operator (Prillo & Eisenschlos, 2020) which
also defines a distribution on a continuous relaxation of the permutation matrix. For k = n, the
Gumbel-Top-n distribution states the sorted perturbed log-probabilities, i.e. π = Sort(ψ + G) where
parameters ψ are log-probabilities and G ∈ Rn are i.i.d. Gumbel noise, defines a distribution over
component-wise permutation (a.k.a. linear ordering without replacement). Instead of the Sort oper-
ator, we apply the SoftSort operator to the perturbed log-probabilities which outputs a continuous
relaxation of the permutation matrix, i.e. Π̂ = SoftSort(ψ + G) ∈ Rn×n. For differentiable sam-
pling, we use the straight-through estimator (Bengio et al., 2013): we use the discrete permutation
Π = arg max Π̂ by applying the (one-hot) argmax operator row-wise (Prillo & Eisenschlos, 2020) in
the forward pass, and the continuous approximation Π̂ in the backward pass. Sampling a permutation
matrix Π ∈ {0, 1}n×n is dominated by the SoftSort operation and has a complexity of O(n2).
The permutation sampling complexity with Gumbel-Top-k combined with SoftSort is thus lower
than the permutation sampling complexity with Gumbel-Sinkhorn. We recall the definition of the
Gumbel-Top-k distribution and SoftSort operator in detail in App. B.3 and App. C.

Differentiable DAG sampling. Given the aforementioned methods for differentiable edge and
permutation sampling, we propose a new simple and valid sampling procedure for DAG sampling
which consists in three steps (see Fig. 1): (1) Sample a permutation Π from a probabilistic model
over permutations Pψ(Π) i.e. Π ∼ Pψ(Π). (2) Sample an upper triangular matrix U by sampling
the upper triangular elements from a probabilistic model over edges Pφ(Uij) i.e. Uij ∼ Pφ(Uij). (3)
Compute the final adjacency matrix A from the permutation matrix Π and the upper triangular matrix
U i.e. A = ΠTUΠ. This procedure is capable of sampling any possible DAGs of n nodes because
of Th. 1. In practice, we propose to parametrize the distribution Pψ(Π) using the Gumbel-Sinkhorn
or the Gumbel-Top-k trick which define valid distributions over permutations, and parametrize
the distributions Pφ(Uij) using the Gumbel-Softmax trick which defines a valid distribution over
edges. Given these parametrizations, the sampling procedure allows fast and differentiable sampling
and can be implemented in a few lines of code (see Fig. 2). The total DAG sampling complexity
is dominated by the permutation sampling step which has a complexity of O(n3) using Gumbel-
Sinkhorn and O(n2) using Gumbel-Top-k combined with SoftSort. Finally, the DAG sampling
procedure of DP-DAG guarantees a valid DAG output at any time during training without additional
pre- or post-processing steps.

1 def differentiable_dag_sample(self):
2 # (1) Pi ~ P(Pi) using Gumbel-Sinkhorn or Gumbel-Top-k
3 Pi = self.sample_permutation()
4 Pi_inv = P.transpose(0, 1)
5 # (2) U ~ P(U) using Gumbel-Softmax
6 dag_adj = self.sample_edges()
7 # (3) A = Pi^T U Pi using Theorem 1
8 mask = torch.triu(torch.ones(self.n_nodes, self.n_nodes), 1)
9 dag_adj = dag_adj * (Pi_inv @ mask @ Pi)

10 return dag_adj
11

Figure 2: Differentiable DAG sampling in Python

4

Published as a conference paper at ICLR 2022

4 VARIATIONAL DAG LEARNING FROM OBSERVATIONAL DATA

Structural Equation Model (SEM). We assume that the data follow a SEM i.e. xi = f∗i (xpa∗(i), εi)
where εi are independent noises and f∗i is the ground-truth causal mechanism which deterministically
transforms the parent causes xpa∗(i) and noise εi in the consequence value xi. We assume that all
variables are observed. We aim at learning both the true parents pa∗(i) for each node i describing
the direct cause-consequence relationship, and the true causal mechanisms f∗i . Alternatively, a SEM
can equivalently be written in a matrix form. Indeed, one can use the DAG adjacency matrix A∗

as a mask before applying the causal mechanism f∗i i.e. Xi = f∗i (A∗i ◦ X, εi). Similar masking
formulations of a SEM have been used in previous works (Brouillard et al., 2020; Ng et al., 2019).

Probabilistic DAG learning loss. We propose a new general formulation for DAG learning
based on differentiable DAG sampling which intuitively aims at maximizing the expected score
EG[score(X, G)] under the probability distribution over DAGs Pφ,ψ(G) i.e.:

max
φ,ψ

EG[score(X, G)] s.t. G ∼ Pφ,ψ(G) (4)

This formulation allows a rich probabilistic solution that assigns a confidence score to all possible
DAGs. In contrast, the discrete and continuous DAG learning formulations in Eq. 1 and Eq. 2 only
compute a single point estimate DAG solution and do not model any uncertainty on the final DAG
output. A specific instance of the Eq. 4 is the optimization of the following ELBO loss:

max
θ,φ,ψ

L = EA∼Pφ,ψ(A)[log Pθ(X|A)]︸ ︷︷ ︸
(i)

−λKL(Pφ,ψ(A)||Pprior(A))︸ ︷︷ ︸
(ii)

(5)

where λ ∈ R+ is a regularization factor and θ, φ, ψ are the parameters of the model to optimize.
Indeed, similarly to Eq. 4, both terms (i) and (ii) can be formulated as an expectation over the DAG
probabilistic model Pφ,ψ(A). Importantly, the optimum of the variational inference problem in Eq. 5
is reached when the learned probability distribution over DAGs is equal to the posterior probability
distribution over DAGs i.e. P(A|φ, ψ) ≈ P(A|D) where D denotes the dataset of observations.

Variational inference with DP-DAG. We propose VI-DP-DAG, a new method combining DP-DAG
and variational inference to learn the matrix form of a SEM from observational data. At training time,
VI-DP-DAG consists of three steps: (1) It differentiably samples a valid DAG adjacency matrix A
from a probabilistic model over DAGs Pφ,ψ(A). In practice, we parametrize Pφ,ψ(A) with DP-DAG.
(2) It applies the n transformations fi,θ on the observations X masked with the sampled DAG A i.e.
X̂i = fi,θ(Ai ◦X, εi). In practice, we parametrize fi,θ with neural networks. (3) It jointly updates
all parameters θ, φ, ψ by maximizing at each iteration an approximation of the ELBO loss in Eq. 5. In
practice, we approximate the term (i) by sampling a single DAG matrix A at each iteration and assume
a Gaussian distribution with unit variance around X̂ (i.e. (i) = ||X− X̂||2). We compute the term (ii)
by setting a small prior Pprior(Uij) on the edge probability (i.e. (ii)=

∑
ij KL(Pφ(Uij ||Pprior(Uij)))

thus acting as a natural sparsity regularization. We set no prior on the permutation probability for two
reasons: In theory, a permutation prior is likely biased toward graphs that are compatible with a larger
number of orderings (Kuipers & Moffa, 2017; Viinikka et al., 2020). In practice, the closed-form
computation of the permutation probability Pθ(Π) is generally intractable (Mena et al., 2018). Thus,
VI-DP-DAG approximates the true posterior distribution over DAG edges probability only, which
achieves excellent predictive performance in practice. Beyond variational inference, VI-DP-DAG is
theoretically motivated from a second perspective. Assuming that the data comes from a SEM with
additive noise, Ng et al. (2019) showed that minimizing the term (i) enforces the sampled matrix
A to represent a super-graph of the ground-truth DAG adjacency matrix A∗ (i.e. all the edges in
A∗ are also in A) thus suggesting to add a sparsity regularization term to remove spurious edges.
Interestingly, the term (ii) – which arises naturally from the variational inference framework – indeed
acts a sparsity regularizer and pushes the probability Pφ(Uij) to the fixed low prior value Pprior(Uij).

At inference time, we can use VI-DP-DAG in two ways. On one hand, we can extract the cause/conse-
quence relationships from, e.g., one sampled DAG adjacency matrixA. On the other hand, we can esti-
mate the missing values xi from its learned parents and causal mechanisms i.e. xi ≈ x̂i = fi,θ(xpa(i)).
Intuitively, a small prediction error ||xi − x̂i||2 indicates that the learned parents xpa(i) forecast well
the child node xi i.e. the parent nodes xpa(i) are Granger-causes of the child node xi.

5

Published as a conference paper at ICLR 2022

5 EXPERIMENTS

In this section, we compare VI-DP-DAG to existing methods for differentiable DAG learning on
extensive experiments including undirected and directed link prediction, consequence prediction from
learned causal mechanisms, and training time. This set-up aims at highlighting the speed and quality
of VI-DP-DAG for DAG structure learning and causal mechanisms learning. Further, we evaluate the
speed and the optimization quality of the probabilistic model DP-DAG alone.

5.1 SET-UP

In our experiments, VI-DP-DAG parametrizes the permutation probability Pψ(Π) with Gumbel-
Sinkhorn or Gumbel-Top-k trick, the edge probability Pφ(U) with Gumbel-Softmax distribution and
the causal mechanisms fi,θ with a 3 layers Multi-Layer Perceptron (MLP). We use early stopping
and perform a grid search over the permutation probability parametrization (i.e. Gumbel-Sinkhorn or
Gumbel-Top-k), the fixed prior probability Pprior(Uij) ∈ [1e−2, 1e−1] and the regularization factor
λ ∈ [0, 1e−1]. Finally, all temperature parameters are fixed to τ = 1 in all experiments.

Baselines. We focus our evaluation on differentiable methods for DAG learning and compared to
DAG-GNN (Yu et al., 2019), DAG-NF (Wehenkel & Louppe, 2021), GraN-DAG (Lachapelle et al.,
2020) and Masked-DAG (Ng et al., 2019) by using their official implementation when available.
Unless otherwise stated, we did not use non-differentiable pre- or post-processing steps for any
of the models. For the sake of completeness, we also compare DP-DAG with models using non-
differentiable pre- and post-processing like Preliminary Neighbor Selection (PNS) and CAM pruning
(Bühlmann et al., 2014) in App. F.3. Similarly to VI-DP-DAG, we perform a grid-search for the
hyper-parameters of all models (including learning rate, number of hidden units per linear layer, or
regularization factors). For all metrics, we report the mean and the standard error of the mean of the
results over 10 runs. We give further details on the models in App. E.

Datasets. We use a total of 11 synthetic and real datasets. For the synthetic datasets, we closely
follow (Lachapelle et al., 2020; Ng et al., 2019; Peters et al., 2014). The graph structures A∗ were
generated with the Erdös-Rényi (ER) or Scale-Free (SF) network models, and the causal mechanisms
f∗i were generated from a (non-linear) Gaussian Process with RBF kernel of bandwidth one and with
independent zero-mean Gaussian noises εi. We considered different sizes of graphs including number
of nodes n in {10, 50, 100} and number of edges m in {10, 40, 50, 100, 200, 400}. We denote the
synthetic datasets by SF/ER-n-m. We used 10 sampled datasets per setting. For the real datasets,
we closely follow (Koller & Friedman, 2009; Lachapelle et al., 2020; Ng et al., 2019; Yu et al.,
2021; Zheng et al., 2018). We use the Sachs dataset which measures the expression level of different
proteins and phospholipids in human cells (Sachs et al., 2005). We also use the pseudo-real SynTReN
dataset sampled from a generator that was designed to create synthetic transcriptional regulatory
networks and produces simulated gene expression data that approximates experimental data (Van den
Bulcke et al., 2006). For all these datasets, we can access the ground-truth DAG adjacency matrices
A∗ used to generate the data or estimated by experts. We split all datasets in training/validation/test
sets with 80%/10%/10%. We give further details on the datasets in Sec. D in the appendix.

5.2 RESULTS

Figure 3: Sampling time of DP-
DAG using Gumbel-Sinkhorn or
Gumbel-Top-k.

DAG sampling. We show results for the DAG sampling time in
Fig. 3 and Fig. 4 in the appendix. While both Gumbel Sinkhorn
and Gumbel-Top-k parametrizations can sample a DAG with
200 nodes in less than 1 second, Gumbel-Top-k is significantly
faster than Gumbel-Sinkhorn as expected from the complexity
analysis. Further, we show the results of differentiable sam-
pling optimization using DP-DAG for DAG learning when the
ground-truth DAG is observed in Tab. 6 in the appendix. On this
toy task, DP-DAG recovers almost perfectly the ground-truth
DAG structure. These observations validate that DP-DAG is
a reliable method for fast and differentiable DAG sampling.
Further details about these two experiments are in App. F.1.

6

Published as a conference paper at ICLR 2022

DAG structure. We evaluate the learning of the DAG structure by comparing the ground-truth
adjacency matrix A∗ij to the learned score Sij . For baselines, we use entries from the weighted
adjacency matrix Sij = Aij as scores for directed edges, and Sij = Aij + Aji as scores for
undirected edges. For DP-DAG, we use the edge probability Sij = Pφ(Uπ(i)π(j)) as scores for
directed edges and Sij = Pφ(Uπ(i)π(j)) + Pφ(Uπ(j)π(i)) as scores for undirected edges. In this
case, the permutation π (or equivalently Π) is deterministically computed by removing Gumbel
noise in the forward sampling step. The directed scores (Dir-) indicate if an edge with a specific
direction exists between two nodes. The undirected scores (Un-) indicates if an edge without a
specific direction exists between two nodes. We compare the directed and undirected scores to the
ground-truth binary adjacency matrix by using the area under the curve of precision-recall (AUC-PR)
and the area under the receiver operating characteristic curve (AUC-ROC). These metrics have the
important advantage to be independent of a threshold choice (Vowels et al., 2021). Thus, AUC-PR
and AUC-ROC are better indicators of the true performance of the models contrary to other structure
metrics like Structural Hamming Distance which needs to arbitrary select a threshold.

We show the results for differentiable DAG structure learning on synthetic and real datasets in Tab. 1
and in Tab. 7 in the appendix. In total, VI-DP-DAG achieves 27/44 best scores and second-best scores
otherwise. On synthetic datasets, only GraN-DAG competes with VI-DP-DAG on small datasets with
10 nodes. DP-DAG outperforms all baselines on all larger synthetic datasets with 50 or 100 nodes
for both ER and SF graph types. E.g. on the ER-100-400 dataset, VI-DP-DAG gives an absolute
improvement of +17% for Un-AUC-PR, +25% for Un-AUC-ROC, +13% for Dir-AUC-PR and
+9% for Dir-AUC-ROC. We observe that DAG-GNN and DAG-NF perform comparably to random
guessing corresponding to an AUC-ROC of 50% on those datasets. We hypothesize that their poor
performances might be due to their incorrect modeling assumptions or their incapacity to model this
type of causal relationships as mentioned in Lachapelle et al. (2020); Yu et al. (2019). On real datasets,
no baseline consistently outperforms VI-DP-DAG which obtains 4/8 best scores and second-best
scores otherwise. We observe on both synthetic and real datasets that VI-DP-DAG performs better
with undirected edges scores than with directed edges scores indicating that VI-DP-DAG might invert
the edge directions. This can be intuitively explained by the presence of node pairs where xi is an
equally good predictor of xj as xj is a good predictor of xi. Finally, we show further evidence that
VI-DP-DAG learns reliable DAG structures under perturbations in App. F.5. Indeed it confidently
assigns lower confidence scores to perturbed versions of the ground-truth DAG.

We show the results for DAG structure learning with non-differentiable pre- and post-processing in
Tab. 8 and Tab. 9 in the appendix. In these experiments, we apply the default pre-processing PNS and
post-processing CAM pruning steps to CAM (Bühlmann et al., 2014), GraN-DAG (Lachapelle et al.,
2020), Masked-DAG (Ng et al., 2019) as suggested by the original papers. We similarly apply CAM
pruning to the final results of VI-DP-DAG. In this case, we observe that the greedy CAM is the best
performing model for most synthetic datasets while VI-DP-DAG maintains competitive performance.
Interestingly, VI-DP-DAG with non-differentiable pre- and post-processing is the best performing
model on real datasets (i.e. 7/8 best scores). Further, we notice that the pre- and post-processing steps
raise significantly the scores of GraN-DAG and Masked-DAG which becomes more competitive with
VI-DP-DAG, while VI-DP-DAG benefits from it to a lower extent (e.g. see ER-100-400 in Tab. 1 and
Tab. 8). This suggests that methods based on augmented Lagrangian optimization are more dependent
on additional non-differentiable processing steps than VI-DP-DAG. Lachapelle et al. (2020) make
similar observations on the dependence on PNS and CAM pruning steps.

Causal mechanisms. We evaluate the causal mechanisms learning by computing the Mean Squared
Error (MSE) between the ground-truth node values xi and the estimated node values x̂i = fi,θ(xpa(i))
on a new test set. It can be computed in a vectorized way i.e. ||X− X̂||22 where X̂i = fi,θ(Ai ◦X).
This task is particularly important when predicting missing values from the values of known parent
causes. For this experiment, we compare to other baselines which jointly learn the adjacency matrix A
and the causal mechanisms fi,θ explicitly. Hence, we compare to Masked-DAG and GraN-DAG. At
testing time, we remove the remaining cycles from the adjacency matrix A learned with augmented
Lagrangian optimization to guarantee a valid DAG structure as suggested by Lachapelle et al. (2020);
Ng et al. (2019). Further, we also compare to GT-DAG which uses the ground-truth DAG adjacency
matrix A∗ at training and testing time. GT-DAG can be considered as a lower bound for the MSE
scores. It indicates if other methods manage to jointly learn well both the DAG structure A and the
causal mechanisms fi,θ. For DP-DAG, the adjacency matrix A is computed by deterministically
computing π (or equivalently Π) without Gumbel noise in the forward sampling step, and second

7

Published as a conference paper at ICLR 2022

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 18.67± 0.17 48.44± 0.15 8.21± 0.15 47.83± 0.34
DAG-NF 16.11± 0.12 50.20± 0.03 8.15± 0.07 50.19± 0.02
GraN-DAG 25.11± 0.4 56.57± 0.35 17.61± 0.47 56.35± 0.34
Masked-DAG 17.55± 0.14 51.09± 0.05 9.14± 0.09 50.81± 0.04
VI-DP-DAG 62.08± 0.34 84.53± 0.25 41.70± 0.39 71.08± 0.33

(a) ER-50-200

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 14.65± 0.25 49.05± 0.2 5.56± 0.09 47.47± 0.29
DAG-NF 7.82± 0.04 49.98± 0.02 3.94± 0.02 50.05± 0.02
GraN-DAG 9.73± 0.11 52.82± 0.11 4.42± 0.04 51.04± 0.06
Masked-DAG 8.93± 0.12 50.65± 0.06 4.73± 0.1 50.52± 0.06
VI-DP-DAG 36.98± 0.98 77.23± 0.63 19.00± 1.07 60.35± 1.01

(b) ER-100-400

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 14.94± 0.17 51.41± 0.26 6.91± 0.12 50.31± 0.27
DAG-NF 11.83± 0.1 50.18± 0.03 5.86± 0.06 50.02± 0.02
GraN-DAG 18.75± 0.29 54.76± 0.17 12.35± 0.32 53.31± 0.43
Masked-DAG 14.39± 0.13 51.64± 0.06 7.23± 0.12 50.97± 0.06
VI-DP-DAG 33.81± 0.39 68.18± 0.39 17.46± 0.34 59.70± 0.65

(c) SF-50-200

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 49.92± 0.46 59.59± 0.57 23.84± 0.52 51.67± 0.62
DAG-NF 35.66± 0.32 53.57± 0.44 15.43± 0.11 50.16± 0.31
GraN-DAG 34.28± 0.32 54.57± 0.36 19.95± 0.35 55.91± 0.33
Masked-DAG 36.98± 0.25 55.13± 0.15 17.74± 0.31 51.71± 0.23
VI-DP-DAG 43.37± 0.55 59.78± 0.62 22.96± 0.81 60.02± 0.91

(d) Sachs

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 24.83± 0.19 66.75± 0.2 9.26± 0.11 59.61± 0.19
DAG-NF 12.89± 0.15 49.02± 0.24 6.63± 0.15 49.11± 0.16
GraN-DAG 19.89± 0.4 62.29± 0.31 15.39± 0.44 63.91± 0.34
Masked-DAG 16.66± 0.38 53.93± 0.28 7.99± 0.29 52.26± 0.35
VI-DP-DAG 26.33± 0.56 70.84± 0.45 14.17± 0.76 59.84± 1.46

(e) SynTReN

Table 1: DAG structure learning results on synthetic and real datasets for all differentiable DAG
learning models with AUC-PR and AUC-ROC scores (Higher is better). Un- and Dir- indicate scores
for undirected and directed edges. Best scores among all models are in bold. Second best scores
among all models are underlined.

keeping the edges such that Pφ(Uπ(i)π(j)) > .5. These edges intuitively correspond to parent
relationships which are more likely to be present than absent according to the model.

We show the results for causal mechanisms learning in Tab. 2. Overall, DP-DAG is the most com-
petitive model and achieves 9/11 best scores. Similarly to DAG structure learning, GraN-DAG is
competitive for small graphs with 10 nodes but VI-DP-DAG outperforms all baselines for most larger
graphs with 50 and 100 nodes. Interestingly, DP-DAG brings a particularly significant improvement
on real datasets compared to GraN-DAG and Masked-DAG with scores very close to GT-DAG. This
suggests that the potentially noisy ground-truth DAGs estimated by experts on these real datasets
have an equivalent predictive power as the DAG learned by VI-DP-DAG. This aligns well with the
intuition that VI-DP-DAG learns Granger causal relationships. Finally, we evaluate in App. F.6 the
impact of the threshold choice t on the edge probabilities Pφ(Uπ(i)π(j)) > t. We observe that the
MSE score of DP-DAG achieves stable high performance regardless of the threshold value.

8

Published as a conference paper at ICLR 2022

Training time. We evaluate the training time of all models on a single GPU (NVIDIA GTX 1080 Ti,
11 GB memory). Training time is particularly relevant for DAG structure learning since predicting
the adjacency matrix A from a new dataset represents a full training. Thus, real-world applications of
DAG learning generally aim at fast training time.

We show the results in Tab. 3. The training of VI-DP-DAG is one order of magnitude faster than all
models on all datasets. Hence, assuming that training time is typically linearly correlated with compute
cost, energy consumption and CO2 emission, the fast training DP-DAG significantly improves the
applicability of DAG learning methods. In particular, VI-DP-DAG is from ×5 to ×18 faster to train
than GraN-DAG which is the second-best performing model for DAG structure learning and causal
mechanisms learning. The training speed difference can be explained by the different optimization
schemes. Indeed, Lagrangian optimization typically requires solving T ≈ 10 successive optimization
problems (Zheng et al., 2018) while VI-DP-DAG only requires solving a single optimization problem.
Finally, by aggregating training and sampling time, VI-DP-DAG requires around 191 seconds to
sample a DAG with 100 nodes from the learned approximate posterior distribution. In contrast, other
sampling methods based on MCMC sampling require running the MCMC methods for 12 hours to
sample a DAG with 100 nodes (Viinikka et al., 2020).

GraN-DAG Masked-DAG VI-DP-DAG GT-DAG*
ER-10-10 0.61± 0.01 0.93± 0.02 0.69± 0.01 0.58± 0.01
ER-10-40 0.41± 0.01 1.0± 0.02 0.49± 0.01 0.3± 0.0
ER-50-50 0.82± 0.01 0.97± 0.0 0.8± 0.01 0.57± 0.01
ER-50-200 0.84± 0.01 0.97± 0.0 0.8± 0.01 0.48± 0.01
ER-100-100 0.96± 0.02 0.95± 0.0 0.84± 0.0 0.54± 0.0
ER-100-400 0.96± 0.02 0.98± 0.0 0.9± 0.0 0.48± 0.0
SF-10-10 0.74± 0.01 0.95± 0.02 0.74± 0.01 0.66± 0.01
SF-50-50 0.93± 0.01 0.99± 0.0 0.93± 0.0 0.79± 0.01
SF-50-200 0.9± 0.01 0.95± 0.0 0.9± 0.0 0.77± 0.0
Sachs 1.16± 0.05 0.93± 0.05 0.86± 0.04 0.84± 0.04
SynTReN 0.82± 0.02 0.8± 0.02 0.21± 0.0 0.21± 0.0

Table 2: Causal mechanisms learning results on all datasets with MSE score (Lower is better) on a
test set i.e. ||X− X̂||22 where X̂i = fi,θ(Ai ◦X). Best scores among all models which jointly learn
the adjacency matrix A and the causal mechanisms fψ are in bold. GT-DAG* is excluded since it is
the ideal scenario when the ground-truth A∗ is known at training and testing time.

DAG-GNN GraN-DAG Masked-DAG DAG-NF VI-DP-DAG
ER-10-10 2997± 20 596± 8 1997± 30 5191± 53 160± 6
ER-10-40 10727± 145 615± 12 1919± 26 4962± 44 86± 3
ER-50-200 3485± 110 1290± 19 4279± 73 5329± 63 190± 4
ER-50-50 3260± 72 1078± 22 5121± 83 5531± 71 194± 3
ER-100-100 4077± 50 2503± 54 10530± 212 4969± 38 138± 3
ER-100-400 5198± 66 2391± 59 10629± 200 5008± 36 191± 7
SF-10-10 1642± 17 641± 24 1873± 29 4887± 31 83± 2
SF-50-200 2969± 32 1138± 44 4611± 58 4901± 23 112± 2
SF-50-50 2910± 20 1087± 40 4640± 60 4888± 23 87± 1
Sachs 1570± 66 358± 13 1657± 36 4970± 26 67± 3
SynTReN 8257± 160 461± 9 5120± 129 4926± 25 53± 1

Table 3: Training time for all differentiable DAG learning models in seconds (Lower is better). Fastest
training time among all models are in bold.

6 CONCLUSION

We propose a Differentiable Probabilistic model over DAGs (DP-DAG) which allows fast and
differentiable DAG sampling and can be implemented in few lines of code. To this end, DP-DAG
uses differentiable permutation and edges sampling based on Gumbel-Sinkhorn, Gumbel-Top-K and
Gumbel-Softmax tricks. We propose VI-DP-DAG, a new method combining variational inference
and DP-DAG for DAG learning from observational data with continuous optimization. VI-DP-DAG
guarantees valid DAG prediction at any time during training. In our extensive experiments, VI-DP-
DAG performs favorably to other differentiable DAG learning baselines for DAG structure and causal
mechanisms learning on synthetic and real datasets while training one order of magnitude faster.

9

Published as a conference paper at ICLR 2022

7 ETHICS STATEMENT

The Assessment List for Trustworthy AI (ALTAI) (Com., 2020) includes reliability, transparency and
Environmental well-being. Accurate and fast causal discovery from observational data is important to
give meaningful and interpretable predictions at a low energy cost. Therefore, VI-DP-DAG brings a
significant improvement regarding these values by performing high-quality DAG structure and causal
mechanisms predictions at a low training cost.

While DP-DAG achieves high-performance for DAG structure learning and causal mechanisms
learning, there is always a non-negligible risk that DP-DAG does not fully capture the real-world
complexity. Thus, we raise awareness about the risk of excessive trust in causal predictions from
Machine learning models. This is crucial when causal predictions are applied in domains subject
to privacy or fairness issues (e.g. finance, medicine, policy decision making, etc). In particular,
VI-DP-DAG does not provide any guarantee on the causal interpretation of the edges in the final
predicted DAG. Therefore, we encourage practitioners to proactively confront the model predictions
for DAG structure and causal mechanisms to desired behaviors in real-world use cases.

8 REPRODUCIBILITY STATEMENT

We provide all datasets and the model code at the project page 1. In App. D in the appendix, we
give a detailed description for each dataset used in this paper. This description includes the task
description, the dataset size, the number of nodes and edges and the train/validation/test splits used in
the experiments. We further explain the hardware used for the experiments. In App. E in the appendix,
we give a detailed description of the architecture and grid search performed for each model used in
this paper. We describe the metrics used in the experiments in App. 5.

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation, 2013.

Remco R. Bouckaert. Probabilistic network construction using the minimum description length
principle. In Symbolic and Quantitative Approaches to Reasoning and Uncertainty, 1993.

P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin. Differentiable causal
discovery from interventional data. In Advances in Neural Information Processing Systems, 2020.

Peter Bühlmann, Jonas Peters, and Jan Ernest. Cam: Causal additive models, high-dimensional order
search and penalized regression. Annals of Statistics, 2014.

Eunice Yuh-Jie Chen, Yujia Shen, Arthur Choi, and Adnan Darwiche. Learning bayesian networks
with ancestral constraints. In NeurIPS, 2016.

David Chickering, Christopher Meek, and David Heckerman. Large-sample learning of bayesian
networks is np-hard. JMLR, 2012.

David Maxwell Chickering. Optimal structure identification with greedy search. JMLR, 2002.

David Maxwell Chickering and David Heckerman. Efficient approximations for the marginal
likelihood of bayesian networks with hidden variables. In Machine Learning, 1997.

Eu. Com. The assessment list for trustworthy artificial intelligence (altai) for self assessment, 2020.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops i took
a gradient: Scalable sampling for discrete distributions. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

Julia Grosse, Cheng Zhang, and Philipp Hennig. Probabilistic dag search. In UAI, 2021.

1https://www.daml.in.tum.de/differentiable-dag-sampling

10

https://www.daml.in.tum.de/differentiable-dag-sampling

Published as a conference paper at ICLR 2022

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In
ICLR, 2017.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In NeurIPS, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In ICML, 2019.

Jack Kuipers and Giusi Moffa. Partition mcmc for inference on acyclic digraphs. Journal of the
American Statistical Association, 2017.

Jack Kuipers, Polina Suter, and Giusi Moffa. Efficient sampling and structure learning of bayesian
networks, 2020.

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
neural dag learning. In ICLR, 2020.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In ICLR, 2018.

James Munkres. Algorithms for the assignment and transportation problems, 1957.

Ignavier Ng, Zhuangyan Fang, Shengyu Zhu, and Zhitang Chen. Masked gradient-based causal
structure learning. CoRR, 2019.

Siqi Nie, Denis D Maua, Cassio P de Campos, and Qiang Ji. Advances in learning bayesian networks
of bounded treewidth. In NeurIPS, 2014.

Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto. Partial order mcmc for structure discovery
in bayesian networks. In UAI, 2011.

Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto. Structure discovery in bayesian networks
by sampling partial orders. JMLR, 2016.

Young Woong Park and Diego Klabjan. Bayesian network learning via topological order. JMLR,
2017.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient estimation
with stochastic softmax tricks. In NeurIPS, 2020.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 1988.

Judea Pearl. Causality. 2009.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. JMLR, 2014.

Sebastian Prillo and Julian Eisenschlos. SoftSort: A continuous relaxation for the argsort operator. In
Proceedings of the 37th International Conference on Machine Learning, 2020.

Joseph Ramsey, Madelyn Glymour, Ruben sanchez romero, and Clark Glymour. A million variables
and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical
causal models, with an application to functional magnetic resonance images. International Journal
of Data Science and Analytics, 2017.

R.W. Robinson. New Directions in the Theory of Graphs. 1973.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal
protein-signaling networks derived from multiparameter single-cell data. Science, 2005.

11

Published as a conference paper at ICLR 2022

Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning bayesian
networks with thousands of variables. In NeurIPS, 2015.

Mauro Scanagatta, Giorgio Corani, Cassio P de Campos, and Marco Zaffalon. Learning treewidth-
bounded bayesian networks with thousands of variables. In NeurIPS, 2016.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. 2000.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search, 2nd Edition.
2001.

Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto. Exact sampling of directed acyclic graphs
from modular distributions. In UAI, 2020.

Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective algorithm for
learning bayesian networks. In UAI, 2005.

DT. Tieleman and G. Hinton. Rmsprop: Divide the gradient by a running average of its recent
magnitude, 2012.

Tim Van den Bulcke, Koenraad Leemput, Bart Naudts, Piet Remortel, Hongwu Ma, Alain Verschoren,
Bart De Moor, and Kathleen Marchal. Syntren: a generator of synthetic gene expression data for
design and analysis of structure learning algorithms. BMC bioinformatics, 2006.

Jussi Viinikka, Antti Hyttinen, Johan Pensar, and Mikko Koivisto. Towards scalable bayesian learning
of causal dags. In NeurIPS, 2020.

Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. D’ya like dags? a survey on
structure learning and causal discovery, 2021.

Antoine Wehenkel and Gilles Louppe. Graphical normalizing flows. In AISTAT, 2021.

Yue Yu, Jie Chen, Tian Gao, , and Mo Yu. Dag-gnn: Dag structure learning with graph neural
networks. In ICML, 2019.

Yue Yu, Tian Gao, Naiyu Yin, and Qiang Ji. Dags with no curl: An efficient dag structure learning
approach. In ICML, 2021.

Bin Zhang, Chris Gaiteri, Liviu Gabriel Bodea, Zhi Wang, Joshua McElwee, Alexei A. Podtelezhnikov,
Chunsheng Zhang, Tao Xie, Linh Tran, Radu Dobrin, Eugene Fluder, Bruce Clurman, Stacey
Melquist, Manikandan Narayanan, Christine Suver, Hardik Shah, Milind Mahajan, Tammy Gillis,
Jayalakshmi Mysore, Marcy E. MacDonald, John R. Lamb, David A. Bennett, Cliona Molony,
David J. Stone, Vilmundur Gudnason, Amanda J. Myers, Eric E. Schadt, Harald Neumann, Jun
Zhu, and Valur Emilsson. Integrated systems approach identifies genetic nodes and networks in
late-onset alzheimer’s disease. Cell, 2013.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. In NeurIPS, 2018.

12

Published as a conference paper at ICLR 2022

A AUGMENTED LAGRANGIAN OPTIMIZATION

In this section we recall the augmented Lagrangian optimization used by (Lachapelle et al., 2020;
Ng et al., 2019; Wehenkel & Louppe, 2021; Yu et al., 2019; Zheng et al., 2018). To this end, we
denote the learned adjacency matrix A and the other model parameters by θ. Hence, we can rewrite
the augmented Lagrangian optimization problem as follows:

min
G

score(X,A, θ) (6)

s.t. h(A) = 0 (7)

where h(A) = Tr(eA) − n or h(A) = Tr(I + αA ◦ A)n − n with α ∈ R+. The function h is
a smooth function over weighted adjacency matrices A ∈ Rn×n which is equal to zero when the
corresponding graph G satisfies the DAG constraints. The augmented Lagrangian of the problem 6 is
defined as:

Lc(A, θ, λ) = score(X,A, θ) + λh(A) +
c

2
|h(A)|2

where λ is the Lagrangian multiplier and c is the penalty parameter. During training, a practical
optimization scheme is to update the parameters λ and c with the iteration:

Ak, θk = arg min
A,θ

Lc(A, θ, λ)

λk+1 = λk + ckh(Ak)

ck+1 =

{
ηck, if |h(Ak)| > γ|h(Ak−1)|
ck, otherwise

where η > 1 and γ > 1 are hyper-parameters. The augmented Lagrangian optimization procedure is
expensive since each Lagrangian iteration requires to solve a minimization problem which can be
done with stochastic optimization methods. In practice, previous works set that η = 10 and γ = 1

4

and use a stopping criterion h(Ak) < ε ∈ {1e−6, 1e−8, 1e−10} to decide for the end of optimization
where ε is a constraint tolerance (Lachapelle et al., 2020; Ng et al., 2019; Yu et al., 2019; Zheng
et al., 2018). This generally leads to up to 10 Lagrangian iterations (Zheng et al., 2018) and does not
guarantee acyclicity of the final adjacency matrix (Lachapelle et al., 2020; Ng et al., 2019; Zheng
et al., 2018). Hence, the augmented Lagrangian requires a final non-differentiable thresholding step
to remove remaining cycles. In contrast, DP-DAG can always output valid sampled DAG solutions.

B GUMBEL-SOFTMAX, GUMBEL-SINKHORN, GUMBEL-TOP-K
DISTRIBUTIONS

B.1 GUMBEL-SOFTMAX DISTRIBUTION (JANG ET AL., 2017)

We assume that a variable U on the (k − 1)-dimensional simplex follows a Gumbel-Softmax
distribution with class probabilities φ1, ..., φk and temperature parameter τ i.e.:

U ∼ Gumbel-Softmaxτ (φ)

The Gumbel-Softmax distribution becomes identical to the categorical distribution when the tempera-
ture τ approaches 0. The density of the Gumbel-Softmax can be expressed as follows:

P(U|φ, τ) = Γ(k)τk−1
∏k
i=1 φi/U

τ+1
i∑k

i=1 φi/U
τ+1
i

where Γ(k) denotes the Gamma function. We can obtain a sample U from the Gumbel-Softmax
distribution by computing:

Ui =
e(log(φi)+Gi)/τ∑k
j=1 e

(log(φj)+Gj)/τ

whre Gi are i.i.d. samples from a Gumbel(0) distribution. For differentiable sampling, we can use the
straight-through estimator (Bengio et al., 2013). Hence, the discrete variable one_hot(arg max(U))
is used for the forward pass, and the continuous variable U is used for the backward pass.

13

Published as a conference paper at ICLR 2022

B.2 GUMBEL-SINKHORN DISTRIBUTION (MENA ET AL., 2018)

We assume that a variable Π on the space of permutation matrix follows the Gumbel-Sinkhorn
distribution with parameters ψ ∈ Rn×n and temperature parameter τ i.e.:

Π ∼ Gumbel-Sinkhornτ (ψ)

The Gumbel-Sinkhorn distribution becomes identical to the Gumbel-Matching distribution when the
temperature τ approaches 0. Neither the Gumbel-Matching or the Gumbel-Sinkhorn distributions
have tractable densities. We can obtain a sample Π from the Gumbel-Sinkhorn distribution by
computing:

Π = S(ψ + G)

where S is the Sinkhorn operator which iteratively normalizes rows and columns of a matrix and
G ∈ Rn×n is a matrix of standard i.i.d. Gumbel noise. For differentiable sampling, we can use the
straight-through estimator (Bengio et al., 2013). Hence, the discrete variable Π = Hungarian(Π̂)
after applying the Hungarian algorithm (Munkres, 1957) to get a discrete permutation is used for
the forward pass, and the continuous variable Π is used for the backward pass. Finally, we can
deterministically compute a permutation by removing all Gumbel noise in the forward pass.

B.3 GUMBEL-TOP-K DISTRIBUTION (KOOL ET AL., 2019)

We assume that the variable π on the space of ordered sample of size k without replacement follows
the Gumbel-Top-k distribution with parameters ψ ∈ Rn i.e.:

π ∼ Gumbel-Top-kτ (ψ)

where τ is an optional temperature parameter usually set to 1. The density of the Gumbel-Top-k can
be expressed as follows:

P(π|ψ, τ) =

k∏
i=1

eψπj∑
l∈Nj e

ψl

where Nj = {1, ..., n}�{π1, ..., πj−1}. This corresponds to subsequently sampling k times without
replacement from the categorical distribution over the nodes parametrized with ψ with renormalization
after each step. We can compute a sample π from the Gumbel-Top-k distribution by computing:

π = arg top-k(ψ + G)

where arg top-k is the operator selecting the indices with the top-k largest values and G ∈ Rn is a
vector of i.i.d. Gumbel noise. Importantly, remark that the Gumbel-Top-n distribution (i.e. k = n)
states the sorted perturbed log-probabilities π = Sort(ψ + G) where G ∈ Rn ∼ Gumbel(0) defines
a distribution over component-wise permutation (or linear ordering without replacement). Finally, we
can deterministically compute a permutation by removing all Gumbel noise in the forward pass.

C SOFTSORT OPERATOR (PRILLO & EISENSCHLOS, 2020)

The SoftSort operator with temperature parameter τ is defined as:

SoftSortdτ (s) = Softmax
(
−d(sort(s)1T ,1sT)

τ

)
where d is any differentiable almost everywhere, semi-metric function (e.g. d = | · |). It defines
a family as simple continuous relaxation for the permutation matrix corresponding to the argsort
operator Πarg sort(s). Indeed, we have:

lim
τ→0

SoftSortdτ (s) = Πarg sort(s)

In particular, this limits holds almost surely if the entries of s are drawn from a distribution that is
absolutely continuous w.r.t. the Lebesgue measure on R. Further, note that SoftSortdτ (s) is a unimodal
row stochastic matrix and the permutation arg max(SoftSortdτ (s)) is equal to arg sort(s).

14

Published as a conference paper at ICLR 2022

D DATASETS

All the datasets are split in train/validation/test splits with 80%/10%/10%. We use 10 different seeds
for the dataset splits. We make all datasets available at the project page 2.

Synthetic: We follow the data generation used in related works (Lachapelle et al., 2020; Ng et al.,
2019; Peters et al., 2014). The graph structures A∗ are generated with the Erdös-Rényi (ER) or Scale-
Free (SF), and the causal mechanisms f∗i are generated from a (non-linear) Gaussian Process with
RBF kernel of bandwidth one and with independent zero-mean Gaussian noises εi. We considered
different sizes of graphs including number of nodes n in {10, 50, 100} and number of edges m in
{10, 40, 50, 100, 200, 400}. In our experiments, we use 10 sampled datasets per setting. Each dataset
contains 1000 samples.

Sachs (Sachs et al., 2005): The Sachs dataset has been widely used in the DAG learning literature
(Koller & Friedman, 2009; Lachapelle et al., 2020; Ng et al., 2019; Yu et al., 2021; Zheng et al.,
2018). It contains 853 observational data points. Each data point measures the expression level of
different proteins and phospholipids in human cells. The ground-truth DAG has 11 nodes and 17
edges.

SynTReN (Van den Bulcke et al., 2006): The SynTReN dataset has already been used in (Lachapelle
et al., 2020). Ten datasets are generated using the Syntren generator 3 with software default parameters
except for th complex 2-regulator interactions probability which was set to 1. Each dataset contains
500 samples. The ground-truth DAG has always 20 nodes.

E MODELS

In this section, we provide more details about the training of all the models. We train all models on a
single GPU (NVIDIA GTX 1080 Ti, 11 GB memory). All numbers are averaged over 10 seeds for
the model initialization. We make available the implementation of VI-DP-DAG at the project page 4.

VI-DP-DAG (ours): VI-DP-DAG parametrizes the permutation probability Pψ(Π) with Gumbel-
Sinkhorn or Gumbel-Top-K tricks, the edge probability Pφ(U) with Gumbel-Softmax distribution
and the causal mechanisms fi,ψ with neural networks with 3 linear layers. We performed a grid search
over the learning rate lr ∈ [1e−4, 1e−2], the number of hidden units per linear layer h ∈ {8, 16, 64},
the permutation probability parametrization (i.e. Gumbel-Sinkhorn or Gumbel-Top-K), the fixed prior
probability Pprior(Uij) ∈ [1e−2, 1e−1] and the regularization factor λ ∈ [0, 1e−1]. The temperature
parameter for Gumbel-Softmax distribution was fixed to τ = 1 in all experiments. VI-DP-DAG is
trained using the Adam optimizer (Kingma & Ba, 2015). We perform early stopping by checking loss
improvement on the validation set every two epochs and a patience p = 10.

DAG-GNN (Yu et al., 2019): DAG-GNN model proposes a Graph Neural Network (GNN) autoen-
coder using variational inference. The latent variable is not the DAG adjacency matrix A but a noise
matrix Z. DAG-GNN uses the augmented Lagrangian approach for optimization. We follow the
recommendation for augmented Lagrangian optimization in (Lachapelle et al., 2020; Ng et al., 2019;
Yu et al., 2019; Zheng et al., 2018) and set η = 10 and γ = 1

4 . We used a neural network with
3 linear layers for the encoder and decoder architectures. Further, we performed a grid-search on
the learning rate lr ∈ [1e−4, 1e−2] and the number of hidden units per linear layer h ∈ {8, 16, 64}.
DAG-GNN is trained using the Adam optimizer (Kingma & Ba, 2015). This model does not di-
rectly apply for consequence prediction from learned causal mechanisms as it does not predict the
consequence values from the values of the learned parents. We use the implementation provided in
https://github.com/fishmoon1234/DAG-GNN.

DAG-NF (Wehenkel & Louppe, 2021): DAG-NF proposes to combine Normalizing Flows with an
augmented Lagrangian optimization to learn DAG structures from observational data. We follow
the recommendation for augmented Lagrangian optimization in (Lachapelle et al., 2020; Ng et al.,
2019; Yu et al., 2019; Zheng et al., 2018) and set η = 10 and γ = 1

4 . Further, we performed a
grid-search on the monotonic or affine normalizer architectures, the conditioner and normalizer

2https://www.daml.in.tum.de/differentiable-dag-sampling/
3bioinformatics.intec.ugent.be/kmarchal/SynTReN/index.html
4https://www.daml.in.tum.de/differentiable-dag-sampling/

15

https://github.com/fishmoon1234/DAG-GNN
https://www.daml.in.tum.de/differentiable-dag-sampling/
bioinformatics.intec.ugent.be/kmarchal/SynTReN/index.html
https://www.daml.in.tum.de/differentiable-dag-sampling/

Published as a conference paper at ICLR 2022

learning rate lr ∈ [1e−4, 1e−2], the number of hidden units per linear layer in the conditioner and
normalizer architectures h ∈ {50, 100, 150, 200} and different l1 regularization λl1 ∈ [0, 60]. We
used a neural network with 3 linear layers for the conditioner and normalizer architectures and the
embedding size was set to set to 30 as suggested by the authors Wehenkel & Louppe (2021). DAG-NF
is trained using the Adam optimizer (Kingma & Ba, 2015). This model does not directly apply for
consequence prediction from learned causal mechanisms as it does not predict the consequence
values from the values of the learned parents. We use the official implementation provided in
https://github.com/AWehenkel/Graphical-Normalizing-Flows.

Gran-DAG (Lachapelle et al., 2020): Gran-DAG proposes to compute the adjacency matrix from
the learned weight of the non-linear causal relationships. Gran-DAG uses the augmented Lagrangian
approach for optimization. We follow the recommendation for augmented Lagrangian optimization in
(Lachapelle et al., 2020; Ng et al., 2019; Yu et al., 2019; Zheng et al., 2018) and set η = 10 and γ = 1

4 .
We used a neural network with 3 linear layers. Further, we performed a grid-search on the learning
rate lr ∈ [1e−4, 1e−2] and the number of hidden units per linear layer h ∈ {8, 16, 64}. Gran-DAG
is trained using the RmsProp optimizer (Tieleman & Hinton, 2012). This model can be used for
consequence prediction from learned causal mechanisms. Indeed, it uses an architecture similar to DP-
DAG which aims at predicting the values of consequence values from values of the learned parents. We
use the official implementation provided in https://github.com/kurowasan/GraN-DAG.

Masked-NN (Ng et al., 2019): Masked-NN proposes to learn the binary adjacency matrix A by
combining the Gumbel-Softmax distribution with the augmented Lagrangian approach for opti-
mization. We follow the recommendation for augmented Lagrangian optimization in (Lachapelle
et al., 2020; Ng et al., 2019; Yu et al., 2019; Zheng et al., 2018) and set η = 10 and γ = 1

4 . We
used a neural network with 3 linear layers. Further, we performed a grid-search on the learning rate
lr ∈ [1e−4, 1e−2] and the number of hidden units per linear layer h ∈ {8, 16, 64}. Masked-NN is
trained using the Adam optimizer (Kingma & Ba, 2015). This model can be used for consequence
prediction from learned causal mechanisms. Indeed, it uses an architecture similar to DP-DAG which
aims at predicting the values of consequence values from values of the learned parents.

GT-DAG: GT-DAG is a new baseline with the exact same architecture as VI-DP-DAG except that
it uses the ground-truth DAG A∗ instead of DAGs sampled from DP-DAG during learning. Hence,
this baseline can be considered as the best-case scenario when learning the causal mechanisms fi,ψ
from observational data. Further, we performed a grid-search on the learning rate lr ∈ [1e−4, 1e−2]
and the number of hidden units per linear layer h ∈ {8, 16, 64}. GT-DAG is trained using the Adam
optimizer (Kingma & Ba, 2015). We perform early stopping by checking loss improvement on the
validation set every two epochs and a patience p = 10.

CAM (Bühlmann et al., 2014): CAM proposes to learns DAGs structure by (1) using Preliminary
Neighbor Selection (PNS), (2) greedily searching for edges with the largest Likelihodd gain, and
finally (3) pruning spurious edges with significance testing of covariates (Bühlmann et al., 2014). The
preprocessing PNS step and the postprocessing steps are not differentiable but are decisive for high
performance. This motivates other approaches like Lachapelle et al. (2020); Ng et al. (2019) to use
the same processing steps.

F ADDITIONAL RESULTS

F.1 DAG SAMPLING

In this section, we compare the DAG sampling performances of DP-DAG using Gumbel-Sinkhorn or
Gumbel-Top-k parametrization for permutation sampling. To this end, we sample 30 DAGs with 10
to 200 nodes and compute the mean and the variance of the sampling time. We show results for the
sampling time in Fig. 4. The Gumbel-Top-k parametrization is significantly faster than the Gumbel-
Sinkhorn parametrization. This is expected from the complexity analysis of the two permutation
parametrization. Gumbel-Sinkhorn has a complexity ofO(n3) while Gumbel-Top-k has a complexity
of O(n2).

Further, we evaluate the capacity of the two differentiable sampling methods for learning DAGs when
the ground-truth DAG is observed. To this end, the direct MSE error between a new sampled DAG
A and the ground-truth DAG A∗ is used as the loss at each iteration. This task aims at evaluating

16

https://github.com/AWehenkel/Graphical-Normalizing-Flows
https://github.com/kurowasan/GraN-DAG

Published as a conference paper at ICLR 2022

Figure 4: DAG sampling time of DP-DAG using Gumbel-Sinkhorn or Gumbel-Top-k parametrization
for permutation sampling. The Gumbel-Top-k parametrization is significantly faster for sampling.

whether the DAG sampling optimization scheme is a reliable optimization scheme on a simple toy
task. This is a priori not guaranteed since the DAG sampling space is very large. However, we
observe in Tab. 6 that both Gumbel-Sinkhorn and Gumbel-Top-k parametrizations recover almost
perfectly the ground-truth DAG A∗ for all graph sizes and graph types. These results are particularly
significant since each dataset setting is averaged over 10 sampled graphs and 4 learning rates
lr ∈ {10e−1, 10e−2, 10e−3, 10e−4}. These experiments validate that DP-DAG is a reliable method
for fast and differentiable DAG sampling.

Gumbel-Sinkhorn Gumbel-Top-k
ER-10-10 1.0± 0.0 1.0± 0.0
ER-10-40 0.97± 0.02 0.98± 0.0
ER-20-80 0.95± 0.04 0.98± 0.03
ER-50-50 0.94± 0.06 0.95± 0.05
ER-100-100 0.9± 0.1 0.96± 0.05
ER-100-200 0.92± 0.06 0.97± 0.03
ER-100-400 0.91± 0.06 0.95± 0.05
SF-10-10 0.87± 0.04 0.92± 0.08
SF-10-40 0.95± 0.03 0.99± 0.01
SF-20-20 0.89± 0.06 0.94± 0.09
SF-20-80 0.98± 0.03 1.0± 0.01
SF-50-50 0.92± 0.06 0.95± 0.06
SF-50-200 0.97± 0.03 0.98± 0.02
SF-100-100 0.89± 0.1 0.94± 0.07
SF-100-400 0.96± 0.04 0.99± 0.02

Table 4: AUC-PR

Gumbel-Sinkhorn Gumbel-Top-k
ER-10-10 1.0± 0.0 1.0± 0.0
ER-10-40 0.97± 0.0 0.99± 0.0
ER-20-80 0.96± 0.0 0.98± 0.0
ER-50-50 0.96± 0.0 0.97± 0.0
ER-100-100 0.93± 0.01 0.97± 0.0
ER-100-200 0.94± 0.0 0.98± 0.0
ER-100-400 0.94± 0.0 0.97± 0.0
SF-10-10 0.9± 0.0 0.94± 0.01
SF-10-40 0.96± 0.0 0.99± 0.0
SF-20-20 0.92± 0.0 0.95± 0.01
SF-20-80 0.98± 0.0 1.0± 0.0
SF-50-50 0.95± 0.0 0.97± 0.0
SF-50-200 0.98± 0.0 0.99± 0.0
SF-100-100 0.92± 0.01 0.96± 0.0
SF-100-400 0.97± 0.0 0.99± 0.0

Table 5: AUC-ROC

Table 6: Direct DAG structure learning results on synthetic datasets using differentiable sampling
optimization with AUC-PR and AUC-ROC scores (Higher is better). At each iteration, the direct MSE
error between a new sampled DAG A and the ground-truth DAG A∗ is used as loss. Each results is
averaged over 10 sampled graphs and 4 learning rates. Both Gumbel-Sinkhorn and Gumbel-Top-k
sampling methods lead to high performance for all graph sizes and graph types.

F.2 DAG STRUCTURE LEARNING WITHOUT NON-DIFFERENTIABLE PROCESSING

We show the additional results for differentiable DAG structure learning on synthetic and real datasets
in Tab. 7. While GraN-DAG competes with VI-DP-DAG on small synthetic datasets with around 10
nodes, DP-DAG outperforms all baselines on all larger synthetic datasets with 50 or 100 nodes for
both ER and SF graph types. On real datasets, no baseline consistently outperforms VI-DP-DAG
which obtains 4/8 best scores and second-best scores on the remaining evaluations.

Furthermore, we show results for DAG structure learning for VI-DP-DAG, GraN-DAG and Masked-
DAG using the mean and the standard deviation of the SHD scores between the ground-truth dag
adjacency matrix A∗ and the thresholded predicted adjacency matrix Pφ(Uπ(i)π(j)) > t or Aij > t
for different threshold choices in Fig. 5. Thresholds t are ordered from sparser graphs (i.e. larger
thresholds) to denser graphs (i.e. smaller thresholds). We observe that models might be sensitive to

17

Published as a conference paper at ICLR 2022

(a) ER-10-10 (b) ER-10-40 (c) ER-50-50

(d) ER-50-200 (e) ER-100-100 (f) ER-100-400

(g) SF-10-10 (h) SF-50-50 (i) SF-50-200

Figure 5: DAG structure learning results for different graph types and sizes for all differentiable
VI-DP-DAG, GraN-DAG and Masked-DAG with SHD scores with different thresholds from sparser
to denser graphs (Lower is better).

the threshold choice thus motivating the use of threshold agnostic metrics such that AUC-PR and
AUC-ROC. However, we observe that VI-DP-DAG generally achieves the best performances for
different graphs types and graph sizes given the best possible threshold selection.

F.3 DAG STRUCTURE LEARNING WITH NON-DIFFERENTIABLE PROCESSING

We show the additional results for DAG structure learning with non-differentiable pre- and post-
processing in Tab. 8 and Tab. 9. In these experiments, we apply the default pre-processing PNS and
post-processing CAM pruning steps to CAM, GraN-DAG, Masked-DAG as suggested by the original
papers. We similarly apply CAM pruning to the final results of VI-DP-DAG. While the greedy
CAM is the best performing model for most synthetic datasets, VI-DP-DAG maintains competitive
performance on all datasets and is the best performing model on real datasets (i.e. 7/8 best scores).
The pre- and post-processing steps are decisive for the augmented Lagrangian optimization baselines
GraN-DAG and Masked-DAG to achieve performance competitive with VI-DP-DAG. Lachapelle
et al. (2020) makes similar observations on the dependence on PNS and CAM pruning steps. We
show the comparison of GraN-DAG and VI-DP-DAG with and without additional processing steps
in Tab. 10 and Tab. 11. GraN-DAG is indeed more dependent on additional processing steps than
VI-DP-DAG to achieve high performance.

F.4 NON-DIFFERENTIABLE PROCESSING TIME

We show additional results of the processing time (incl. the mean and standard error of the mean over
5 runs) for the non-differentiable PNS pre-processing, the CAM algorithm and the DAG pruning
post-processing (Bühlmann et al., 2014) for ER-10-40, ER-50-200, ER-100-400 with with different
number of nodes in Tab. 12. Each of this processing step becomes significantly slower tha VI-DP-
DAG for larger number of nodes. In particular on ER-100-400, the PNS pre-processing is around ×4

18

Published as a conference paper at ICLR 2022

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 44.20± 1.66 63.55± 1.06 18.35± 0.9 51.59± 1.0
DAG-NF 28.22± 0.88 54.07± 0.63 19.47± 0.88 55.41± 0.61
GraN-DAG 91.17± 0.69 96.76± 0.29 89.96± 0.69 97.38± 0.25
Masked-DAG 44.74± 1.77 66.58± 1.03 30.23± 1.8 62.28± 1.03
VI-DP-DAG 82.88± 1.48 95.00± 0.51 62.61± 2.84 83.27± 1.36

(a) ER-10-10

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 85.31± 0.53 55.86± 0.69 49.26± 0.79 55.76± 0.67
DAG-NF 83.46± 0.29 56.72± 0.43 42.86± 0.23 51.93± 0.43
GraN-DAG 96.47± 0.14 89.20± 0.38 93.54± 0.39 95.26± 0.34
Masked-DAG 84.05± 0.3 58.94± 0.31 48.92± 0.42 57.19± 0.35
VI-DP-DAG 94.59± 0.5 86.09± 1.07 79.42± 0.97 83.93± 0.76

(b) ER-10-40

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 16.20± 1.03 52.20± 0.78 5.52± 0.33 51.80± 0.6
DAG-NF 4.48± 0.13 50.32± 0.08 2.35± 0.09 50.22± 0.05
GraN-DAG 42.97± 1.1 71.40± 0.7 38.07± 0.97 70.27± 0.65
Masked-DAG 11.29± 0.46 53.97± 0.24 7.66± 0.4 53.26± 0.22
VI-DP-DAG 75.70± 0.8 97.26± 0.12 52.95± 0.95 80.85± 0.46

(c) ER-50-50

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 7.46± 0.24 49.14± 0.39 2.85± 0.16 50.43± 0.59
DAG-NF 2.12± 0.03 50.13± 0.09 1.10± 0.02 50.12± 0.06
GraN-DAG 19.67± 0.58 64.47± 0.5 11.63± 0.46 60.49± 0.38
Masked-DAG 8.78± 0.31 53.46± 0.16 7.41± 0.32 53.29± 0.16
VI-DP-DAG 48.38± 0.88 94.46± 0.16 29.34± 0.93 72.93± 0.55

(d) ER-100-100

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 38.91± 1.56 46.56± 1.56 20.04± 0.62 49.83± 0.63
DAG-NF 24.03± 0.87 51.38± 0.81 11.78± 0.46 50.93± 0.39
GraN-DAG 93.14± 0.75 97.59± 0.28 93.01± 0.77 98.85± 0.14
Masked-DAG 48.96± 1.79 69.21± 1.05 39.42± 2.22 66.92± 1.2
VI-DP-DAG 77.26± 0.97 93.47± 0.4 66.35± 1.69 87.05± 1.18

(e) SF-10-10

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
DAG-GNN 7.76± 0.26 49.24± 0.58 3.36± 0.14 49.66± 0.52
DAG-NF 3.92± 0.0 49.83± 0.0 1.96± 0.0 49.92± 0.0
GraN-DAG 21.82± 0.64 64.16± 0.51 18.12± 0.66 62.78± 0.47
Masked-DAG 10.39± 0.23 53.37± 0.12 6.11± 0.22 52.33± 0.1
VI-DP-DAG 46.67± 0.8 80.50± 0.49 23.25± 0.89 60.74± 0.7

(f) SF-50-50

Table 7: DAG structure learning results on synthetic and real datasets for all differentiable DAG
learning models with AUC-PR and AUC-ROC scores (Higher is better). Un- and Dir- indicate scores
for undirected and directed edges. Best scores among all models are in bold. Second best scores
among all models are underlined.

19

Published as a conference paper at ICLR 2022

(a) ER-10-10 (b) ER-100-400 (c) SynTReN

(d) ER-10-10 (e) ER-100-400 (f) SynTReN

Figure 6: Relative confidence scores of perturbed graphs Ã∗ obtained by randomly moving edges
from the ground-truth DAG adjacency matrix A∗. Fig. 6a-6c show the results for models with
architecture similar to VI-DP-DAG. Fig. 6d-6f show the results for models

slower than VI-DP-DAG, the CAM algorithm is at least more than ×900 slower than VI-DP-DAG
since it did not finish in less than 2 days, and the DAG pruning post-processing is around ×23 slower
than VI-DP-DAG.

F.5 DAG STRUCTURE LEARNING UNDER PERTURBATIONS.

We evaluate if the models confidently assign lower confidence scores to perturbed versions of the
ground-truth adjacency matrix A∗. To this end, we create a perturbed matrix Ã∗ by randomly moving
different number of edges from A∗, and compute its relative confidence score. The relative confidence
score assigned by a model is the sum of the edges scores of the perturbed matrix Ã∗ normalized by

the score of the clean matrix A∗ i.e.
∑
ij Sij1Ãij∑
ij Sij1Ã∗

ij

where Sij = Pφ(Uπ(i)π(j)) for VI-DP-DAG and

Sij = Aij for other models using Lagrangian optimization.

We report the mean and standard deviation of the relative confidence score over 10 sampled perturbed
graphs in Fig. 6. As desired, VI-DP-DAG confidently assigns a higher score to the ground-truth
matrix and lower scores to graphs with larger perturbations. This indicates that the DAG sampling
optimization of DP-DAG converges to a reliable probabilistic model over DAGs. In contrast, GraN-
DAG and Masked-DAG assign significantly more noisy scores to perturbed graphs (see e.g. Fig. 6b).
Further, other baselines do not confidently assign strictly decreasing scores to graphs with larger
perturbations.

F.6 CAUSAL MECHANISMS LEARNING

We show causal mechanisms learning results when varying the threshold t used to compute the
adjacency matrix A from the edge probabilities Aij = 1Pφ(Uij |Π)>t of VI-DP-DAG in Fig. 7. The
MSE scores of VI-DP-DAG are almost insensitive to the threshold value except for probability
thresholds close to 1. Intuitively, DP-DAG predicts a too sparse DAG adjacency matrix for threshold
close to 1, thus removing important Granger-causes to predict the node values xi.

20

Published as a conference paper at ICLR 2022

(a) ER-10-10 (b) ER-10-40 (c) ER-50-50

(d) ER-50-200 (e) ER-100-100 (f) ER-100-400

(g) SF-10-10 (h) SF-50-50 (i) SF-50-200

(j) Sachs (k) SynTRen

Figure 7: Causal mechanisms results on all datasets with MSE score (Lower is better) on a test
set i.e. ||X − X̂||22 where X̂i = fi,θ(Ai ◦X). We vary the threshold t to compute the adjacency
matrix A from the edge probabilities Aij = 1Pφ(Uij |Π)>t of VI-DP-DAG. For indication, the MSE
of GraN-DAG, Masked-DAG and GT-DAG are plotted with straight lines.

21

Published as a conference paper at ICLR 2022

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 92.60± 0.17 98.89± 0.0 92.56± 0.17 98.96± 0.0
GraN-DAG* 87.45± 0.76 93.51± 0.4 86.63± 0.81 93.25± 0.41
Masked-DAG* 11.34± 0.45 53.97± 0.24 7.71± 0.4 53.27± 0.22
VI-DP-DAG* 90.28± 0.46 95.93± 0.24 61.13± 0.87 85.21± 0.38

(a) ER-50-50

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 49.35± 0.05 74.45± 0.04 41.35± 0.06 73.60± 0.04
GraN-DAG* 49.85± 0.66 70.91± 0.44 44.78± 0.74 70.78± 0.44
Masked-DAG* 17.55± 0.14 51.09± 0.05 9.14± 0.09 50.81± 0.04
VI-DP-DAG* 53.77± 0.36 73.25± 0.25 36.54± 0.34 68.08± 0.2

(b) ER-50-200

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 56.00± 0.0 79.46± 0.0 49.97± 0.0 78.24± 0.0
GraN-DAG* 38.28± 0.39 66.95± 0.24 35.39± 0.4 66.85± 0.24
Masked-DAG* 9.03± 0.12 50.72± 0.06 4.76± 0.1 50.55± 0.06
VI-DP-DAG* 44.45± 0.61 72.71± 0.23 22.32± 0.93 64.57± 0.39

(c) ER-100-400

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 53.66± 0.16 79.43± 0.0 52.86± 0.16 79.51± 0.0
GraN-DAG* 49.86± 0.99 73.96± 0.52 47.71± 0.99 73.46± 0.5
Masked-DAG* 10.39± 0.23 53.37± 0.12 6.11± 0.22 52.33± 0.1
VI-DP-DAG* 50.56± 0.96 74.78± 0.52 25.41± 0.97 65.99± 0.54

(d) SF-50-50

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 32.45± 0.13 63.10± 0.04 28.45± 0.13 63.17± 0.04
GraN-DAG* 29.28± 0.41 60.11± 0.24 24.74± 0.44 60.12± 0.24
Masked-DAG* 14.39± 0.13 51.64± 0.06 7.23± 0.12 50.97± 0.06
VI-DP-DAG* 30.17± 0.29 60.85± 0.17 15.78± 0.29 57.04± 0.17

(e) SF-50-200

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 32.62± 0.04 55.07± 0.06 18.69± 0.03 56.98± 0.02
GraN-DAG* 30.79± 0.2 52.07± 0.21 16.38± 0.2 52.22± 0.26
Masked-DAG* 36.98± 0.25 55.13± 0.15 17.74± 0.31 51.71± 0.23
VI-DP-DAG* 40.29± 0.4 59.00± 0.06 19.11± 0.44 54.30± 0.33

(f) Sachs

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 18.27± 0.03 63.16± 0.03 7.57± 0.01 56.16± 0.01
GraN-DAG* 16.30± 0.34 54.91± 0.21 9.55± 0.24 53.77± 0.19
Masked-DAG* 17.24± 0.4 54.22± 0.32 8.78± 0.42 52.63± 0.38
VI-DP-DAG* 35.11± 0.91 76.23± 0.68 17.84± 0.98 64.32± 1.05

(g) SynTReN

Table 8: DAG structure learning results on synthetic and real datasets for all differentiable DAG
learning models with non-differentiable processing denoted with a star *. Performance are evaluated
with the AUC-PR and AUC-ROC scores (Higher is better). Un- and Dir- indicate scores for undirected
and directed edges. Best scores among all models are in bold. Second best scores among all models
are underlined.

22

Published as a conference paper at ICLR 2022

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 100.00± 0.0 100.00± 0.0 100.00± 0.0 100.00± 0.0
GraN-DAG* 94.80± 0.76 98.68± 0.22 86.34± 1.92 95.96± 0.55
Masked-DAG* 45.56± 1.64 66.35± 1.02 29.69± 1.78 61.96± 1.0
VI-DP-DAG* 88.17± 1.07 96.18± 0.43 66.17± 2.66 87.58± 1.0

(a) ER-10-10

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 89.56± 0.0 78.09± 0.0 79.56± 0.0 85.54± 0.0
GraN-DAG* 93.79± 0.38 84.43± 0.78 86.00± 0.55 89.28± 0.37
Masked-DAG* 84.00± 0.31 58.82± 0.32 48.77± 0.43 57.06± 0.36
VI-DP-DAG* 93.23± 0.46 83.11± 0.92 75.98± 0.83 80.75± 0.62

(b) ER-10-40

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 82.17± 0.0 95.40± 0.0 75.07± 0.0 93.43± 0.0
GraN-DAG* 77.87± 0.47 90.08± 0.28 76.61± 0.53 89.71± 0.29
Masked-DAG* 8.78± 0.31 53.46± 0.16 7.41± 0.32 53.29± 0.16
VI-DP-DAG* 79.39± 0.57 93.78± 0.21 46.11± 1.13 80.34± 0.37

(c) ER-100-100

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
CAM* 100.00± 0.0 100.00± 0.0 100.00± 0.0 100.00± 0.0
GraN-DAG* 90.89± 1.15 94.44± 0.7 86.85± 1.36 93.79± 0.68
Masked-DAG* 48.07± 1.63 68.25± 1.0 38.96± 1.99 66.48± 1.1
VI-DP-DAG* 83.76± 0.89 90.65± 0.52 71.25± 1.65 85.52± 0.81

(d) SF-10-10

Table 9: DAG structure learning results on synthetic and real datasets for all differentiable DAG
learning models with non-differentiable processing denoted with a star *. Performance are evaluated
with the AUC-PR and AUC-ROC scores (Higher is better). Un- and Dir- indicate scores for undirected
and directed edges. Best scores among all models are in bold. Second best scores among all models
are underlined.

23

Published as a conference paper at ICLR 2022

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 42.97± 1.1 71.40± 0.7 38.07± 0.97 70.27± 0.65
GraN-DAG* 87.45± 0.76 93.51± 0.4 86.63± 0.81 93.25± 0.41
VI-DP-DAG 75.70± 0.8 97.26± 0.12 52.95± 0.95 80.85± 0.46
VI-DP-DAG* 90.28± 0.46 95.93± 0.24 61.13± 0.87 85.21± 0.38

(a) ER-50-50

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 25.11± 0.4 56.57± 0.35 17.61± 0.47 56.35± 0.34
GraN-DAG* 49.85± 0.66 70.91± 0.44 44.78± 0.74 70.78± 0.44
VI-DP-DAG 62.08± 0.34 84.53± 0.25 41.70± 0.39 71.08± 0.33
VI-DP-DAG* 53.77± 0.36 73.25± 0.25 36.54± 0.34 68.08± 0.2

(b) ER-50-200

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 9.73± 0.11 52.82± 0.11 4.42± 0.04 51.04± 0.06
GraN-DAG* 38.28± 0.39 66.95± 0.24 35.39± 0.4 66.85± 0.24
VI-DP-DAG 36.98± 0.98 77.23± 0.63 19.00± 1.07 60.35± 1.01
VI-DP-DAG* 44.45± 0.61 72.71± 0.23 22.32± 0.93 64.57± 0.39

(c) ER-100-400

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 21.82± 0.64 64.16± 0.51 18.12± 0.66 62.78± 0.47
GraN-DAG* 49.86± 0.99 73.96± 0.52 47.71± 0.99 73.46± 0.5
VI-DP-DAG 46.67± 0.8 80.50± 0.49 23.25± 0.89 60.74± 0.7
VI-DP-DAG* 50.56± 0.96 74.78± 0.52 25.41± 0.97 65.99± 0.54

(d) SF-50-50

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 18.75± 0.29 54.76± 0.17 12.35± 0.32 53.31± 0.43
GraN-DAG* 29.28± 0.41 60.11± 0.24 24.74± 0.44 60.12± 0.24
VI-DP-DAG 33.81± 0.39 68.18± 0.39 17.46± 0.34 59.70± 0.65
VI-DP-DAG* 30.17± 0.29 60.85± 0.17 15.78± 0.29 57.04± 0.17

(e) SF-50-200

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 34.28± 0.32 54.57± 0.36 19.95± 0.35 55.91± 0.33
GraN-DAG* 30.79± 0.2 52.07± 0.21 16.38± 0.2 52.22± 0.26
VI-DP-DAG 43.37± 0.55 59.78± 0.62 22.96± 0.81 60.02± 0.91
VI-DP-DAG* 40.29± 0.4 59.00± 0.06 19.11± 0.44 54.30± 0.33

(f) Sachs

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 19.89± 0.4 62.29± 0.31 15.39± 0.44 63.91± 0.34
GraN-DAG* 16.30± 0.34 54.91± 0.21 9.55± 0.24 53.77± 0.19
VI-DP-DAG 26.33± 0.56 70.84± 0.45 14.17± 0.76 59.84± 1.46
VI-DP-DAG* 35.11± 0.91 76.23± 0.68 17.84± 0.98 64.32± 1.05

(g) SynTReN

Table 10: DAG structure learning results on synthetic and real datasets for VI-DP-DAG and the second
best baseline GraN-DAG with and without non-differentiable processing. Models using additional
processing are denoted with a star *. Performance are evaluated with the AUC-PR and AUC-ROC
scores (Higher is better). Un- and Dir- indicate scores for undirected and directed edges. GraN-DAG
is more dependent on additional processing steps than VI-DP-DAG to achieve high performance.

24

Published as a conference paper at ICLR 2022

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 91.17± 0.69 96.76± 0.29 89.96± 0.69 97.38± 0.25
GraN-DAG* 94.80± 0.76 98.68± 0.22 86.34± 1.92 95.96± 0.55
VI-DP-DAG 82.88± 1.48 95.00± 0.51 62.61± 2.84 83.27± 1.36
VI-DP-DAG* 88.17± 1.07 96.18± 0.43 66.17± 2.66 87.58± 1.0

(a) ER-10-10

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 96.47± 0.14 89.20± 0.38 93.54± 0.39 95.26± 0.34
GraN-DAG* 93.79± 0.38 84.43± 0.78 86.00± 0.55 89.28± 0.37
VI-DP-DAG 94.59± 0.5 86.09± 1.07 79.42± 0.97 83.93± 0.76
VI-DP-DAG* 93.23± 0.46 83.11± 0.92 75.98± 0.83 80.75± 0.62

(b) ER-10-40

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 19.67± 0.58 64.47± 0.5 11.63± 0.46 60.49± 0.38
GraN-DAG* 77.87± 0.47 90.08± 0.28 76.61± 0.53 89.71± 0.29
VI-DP-DAG 48.38± 0.88 94.46± 0.16 29.34± 0.93 72.93± 0.55
VI-DP-DAG* 79.39± 0.57 93.78± 0.21 46.11± 1.13 80.34± 0.37

(c) ER-100-100

Models Un-AUC-PR Un-AUC-ROC Dir-AUC-PR Dir-AUC-ROC
GraN-DAG 93.14± 0.75 97.59± 0.28 93.01± 0.77 98.85± 0.14
GraN-DAG* 90.89± 1.15 94.44± 0.7 86.85± 1.36 93.79± 0.68
VI-DP-DAG 77.26± 0.97 93.47± 0.4 66.35± 1.69 87.05± 1.18
VI-DP-DAG* 83.76± 0.89 90.65± 0.52 71.25± 1.65 85.52± 0.81

(d) SF-10-10

Table 11: DAG structure learning results on synthetic and real datasets for VI-DP-DAG and the second
best baseline GraN-DAG with and without non-differentiable processing. Models using additional
processing are denoted with a star *. Performance are evaluated with the AUC-PR and AUC-ROC
scores (Higher is better). Un- and Dir- indicate scores for undirected and directed edges. GraN-DAG
is more dependent on additional processing steps than VI-DP-DAG to achieve high performance.

PNS CAM Pruning

ER-10-40 11.91± 0.09 14.42± 0.42 4.29± 0.1
ER-50-200 150.54± 0.03 22292.7± 591.13 667.03± 15.59
ER-100-400 750.14± 8.53 > 2 days 6114.62± 495.93

Table 12: Processing time in seconds of the non-differentaible PNS pre-processing, the CAM algorthm
and the DAG pruning (Bühlmann et al., 2014).

25

	Introduction
	Related Work
	Probabilistic Model over DAGs
	Variational DAG Learning from Observational Data
	Experiments
	Set-up
	Results

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Augmented Lagrangian Optimization
	Gumbel-Softmax, Gumbel-Sinkhorn, Gumbel-Top-K distributions
	Gumbel-Softmax distribution gumbelsoftmax
	Gumbel-Sinkhorn distribution gumbelsinkhorn
	Gumbel-Top-K distribution gumbel-top-k

	SoftSort Operator softsort
	Datasets
	Models
	Additional results
	DAG sampling
	DAG structure learning without non-differentiable processing
	DAG structure learning with non-differentiable processing
	Non-differentiable processing time
	DAG structure learning under perturbations.
	Causal mechanisms learning

