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Abstract

Users linked together through a network often
tend to have similar behaviors. This phenomenon
is usually known as network interaction. Users’
characteristics, the covariates, are often correlated
with their outcomes. Therefore, one should in-
corporate both the covariates and the network in-
formation in a carefully designed randomization
to improve the estimation of the average treat-
ment effect (ATE) in network A/B testing. In this
paper, we propose a new adaptive procedure to
balance both the network and the covariates. We
show that the imbalance measures with respect
to the covariates and the network are Op(1). We
also demonstrate the relationships between the
improved balances and the increased efficiency in
terms of the mean square error (MSE). Numerical
studies demonstrate the advanced performance
of the proposed procedure regarding the greater
comparability of the treatment groups and the re-
duction of MSE for estimating the ATE.

1. Introduction
The classical A/B testing is developed based on the Stable
Unit Treatment Value Assumption (SUTVA)(Rubin, 1978),
which claims that each user’s response depends only on his
or her own treatment, regardless of other users’ treatments
or responses. However, the SUTVA is often violated in net-
work A/B testing because users can interact with each other,
e.g., their neighbors or friends, and thus may have simi-
lar behaviors. This phenomenon, widely existing in social
media platforms, online marketplaces, and economic stud-
ies, may complicate the estimation of the average treatment
effect (ATE).
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This aforementioned network interaction is demonstrated
by the network effect and the spill-over effect. The net-
work effect, also known as social interference, happens
when users communicate treatment information with their
neighbors through a social network. It is considered as a
nuisance parameter since we focus on the classical average
treatment effect (ATE), which is denoted by µ (Basse and
Airoldi, 2018; Zhou et al., 2020; Gui et al., 2015; Zhang and
Kang, 2022). The spill-over effect is also undesirable in the
ATE estimation. It describes the scenario that a user is as-
signed to the control group but has neighbors assigned to the
treatment group. In such case, the treatment on one user may
impact the neighbors and impair comparisons in the design
of experiments (Jiang et al., 2016; Ugander et al., 2013).

Homophily is also used to explain network interaction. It
refers to the tendency that users with similar characteristics,
the covariates, are more likely to connect with each other,
resulting in correlated behaviors among them. McPherson
et al. (2001) explained that the network ties are structured
according to the users’ covariates, and the users’ interacting
behaviors are related to their similar covariates. Therefore, a
carefully-designed randomization procedure, incorporating
the information of the covariates and the observed networks,
is critical for valid estimation of ATE (Manski, 1993).

1.1. Our Contributions

The imbalance of covariates and the network interaction
may affect the evaluation of the ATE in network A/B testing.
To address this concern, we propose an adaptive random-
ization algorithm to achieve the balance with respect to
the covariates and the network effect simultaneously. It
directly reduces the MSE through a sequential experiment
without complicated post-design re-weighting. Several de-
signs, such as complete randomization (CR), covariate-
adaptive randomization procedures (CAR) (Hu and Hu,
2012), and the adaptive randomization for network A/B
test (NAR) (Zhou et al., 2020), are special cases of our
proposed procedure.

1



A/B Testing in Network Data with Covariate-Adaptive Randomization

Moreover, we use martingale to generalize the drift condi-
tions in Markov chains (Meyn and Tweedie, 1993) to mo-
ment conditions for sequences with negative drift (Pemantle
and Rosenthal, 1999). This overcomes the challenge of the
complex correlation between connected users. The results
provide a theoretical guarantee by showing the two imbal-
ance measures under our proposed procedure are Op(1) and
the consistency of the linear-in-mean estimator.

In addition, via deriving the MSE of the difference-in-means
estimator based on the response model (3), we develop a new
network imbalance measure to further improve the efficiency
for estimating the ATE. Extensive numerical studies are
also presented to demonstrate the advances of our proposed
procedure via the significant reductions in MSE.

1.2. Related Work

In clinical trials or economic experiments, researchers are
more interested in the ATE and exclude the network inter-
ference, e.g., true drug efficiency or how well an economic
strategy is. In contrast, the network effect may be part of
the estimand (Jiang et al., 2016; Nandy et al., 2020; Eckles
et al., 2016; Toulis and Kao, 2013). For example, in on-
line advertising and two-sided markets, companies are more
interested in the total increase in revenue rather than the
proportion purely contributed by the advertisements (Nandy
et al., 2020).

Furthermore, linear-in-mean models are commonly used to
illustrate the relationship between users’ potential outcomes
and the network and/or their covariates profiles. For exam-
ple, Nandy et al. (2020) modeled advertisement on social
media or marketplace with connected users; Yoon (2018)
discussed A/B testing in a collaboration network; Basse and
Airoldi (2018) and Zhou et al. (2020) studied the applica-
tion for new drug discovery; Shalizi and Thomas (2011) and
Zhang and Kang (2022) provided models for general cases,
etc.

1.3. Organization

The background and notation of CAR and its application in
network data are summarized in Section 2. Our proposed
model and randomization procedure are presented in Sec-
tion 3. The theoretical results are shown in Section 4. We
present the numerical studies to demonstrate the balance
properties of our proposed procedure and the improvement
for estimating the ATE in Section 5. Concluding remarks
and future research topics are discussed in Section 6. The
proofs can be found in the Appendix.

2. Covariate-Adaptive Randomization and its
Application in Network Data

In clinical trials, patients usually come and get treated se-
quentially. Since we do not know all patients’ covariates
when assigning a particular patient, it’s hard for stratified
permuted block randomization (Zelen, 1974) to generate
adequate balance over many important baseline discrete co-
variates. To address this issue, minimization was introduced
to balance over a large number of covariates (Taves, 1974;
Pocock and Simon, 1975). It sequentially assigns users to
treatment or control groups based on the existing covariates
information. Hu and Hu (2012) proposed a general class
of covariate-adaptive randomization (CAR) to ensure the
balance for multiple covariate levels, where the biased coin
design (Efron, 1971) and minimization are special cases.

To introduce this class of procedures, we start with dis-
crete covariates. Suppose the l-th covariate has ml levels,
1 ≤ l ≤ L, with a total of m =

∏I
l=1 ml strata. Let

(l; kl) denote the margin formed by the users with the l-th
covariates at level kl. Let k = (k1, · · · , kL) denote the
stratum formed by users with the l-th covariates at level kl
for 1 ≤ l ≤ L. Here we introduce three imbalance mea-
sures: (i) the overall imbalance Dn, which is the difference
between the patients assigned to the treatment and the con-
trol groups; (ii) the marginal imbalance Dn(l; kl), which
represents the difference between the two arms for a specific
variable (l; kl), e.g., the difference of females between the
two arms; and (iii) the stratum imbalance Dn(k), which
is the difference for a specific stratum k, e.g., the differ-
ence of assigned smoked females between the two arms.
CAR uses a weighted imbalance measure combining the 3
measures above with nonnegative weights wo, wm,l and ws

with wo+ws+
∑L

l=1 wm,l = 1. The choice of wo, wm, ws

can be based on the relative importance of covariates at the
three levels in specific scenarios. Ignoring them will cause
conservative type I error and reduced statistical power (Ma
et al., 2015).

If the n-th user is in stratum k∗ = (k∗1 , . . . , k
∗
L), the imbal-

ance measure calculated for the first n users based on the
n-th user’s stratum k∗ is

Imbn,cov = wo [Dn]
2
+

L∑
l=1

wm,l [Dn (l; k
∗
l )]

2

+ ws [Dn (k
∗)]

2
. (1)

CAR assigns the users to treatment or control groups using a
“biased coin” with probability g(Imbn,cov) to sequentially
minimize Imbn,cov. In general, CAR only requires the
allocation rule g(x) decreasing and satisfies g(x)+g(−x) =
1 for symmetric.
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Hu and Zhang (2020) proved that

Λn (k) = woDn+

L∑
l=1

wm,lDn (l; kl)+wsDn (k) = Op(1)

for all k. Consequently, Dn, Dn(l; kl), and Dn(k) are
Op(1) for 1 ≤ l ≤ L and 1 ≤ kl ≤ ml. These results are
crucial for improving the comparability and validity of CAR
and also our design.

When a continuous covariate needs direct balance, one may
replace the right-hand side of (1) with the Mahalanobis
distance (Qin et al., 2022) or other imbalance measures for
continuous covariates.

Unlike most of the clinical studies, the outcomes are often
correlated through the given network in network A/B testing.
It is thus desirable to improve the efficiency for estimating
the ATE by using the information of the network through
the design of the experiment (Basse and Airoldi, 2018; Zhou
et al., 2020; Gui et al., 2015; Zhang and Kang, 2022). Zhou
et al. (2020) introduced a framework to demonstrate the
impact of the imbalance with respect to the network on the
estimation of ATE. Based on a similar idea as the CAR pro-
cedure, they proposed an adaptive network randomization
(NAR) that sequentially assigned users by minimizing the
following imbalance measure

Imbn,net = n−2 ∥An (1n − 2Tn)∥2 , (2)

where An is the adjacent matrix of the first n users, Tn is
the vector of their treatment assignments and ||x|| =

√
x⊤x

denotes the L2-norm throughout this paper. Imbn,net mea-
sures the difference of the numbers of neighbors in the
two treatment groups for the first n users. They show that
Imbn,net following their proposed design converges to a
constant smaller than the value under complete randomiza-
tion (CR), and the mean squared error (MSE) under NAR
is smaller than the ones under CR. Consequently, NAR can
improve the ATE estimation with improved comparability.

In summary, since users’ potential outcomes are correlated
with their treatment allocations, relevant covariates, and the
connections to neighbors, users’ covariates and the network
information can be utilized to advance the design perfor-
mance in network A/B testing. In the following section, we
introduce a sequential randomization procedure to minimize
Imbn,cov and Imbn,net simultaneously. The proposed pro-
cedure shares the advantages of both CAR and NAR, and
thus can tremendously improve the efficiency for ATE esti-
mation.

3. New Randomization Algorithm
3.1. Model Setting

We first propose a generic model to illustrate the network
and covariate’s effect. Suppose a network G with N vertices

(users) is observed. Let X be the N × d covariates matrix
and Xi be the d-covariates for user i. Let T ∈ {0, 1}N be
the N -treatment assignment and Ti denote the assignment
of the i-th user, i.e., the ith user is assigned to the treatment
if Ti = 1, the ith user is assigned to the control if Ti = 0.
The connections among nodes are represented by an undi-
rected symmetric adjacency matrix AN = (Aij)1≤i,j≤N ,
Aij ∈ {0, 1} , Aii = 0. Let Ai∗ be the i-th row of adja-
cent matrix A which represents the connections of i-th user
among the N users. Here we assume that only users with
direct connections can affect each other via the network,
which is typically referred to the neighborhood interfer-
ence assumption in Ugander et al. (2013) and Eckles et al.
(2016).

Then the outcome of the i-th subject is affected by the
network effect, the spill-over effect, and the covariates as:

Yi = µ0 + µ1Ti + f(Ai∗T) +Xiβ + εi, (3)

where µ0, µ1, and β represent the effect of the baseline,
the treatment effect, and the covariate effects, respectively;
f() is a prespecified increasing function, e.g., f(Ai∗T) =√
Ai∗T, and εi ∼ N

(
0, σ2

ε

)
is the i.i.d. random error.

The i-th outcome Yi depends on the treatment assignment
of the i-th user Ti, the network interactions, and the corre-
sponding covariate profile Xi. When f(Ai∗T) = γAi∗T,
the response model (3) assumes that Yi is linearly affected
by the number of user i’s friends assigned in the treatment
group by γAi∗T. This kind of linear outcome model is
commonly studied in the literature. For instance, Basse and
Airoldi (2018) considered Yi = µ0+µ1Ti+

∑
j∈Ni

Xj+εi,
where Ni = {j : s.t. Aij = 1 or Aji = 1} is the set of
the direct neighborhoods of unit i , and Xj is the covariate
value of unit j. Gui et al. (2015) explained the direct net-
work interference and the homophily by approximating the
average behavior of one’s neighborhood through a linear
additive model. Linear outcome models are also employed
in Eckles et al. (2016) and Toulis and Kao (2013).

If other types of outcome are of interest, (3) can be ex-
tended to generalized linear models by replacing Yi with
h(EYi), where h(·) represents the link function. For in-
stance, h(·) = logit(·) is considered in Section 5.2 for
demonstrating the extension of our results. In numerical
studies, we also relax the direct neighborhood assumption
by considering the transitivity of network effect, where Yi

is not just affected by the ith row of AN as in (3).

For covariates part, we only consider categorical variable in
this paper and use all notations in section 2. Therefore, with-
out loss of generality, we let Xij ∈ {0, 1} and each column
of X represents a specific stratum or a particular level of a
categorical variable. Besides, continuous covariates could
also be processed via direct discretization.
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3.2. Algorithm for Network A/B Testing

As all users are sequentially observed, we assume that only
the sub-network of first n users is revealed for treating the n-
th user. Consider the following weighted imbalance measure

Imbn,w = wImbn,cov + (1− w)Imbn,net, (4)

which combines the covariate imbalance measure Imbn,cov
and the network imbalance measure Imbn,net with weight
w ∈ (0, 1). The adaptive randomization in Algorithm 1 se-
quentially determines the values of Ti to minimize Imbn,w.
It drags large |Imbn,w| back to zero when it gets too large
so as to achieve balance via the allocation rule (probability)
g(x). For instance, Hu and Hu (2012) suggested

g(x) = (1− q)I(x > 0) + 0.5I(x = 0) + qI(x < 0) (5)

with q ∈ [0.75, 0.95] as the allocation rule.

Note that when w = 1, Imbn,w = Imbn,cov and the pro-
posed procedure is equivalent to the CAR procedure pro-
posed by Hu and Hu (2012); when w = 0, Imbn,w =
Imbn,net and our procedure is identical to the NAR pro-
posed by Zhou et al. (2020); when w ∈ (0, 1) is considered,
the proposed procedure takes both Imbn,cov and Imbn,net
into account and can control these two imbalance measures
simultaneously. The choice of w is based on the relative
importance of covariates and networks in specific scenarios
or prior experience.

Algorithm 1 Adaptive Randomization in Network Data
Assumptions: Network is sequentially observed.
Assign T1 = 1 with probability 0.5;
for n=2 to N do

Calculate Dn−1, Dn−1 (i; k
∗
i ), for 1 ≤ i ≤ I , and

Dn−1 (k
∗) based on n-th user’s covariate profile Xn

that falls in stratum k∗;
Assign T

(1)
n ←

(
T⊤

n−1, 1
)
, calculate Imb

(1)
n,cov,

Imb
(1)
n,net, and Imb

(1)
n,w;

Assign T
(2)
n ←

(
T⊤

n−1, 0
)
, calculate Imb

(2)
n,cov,

Imb
(2)
n,net, and Imb

(2)
n,w;

Calculate ∆Imbn,w = Imb
(1)
n,w − Imb

(2)
n,w;

Let T⊤
n = z

(
T⊤

n−1, 1
)
+ (1− z)

(
T⊤

n−1, 0
)
, where

z ∼ Bernoulli (g(∆Imbn,w))

Obtain: assignment vector T.

4. Theoretical Results
We study the asymptotic properties of our newly proposed
design. We denote Dn(k) as the true difference between the
two treatment groups within stratum k = (k1, ..., kL), and
denote Λn (k) as the true weighted average of the imbal-

ances within stratum k by the same way as in CAR. That is

Λn (k) = woDn +

L∑
l=1

wm,lDn (l; kl) + wsDn (k) . (6)

It follows from Hu and Hu (2012) that Λn (k) = Op(1)
under CAR procedure, which only considers covariates.
However, our newly proposed design procedure also in-
cludes network influence. Our goal is to show Λn (k) =
Op(1) still holds for all selected w ∈ (0, 1).

4.1. The Main Theorems

Motivated by queueing networks, Pemantle and Rosenthal
(1999) showed that if a sequence of random variables has
negative drift when above a certain threshold and has incre-
ments bounded in Lp, then a uniform Lr bound on X+

n for
any r < p− 1 can be achieved. We show their Theorem 1
as an important Lemma here.

Lemma 4.1. (Pemantle and Rosenthal, 1999) Let Xn be
random variables and suppose that there exist constants
a > 0 J, V <∞, and p > 2, such that X0 ≤ J, and for all
n

E (Xn −Xn−1 | Fn−1) ≤ −a when {Xn−1 > J} (C1)

and
E (|Xn −Xn−1|p | Fn−1) ≤ V (C2)

Then for any r ∈ (0, p − 1) there is a constant c =
c(p, a, V, J, r) > 0 such that E (X+

n )
r
< c for all n.

In Appendix A.1 we show that Λn(k) satisfies the two con-
ditions when ws = 1. Then Lemma 4.1 yields the following
theorem.

Theorem 4.2. Suppose the weights used by Algorithm 1
satisfy w ∈ (0, 1), ws = 1 and wm,l = wo = 0 for 1 ≤ l ≤
L and the allocation probability function g(x) is defined as
(5). Then, for any r > 0 and any stratum k = (k1, . . . , kl) ,
E |Λn (k)|r = E |Dn (k)|r = O(1).

As ws = 1 and wm,l = wo = 0, Theorem 4.2 describes
the property of the procedure where only the within-stratum
imbalance is considered. If we generalize Theorem 4.2 to
include the overall and marginal imbalances, the condition
(C2) no longer holds. To prove the general case, we first
propose a modified version of Lemma 4.1 as Lemma 4.3,
which is the key result to prove the general case. The proof
of Lemma 4.3 is shown in Appendix A.2.

Lemma 4.3. The conclusion of lemma 4.1 still holds when
Xn −Xn−1 is replaced by (Xn −Xn−1)

′ = max(Xn −
Xn−1, C) in conditions (C1) and (C2) where C can be any
negative constant such that C ≤ −1.
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To use Lemma 4.3 we further define

Vn =
∑
k

wsD
2
n(k) +

L∑
l=1

ml∑
kl=1

wm,lD
2
n (l; kl) + woD

2
n

which leads to

Vn − Vn−1 = 4Λn−1(k)

(
Tn −

1

2

)
+ 1.

Next, we prove that max(Vn − Vn−1,−1) satisfies the con-
ditions (C1) and (C2), and hence there exist a constant
c = (p, V, J, r) > 0 such that E(Vn)

r < c.

Finally, refer to equation (6.5) in Hu and Zhang (2020) we
have ∥Λn∥2 ≤ mVn. It follows that supn E ∥Λn∥2r <∞,
which is the conclusion of our main theorem as shown below.
The whole proof of Theorem 4.4 is presented in Appendix
A.3.

Theorem 4.4. Suppose the weights used by Algorithm 1
satisfy ws, wm,l > 0 and wo + ws +

∑L
l=1 wm,l = 1. In

addition, suppose for some p > 2, there exists M > 0 such
that the allocation function satisfies

|xpg(x)| ≤M for all x > 0. (7)

Then E |Λn (k)|r = O(1) for any 0 < r < p − 1 and any
stratum k = (k1, . . . , kI) .

To facilitate our analysis, we add one more constraint on
the allocation rule g(x), which indicates that the allocation
probability g(x) must converge to 0 as x goes to positive
infinity.

A direct and useful result from Theorem 4.4 is the following.

Corollary 4.5. Condition Algorithm 1 satisfying the con-
ditions in Theorem 4.4, then Dn = Op(1), Dn (l; kl) =
Op(1) for all covariates l and their level kl, and Dn (k) =
Op(1) for all stratum k.

Note that (2T−1)⊤X = T⊤X−(1−T)⊤X is a vector of
differences between the treatment and control groups regard-
ing any stratums or marginal of covariates, Corollary 4.5
shows that (2T− 1)⊤X = Op(1).

4.2. Asymptotic Properties of the Difference-in-Mean
Estimator

While the balance ensures the comparability of the treatment
groups, it is also crucial to understand how such balance
affects the subsequent estimation for the ATE. Consider the
difference-in-means estimator,

W =

∑N
i=1 TiYi∑N
i=1 Ti

−
∑N

i=1(1− Ti)Yi∑N
i=1(1− Ti)

. (8)

The outcome model (3) implies that the conditional mean
of W can be derived as

E(W |T) =(
T⊤

(N +DN )/2
− (1−T)⊤

(N −DN )/2
)

(µ01 + µ1T+ f(AT) +Xβ)

=µ1 + 2(
T⊤

N +DN
− (1−T)⊤

N −DN
)(f(AT) +Xβ).

As Dn = Op(1), (N+Dn)/N converges to 1 in probability.
Hence E(W |T) reduces to

E(W |T) = µ1 +
2

N
(2T− 1)

⊤
(f(AT) +Xβ) (9)

as N goes to∞.

We then introduce the following result about the MSE of W .
The proof can be found in Appendix A.4.

Corollary 4.6. Suppose Yi follows the model (3) and f
is a concave function. Using Algorithm 1 satisfying the
conditions in Theorem 4.4,

MSE(W ) =
4

N2
ET

[
{(2T− 1)⊤f(AT)}2

]
+O(

f(N)

N
).

Note that the choice of function f plays a key role here. If
f(AT) grows faster than AT, W may not be a consistent
estimator. In practice, however, the network effect unlikely
goes to infinity as n increases as people only have finite
number of friends.

To improve the efficiency for the estimation, we want to
sequentially minimize {(2T−1)⊤f(AT)}2 in each assign-
ment. It is thus desirable to control {(2T− 1)⊤f(AT)}2
by using

Imb∗n,net =
1

n2
∥An (1n − 2Tn) ·Tn∥2 (10)

in (4), where the · represents the element-wise vector mul-
tiplication. This measure essentially demonstrates the im-
balance of the neighbors of the users who are assigned
to the treatment group. Therefore, if Imbn,net is further
replaced with Imb∗n,net, Algorithm 1 may further bene-
fit the estimation when the difference-in-means estimator
is used. Notice that ∥An (1n − 2Tn) · Tn∥2 is always
bounded by∥An (1n − 2Tn)∥2, so it is easy to show that
|Imb

∗(1)
n,net − Imb

∗(2)
n,net| ≤ 4. Consequently, Algorithm 1

using the Imbn with Imbn,net replaced by Imb∗n,net will
still satisfy the condition C1 and C2. We thus have the
following corollary.

Corollary 4.7. Suppose Imb∗n,net is used in (4) for Algo-
rithm 1, the results in Theorem 4.2 and Theorem 4.4 still
hold.
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5. Numerical Studies
In this section, we perform numerical studies to demonstrate
the finite sample properties of our proposed adaptive ran-
domization procedure via a hypothetical network as well as
a real-world network presented in Cai et al. (2015).

In practice, for imbalance measure Imbn,cov and Imbn,net
defined in (1) and (2), we usually observe

Imb(1)n,cov − Imb(2)n,cov = Op(1)

and
Imb

(1)
n,net − Imb

(2)
n,net = Op(n

−2).

However, the assignment probability g(x) is defined as:

g(x) = g(Imb(1)n,w − Imb(2)n,w)

= g[w(Imb(1)n,cov − Imb(2)n,cov)

+ (1− w)(Imb
(1)
n,net − Imb

(2)
n,net)],

so the two differences should be in the same level. Hence,
for finite sample size N , we divide the original covariance
imbalance measure by N2 and get

Imbn,cov =
1

N2
(wo [Dn]

2
+

L∑
l=1

wm,l [Dn (l; k
∗
l )]

2

+ ws [Dn (k
∗)]

2
). (11)

Note that 1
N2 is a fixed constant, so Theorem 4.2 and Theo-

rem 4.4 still hold here.

For the assignment function g(x), we set

g(x) =



1− 10|x|−2.1 when x ≤ −10
0.9 when − 10 < x < 0

0.5 when x = 0

0.1 when 0 < x < 10

10|x|−2.1 when 10 ≤ x.

(12)

Hence, (7) is satisfied with M = 10 and g(x) + g(−x) = 1
holds.

5.1. Hypothetical Networks

We first evaluate the performance of different randomiza-
tion schemes with hypothetical networks. The Erdös-Rényi
random graph (CRG) with fixed between probability pd
and the clustering graph (CUG) are used to demonstrate
the performance under different types of the network struc-
tures. The details for generating the networks are presented
in the Appendix. We assume the outcome Yi follows (3).
Three different randomization schemes are evaluated and
compared as follows: (1) CR, which is a baseline with Ti

is i.i.d. Bernoulli(1/2) and Ti ⊥ {X, A}; (2) Algorithm 1

with the network imbalance measure Imbn,net (AL), which
is equivalent to CAR in Hu and Hu (2012) when w = 1 and
to NAR in Zhou et al. (2020) when w = 0; (3) Algorithm 1
with network imbalance measure Imb∗n,net (AL∗), where
we define NAR∗ when AL∗ has w = 0.

Note that since both network and covariates may affect user
response, the performance of our algorithm depends on a
balance between them. Specifically, w = 1 (CAR) suffices
when the network has no impact, while w = 0 (NAR) is
suitable when covariates have no effect. When both network
and covariates affect user behavior, w ∈ (0, 1) may yield
superior results.

The performance of the randomization schemes are com-
pared in the following two aspects. To compare the balance
properties of different randomization schemes, the standard
deviation of the three different levels covariate imbalances,
Dn, Dn(k; kl) and Dn(k), the mean absolute values of the
two network imbalance measures Imbn,net and Imb∗n,net
are evaluated. In addition, the advantages of different ran-
domization schemes for estimating the ATE are demon-
strated by presenting the bias, standard deviation (sd) and
the MSE of the difference-in-means estimator W . The al-
location probability g(x) is defined as (12). All simulation
studies are performed with 1000 runs.

We consider linear cases first,

Yi = µ0 + µ1Ti + γAi∗T+Xiβ + εi

where µ0 = 1, µ1 = 0, γ = 1, βi = 1 for ∀i, σε = 1
pdensity = 0.05.

Case 1: 22 strata. Consider an experiment with
sample size N = 200, and 2 covariates each with
2 levels resulting in a total of 4 strata. Suppose the
joint of the two covariates are i.i.d. Multinomial
(p(1, 1), p(1, 2), p(2, 1), p(2, 2))=(0.1, 0.2, 0.3, 0.4).
The weights used for Imbn,cov in CAR, and AL* are
(wo, wm,1, wm,2, ws) = (0.3, 0.1, 0.1, 0.5) and different w
are used for AL and AL∗.

Table 1 describes the advantages of the proposed procedure
for balancing different types of imbalance measures. For
simplicity of presentation, we only list the standard devia-
tions of the overall imbalance Dn, the marginal imbalance
Dn(2; 2) and the within-stratum imbalance Dn(2, 2). Also
for AL and AL∗, we only list the case w = 0.7.

First, CAR has the best performance in balancing the
covariates, i.e., the smallest standard deviations for Dn,
Dn(2; 2) and Dn(2, 2), but has larger mean absolute values
of Imb∗n,net. As NAR* considers Imb∗n,net, it generate the
best balance for Imb∗n,net. However, it generates inadequate
performance for balancing the covariates. As Algorithm 1
enjoys the advantages of the aforementioned two procedures,
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Table 1. Comparison of the Bias, Standard Deviation (sd), MSE
of W , Mean Absolute Value of Imb

(∗)
n,net, and Dn, Dn(2; 2), and

Dn(2, 2) under 2× 2 strata.

22 CR NAR NAR* AL AL* CAR
bias 0.005 -0.030 1.283 -0.021 -0.002 -0.008
sd 0.489 0.392 0.487 0.316 0.291 0.409

mse 0.240 0.155 1.883 0.100 0.085 0.167
CRG Imb∗n,net 0.050 0.026 0.008 0.031 0.012 0.048

Dn 11.276 4.040 44.900 0.926 0.920 0.558
D(2; 2) 9.401 5.926 31.336 1.110 1.036 0.818
Dn(2, 2) 7.098 5.748 18.270 0.884 0.849 0.640

bias 0.044 -0.069 1.294 -0.051 0.056 0.050
sd 0.484 0.404 0.501 0.318 0.284 0.408

mse 0.236 0.168 1.925 0.104 0.084 0.169
CUG Imb∗n,net 0.053 0.027 0.009 0.028 0.010 0.050

Dn 11.682 3.946 43.714 1.634 2.046 0.550
D(2; 2) 9.834 5.902 30.589 1.897 1.687 0.768
Dn(2, 2) 7.351 5.636 17.781 1.627 1.351 0.628

our proposed procedure have a relative good performance on
both the covariate imbalance and the network imbalance, es-
pecially AL∗, which directly takes Imbn,net∗ into account.
As such, AL∗ can best facilitate the estimation of the ATE,
as W following AL∗ has the best performance in terms of
the standard deviation, and the MSE. Similar conclusion
can be drawn for the experiments conducted with CUG.
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Figure 1. The reduction of MSE following AL and AL∗ compared
with CR under hypothetical networks under the Case 1: 22 strata.

We also explore the MSE under different choices of w
when both network and covariates effect exist. Figure 1
demonstrates a tremendous MSE reduction of W under all
w ∈ [0, 1], where the y-axis is one minus the ratio of our
tested algorithms and the baseline CR in terms of MSE.

In the 2 × 2 case under CUG, the optimal weight is w =
0.7 for both AL∗ and AL. They clearly outperform CAR
(w = 1) and NAR (w = 0) and AL∗ is better than AL
here. Similar conclusions can be drawn for the experiments
conducted with CRG.

Table 2. Comparison of the Bias, Standard Deviation (sd), MSE
of W , Mean Absolute Value of Imb

(∗)
n,net, and Dn, Dn(2; 2), and

the imbalance of the stratum of 2 users under 210 strata.

210 CR NAR NAR* AL AL* CAR
bias -0.004 -0.016 1.224 -0.037 0.005 -0.009
sd 0.746 0.728 0.785 0.418 0.383 0.454

mse 0.557 0.530 2.113 0.176 0.147 0.206
CRG Imb∗n,net 0.223 0.162 0.089 0.170 0.104 0.217

Dn 11.538 4.332 44.146 1.110 1.174 0.562
D(2; 2) 8.112 5.980 22.148 2.791 2.468 1.694

within-strt 2pts 1.004 0.995 1.045 0.737 0.670 0.356
bias 0.017 -0.032 1.332 -0.032 -0.011 0.052
sd 0.783 0.754 0.803 0.441 0.408 0.465

mse 0.614 0.569 2.419 0.195 0.167 0.219
CUG Imb∗n,net 0.229 0.164 0.092 0.171 0.105 0.224

Dn 11.014 4.078 44.052 1.138 1.152 0.538
D(2; 2) 7.921 6.040 22.124 2.863 2.550 1.698

within-strt 2pts 1.010 0.998 1.046 0.737 0.685 0.348

Case 2: 210 strata. Consider an additional experiment
with N = 200 and 10 covariates each with 2 levels resulting
a total of 1024 strata. Consequently, the number of strata
is large compared to the sample size. Suppose the 10 co-
variates are i.i.d. Bernoulli(1/2). The weights wo = 0,
ws = 0.5 and wm,l = 0.05 for l = 1, ..., 10 with Imbn,cov
are used for CAR, AL and AL∗

From Table 2 and Figure 2, the performance of the six ran-
domization schemes are similar to the previous scenario.
Note that a larger w is needed for both AL and AL∗ to
achieve their optimal MSEs as the larger number of co-
variates may increase the need for balancing the covariates.
For example, the optimal w for AL and AL∗ are w = 0.9.
AL∗ reduces 10.2% of the MSE more than AL. Thus, these
results also indicate the advanced performance of our pro-
posed procedure.
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Figure 2. The reduction of the MSE following AL and AL∗ com-
pared with CR under hypothetical networks under the Case 2: 210

strata.
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Table 3. Comparison of the Bias, Standard Deviation (sd), MSE
of W , Mean Absolute Value of Imb

(∗)
n,net, Dn, and D(; ) where

D(; ) = E |Dn(l; kl)| ∀l, and the imbalance of the stratum of 2
users under the Case 1: f(·) = Ai∗Ti.

CR NAR NAR* AL AL* CAR
bias 0.029 -0.038 2.431 -0.035 -0.005 -0.077
sd 0.214 0.154 1.428 0.124 0.130 0.124

mse 0.047 0.025 7.950 0.016 0.017 0.021
YY Imb∗n,net 0.029 0.013 0.004 0.015 0.006 0.022

Dn 11.948 5.478 65.136 0.766 0.768 0.536
D(; ) 7.534 5.318 27.994 1.435 1.366 1.136

within-strt 2pts 49.1% 50.8% 44.4% 54.6% 54.6% 56.0%
bias 0.011 -0.034 1.977 -0.040 -0.019 -0.053
sd 0.196 0.160 1.011 0.126 0.127 0.141

mse 0.039 0.027 4.929 0.018 0.017 0.023
DK Imb∗n,net 0.010 0.009 0.003 0.010 0.004 0.016

Dn 12.864 6.268 84.268 1.022 0.960 0.586
D(; ) 8.175 6.169 36.172 1.606 1.440 1.063

within-strt 2pts 50.0% 50.9% 46.9% 55.6% 53.4% 58.4%

5.2. Real Data

In this section, we redesign the experiment in Cai et al.
(2015) to evaluate the performance of Algorithm 1. They
studied the influence of the social network on insurance
adoption by rice farmers in rural China. The original de-
sign simply randomized a subset of the farmers on multiple
stages without considering the covariates and network in-
teraction. Here we simplify it into complete randomization,
treat it as a baseline, and compare it with the other five
algorithms via numerical studies.

We select six discrete covariates related with the farmers:
(i) dukou (DK), a village of clustering communities, and
we select two addresses in it with a total population n =
276; (ii) yazhou and yongfeng (YY), two different villages
with a total population n = 226, but users who live there
have similarities within and between the village-friendship
density around 0.05.

To generate the outcome, we reparametrize the µ and β
based on the following generalized linear morel:

h(EYi) = logit(EYi) = µ0 + µ1Ti + f(Ai∗,Ti).

We first consider the following two cases. Case 1:
f(Ai∗,Ti) = γAi∗Ti, which assumes the users are lin-
early associated with the number of their friends assigned
in the treatment group. Case 2: f(Ai∗,Ti) = γ

√
Ai∗Ti,

an extended version of the linear-in-means model.

Table 3 shows the superiority of our proposed procedure for
balancing different types of imbalance measures regardless
network structures under the logit link function.

According to Figure 3 and Figure 4, the main conclusions
drawn from this experiment are similar to that in the pre-
vious section. AL and AL∗ are both better than CAR and
NAR. In Case 1, the algorithm AL∗ is still as good as or
better than algorithm AL. However, in Case 2, AL slightly
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Figure 3. MSE comparison of Algorithms AL and AL∗ with CR
in real data under the Case 1: f(·) = Ai∗Ti.

outperforms AL∗. This is because the Imb∗n,net in (10) is
derived from the MSE given under Case 1, which indicates
that AL is better than AL∗ in robustness.
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Figure 4. MSE comparison of Algorithms AL and AL∗ with CR
in real data under the Case 2: f(·) =

√
Ai∗Ti.

We further investigate the following two cases, where the
transitivity of the network effect is taken into consider-
ation. Here f(Ai∗,Ti) = γAi∗Ti + δBi∗Ti, where
Bij =

∑
k ̸=i,j AikAjk. In Case 3 we take δ = 0.5, while

in Case 4 we take δ = 0.25. Essentially, Bij describes the
number of common friends between i and j, so i may be
influenced by j via their common friends, even if they may
not know each other directly.

Figure 5 and Figure 6 shows that our proposed algorithms
perform well even when the transitivity of network effect
exists. The MSE reductions are even higher than that in
Case 1.
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Figure 5. MSE comparison of Algorithms AL and AL∗ with CR
in real data under the Case 3: f(·) = Ai∗Ti + 0.5Bi∗Ti.
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Figure 6. MSE comparison of Algorithms AL and AL∗ with CR
in real data under the Case 4: f(·) = Ai∗Ti + 0.25Bi∗Ti.

6. Conclusion and Future Work
In this paper, we propose a new adaptive randomization
to improve the comparability of the treatment groups with
respect to the covariates and the network interactions. We
theoretically demonstrate the properties of our proposed pro-
cedure indicating the advanced properties of our proposed
procedure, i.e., maintaining the balance for the covariates
and the network simultaneously at a desirable rate. Via a
simple derivation, we demonstrate how the improvement of
the balance may translate into an escalation of the efficiency
for estimating the ATE.

Our work can be extended in several directions. First, our
work can be generalized to continuous covariates by modi-
fying the imbalance measure. We may use Mahalanobis dis-
tance as the part of imbalance measure. Second, regression-
adjusted estimators are commonly used to estimate ATE. It
is important to understand how the balance may affect the
performance of the regression-adjusted estimators. Third,

we can treat the adjacency matrix A with data 0 and 1 as
a noisy realization of a probability matrix M such that
M = E(A). A good estimate of M is a version of A with
noise largely reduced. Fourth, the network structure may be
correlated with the covariates. The connecting probability
of two users may depend on their similarities of covariates.
Finally, our proposed designs can be extended to multi-arms
cases with the same logic as two-arms. We left these prob-
lems as our future research topics.
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A. Proofs
Here we study the asymptotic properties of our newly proposed design. Note that the covariates Z1, Z2, . . . , Zn are
independently and identically distributed. Because Zn = (k1, . . . , kI) can take m =

∏I
i=1 mi different values, it follows a

m-dimension multinomial distribution with parameter p = (p (k1, . . . , kI))m×1 , where each element is the probability that
a unit falls within the corresponding stratum. Obviously, p (k1, . . . , kI) ≥ 0 and

∑
k1,...,kI

p (k1, . . . , kI) = 1.

We denote Dn(k1, ..., kI) as the true difference between the two treatment groups within stratum (k1, ..., kI), and denote
Λn (k1, . . . , kI) as the true weighted average of the imbalances within stratum (k1, ..., kI) by the same way as in the CAR.
That is

Λn (k1, . . . , kI) = woDn +

I∑
i=1

wm,iDn (i; ki) + wsDn (k1, . . . , kI) . (13)

Our main goal is to investigate its performance under our newly proposed design. We also let the true network imbalance
measure be:

Imbn,net =
∥An (1n − 2Tn)∥2

n2
. (14)

Comparing to the Λn under CAR procedure which only considers covariates, our newly proposed design procedure also
includes network influence, balances it through Imbn,net, and makes the Λn (k1, . . . , kI) under our new design procedure
achieves Op(1) as well.

A.1. Proof of Theorem 4.2

Define k = (k1, . . . , kI). When ws = 1 and wo = wm = 0, the assignment rule is simplified as

g(x) = g
(
Imb(1)n,w − Imb(2)n,w

)
= g

(
w(Imb(1)n,cov − Imb(2)n,cov) + (1− w)(Imb

(1)
n,net − Imb

(2)
n,net)

)
= g

(
4w · Λn−1 (k

∗
1 , . . . , k

∗
I ) + (1− w)(Imb

(1)
n,net − Imb

(2)
n,net)

)
= g

(
4w ·Dn−1 (k) + (1− w)(Imb

(1)
n,net − Imb

(2)
n,net)

)
=

 1− q, if x > 0
1
2 , if x = 0
q, if x < 0

Motivated by queueing networks, Pemantle and Rosenthal proves Lemma 4.1 for a sequence of random variables {Xn}. It
finds a condition such that EXn is bounded above by a constant independent of n and the particular sequence {Xn}, and the
condition doesn’t assume any special properties of the increments Xn −Xn−1. We state the Lemma here for convenience:

Lemma A.1. (Lemma 4.1) Let Xn be random variables and suppose that there exist constants a > 0 J, V < ∞, and
p > 2, such that X0 ≤ J, and for all n

E (Xn −Xn−1 | Fn−1) ≤ −a on the event {Xn−1 > J} (C1)

and
E (|Xn −Xn−1|p | Fn−1) ≤ V (C2)

Then for any r ∈ (0, p− 1) there is a c = c(p, a, V, J, r) > 0 such that E (X+
n )

r
< c for all n.

We will use the Lemma 4.1 to prove our Theorem 4.2 via two steps. We let Xn = |Dn(k)| be random variables based on
any specific stratum k and if |Dn(k)| were satisfied C1 and C2 then we can prove E (|Dn(k)|r) = O(1).
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A.1.1. SHOW C1 IS SATISFIED

In order to prove C1 is satisfied, we need the following Lemma first:

Lemma A.2. Given An and Fn, we have Gn = Imb
(1)
n,net − Imb

(2)
n,net ≤ 4.

Proof. Define vector T
′

n = 2T− 1, T
′

i is the i-th element in T
′

n. Therefore,

T
′

i =

{
1, if Ti = 1
−1, if Ti = 0

We also define T
′(1)
n = (T⊤

n−1, 1), and T
′(2)
n = (T⊤

n−1,−1).

Suppose Cn is a n× 1 vector and its i-th element is

Cn(i) = Ai∗ ·T
′

n = Ai,1:n−1 ·T
′

n−1 +Ai,n · Tn where i = 1, ...n

And Cn−1 is a (n− 1)× 1 vector with i-th element equal

Cn−1(i) = Ai∗ ·T
′

n−1 = Ai,1:n−1 ·T
′

n−1 where i = 1, ...n− 1

Define

C
(1)
n(i) = Cn−1(i) + T

′(1)
n = Cn−1(i) + 1 for i = 1, ..., n− 1

C
(2)
n(i) = Cn−1(i) + T

′(2)
n = Cn−1(i) − 1 for i = 1, ..., n− 1

Therefore,

C
2 (1)
n(i) − C

2 (2)
n(i) = (C

(1)
n−1(i) + 1)2 − (C

(1)
n−1(i) − 1)2 = 4Cn−1(i)

where −n ≤ C
(1)
n−1(i) ≤ n. The equality holds when i-th unit are connected with all (n-1) units and all the (n-1) units are

assigned to treatment, where the n holds, or all the (n-1) units are assigned to control, where the -n holds.
Also define

C
(1)
n(n) = An,1:n−1T

′

n−1 + 1

C
(2)
n(n) = An,1:n−1T

′

n−1 − 1

Therefore,

C
2 (1)
n(n) − C

2 (2)
n(n) = (An,1:n−1T

′

n−1 + 1)2 − (An,1:n−1T
′

n−1 − 1)2 = 4An,1:n−1T
′

n−1

where |An,1:n−1T
′

n−1| ≤ n. The equality holds when n-th unit are connected with all previous (n-1) units and all the n
units are assigned to treatment or all the n units are assigned to control. Therefore,

|C2 (1)
n(i) − C

2 (2)
n(i) | ≤ 4n for i = 1, ..., n
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Therefore we can get

|Gn| =
∣∣∣Imb

(1)
n,net − Imb

(2)
n,net

∣∣∣
=

∣∣∣∣∣∣∣
∥∥∥An

(
1n − 2T

(1)
n

)∥∥∥2 − ∥∥∥An

(
1n − 2T

(2)
n

)∥∥∥2
n2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∥∥∥AnT

′(1)
n

∥∥∥2 − ∥∥∥AnT
′(2)
n

∥∥∥2
n2

∣∣∣∣∣∣∣
≤

∣∣∣∣∣ 1n2

(
n∑

i=1

Ai∗T
′(1)
n −

n∑
i=1

Ai∗T
′(2)
n

)∣∣∣∣∣
=

∣∣∣∣∣ 1n2

n∑
i=1

(
C

2 (1)
n(i) − C

2 (2)
n(i)

)∣∣∣∣∣
≤ 1

n2

n∑
i=1

∣∣∣(C2 (1)
n(i) − C

2 (2)
n(i)

)∣∣∣
=

1

n2

n∑
i=1

4n = 4

Since
∣∣∣Imb

(1)
n,net − Imb

(2)
n,net

∣∣∣ ≤ 4, therefore when Dn−1(k) >
1−w
w , the nth unit will be assigned to treatment group with

probability 1− q < 0.5 regardless of network imbalance measure.

Therefore given the nth unit has covariate profile Zn we have:

Dn(k)−Dn−1(k) =

{
1, with probability 1− q
−1, with probability q

Dn(k)−Dn−1(k) = 0 for the other stratum where Zn ̸= k

Since 1−w
w > 0 and for any stratum there will be at most 1 change in each step, thus we have Dn−1(k) ≥ 1 and Dn(k) ≥ 0.

Therefore,

|Dn(k)| − |Dn−1(k)| = Dn(k)−Dn−1(k) =

{
1, with probability 1− q
−1, with probability q

|Dn(k)−Dn−1(k)| = Dn(k)−Dn−1(k) = 0 for the other stratum where Zn ̸= k

When Dn−1(k) < − 1−w
w , the nth unit will be assigned to treatment group with probability q > 0.5 regardless of network

imbalance measure.

Since − 1−w
w < 0 and for any stratum there will be at most 1 change in each step, thus we have Dn−1(k) ≤ −1 and

Dn(k) ≤ 0. Therefore, given the nth unit has covariate profile Zn we have:

Dn(k)−Dn−1(k) =

{
1, with probability 1− q
−1, with probability q

Dn(k)−Dn−1(k) = 0 for the other stratum where Zn ̸= k

Therefore we have

|Dn(k)| − |Dn−1(k)| = (−Dn(k))− (−Dn−1(k)) =

{
1, with probability 1− q
−1, with probability q

|Dn(k)−Dn−1(k)| = Dn(k)−Dn−1(k) = 0 for the other stratum where Zn ̸= k

13
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Therefore, When |Dn−1(k)| > 1−w
w , given the nth unit has covariate profile Zn = (k) we have:

|Dn(k)| − |Dn−1(k)| =
{

1, with probability 1− q
−1, with probability q

Dn(k)−Dn−1(k) = 0 for the other stratum where Zn ̸= k

Therefore,

E (|Dn(k)| − |Dn−1(k)|Fn−1|) = EZn
[E (|Dn(k)| − |Dn−1(k)|| Fn−1, Zn = k)]

= P(Zn = (k)) · E (|Dn(k)| − |Dn−1(k)|| Fn−1, Zn = k)

+ P(Zn ̸= (k)) · E (|Dn(k)| − |Dn−1(k)|| Fn−1, Zn = k)

= p(k)(1− 2q) + (1− p(k))× 0

= p(k)(1− 2q)

where −1 < p(k)(1− 2q) < 0 because 0 < p(k) < 1 and −1 < 1− 2q < 0.

Therefore we show that there exist constants a = −p(k)(1 − 2q) which is bigger than 0, J = w
1−w < ∞, such that

|D0(k)| = 0 ≤ J, and for all n

E (|Dn(k)| − |Dn−1(k)| | Fn) ≤ −a on the event {Dn−1(k) > J}

Thus, C1 is satisfied.

A.1.2. SHOW C2 IS SATISFIED

Since given Zn ∣∣|Dn(k)| − |Dn−1(k)|
∣∣ = { 1, if nth unit has covariate profile Zn = k

0, otherwise

Thus, ∣∣|Dn(k)| − |Dn−1(k)|
∣∣p ≤ 1 and E

(∣∣|Dn(k)| − |Dn−1(k)|
∣∣p|Fn−1

)
≤ 1

and
E
(∣∣|Dn(k)| − |Dn−1(k)|

∣∣p | Fn−1

)
≤ V.

Therefore we find that there exist V = 1 <∞, and p > 2, such that C2 is satisfied.

Hence, for all n for any r ∈ (0, p− 1) there is a constant c = c(p, a, V, J, r) > 0 such that E (|Dn(k)|r) < c for all n, and
we thus conclude that E (|Dn(k)|r) = O(1).

A.2. Proof of Lemma 4.3

Motivated by the proof of Theorem 4.2, we propose the Lemma 4.3. It is an extension allowing the negative part of the
increments to avoid the moment condition in Lemma 4.1 and will be utilized during the proof of Theorem 4.4. We state the
Lemma here again for convenience:
Lemma A.3. (Lemma 4.3) The conclusion of Lemma 4.1 will still hold when Xn −Xn−1 is replaced by (Xn −Xn−1)

′ =
max(Xn −Xn−1, C) in conditions (C1) and (C2) where C can be any negative constant such that C ≤ −1.

Our proof follows the logic of the proof of Corollary 3 in Pemantle and Rosenthal (1999). They started with the following
theorem and then proved a Corollary 3 from an intermediate Corollary 6.
Theorem A.4. (Pemantle and Rosenthal, 1999) Let {Mn : n = 0, 1, 2, . . .} be a sequence adapted to a filtration {Fn} and
let ∆n denote Mn+1 −Mn. Suppose that the sequence started at M1 is a martingale (i.e., E (∆n | Fn) = 0 for n ≥ 1 ),
and that M0 ≤ 0. Suppose further that for some p > 2 and b > 0 we have

E (|∆n|p | Fn) ≤ b,

for all n including n = 0. Let τ = inf {n > 0 : Mn ≤ n} . Then for any r ∈ (0, p) there is a constant C = C(b, p, r) such
that

E
((
M+

t

)r
1τ>t

)
≤ Ctr−p.

14
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Following their proof logic, we also start from Theorem A.4 but we modify the conditions of their Corollary 6, i.e., we
further truncated random variables to a negative point from its original zero, and then propose Lemma A.5. After that, we
prove Lemma 4.3, which is the bases of the proof of Theorem 4.4.

A.2.1. PROOF OF LEMMA A.5

Following the logic of the proof of the Corollary 6 in (Pemantle and Rosenthal, 1999), to prove Lemma 4.3 we need the
following Lemma A.5 first:

Lemma A.5. Let {Yn} be adapted to {Fn} with Y0 ≤ 0. Suppose

E
(∣∣∆′

n1∆′
n>m +m1∆′

n≤m

∣∣p |Fn

)
≤ B

for all n and any nonpositive constant m, and

E
(
∆′

n1∆′
n>m +m1∆′

n≤m|Fn

)
≤ 0

for all 1 ≤ n < σ, where ∆′
n = Yn+1 − Yn and σ = inf{n > 0 : Yn ≤ n} . Then for 0 < r < p, p > 2 there is a constant

K = K(B, p, r) such that
E
((
Y +
t

)r
1σ>t

)
≤ Ktr−p.

Proof. We denote Bn+1−Bn = ∆′
n1∆′

n>m+m1∆′
n≤m, for any nonpositive m and B0 = Y0, then Bn is a supermartingale

for all 1 ≤ n ≤ σ because E(Bn+1 − Bn) ≤ 0 when 1 ≤ n ≤ σ. Also, we have E(|Bn+1 − Bn|p|Fn) ≤ B. Recall that
the supermartingale may be decomposed as Bn∧σ = Mn −An where {Mn : n ≥ 1} is a martingale and {An : n ≥ 1} is
an increasing predictable process with A1 = 0. Note that for n ≥ σ, the increments ∆n := Mn+1 −Mn = 0. For n < σ,
we have

E (|∆n|p |Fn) = E (|Mn+1 −Mn|p |Fn) = E (|Mn+1 − E(Mn+1|Fn)|p |Fn)

= E (|Mn+1 −An+1 −Bn − E(Mn+1 −An+1 −Bn|Fn)|p |Fn) as An+1 ∈ Fn

= E (|Bn+1 −Bn − E(Bn+1 −Bn|Fn)|p |Fn)

Since
|a− b|p ≤ (|a|+ |b|)p ≤ (2max(|a|, |b|))p ≤ 2pmax(|a|, |b|)p ≤ 2p(|a|p + |b|p)

we thus have

E (|∆n|p |Fn)) ≤ 2pE (|Bn+1 −Bn|p + |E(Bn+1 −Bn)|p |Fn) ≤ 2p (2B)

as |EX|p ≤ E(|X|p) for p > 1.

Since the conditions of the Theorem A.4 are satisfied, applying Theorem A.4 to {Mn} with b = 2p+1B and M0 := Y0

yields

E
((
M+

t

)r
1τ>t

)
≤ Ktr−p

Besides, since Bn+1 −Bn = (Yn+1 − Yn)1∆′
n>m +m1∆′

n≤m and B0 = Y0, we have Bn+1 −Bn ≥ Yn+1 − Yn and thus
Bn ≥ Yn for all n. Therefore, we have

B+
t 1σ>t ≥ Y +

t 1σ>t

When σ > t it follows that Mn ≥ n+An for 1 ≤ n ≤ t and hence that τ = inf {n > 0 : Mn ≤ n} > t. Also, when σ > t,
we know that Mt = Bt +At ≥ Bt ≥ Yt > n and therefore that

Y +
t 1σ>t ≤M+

t 1τ>t

Therefore, we have

E
(
(Y +

t )r1σ>t

)
= E

(
Y +
t 1σ>t

)r ≤ E
(
M+

t 1τ>t

)r
= E

(
(M+

t )r1τ>t

)
≤ Ktr−p
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A.2.2. PROOF OF LEMMA 4.3

The proof of Lemma 4.3 follows the logic of the Corollary 3 in (Pemantle and Rosenthal, 1999) but changes its conditions.

Proof. First assume that J = 0. Given {Xn} as in the hypotheses of the Lemma 4.1, fix an N ≥ 1; we will compute an
upper bound for E

(
X+

N

)r
that does not depend on N . Let U := max {k ≤ N : Xk ≤ 0} denote the last time up to N that

X takes a nonpositive value. Decompose according to the value of U :

E
(
X+

N

)r
=

N−1∑
k=0

E
((
X+

N

)r
1U=k

)
because E

((
X+

N

)r
1U=N

)
= E(0) = 0.

To evaluate the summand, define for any k < N a process
{
Y

(k)
n

}
by Y

(k)
n = (Xk+n+ n)1Xk≤0. In other words, if

Xk > 0 the process
{
Y

(k)
N

}
is constant at zero, and otherwise it is the process {Xn} shifted by k and compensated by

adding 1 each time step. We apply lemma A.5 to the process
{
Y

(k)
n

}
. First, we need to show that

E
(
∆(k)′

n 1
∆

(k)′
n >m

+m1
∆

(k)′
n ≤m

|Fn

)
≤ 0 (15)

for 1 ≤ n ≤ σ(k). It suffices to show (15) holds on all Y (k)
n > n with some m ≤ 0. Note that Y (k)

n > n implies Xk+n > 0
and Xk ≤ 0, so it suffices to show

E
(
(Xk+n+1 −Xk+n + 1)1Xk+n+1−Xk+n+1>m +m1Xk+n+1−Xk+n+1≤m|Fn

)
≤ 0 (16)

holds whenever Xn+k > 0 with some m ≤ 0.

On the other hand, by hypothesis (C1) of Lemma 4.1, on Xn+k > 0,

E
(
(Xn+k+1 −Xn+k)1Xn+k+1−Xn+k>C + C1Xn+k+1−Xn+k≤C |Fn

)
≤ −1,

which leads to

E
(
(Xn+k+1 −Xn+k + 1)1Xn+k+1−Xn+k>C + (C + 1)1Xn+k+1−Xn+k≤C |Fn

)
≤ 0

E
(
(Xn+k+1 −Xn+k + 1)1Xn+k+1−Xn+k+1>C+1 + (C + 1)1Xn+k+1−Xn+k+1≤C+1|Fn

)
≤ 0.

Hence, (16) holds with m = C + 1 ≤ 0.

Then, we need to show
E
(∣∣∆′

n1∆′
n>C+1 + (C + 1)1∆′

n≤C+1

∣∣p |Fn

)
≤ B. (17)

Similarly with (C2) in the Lemma 4.1 ,

E
(∣∣(Xn+k+1 −Xn+k)1Xn+k+1−Xn+k>C

∣∣p |Fn

)
≤ V <∞

When Xk > 0, E
(∣∣∆′

n1∆′
n>C+1 + (C + 1)1∆′

n≤C+1

∣∣p |Fn

)
= 0 ≤ B. When Xk ≤ 0 we have

E
(∣∣∆′

n1∆′
n>C+1 + (C + 1)1∆′

n≤C+1

∣∣p |Fn

)
=E

(∣∣(Xn+k+1 −Xn+k)1Xn+k+1−Xn+k>C + 1 + C1Xn+k+1−Xn+k≤C

∣∣p |Fn

)
≤2pE

(∣∣(Xn+k+1 −Xn+k)1Xn+k+1−Xn+k>C

∣∣p + ∣∣1 + C1Xn+k+1−Xn+k≤C

∣∣p |Fn

)
≤2p(V + 1 + |C|p)

Hence, (17) holds with B = 2p(V + 1 + |C|p). Therefore, based on A.4 we let t = K − k and then have

E
([(

Y
(k)
N−k

)+]r
1σ(k)>N−k

)
≤ K(N − k)r−p

16
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with K = K(V, p, r). But for each k, since U = k implies σ(k) > N − k, and we thus get Y (k)
n > n for n = 1, ..., N − k.

Since σ(k) > N − k also implies YN−k > n, so when U ̸= k, Y
(k)
N−k > 0. In conclusion, we have

X+
N1U=k ≤ Y

(k)
N−k1σ(k)>N−k

and it follows that
E
((
X+

N

)r
1U=k

)
≤ K(N − k)r−p

Now sum to get

E
(
X+

N

)r ≤ N−1∑
k=0

K(N − k)r−p ≤ Kζ

because N − k > 0, r − p < −1 and the sum is bounded by ζ. This completes the case J = 0.

For the general case, let X∗
n = Xn − J , so we have E ((X∗

n)
+)

r
<∞

then we have
E(X+

n )r ≤ E
(
(X∗

n)
+ + |J |

)r ≤ 2r(E
(
(X∗

n)
+
)r

+ |J |r) <∞
And therefore we have

E(Xn)
+ ≤ c(p, 1, V, J, r) := J + c(p, 1, V, 0, r)

Since in our theorem Vn > 0, so

E(Vn) = E(Vn)
+ ≤ c(p, 1, V, J, r) := J + c(p, 1, V, 0, r)

A.3. Proof of Theorem 4.4 (General Case)

Here we utilize the Lemma 4.3 to prove Theorem 4.4.

Define
Dn = [Dn (k1, . . . , kI)]1≤k1≤m1,...,1≤kI≤mI

be an array of dimension m1 × . . .×mI which stores the current assignment differences in all strata and therefore stores
the current imbalances. We also define Λn the same way. Besides, let

Vn =
∑
k

wsD
2
n(k) +

I∑
i=1

mi∑
ki=1

wm,iD
2
n (i; ki) + woD

2
n

and we have

Vn − Vn−1 = 4Λn−1(k)

(
Tn −

1

2

)
+ 1

where the covariate profile of the n-th unit is Zn = k.

The whole process will be separated into three part: (i) Show E([(Vn − Vn−1)
′]+)p|Fn−1] is bounded. (ii) Show C1 is

satisfied. (iii) Show E([(Vn − Vn−1)
′]−)p|Fn−1] is bounded and we then combine it with (i) and have C2 satisfied.

A.3.1. SHOW E[([(Vn − Vn−1)
′]+)p|Fn−1] IS BOUNDED

Denote Gn = Imb
(1)
n,net − Imb

(2)
n,net, our decision rule can be expressed as

P(Tn = 1|Zn = k,Fn−1, An) = g(Imb(1)n,cov − Imb(2)n,cov) = g(w4Λn−1(k) + (1− w)Gn)

Note that when |Λn−1(k)| > w
1−w ,

(Vn − Vn−1)
′ =

{
2|Λn−1(k)|+ 1, with probability g(|w4Λn−1(k) + (1− w)Gn|)
(−2|Λn−1(k)|+ 1)′, with probability 1− g(|w4Λn−1(k) + (1− w)Gn|)

17
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Because when Λn−1(k) >
w

1−w , we have w4Λn−1(k) + (1− w)Gn > 0. So for Tn = 1,

(Vn − Vn−1)
′ = 2Λn−1(k) + 1 = 2|Λn−1(k)|+ 1

with P(Tn = 1) = g(w4Λn−1(k) + (1− w)Gn) = g(|w4Λn−1(k) + (1− w)Gn|)

and for Tn = 0,

(Vn − Vn−1)
′ = (−2Λn−1(k) + 1)′ = (−2|Λn−1(k)|+ 1)′

with P(Tn = 0) = 1− g(w4Λn−1(k) + (1− w)Gn) = 1− g(|w4Λn−1(k) + (1− w)Gn|)

When Λn−1(k) < − w
1−w , we have w4Λn−1(k) + (1− w)Gn < 0, so for Tn = 1,

(Vn − Vn−1)
′ = (2Λn−1(k) + 1)′ = (−2|Λn−1(k)|+ 1)′

with P(Tn = 1) = g(w4Λn−1(k) + (1− w)Gn) = g(−|w4Λn−1(k) + (1− w)Gn|)
= 1− g(|w4Λn−1(k) + (1− w)Gn|)

and for Tn = 0,

(Vn − Vn−1)
′ = −2Λn−1(k) + 1 = 2|Λn−1(k)|+ 1

with P(Tn = 0) = 1− g(w4Λn−1(k) + (1− w)Gn) = g(|w4Λn−1(k) + (1− w)Gn|).

Now when |Λn−1(k)| > w
1−w we have

E[([(Vn − Vn−1)
′]+)p|Fn−1, Zn = k]

= (2|Λn−1(k)|+ 1)pg(|w4Λn−1(k) + (1− w)Gn|)
+ ((−2|Λn−1(k)|+ 1)+)p(1− g(|w4Λn−1(k) + (1− w)Gn|))
≤ (2|Λn−1(k)|+ 1)pg(|w4Λn−1(k) + (1− w)Gn|) + 1.

Also, we have

(2|Λn−1(k)|+ 1)pg(|w4Λn−1(k) + (1− w)Gn|)
=(2w)−p(4w|Λn−1(k)|+ 2w + (1− w)Gn − (1− w)Gn)

pg(|w4Λn−1(k) + (1− w)Gn|)
≤(2w)−p2p(|4w|Λn−1(k)|+ (1− w)Gn|p + |2w − (1− w)Gn|p)g(|w4Λn−1(k) + (1− w)Gn|)
≤w−p(M + 4p), as xpg(x) ≤M and |Gn| ≤ 4.

Hence,

E[([(Vn − Vn−1)
′]+)p|Fn−1, Zn = k] ≤ M + 4p

wp
+ 1 = M0.

Note that when |Λn−1(k)| ≤ w
1−w , E([(Vn − Vn−1)

′]+)p|Fn−1, Zn = k] ≤ ( 2w
1−w + 1)p. Therefore, for any Zn = k,

E[([(Vn − Vn−1)
′]+)p|Fn−1, Zn = k] ≤ max(M0, (

2w

1− w
+ 1)p) = M1.

Hence, E[([(Vn − Vn−1)
′]+)p|Fn−1] ≤M1.

A.3.2. SHOW C1 IS SATISFIED

For any covariate profile of the n-th unit, i.e.Zn = k, we have:

E ((Vn − Vn−1)
′|Fn−1) = P(Zn = k)E ((Vn − Vn−1)

′|Zn = k,Fn−1) + P(Zn ̸= k)E ((Vn − Vn−1)
′|Zn ̸= k,Fn−1)

= pkE ((Vn − Vn−1)
′|Zn = k,Fn−1) + (1− pk)E ((Vn − Vn−1)

′|Zn ̸= k,Fn−1)

≤ pkE ((Vn − Vn−1)
′|Zn = k,Fn−1) + (1− pk)M1

18
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as
E ((Vn − Vn−1)

′|Zn ̸= k,Fn−1) ≤ E
(
[(Vn − Vn−1)

′]+|Zn ̸= k,Fn−1

)
≤M1.

To show C1 is satisfied, it suffices to show that whenever Vn−1 > J , there exists a k∗ such that

E ((Vn − Vn−1)
′|Zn = k∗,Fn−1) ≤ −

(
1 + (1− pk∗)M1

pk∗

)
.

Let pmin = mink(P(Sn = k)), it’s sufficient to show that whenever Vn−1 > J , there exists a k∗ such that

E ((Vn − Vn−1)
′|Zn = k∗,Fn−1) ≤ −

(
1 + (1− pmin)M1

pmin

)
, denoted as M2.

Also, for any stratum k with |Λn−1(k)| > w
1−w , we have

E ((Vn − Vn−1)
′|Zn = k,Fn−1)

=(2|Λn−1(k)|+ 1)g(|w4Λn−1(k) + (1− w)Gn|) + (−2|Λn−1(k)|+ 1)′(1− g(|w4Λn−1(k) + (1− w)Gn|))
≤(2|Λn−1(k)|+ 1)pg(|w4Λn−1(k) + (1− w)Gn|) + ((−2|Λn−1(k)|)′ + 1)(1− g(|w4Λn−1(k) + (1− w)Gn|)
≤M0 + (−|Λn−1(k)|)′.

Hence, it order to make E ((Vn − Vn−1)
′|Zn = k∗,Fn−1) ≤M2, it’s sufficient to find a k∗ such that |Λn−1(k

∗)| > w
1−w

and (−|Λn−1(k)|)′ ≤M2 −M0 whenever Vn−1 > J . We simply select C ≤M2 −M0, so we need to find k∗ such that

|Λn−1(k
∗)| > max(M0 −M2,

w

1− w
) = M3.

Suppose Vn−1 > J , we claim that there ∃ k∗ such that |Λn−1(k
∗)| >

√
J

m′a′ , where m′ and a′ are known constants. Hence,
C1 is satisfied when J = (M3)

2m′a′.

We prove the claim as following.

Vn−1 =
∑
k

wsD
2
n−1(k) +

I∑
i=1

mi∑
ki=1

wmi
D2

n−1(i; ki) + woD
2
n−1

≤ mwsD
2
n−1(kmax) +

I∑
i=1

mi∑
ki=1

wmi

mj∏
j ̸=i

D2
n−1(kmax) + woD

2
n−1(kmax)

≤ mwsD
2
n−1(kmax) + (wmi

)maxm
2D2

n−1(kmax) + wom
2D2

n−1(kmax)

≤ m′D2
n−1(kmax),

where D2
n−1(kmax) = maxkD

2
n−1(k) and m′ is a constant. Therefore Vn−1 > J implies |Dn−1(kmax)| >

√
J
m′ . In

addition, since Proposition 3.1 in Hu and Zhang (2020) shows Dn−1(k) is a linear combination of Λn−1(k), so√
J

m′ ≤ |Dn−1(k)| = |a⊤Λn−1| ≤
m∑
i=1

(|ai||Λn−1(k)|),

where a⊤ is a m× 1 vector with known constant a1, a2, ..., am.

Let |Λn−1(k
∗)| = maxk|Λn−1(k)| and a′ = (

∑m
i=1 |ai|)2, we have

√
J

m′ ≤
m∑
i=1

(|ai||Λn−1(k)|) ≤ (

m∑
i=1

|ai|)|Λn−1(k
∗)| ≤

√
a′|Λn−1(k

∗)|.

Therefore, there exists k∗ such that |Λn−1(k
∗)| >

√
J

m′a′ whenever Vn−1 > J .
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A.3.3. SHOW C2 IS SATISFIED

Since [(Vn − Vn−1)
′]− ≤ |C|, we have

E[([(Vn − Vn−1)
′]−)p|Fn−1] ≤ |C|p

By the Minkovsky inequality,

E(|(Vn − Vn−1)
′|p|Fn−1)

=E[([(Vn − Vn−1)
′]+)p|Fn−1] + E[([(Vn − Vn−1)

′]−)p|Fn−1]

≤(M1/p
1 + |C|)p = V.

Therefore, C2 is satisfied.

Since both C1 and C2 are satisfied, by Lemma 4.3 we have: for any r ∈ (0, p− 1) there exist a c = (p, V, J, r) > 0 such
that E(Vn)

r < c for all n.

Refer to (6.5) in Hu and Zhang (2020) we have ∥Λn∥2 ≤ mV (Λn) . It follows that supn E ∥Λn∥2r < ∞. Thus, we
conclude that E ∥Λn∥r = O(1) for all 0 < r < p− 1, which completes the proof.

A.4. Proof of Corollary 4.6

Proof. We have

MSE(W ) = ET

[
{Eϵ(W |T)− µ1}2

]
=

4

N2
ET

[
{(2T− 1)⊤f(AT)}2

]
+

4

N2
ET

[
{(2T− 1)⊤Xβ}2

]
+

8

N2
ET

[
(2T− 1)⊤f(AT)(2T− 1)⊤Xβ

]
. (18)

As (2T− 1)⊤X = Op(1), the second term of (18) satisfies

4

N2
ET

[
{(2T− 1)⊤Xβ}2

]
= o(1). (19)

Similarly, the third terms of (18) satisfies

8

N2
ET

[
(2T− 1)⊤f(AT)(2T− 1)⊤Xβ

]
≤ k

N2
ET

[
(2T− 1)⊤f(AT)

]
≤ k

N2
E(1⊤f(AT))

≤ k

N2
(1⊤f(EAT)) ≤ k

f(N)

N
.

B. Hypothetical Data Generation
We generate the clustering graph (CUG) according to the following model:

P (Aij = 1) = θiθjpb

(
1−

(
|vi − vj |
2bscale

)2
)2

+ pa. (20)

Here vi = 2bscale(
vb−1
i (1−vi)

b−1

B(b,b) − 1
2 ) represents the unobserved covariate of the i-th user and B(b, b) = Γ(b)Γ(b)

Γ(2b) . The prior
b controls the clustering of the generated network. bscale is a pre-defined scalar. Under the Beta distribution B(b, b), the
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generated network is similar to a complete random graph when b > 10. The prior pb represents the average probability that
users are to connect with others. The pa is a corresponding minimum likelihood. That two parameters, especially the pb,
control the density of the generated network. Moreover, the random variable θi, i = 1, ..., n, represents that compared to the
population connect density pb, how easily the i-th user is likely to connect with others. Note that vi and θi can imply certain
unobserved covariates that affect the connection generation—for example, users’ age, education, etc.

C. Code and Data
The R codes and real data used for the numerical studies are available at https://github.com/jialush/
AB-Testing-in-Network-Data-with-Covariate-Adaptive-Randomization.git.
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