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Abstract001

Flowcharts are a critical tool for visualizing002
decision-making processes. However, their003
non-linear structure and complex visual-textual004
relationships make it challenging to interpret005
them using LLMs, as vision-language models006
frequently hallucinate nonexistent connections007
and decision paths when analyzing these dia-008
grams. This leads to compromised reliability009
for automated flowchart processing in critical010
domains such as logistics, health, and engineer-011
ing. We introduce the task of Fine-grained012
Flowchart Attribution, which traces spe-013
cific components grounding a flowchart refer-014
ring LLM response. Flowchart Attribution en-015
sures the verifiability of LLM predictions and016
improves explainability by linking generated017
responses to the flowchart’s structure. We pro-018
pose FlowPathAgent, a neurosymbolic agent019
that performs fine-grained post hoc attribution020
through graph-based reasoning. It first seg-021
ments the flowchart, then converts it into a022
structured symbolic graph, and then employs023
an agentic approach to dynamically interact024
with the graph, to generate attribution paths.025
Additionally, we present FlowExplainBench,026
a novel benchmark for evaluating flowchart at-027
tributions across diverse styles, domains, and028
question types. Experimental results show029
that FlowPathAgent mitigates visual halluci-030
nations in LLM answers over flowchart QA,031
outperforming strong baselines by 10-14% on032
our proposed FlowExplainBench dataset.033

1 Introduction034

Flowcharts are a fundamental tool for represent-035

ing structured decision-making processes. Used036

across domains such as software engineering, busi-037

ness process modeling, and instructional design,038

flowcharts provide a visual roadmap of logical039

operations, guiding both human users and auto-040

mated systems (Charntaweekhun and Wangsiripi-041

tak, 2006; Perols and Perols, 2024; Zimmermann042

et al., 2024; Ensmenger, 2016). Their structured043
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Figure 1: Attribution (represented by •−•−•) with
FlowPathAgent ensures logical consistency in
flowchart-based reasoning. FlowPathAgent uses
a neurosymbolic approach to generate attribution
paths ( ➊ & ➋) in the flowchart. This enhances
interpretability and reliability in flowchart driven
automated decision-making.

yet visual nature makes them an effective medium 044

for conveying procedural logic. However, inter- 045

preting flowcharts accurately is challenging due 046

to their nonlinear structures (branching and loop- 047

based control flow), where meaning emerges from 048

the interplay between textual content, visual ar- 049

rangement, and logical dependencies. Ambiguities 050

in flowchart interpretation arise from diverse no- 051

tational conventions, implicit relationships, and 052

misinferred steps, making precise attribution of 053

information sources difficult (Eppler et al., 2008). 054

Recent advancements in Vision Language Mod- 055
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els (VLMs) have enabled substantial progress in056

flowchart processing (Singh et al., 2024). These057

models leverage both textual and visual informa-058

tion, allowing them to extract structural relation-059

ships, recognize decision nodes, and generate an-060

swers based on flowchart content. However, de-061

spite their capabilities, VLMs struggle with hallu-062

cination: the tendency to generate information that063

is not grounded in the input (Huang et al., 2024;064

Guan et al., 2024). In the context of flowcharts,065

hallucination can manifest as misidentifying deci-066

sion nodes, producing incorrect logical pathways,067

or fabricating connections that do not exist in the068

original structure. This issue severely impacts the069

reliability of automated flowchart reasoning, par-070

ticularly in high-stakes applications such as health-071

care, software verification and process automation.072

Although VLMs have made significant progress073

in understanding flowcharts, prior work has mainly074

concentrated on flowchart parsing (Arbaz et al.,075

2024), conversion (Shukla et al., 2023; Liu et al.,076

2022), and question-answering (Singh et al., 2024;077

Tannert et al., 2023), while overlooking the critical078

aspect of fine-grained attribution. While existing079

attribution methods (Huo et al., 2023; Chen et al.,080

2023) focus on textual grounding, attributing re-081

sponses to visual-textual elements like flowcharts082

presents unique challenges. It involves not just083

text recognition, but also interpreting the intercon-084

nected decision nodes, hierarchical structures, and085

conditional pathways that define flowchart seman-086

tics. Attribution serves as a crucial mechanism087

for mitigating hallucination by explicitly tracing088

the paths in the flowchart that ground a particu-089

lar response, enabling rigorous evaluation of the090

model’s fidelity to the flowchart’s logic, as illus-091

trated in Fig 1. Such fine-grained attribution is092

fundamental for ensuring reliability, particularly093

when these systems are deployed in domains where094

verifiable decision-making is crucial.095

Main Results. We introduce Flowchart Attribution096

task aimed at identifying the optimal path within a097

flowchart that grounds the model’s response. The098

optimal path aims to extract the most relevant se-099

quence of nodes and edges that directly support the100

model’s reasoning, encompassing all the key deci-101

sion points and actions involved in the prediction.102

To facilitate the evaluation of this task, we propose103

FlowExplainBench, a novel benchmark that fea-104

tures a diverse set of flowcharts with varying styles,105

domains, and question types.106

We introduce FlowPathAgent, a neurosymbolic107

agent specifically designed to perform fine-grained 108

as a post-hoc flowchart attribution. Instead of re- 109

lying solely on text-based or vision-based cues, 110

FlowPathAgent integrates symbolic reasoning by 111

using an agentic interface to interact with the 112

flowchart as a graph object. FlowPathAgent be- 113

gins with segmenting flowcharts into distinct com- 114

ponents, followed by constructing symbolically 115

operable flowchart representations. These graph- 116

based representations have direct correspondence 117

to visual regions of the flowchart, enabling the 118

model to interoperate between the visual and sym- 119

bolic representations. We leverage graph tools 120

to extract and manipulate these representations, 121

allowing for identification of relevant nodes and 122

edges. Our methodology facilitates precise attribu- 123

tion of the model’s reasoning steps to specific de- 124

cision points within the flowchart, providing accu- 125

rate and interpretable explanations of the model’s 126

output. Experimental results demonstrate that 127

FlowPathAgent significantly outperforms strong 128

baselines (Lai et al., 2024; Peng et al., 2023; Yuan 129

et al., 2025) by 10-14% on FlowExplainBench. 130

Our main contributions1 are: 131

• We introduce a new task of Fine-grained 132

Flowchart Attribution where the goal is to 133

identify the optimal path within a flowchart 134

diagram that grounds the LLM text response. 135

• FlowExplainBench - a novel evaluation 136

benchmark consisting of 1k+ high quality at- 137

tribution annotations over flowchart QA with 138

diverse styles, domains, and question types. 139

• FlowPathAgent - a neurosymbolic agent ca- 140

pable of performing fine-grained post-hoc at- 141

tribution for flowchart QA. FlowPathAgent 142

uses a VLM-based agentic approach to per- 143

form graph-based reasoning and symbolic ma- 144

nipulation to accurately trace the decision pro- 145

cess within flowcharts. 146

2 Related Work 147

2.1 Flowchart Understanding 148

Research in flowchart understanding has evolved 149

from basic image processing to complex reasoning 150

tasks. Modern deep learning approaches, such as 151

FR-DETR (Sun et al., 2022a), have significantly 152

improved symbol and edge detection through end- 153

to-end architectures that combine CNN backbones 154

1Code and data will be released on acceptance.
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with multi-scale transformers. The emergence of155

LLMs has led to benchmarks like FlowchartQA156

(Tannert et al., 2023), FlowLearn (Pan et al., 2024),157

SCI-CQA (Shen et al., 2024), and FlowVQA158

(Singh et al., 2024), which assess geometric un-159

derstanding, spatial reasoning, and logical capabili-160

ties of models for question-answering on flowchart161

images . Recent work like (Ye et al., 2024) has162

begun exploring alternatives to end-to-end VLMs;163

(Ye et al., 2024) introduced intermediate textual164

representations between visual processing and rea-165

soning steps for Flowchart QA; (Liu et al., 2022;166

Shukla et al., 2023) explored code generation from167

flowcharts.168

2.2 Attribution in LLMs169

Large Language Models (LLMs) are challenged170

with factual accuracy (Zhang et al., 2023). While171

various solutions have emerged, including citation-172

aware training (Gao et al., 2023) and tool augmen-173

tation (Ye et al., 2023), ensuring reliable attribu-174

tions remains crucial. Three primary attribution175

strategies have emerged in literature: (1) Direct176

model-driven attribution generates answers and177

attributions simultaneously (Peskoff and Stewart,178

2023; Sun et al., 2022b). (2) Post-retrieval an-179

swering retrieves information before answering180

(Ye et al., 2023; Li et al., 2023b; Huo et al., 2023;181

Chen et al., 2023). (3) Post-hoc attribution gener-182

ates answers first and then searches for supporting183

references (Li et al., 2023a). Our work falls in the184

scope of Post-hoc attribution, as it serves as a mod-185

ular approach integrable with existing system, with-186

out accessing the response generation mechanism.187

Recent work has expanded attribution capabilities188

to handle diverse data formats. While MATSA189

(Mathur et al., 2024) explored fine-grained attri-190

bution for tables through a multi-agent approach,191

VISA (Ma et al., 2024) advanced visual attribution192

by leveraging vision-language models to highlight193

specific regions in document screenshots. Ours is194

the frst work on flowchart QA attribution.195

3 Post-hoc Flowchart Attribution196

We formalize fine-grained post-hoc Flowchart At-197

tribution as follows: Given a dataset D consisting198

of a set of flowchart images F , each flowchart im-199

age ci ∈ F , ci = Iw×h×3 corresponds to a logical200

graph representation Gi = (Vi, Ei), where Vi rep-201

resents the set of nodes and Ei represents the edges202

between them. Each node corresponds to a logi-203

cal operation or directive statement, and the edges 204

represent the flow between these operations. Ad- 205

ditionally, the input includes a flowchart-referring 206

statement si, which is a natural language descrip- 207

tion of a process or action to be grounded in the 208

flowchart image. The underlying goal is to find 209

a path in the image that grounds the statement si. 210

This path may be disjoint, but it should correspond 211

to a set of regions in the flowchart image. The re- 212

gions are the physical abstraction that corresponds 213

to the logical nodes in the graph. Formally, the task 214

can be represented as a mapping function: 215

F : (ci, si) 7→ Rsi , 216

where F maps the flowchart image ci and the 217

statement si to a set of regions Rsi in the image. 218

Rsi = {ri1, ri2, . . . , rin} represents the sequence 219

of regions in the image that correspond to a path 220

of logical nodes, and the edges included between 221

consecutive nodes vi1, vi2, . . . , vin in the graph Gi, 222

grounding the statement si. The path may be dis- 223

joint, but it should satisfy the following criteria: 224

1. Optimality: The path should be the shortest 225

sequence of regions that ground the statement s. 226

2. Contextual Alignment: The path should cor- 227

respond to the relevant actions and decisions de- 228

scribed in s, matching the flow of the process. 229

3. Exclusivity: No additional regions outside of 230

Rsi are necessary to fully explain the statement s. 231

4 FlowExplainBench 232

To enable systematic evaluation of flowchart attri- 233

bution, we introduce FlowExplainBench, a com- 234

prehensive benchmark designed with four key cri- 235

teria: diverse visual styles, varied question types, 236

multiple flowchart domains, and faithful ground- 237

truth attributions (see Table 1). Each entry in the 238

dataset consists of the following components: the 239

flowchart image c, a statement s (which, in this con- 240

text, is a Question-Answer pair), a set of attributed 241

logical nodes v1, v2, . . . , vn, and their correspond- 242

ing visual regions Rs = {r1, r2, . . . , rn}. These 243

visual regions represent the physical abstractions 244

of the logical nodes, which are mapped from the 245

flowchart image c as discussed in section 3. 246

4.1 Data Sources 247

FlowExplainBench is constructed using the test 248

split of the FlowVQA dataset (Singh et al., 2024). 249

This dataset comprises high-quality flowchart im- 250

ages sourced from diverse domains, including 251
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Code Wiki Instruct Overall
# of Flowcharts 189 470 294 953
# of Questions 246 610 382 1238

Fact Retrieval 88 163 102 353
Applied Scenario 69 128 90 287
Flow Referential 43 128 87 258
Topological 46 191 103 340

Avg # of Nodes 11.85 24.49 21.59 21.08
Max # of Nodes 29 43 44 44
Avg Attributed Path Length 2.59 3.21 2.88 2.99
Max Attributed Path Length 15 35 21 35
Avg Words (Question) 26.99 26.12 26.56 26.43
Avg Words (Answer) 8.62 8.74 9.50 8.95

Table 1: Detailed overview of distribution and charac-
teristics of constituent splits of FlowExplainBench.

the FloCo dataset, which emphasizes code-related252

flowcharts (Shukla et al., 2023), as well as widely253

recognized DIY platforms such as Wikihow and254

Instructables. These sources contribute to three dis-255

tinct data splits: Code, Wiki, and Instruct. For each256

flowchart, corresponding Mermaid code and meta-257

data (e.g., original code and process summaries)258

are included. The dataset contains four question259

types: Fact retrieval, Applied Scenario, Flow Ref-260

erential, and Topological.261

4.2 Visual Diversity262

To ensure that FlowExplainBench represents a263

broader spectrum of flowchart styles encountered264

in real-world applications, we introduce four dis-265

tinct style types for flowchart generation: 1. Single266

Color: Flowcharts that use a single color for all267

nodes throughout the chart for simplicity and visual268

cohesion. 2. Multi Color: Flowcharts that utilize269

multiple colors, sampled from a palette to repre-270

sent different nodes. 3. Default Mermaid: The271

standard Mermaid styling as found in FlowVQA. 4.272

Black and White: Flowcharts designed using only273

black and white elements. For the Single Color274

style, we incorporate 40 unique colors, while for275

the Multi Color style, we use 35 curated color276

palettes each containing 4 to 5 colors. We first277

generate SVG flowcharts from source Mermaid278

code, subsequently injecting templated CSS into279

the SVGs to implement the desired styles. Finally,280

the SVGs are converted into PNG images, and the281

regions of interest (i.e., the flowchart nodes) are282

defined using the positional and shape information283

derived from the SVG metadata.284

4.3 Attribution Annotation285

The attribution annotation process is as follows:286

Step 1: Automatic Labeling. We use GPT-4 to287

perform the initial attribution for corresponding288

QA pairs directly in the Mermaid source code. By 289

analyzing the nature of different question types, 290

we generalize the attribution patterns and provide 291

GPT-4 with few-shot examples in the prompt. 292

Step 2: Human Verification. Two human eval- 293

uators are involved in the next stage, where they 294

interact with an attribution platform that allows 295

them to select nodes in the flowchart to be at- 296

tributed. The inter-annotator agreement, measured 297

using Cohen’s Kappa (κ), shows a high level of 298

agreement both between the two annotators (κ = 299

0.89) and between the annotators and the initial 300

GPT-4-generated labels (κ = 0.72, 0.80). More 301

details on human annotation in Appendix Sec. C.3. 302

Step 3: Multi-step Question Filtering. We ap- 303

plied a filtering srategy to get rid of trivial and 304

low-quality QA pairs. Questions related to node 305

and edge count were excluded, as they required 306

trivially attributing the entire graph rather than 307

reasoning over its fine-grained individual compo- 308

nents. This excluded 1792 samples from the anno- 309

tation exercise described above. Subsequently, for 310

each flowchart image, questions with the highest 311

agreement among annotators were selected, pri- 312

oritizing cases where both human annotators con- 313

curred. This yielded an initial set of 953 samples. 314

To achieve balance across three domains and four 315

question types, additional high-agreement samples 316

were selected from underrepresented categories, 317

resulting in a final benchmark of 1,238 samples. 318

5 FlowPathAgent 319

FlowPathAgent (Fig 2), is a neurosymbolic agent 320

designed for structured reasoning over flowcharts 321

for fine-grained flowchart attribution. The ap- 322

proach consists of three key stages: Chart Com- 323

ponent Labeling, which segments and labels 324

chart components; Graph Construction, which 325

constructs a symbolic graph from the labeled 326

flowchart; and Neurosymbolic Agent-based Anal- 327

ysis, which uses graph-based tools to interact with 328

the symbolic flowchart to generate attributed paths. 329

Each stage plays a critical role in bridging the gap 330

between visual representations and symbolic rea- 331

soning over structured workflows. 332

5.1 Chart Component Labeling 333

We identify and label individual flowchart com- 334

ponents, ensuring an explicit correspondence be- 335

tween visual elements and the symbolic represen- 336

tations generated in subsequent steps. 337
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Figure 2: Overview of FlowPathAgent. FlowPathAgent processes a flowchart image through segmentation-based
component labeling, constructs a symbolic graph representation using Mermaid, and employs a neurosymbolic
agent, that treats the flowchart as a symbolic graph to attribute nodes based on an input statement. The agent
interacts with predefined tools to analyze and traverse the flowchart structure, producing attributions as interpretable
mappings of relevant nodes back onto the original flowchart.

FlowMask2Former. To achieve flowchart compo-338

nent recognition, we construct a synthetic dataset339

using the training split of FlowVQA (Singh et al.,340

2024), incorporating style diversification tech-341

niques similar to those described in Section 4.2,342

but with different color schemes. Further the node343

content is replaced with randomized text. These344

augmentations improve domain generalization and345

ensure robust performance across diverse flowchart346

styles. We fine-tune Mask2Former (?) on this347

dataset for instance segmentation, specifically tar-348

geting node recognition. The fine-tuned model,349

FlowMask2Transformer, generates segmentation350

maps, from which individual nodes are sequentially351

labeled using alphabetical identifiers, rendered in352

red text on the flowchart image, to serve as vi-353

sual anchors for graph construction, reasoning, and354

node referencing.355

5.2 Graph Construction356

Flowcharts inherently encode structured logical357

processes, making graph-based representations358

ideal for symbolic reasoning. By converting vi-359

sual flowcharts into symbolic graph structures, we360

eliminate reliance on visual recognition for every361

reasoning step, ensuring robust handling of dis-362

tant relationships that visual models often misin-363

terpret. The symbolic graph facilitates efficient364

graph-based operations such as traversal, topologi-365

cal analysis, and conditional evaluation. This struc-366

tured representation also enhances interpretabil-367

ity and enables automated verification of logical 368

consistency. Moreover, as flowchart complexity in- 369

creases, our method avoids the compounding errors 370

seen in purely visual models by explicitly encoding 371

edge conditions and node relationships, enabling 372

reliable and scalable path tracing. 373

Flow2Mermaid VLM. To convert the labeled 374

flowchart to a symbolic graph representation, we 375

first convert the visual flowchart to a Mermaid 376

code, and then parse the Mermaid code to gen- 377

erate the symbolic graph. For the Flowchart to 378

Mermaid transformation, we fine-tune Qwen2- 379

VL(7B) (Wang et al., 2024) using supervised fine- 380

tuning (SFT) on a style-diversified projection of 381

the FlowVQA (Singh et al., 2024) training set, 382

with marked alphabetic node labels sourced from 383

SVG metadata. Flow2Mermaid VLM is trained 384

to generate Mermaid flowchart code directly from 385

flowchart images, using the alphabetical node la- 386

bels as anchors to maintain consistency between 387

visual and symbolic representations. We perform 388

fine-tuning to improve the ability to generate ac- 389

curate and semantically robust Mermaid syntax, 390

minimize structural inconsistencies that could af- 391

fect graph analyses, and adapt to the varied aspect 392

ratios and visual styles found in flowcharts. 393

The generated Mermaid representation is then 394

parsed into a symbolic graph, tailored to capture 395

the specific properties of flowcharts, including 396

boolean conditional edges and node-level state- 397
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ment mappings. Additionally, we define a compre-398

hensive suite of tools to operate on this symbolic399

graph, enabling structured function calls for reason-400

ing over the flowchart’s logical structure. The list401

of tools and their API is described in the Appendix.402

5.3 Neurosymbolic Agent403

FlowPathAgent employs a neurosymbolic reason-404

ing approach to attribute relevant nodes based on an405

input statement. In this context, it combines neural406

models i.e. VLMs to plan, reason and attribute in a407

discrete token space, based on observations made408

via tool use over a symbolic graph representing the409

flowchart. The agent operates on a sequence of410

interdependent steps:411

1. Node Selection: During the initial planning412

stage, our agent identifies nodes to be explored413

by referencing their corresponding labels in the414

flowchart image. Additionally, it clarifies the ex-415

pectation and underlying rationale for each node416

selection. This is the only step where the labeled417

flowchart image is passed to the underlying VLM.418

2. Tool Selection: Our agent employs reasoning-419

based prompting to determine the necessary sym-420

bolic tools and their respective functional parame-421

ters for the selected nodes.422

3. Tool Execution: The selected tools are executed423

on the symbolic graph representation to extract424

relevant insights. Multiple sequential cycles of425

Tool Selection and Tool Execution may occur, with426

each cycle selecting and executing a single tool.427

4. Tool Response Analysis: The agent inter-428

prets observations from tool-use, in relation to the429

given statement, generating a path of nodes in the430

flowchart that attribute the statement.431

5. Mapping to Original Flowchart: Finally, the432

attributed path’s node labels are mapped back onto433

the flowchart image using the segmentation regions434

obtained during the labeling stage.435

6 Experimental Set-up436

6.1 Baselines437

Zero-shot GPT-4o (OpenAI, 2024) predicts nor-438

malized bounding box coordinates for zero-shot439

localization (Yang et al., 2023b).440

Kosmos-2:(Peng et al., 2023) performs referring441

expression grounding and bounding box generation442

by linking objects in images with text.443

LISA: (Li et al., 2023b) generates segmentation444

masks from textual queries with minimal fine-445

tuning on task-specific data.446

SA2VA(Yuan et al., 2025) combines SAM-2 and 447

LLaVA for referring segmentation. 448

VisProg (Gupta and Kembhavi, 2022) agent gener- 449

ates visual programs by decomposing queries into 450

executable steps for explainable visual reasoning. 451

GPT4o + FlowMask2Former SoM Prompting 452

ablation uses GPT-4o on segmented flowchart gen- 453

erated by FlowMask2Former and applies Set-of- 454

Marks (SoM) (Yang et al., 2023a). More details on 455

baselines in Appendix Sec.A.1. 456

6.2 Evaluation 457

To map the segmented regions to the ground truth 458

nodes, we apply an Intersection over Union (IoU) 459

threshold of 0.7 to ensure high fidelity between 460

ground-truth and predicted nodes. The ground- 461

truth node with the maximum overlap is selected 462

as the reference for the segmented node. This pro- 463

cess is crucial for fine-grained attribution, where 464

accurate identification of individual flowchart com- 465

ponents is required. For each baseline, we collect 466

the nodes identified by the model and treat the set 467

of ordered nodes as the attributed path. We then 468

compute the micro-averaged Precision, Recall, and 469

F1 scores to assess the model’s performance. 470

More extensive experimental details have been pro- 471

vided in Appendix Sec. A.2. 472

7 Results and Discussion 473

Baseline Comparison. FlowPathAgent 474

demonstrates a significant improvement over 475

all baseline models when evaluated on the 476

FlowExplainBench, outperforming them by a 477

margin of 6-65 percentage points, as shown in 478

Table 2. Visual grounding models, including 479

Kosmos-2, LISA, and SA2VA, exhibit suboptimal 480

performance. This is primarily due to their limited 481

ability to process visual logic, which is crucial for 482

fine-grained flowchart attribution. These models 483

struggle to correctly map logical relationships 484

between elements in the flowchart, resulting in 485

less accurate attributions. 486

Among the baselines, GPT4o Zero Shot Bound- 487

ing Box shows the poorest performance. This 488

model lacks inherent capabilities for mask gen- 489

eration, and instead generates bounding boxes in 490

the textual token space, which is not well-suited 491

for the task of flowchart attribution. 492

In contrast, GPT4o SoM achieves a compara- 493

tively stronger performance. This can be attributed 494

to the effective segmentation abilities of Flow- 495
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Baseline Overall FEBench-Code FEBench-Wiki FEBench-Instruct
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Kosmos-2 (Peng et al., 2023) 37.14 1.76 3.36 41.41 6.45 11.16 20.69 0.31 0.60 38.30 1.64 3.14
LISA (Lai et al., 2024) 18.01 14.34 15.97 35.36 19.18 24.87 14.09 11.74 12.81 18.45 16.18 17.24
SA2VA (Yuan et al., 2025) 66.36 9.88 17.20 79.35 19.34 31.10 58.47 7.40 13.14 65.99 8.82 15.56
VisProg (Gupta and Kembhavi, 2022) 45.95 0.46 0.91 46.88 2.30 4.49 0.00 0.00 0.00 25.00 00.09 0.18
GPT4o Bounding Box 58.82 1.90 3.68 80.00 1.89 3.69 53.19 1.29 2.51 57.89 3.00 5.70
GPT4o SoM 74.10 67.69 70.75 67.32 70.28 68.77 74.55 65.03 69.47 77.84 70.91 74.22
FlowPathAgent 77.19 77.21 77.20 74.18 80.62 77.27 76.29 74.21 75.23 80.28 80.19 80.23

Table 2: Performance comparison of FlowPathAgent with baselines on FlowExplainBench. Best and
second-best results have been highlighted.

FlowPathAgent

GPT4o BB

GPT4o + SoM

Kosmos2

LISA

SA2VA

90   percentileth

# of Flowchart Nodes

A
vg

. F
1 

S
co

re

FlowPathAgent
outperforms baselines
in the long tail of node

distributions.

Figure 3: Performance comparison of FlowPathAgent
against baselines demonstrates superior effectiveness
across long-tail distribution of node count in flowcharts.

bfs dfs final_answer get_ancestors get_descendants get_statement in_degree

max_in_degree max_out_degree out_degree path_between shortest_path get_neighbours fail

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Figure 4: Flow diagram of the sequence of tools used
by FlowPathAgent on FlowExplainBench. Each Step
refers to a cycle of Tool Selection + Call.

Mask2Former, which ensures that the elements496

to be attributed are accurately captured in the can-497

didate set available to the model. Additionally, the498

reasoning capabilities of GPT4o contribute to im-499

proved performance by leveraging these segmented500

components in a logical manner. VisProg relies on501

weaker visual back-bones which do not understand502

images with text, leading to low detection rates,503

including none in FEBench-Wiki.504

Further analysis of performance trends reveals505

an interesting behavior when we examine the per-506

formance of different models against the number507

of nodes in the flowchart, as illustrated in Fig 3.508

As the complexity of the flowchart increases (i.e.,509

as the number of nodes decreases), a performance 510

dip is observed across all methods. This is likely 511

due to the increasing difficulty in processing larger, 512

more complex flowcharts, especially for models 513

relying heavily on the visual presentation of the 514

flowchart. In contrast, FlowPathAgent maintains 515

a more consistent performance, with a relatively 516

smaller dip in performance despite the increased 517

complexity. This can be attributed to the model’s 518

ability to treat flowchart elements as logical enti- 519

ties, rather than solely relying on their visual rep- 520

resentation. By leveraging its neurosymbolic ap- 521

proach, FlowPathAgent is able to more effectively 522

process and attribute complex flowchart structures, 523

providing robust and reliable attributions even in 524

the long tail of node distributions. 525

Qualitative Analysis. Fig 5 presents a qualitative 526

comparison between FlowPathAgent and various 527

baseline models. The GPT4o Zero Shot Bound- 528

ing Box baseline fails to generate bounding boxes 529

that overlap with or match the shape and dimen- 530

sions of any flowchart nodes. On the other hand, 531

LISA tends to overgeneralize by attributing the en- 532

tire flowchart image, producing small, noisy masks 533

that cover irrelevant areas, which reduces the clar- 534

ity and precision of its attributions. Kosmos-2 535

also struggles with segmenting the nodes asso- 536

ciated with the statement; it segments a single 537

irrelevant node. SA2VA, while performing bet- 538

ter than the other visual grounding models, still 539

exhibits limitations. It generates low IoU masks 540

around some correct nodes. Additionally, it some- 541

times produces extraneous masks that are not rel- 542

evant to the flowchart’s logical structure. GPT4o 543

with SoM shows some improvement, but tends 544

to over-attribute by including steps that are fur- 545

ther ahead in the flowchart than necessary. In 546

contrast, FlowPathAgent excels by accurately de- 547

tecting and attributing the entire flowchart path, 548

identifying all the relevant nodes with high preci- 549

sion. Figure 4 displays the sequence of tools the 550

agent employs across tool selection and execution 551
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Kosmos2
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Ground
Truth

The Q/A pair involves the process of using an online calculator for
conversion and considering altitude adjustment. 
  - **Node B** is where the input of yards is initiated.
  - **Node C** checks the availability of an online calculator.
  - **Node F** involves using the online calculator.
  - **Node G** asks if altitude adjustment is needed.
  - **Node J** indicates continuing without altitude adjustment.
  - **Node M** is where the converted value is obtained.
  - **Node N** marks the end of the process.

Question: A landscape architect, Sophia, is working
on a garden design that was initially measured in
yards. However, the international team she's
collaborating with uses the metric system. Sophia
opts for an online calculator to convert the
measurements but is unsure whether altitude plays
a role in this scenario. Should Sophia make any
adjustments before finalizing the conversion?

Answer: Sophia should continue without altitude
adjustment unless the specific context of her work
requires it.

StatementFlowchart (with attributions)

B -> C -> F -> G -> J -> M ->N

GPT4o + FlowMask2Former Set of Marks

Attributed
Path

Planning: Node Selection

Tool Selection + Tool Call

Attribution

 1. Nodes that need to be explored
**C**: Is an online calculator available?

2. Facts to look up
- The relationship between using an

online calculator and needing
altitude adjustments.

3. Reasoning
**Node C** is crucial as it prompts Sophia to choose an

online calculator, which is directly mentioned in the
question.

Ancestors of node C: B (Input
the number of yards ('yd')), A

(Start).

Descendants of node C: N (End), M (Obtain the converted value in
meters ('m')), L (Obtain the converted value in meters ('m') from the
chart), H (Search for the inputted number of yards on the chart), F

(Use the online calculator), G (Is altitude adjustment needed?), I
(Identify the corresponding meters in the adjacent column), J (Continue
without altitude adjustment), K (Enter the altitude adjustment), D (Find
a conversion chart), E (Locate a yard-to-meter conversion chart online)

get_ancestors(“C”,include_statements=True) get_descendants(“C",include_statements=True)

The nodes C and F are relevant as they involve the use of an online calculator, which Sophia opted for. Node G
is crucial because it questions the need for altitude adjustment, directly relating to the question. Node J
supports the answer by advising to continue without altitude adjustment, aligning with the given response.C -> F -> G -> J

FlowPathAgent 

Attributed
Path

Tool Observation: Tool Observation:

Legend

Figure 5: Qualitative comparison of FlowPathAgent with baseline methods. The flowchart illustrates attributions
generated by various baselines, highlighting the agentic trace of FlowPathAgent. We contrast its output with the
next strongest baseline, GPT-4o+SoM, to showcase differences in attribution quality and interpretability.

.

steps, capped at 8 steps. The frequent use of the552

get_statement tool highlights its vital role in ver-553

ifying fact retrieval and scenario-based QA pairs554

without relying on visual input. Notably, Step 3555

emerges as the most common final stage (evident556

by final_answer), with nearly half of the penul-557

timate tool calls dedicated to analyzing the graph558

structure. Additional agent behavior analysis and559

qualitative examples are provided in the Appendix.560

FlowMask2Former FlowMask2Former Flow2Mermaid VLM Attribution # of
Performance Bucket Avg. IoU (%) Performance (%) F1 (%) Samples

(54.8, 63.2] 59.71 75.75 56.25 8
(63.2, 71.5] 67.83 82.54 82.66 13
(71.5, 79.8] 76.98 86.13 83.64 63
(79.8, 88.1] 84.98 88.86 86.65 364
(88.1, 96.4] 91.56 90.11 84.27 477

Table 3: Binned analysis shows that while segmentation
quality (IoU) marginally influences Word Overlap F1,
the overall task F1 remains relatively stable—indicating
limited error propagation across pipeline stages.

Error Propagation: An inherent limitation in561

modular agentic systems is that inaccuracies in562

one component can affect downstream results. On563

the full benchmark dataset, FlowMask2Former564

achieved a high overall Jaccard Similarity (IoU565

> 0.5) of 0.98, and Flow2Mermaid VLM obtained566

a Word F1 score of 0.89. To better understand567

the relationship between segmentation quality and568

transcription fidelity, we performed a binned anal-569

ysis in Table 3, grouping samples by segmenta-570

tion IoU. Complementing this, Fig. 6 visualizes571

the correlation between IoU and Word Overlap572

F1 for individual data points, colored by overall573

task F1. The concentration of points with high574

IoU and high Word Overlap F1 alongside consis-575

tently strong task performance suggests limited576

Figure 6: Scatter plot of segmentation IoU versus Word
Overlap F1 for individual samples, color-coded by over-
all task F1. Clustering in the high-performance region
indicates minimal error propagation across the pipeline.

error propagation across the pipeline. This stabil- 577

ity likely arises from the high accuracy of Flow- 578

Mask2Former and Flow2Mermaid VLM, as well 579

as the neurosymbolic agent’s role in verifying and 580

correcting errors, enabling the modules to comple- 581

ment each other and reduce cascading failures. 582

8 Conclusion 583

We introduced the task of Flowchart Attribution 584

and proposed FlowExplainBench for evaluating 585

fine-grained visual grounding in flowchart QA. We 586

presented FlowPathAgent, a neurosymbolic agent 587

that leverages graph-based reasoning to accurately 588

identify the optimal path underpinning LLM re- 589

sponses. Experimental results demonstrate signif- 590

icant improvements over existing baselines, high- 591

lighting the effectiveness of our approach. 592
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9 Limitations593

While our approach demonstrates strong per-594

formance, there are areas for further improve-595

ment. First, although FlowPathAgent effec-596

tively integrates symbolic reasoning, it builds597

on FlowMask2Former for segmentation and598

Flow2Mermaid VLM for converting visual599

flowcharts to mermaid code. As with any mod-600

ular system, potential errors in these components601

may influence overall performance. However, our602

framework remains flexible, allowing for seamless603

integration of alternative models better suited to604

specific scenarios.605

Second, our benchmark, FlowExplainBench,606

captures a diverse range of flowchart structures but607

does not yet encompass all real-world variations,608

such as hand-drawn diagrams. The primary chal-609

lenge lies in the availability of high-quality datasets610

with comprehensive annotations. While existing611

methods address hand-drawn flowchart segmenta-612

tion, scaling them for attribution remains an open613

area of research. Future work could explore semi-614

supervised or automated annotation strategies to615

enhance coverage.616

Lastly, our approach is designed for static617

flowcharts, and extending it to dynamic or inter-618

active systems presents an opportunity for further619

research. Many real-world applications involve620

evolving decision-making processes, which could621

benefit from models that handle sequential updates622

and conditional dependencies.623

Future work could address these limitations by624

improving segmentation robustness, expanding the625

benchmark to include more diverse flowchart types,626

and developing models capable of handling dy-627

namic and interactive flowcharts. Additionally, in-628

tegrating reinforcement learning or self-supervised629

learning techniques could enhance model adapt-630

ability and generalization across various flowchart631

formats.632

10 Ethics Statement633

In this study, we utilize the publicly accessible634

FlowVQA dataset, which is distributed under the635

MIT License2. We ensure that the identities of636

human evaluators remain confidential, and no per-637

sonally identifiable information (PII) is used at638

any stage of our research. This work is focused639

2https://github.com/flowvqa/flowvqa?tab=
MIT-1-ov-file

exclusively on applications for fine-grained vi- 640

sual flowchart attribution and is not intended for 641

other use cases. We also recognize the broader 642

challenges associated with large language models 643

(LLMs), including potential risks related to misuse 644

and safety, and we encourage readers to consult the 645

relevant literature for a more detailed discussion of 646

these issues (Kumar et al., 2024; Cui et al., 2024; 647

Luu et al., 2024). 648
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A Further Details837

A.1 Baselines838

Zero-shot GPT-4o Bounding Box We use GPT-839

4o (OpenAI, 2024) to predict normalized bounding840

box coordinates for chart components based on text841

and the visual chart, following established methods842

for zero-shot localization (Yang et al., 2023b).843

Kosmos-2:(Peng et al., 2023) is a multimodal844

large language model that combines text-to-visual845

grounding, supporting tasks like referring expres-846

sion interpretation and bounding box generation847

by linking objects in images with text.848

LISA: (Li et al., 2023b) is a model for generating849

segmentation masks from textual queries, extend-850

ing VLM capabilities to segmentation tasks, and851

excels in zero-shot performance with minimal fine-852

tuning on task-specific data.853

SA2VA(Yuan et al., 2025) is a unified model for854

dense grounded understanding of both images and855

videos, combining SAM-2 for segmentation and 856

LLaVA for vision-language tasks, enabling robust 857

performance in referring segmentation. 858

VisProg (Gupta and Kembhavi, 2022) is an agent 859

that generates interpretable visual programs by de- 860

composing queries into executable steps, enabling 861

modular and explainable visual reasoning. 862

GPT4o + FlowMask2Former SoM Prompting, 863

as an ablation study, we incorporate this baseline 864

where GPT-4o utilizes the segmented flowchart 865

generated by FlowMask2Former, and applies Set- 866

of-Marks (SoM) (Yang et al., 2023a) prompting to 867

guide the model’s predictions. 868

A.2 Implementation Details 869

The facebook/mask2former-swin-tiny-coco 870

-instance model is fine-tuned for 20 epochs for 871

FlowMask2Former, employing a learning rate 872

of 1 × 10−5 with a cosine annealing scheduler. 873

A batch size of 4 is used, and gradient accu- 874

mulation occurs over 4 steps to address mem- 875

ory constraints. Training is conducted using 876

16-bit precision to improve computational effi- 877

ciency. In the case of the Mermaid2Graph Vision- 878

Language Model (VLM), fine-tuning is performed 879

on the unsloth/Qwen2-VL-7B-Instruct check- 880

point, focusing on vision, language, attention, 881

and MLP layers. This model is trained for 3 882

epochs with a batch size of 1 and gradient ac- 883

cumulation over 5 steps. A learning rate of 884

2 × 10−4 is applied with a linear scheduler. To 885

optimize memory usage, the model is loaded in 886

4-bit precision, and AdamW is used as the op- 887

timizer with a weight decay of 0.01. The base- 888

line models are initialized as follows: LISA from 889

xinlai/LISA-13B-llama2-v1, Kosmos-2 from 890

microsoft/kosmos-2-patch14-22, and Sa2VA 891

from ByteDance/Sa2VA-8B. Default settings and 892

parameters are used for all baselines. 893

A.3 Computational Budget 894

Table 4 shows the computational budget for this 895

paper, broken down by associated tasks.

Task Time (hours) # of GPUs GPU Spec
FlowMask2Former Training 14 1 NVIDIA RTX A6000
Flow2Mermaid VLM Training 8 1 NVIDIA RTX A6000
Baseline, Trained Model Inference 3 1 NVIDIA RTX A6000

Table 4: Computational Budget for experiments in the
paper

896
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Figure 7: Box-plot distribution of time taken in each
tool call, in seconds.
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Figure 8: Distribution of count of tool calls, segregated
by question type.

A.4 Dataset897

Fig 9 shows the distribution of nodes in our bench-898

mark.899

Fig 12 represents examples from the training set900

for FlowMask2Former and Flow2Mermaid VLM,901

displaying different style types.902

Figs 13-15 represent examples from903

FlowExplainBench from different domains,904

with different styles and question types.905

A.5 Qualitative Examples906

Fig. 17 and 17 present qualitative comparisons of907

the baseline methods. While these examples do908

not comprehensively represent the overall perfor-909

Figure 9: Distribution of nodes in our benchmark.

Figure 10: Heatmap of time taken by different tools to
execute, binned by number of nodes in the flowchart.

Figure 11: Heatmap of duration of tool call execution,
arranged by agentic step.

mance ranking, they have been deliberately chosen 910

to highlight specific limitations and failure cases 911

of each method. This selection aims to provide in- 912

sights into the scenarios where certain approaches 913

struggle, offering a clearer understanding of their 914

weaknesses. 915

B Agent Analysis 916

B.1 API Description 917

Fig. 18 shows the class diagram of the data 918

structure used to represent Nodes, Edges, and 919

the Flowchart. The FlowChart class serves as 920

the primary structure, managing a collection of 921

Node objects, each identified by a unique ID and 922

containing a statement. Nodes are interconnected 923

through Edge objects, which define directed re- 924

lationships with optional conditions (Yes, No, or 925

unconditional). 926

Table 6 summarises the API for the tools 927

provided to FlowPathAgent. Except for 928

final_answer which returns the final answer and 929

reasoning involved, all other tools operate on a 930

global FlowChart object initiated from mermaid 931

code generated by Flow2Mermaid VLM. 932
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Name Worst-Case Time Complexity Justification

get_statement O(1) Constant time operation regardless of graph size
get_ancestors O(n2) In a complete graph, could require traversing all edges from all nodes
get_descendants O(n2) Similarly, might need to explore all possible paths in a dense graph
get_neighbours O(n) In worst case, a node could be connected to all other nodes
in_degree O(n) May need to check all nodes to count incoming edges
out_degree O(n) May need to check all nodes to count outgoing edges
max_in_degree O(n) Must examine every node to find maximum
max_out_degree O(n) Must examine every node to find maximum
bfs O(n2) In a complete graph, each node has n− 1 edges, so total is O(n2)
dfs O(n2) Same as BFS in worst case with dense graph
path_between O(n2) May need to explore all possible paths in worst case
shortest_path O(n2) BFS-based shortest path in a dense graph
final_answer O(1) Constant time operation

Table 5: Time Complexity of tools used in our system.

Style 1 Style 2 Style 3 Style 4

Style 1 Color Options:

Style 2 Palette Options:

Derived from FlowVQA Train Split.

FlowMask2Former Train: Randomized text in nodes,
segmentation labels generated from SVG metadata. 

Flow2Mermaid VLM Train: Original node statements, nodes
labeled with alphabetic ID using SVG metadata.

Examples

Figure 12: Overview of training split used for FlowMask2Former, and Flow2Mermaid VLM. The figure demon-
strates the style options, color palettes used, and distinction between both training sets.

B.2 Tool-use Analysis933

Fig 7 shows the distribution of run-time of tool934

cals, called from within the agentic framework.935

max_in_degree has the maximum median run-936

time, which can be explained by the fact that937

the Node data-structure employed by us only938

has outgoing edges, meaning all nodes have to939

be iterated to find the node with maximum in-940

degree. The second highest median run-time be-941

longs to shortest_path, which is implemented as942

a O(V+E) breadth-first-search based algorithm. Ta-943

ble 5 describes the theoretical time complexity of944

the tool calls. Fig 10 represents the time of execu-945

tion by tool, as a heatmap plotted along the number946

of nodes. As seen from this heatmap, in practice,947

the constant compute associated with each tool call948

often outweighs the cost incurred by increasing the949

number of nodes, when the number of nodes is950

not large enough. Moreover, fig 11, which plots951

the time taken by each tool to execute by agentic952

step shows that highest latencies occur for the first 953

step of the simulation, because of compute cost of 954

initialization. 955

We analyze the distribution of tool calls by ques- 956

tion type in Fig 8. Topological questions show 957

the most diversity in terms of tool calls, since 958

they require interpreting structural aspects of the 959

FlowChart. get_statement is the most common 960

tool for the other question types. This is because 961

all the other questions require content from inside 962

the flowchart, and often involve multiple calls of 963

get_statement in a single agentic run. For flow- 964

referential questions, get_neighbours is a pop- 965

ular tool, since this tool allows downstream flow 966

analysis from an anchor node. 967

B.3 Prompts and Implementation 968

Fig 19 and 20 represent the system prompt 969

template, and planning prompt template 970

used by FlowPathAgent. We implemented 971
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Name Description Arguments
get_statement Returns the statement associated with a node. node_id (string): Identifier of the node.
get_ancestors Identifies all nodes that have paths leading to the

specified node.
node_id (string): Identifier of the target node.
levels (integer, optional): Maximum levels to tra-
verse.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

get_descendants Identifies all nodes that can be reached from the
specified node.

node_id (string): Identifier of the starting node.
levels (integer, optional): Maximum levels to tra-
verse.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

get_neighbours Returns all nodes connected to the given node by
outgoing edges.

node_id (string): Identifier of the node.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

in_degree Returns the number of incoming edges to a node. node_id (string): Identifier of the node.
out_degree Returns the number of outgoing edges from a

node.
node_id (string): Identifier of the node.

max_in_degree Identifies nodes with the highest incoming edges. None
max_out_degree Identifies nodes with the highest outgoing edges. None
bfs Performs breadth-first search from a starting node. start_id (string, optional): Identifier of the node.

conditions (object, optional): Dictionary of edge
conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

dfs Performs depth-first search from a starting node. start_id (string, optional): Identifier of the node.
conditions (object, optional): Dictionary of edge
conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

path_between Finds a path between two nodes, considering edge
conditions.

start_id (string): Start node.
end_id (string): End node.
conditions (object, optional): Edge conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

shortest_path Finds the shortest path between two nodes using
BFS.

start_id (string): Start node.
end_id (string): End node.
conditions (object, optional): Edge conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

final_answer Provides a final answer to the given problem. answer (any): The final answer.

Table 6: Tools provided to FlowPathAgent.

FlowPathAgent using HuggingFace’s smolagents972
3 library. We patched the library to ensure that973

visual tokens are only used in the planning step974

(node selection step), and removed from the975

conversation template thereafter.976

C Benchmark Construction977

C.1 Automatic Labeling978

Fig 21 represents the prompt template used to per-979

form automatic annotations, in step 1 of our ground980

truth annotation process.981

C.2 Style Diversity982

Fig 22 represents the color schemes used to aug-983

ment style diversity in FlowExplainBench. Styles984

3https://github.com/huggingface/smolagents

for auxiliary datasets used in this paper are pre- 985

sented in Fig 12. 986

C.3 Human Annotation 987

We employed two graduate student annotators, 988

aged 22-25. The annotators were proficient in En- 989

glish, and were exposed to flowchart QA samples 990

from the training set before the annotation exercise, 991

to make them comfortable with the flowcharts in- 992

volved. The annotators were fairly compensated 993

at the standard Graduate Assistant hourly rate, fol- 994

lowing their respective graduate school policies. 995

Fig 23 shows a summary of the annotator guide- 996

lines, and Fig 24 shows the annotation platform 997

used. 998
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Q: Emma is making egg
salad and prefers her

ingredients to be as dry as
possible before mixing to

avoid a watery salad.
After boiling and cooling
the eggs, what should her
next step be according to
the blog post instructions?

A: Pat the eggs dry with
a paper towel.

Applied Scenario
Instruct

Ground Truth
Attributions

Figure 13: Example from
FlowExplainBench–Instruct. This example
represents an Applied Scenario question, and has a
style type 1 (single color).

Q: What is the maximum
allowed length for the new
string after spaces are

replaced?

A: The new string must
not exceed 1000

characters in length.

Fact Retrieval
Code

Ground Truth
Attribution

Figure 14: Example from FlowExplainBench–Code.
This example represents a Fact Retrieval question, and
has a style type 2 (multiple colors).

D Additional analysis on 999

hand-constructed charts 1000

We conducted a supplemntary case study to an- 1001

alyze FlowPathAgent’s generalization to real- 1002

world handwritten charts. Data: Given the lack of 1003

Question-Answer datasets for hand-drawn charts, 1004

we used the FC_BScan (Bresler et al., 2016) 1005

dataset for hand-drawn flowchart component recog- 1006

nition. We randomly selected 50 samples from the 1007

test set, and used prompted GPT4o with exam- 1008

ple questions from (Singh et al., 2024) to gener- 1009

ate Question-Answer pairs. An annotator man- 1010

ually annotated ground-truth attributions for the 1011

selected samples. We used the train set to train 1012

FlowMask2Former for this domain. 1013

Table 7 compares results from the chosen base- 1014

lines. Fig 25-29 represent qualitative examples of 1015

FlowPathAgent’s performance. We observe, that 1016

due to the neuro-symbolic approach used by our 1017

agent, it is able to generalize across style variations 1018

and is is robust to errors in intermediate steps. 1019
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Ground Truth
Attribution

Ground Truth
Attribution

Q: If a parent is currently at
the step of exercising patience,
what decision must have been
made previously regarding the

'How was school?' question, and
what is the expected outcome of

this step?"

A: Previously, the decision
to find alternative

conversation starters was
made, which results in a
less stressful relationship

with the teen.

Q: Is the node "Maintain
Authority and Reinforce Rules"
direct successor of the node

"Acknowledge school may not be
teen's priority"?

A: No, the node 'Maintain
Authority and Reinforce
Rules' does not directly

succeed the node
'Acknowledge school may
not be teen's priority'.

Topological
Wiki

Flow referential

Figure 15: Example from
FlowExplainBench–Instruct. This example
represents Tolopolgical and Flow Referential questions,
and has a style type 3 (mermaid default).

Baseline Precision Recall F1
Kosmos-2 (Peng et al., 2023) 7.34 3.12 4.43
LISA (Lai et al., 2024) 16.52 30.13 21.50
SA2VA (Yuan et al., 2025) 22.12 5.13 8.25
VisProg (Gupta and Kembhavi, 2022) 0.00 0.00 0.00
GPT4o Bounding Box 32.37 32.44 32.41
GPT4o SoM 62.41 64.52 63.45
FlowPathAgent 65.11 68.25 66.64

Table 7: Case Study: Performance comparison on Hand-
written Charts .
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FlowPathAgentGPT4o BB GPT4o + SoMKosmos-2LISA SA2VA Ground Truth

0.660.0 0.660.01.0 1.0

1.00.0 0.720.00.0 0.8

1.00.0 0.860.00.79 0.51

F1

F1

F1

Question: A landscape architect, Sophia, is working on a garden design that was initially
measured in yards. However, the international team she's collaborating with uses the

metric system. Sophia opts for an online calculator to convert the measurements but is
unsure whether altitude plays a role in this scenario. Should Sophia make any adjustments

before finalizing the conversion?

Answer: Sophia should continue without altitude
adjustment unless the specific context of her work

requires it.

Question: AImagine you're working on a financial application where users can add
transactions to their accounts. When a user attempts to add a transaction for an existing

item, what initial value is assigned to 'old' before the transaction value is added to it?

Answer: The initial value of 'old' is the value
retrieved using 'UserDict.__getitem__'."

Question: While refactoring the plotting capabilities in a data analysis library, Marissa is
iterating over an array of plotter objects. She comes across an object with a 'psy.plotter'

attribute that is neither nonexistent nor None. What should Marissa do to this plotter
object before moving to the next one?

Answer: Set the object's 'psy.plotter.disabled'
property to True.

Figure 16: Qualitative comparison of FlowPathAgent with baselines via examples.

17



Question: An indegree of is the number of incoming edges for a node in a flowchart. What is
the maximum indegree for the flowchart?

Answer: The maximum indegree for the flowchart
is 4.

FlowPathAgentGPT4o BB GPT4o + SoMKosmos-2LISA SA2VA Ground Truth

0.50.0 1.00.00.29 0.66F1

0.00.0 0.00.00.15 0.0F1

Question: If the boy's reaction to the rejection is to propose staying friends, and that offer
is accepted, how many steps away is the ending from the current step, not counting the

step where friendship is maintained?

Answer: There is only one more step before the
end

Figure 17: (Continued) Qualitative comparison of FlowPathAgent with baselines via examples.
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contains

has

Edge

+str to_node
+Optional condition

+describe() : str

Node

+str id
+str statement
+List edges

+add_edge(to_node: str, condition: Optional)

FlowChart

+Dict nodes

+add_node(id: str, statement: str) : Node
+add_edge(from_id: str, to_id: str, condition: Optional)
+get_statement(node_id: str) : str
+to_mermaid() : str
+from_mermaid(mermaid_code: str) : FlowChart

Figure 18: Class Diagram of the FlowChart data structure representing directed graphs with conditional edges.

19



You are an expert assistant who can solve any task using tool calls. You will be given a task to solve
as best you can. The task you have been asked to solve is performing flowchart attribution. This tasks

takes as input a flowchart image, and some text (like question-answer pair), and finds out which
flowchart nodes explain, and are relevant to the text. You need to find the minimum set of nodes, that

are directly associated with the statements.

To do so, you have been given access to some tools.

The tool call you write is an action: after the tool is executed, you will get the result of the tool call as
an "observation".

This Action/Observation can repeat N = 8 times, you should take several steps when needed.

Here are the rules you should always follow to solve your task:

1. ALWAYS provide a tool call, else you will fail. You need to call tools even if you think you know the
answer already.

2. Always use the right arguments for the tools. Never use variable names as the action arguments, use
the value instead.

3. Never re-do a tool call that you previously did with the exact same parameters.

Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

How to use tools:

Tools available to you:

The final answer needs to have the following
format:

\### Attributed Nodes: [ list of nodes]
\### Reason: The final concluding reason

The final answer needs to have the following format:

eg.
\### Attributed Nodes: C, G
\### Reason: C represents ...

⛏ get_neighbours
Returns all nodes connected to the given node by outgoing edges.

node_id (string): Identifier of the node.
include_statements (boolean, optional): If True,
includes statements. Defaults to False

...

Task: "What is the
result of the following

operation: 5 + 3 +
1294.678?"

{
"name": "python_interpreter",

"arguments": {"code": "5 + 3 + 1294.678"}
}

1302.678

ACTION OBSERVATION

Examples:

Figure 19: System prompt template provided to
FlowPathAgent.

Yes No

Your task is to attribute nodes in the flowchart, which are relevant to the provided statements.
To do this, you will need to perform some graph operations, using the tools provided for you. These tools

mostly operate on a node level, by referencing nodes with their identifiers, such as 'A', 'G' or 'AF'
(letter based, labeled on the flowchart).

You will now decide a plan for this task.
To do so, you will have to read the task and identify things that must be discovered in order to successfully complete it.

Don't make any assumptions. For each item, provide a thorough reasoning. Here is how you will structure this survey:

1. Nodes that need to be explored List the specific nodes you want to explore with
different tools.

 2. Facts to look up List here any facts that we may need to look up.
Also list how to find these: which tools, what nodes and
arguments you will call on these tools.

3. Reasoning The reasons for picking the specific tools, and
choosing the nodes to explore. Note that some
functions do not need you to explore nodes.

Question:

Answer:

labeled_flowchart.png

Figure 20: Planning prompt template provided to
FlowPathAgent.

Mermaid Code Attributed NodesStatement

...
Domain, Question Type Specific Few Shot Examples

Your task is to attribute nodes, representing a path in the flowchart, which are
relevant to the provided statements. 

...

General Instructions

Output Format

Example response:
ATTRIBUTION: A,B,D
REASON: Node A contains ...

ATTRIBUTION: [List of node letters, e.g. A,B,C]
REASON: [Detailed explanation of why these nodes
were chosen]

Domain Specific Instructions

You are given a flowchart, represented as a mermaid code.
The flow chart has nodes labelled (A,B,C…), with each node
having relevant statements. You are given a question,
answer pair, and based on that information, tasked with
identifying the relevant nodes.
If the question asks for max-outdegree/in degree, mention
all nodes that have the maxiumim in/out degree. 
If the question talks about a pair of nodes, (eg.
predecessor/ successor relationship), mention both those
nodes in your answer.

You are given a flowchart, represented as a mermaid
code. The flow chart has nodes labelled (A,B,C…),
with each node having relevant statements. You are
given a question, answer pair, and based on that
information, tasked with identifying the relevant
nodes.
Each question can be uniquely answered by 1-2 nodes.
Find the nodes, and return their alphabet value.

You are given a flowchart, represented as a mermaid code. The flow chart has nodes labelled
(A,B,C…), with each node having relevant statements. You are given a question, answer pair, and
based on that information, tasked with identifying the minimal set of nodes that are relevant
to the QA pair.
The questions are based on the logic flow in the flowchart, and you must trace the logic
involved.
1. If the question or answer refers to any specific node, it MUST be included.
2. If the question asks for steps after a node, include the node, and the required subsequent
nodes.
3. If the answer mentions x steps, include all x corresponding nodes, but don't extend it to
x+1th node.
4. Attribute a node if its value is used in the answer or referred to by the question.
5. If the question asks about retrospective steps, given a scenario, include the node, and the
relevant previous nodes described in the answer.
6. If the question also additionally asks information not about the current step, but other
steps too (eg last step), and such nodes are referred by the answer, include those nodes.
7. Consider all conditions mentioned in the QA, when making node selection.
8. Do not include nodes if they are not referred to by the answer itself.

You are given a flowchart, represented as a mermaid code. The flow chart
has nodes labelled (A,B,C…), with each node having relevant statements.
You are given a question, answer pair, and based on that information,
tasked with identifying the minimal set of nodes that are relevant to the
QA pair.
The questions are based on scenarios, where the flowchart is concerned.
1. Consider the conditions mentioned in the QA, and include relevant
nodes that ground those conditions in the flowchart.
2. Attribute the nodes that are needed to solve the question. Include
decision nodes, statements, and relevant outcomes, only if they are
mentioned in the question or the answer.
3. Do not anticipate steps outside the question or the answer. We want to
build a minimal set.
4. Only consider steps associated with the scenario and the answer. Do
not include initialization nodes, or nodes preceding the scenario. You have
to locally think of what happens in the particular circumstance.

Fact RetrievalTopological

Applied Scenario

Flow Referential

Inputs

Mermaid Code Statement

Figure 21: Prompt Template used for initial automatic
ground truth annotation using GPT4.

Style 1 Color Options:

Style 2 Palette Options:

Figure 22: Diversity of color schemes used to augment
FlowExplainBench flowchart styles
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Annotator Guidelines: Flowchart Attribution 

1. Task Overview 

Flowchart attribution involves identifying and selecting the relevant nodes in a flowchart that correspond to a given 
natural language statement. Annotators will interact with an attribution platform to highlight the appropriate nodes that 
form a logical path grounding the statement in the flowchart. 

2. Annotation Process 

Step 1: Understanding the Statement 

● Carefully read the natural language statement provided. 
● Identify key actions, decisions, or processes described in the statement. 

Step 2: Examining the Flowchart 

● Analyze the structure of the flowchart to understand the logical flow. 
● Identify nodes that contain relevant operations or directives that match the statement. 

Step 3: Selecting the Attributed Nodes 

● Highlight nodes that directly contribute to fulfilling the statement’s described process. 
● Ensure the selected nodes follow a logical sequence, even if they are not directly connected. 
● Use the following criteria to determine node inclusion: 

○ Optimality: Select the minimal set of nodes required to fully attribute the statement. 
○ Contextual Alignment: Ensure the selected nodes accurately represent the described actions or 

decisions. 
○ Exclusivity: Avoid selecting unnecessary nodes that do not contribute to the statement’s meaning. 

Rubric for Flowchart Attribution 

Criterion Description Score (0-2) 

Optimality The minimal set of nodes required to ground 
the statement is selected. 

0 = Excessive or missing nodes,  
1 = Some unnecessary nodes,  
2 = Only essential nodes chosen 

Contextual Alignment The selected nodes logically represent the 
statement’s described actions or decisions. 

0 = Poor alignment,  
1 = Partial alignment, 
 2 = Complete alignment 

Exclusivity No extra, irrelevant nodes are included. 0 = Many irrelevant nodes,  
1 = Some irrelevant nodes, 
 2 = No irrelevant nodes 

Scoring Interpretation: 

● 5-6 points: Excellent annotation 
● 3-4 points: Acceptable but may require minor adjustments 
● 0-2 points: Needs review and refinement 

Figure 23: Summary of instructions given to human annotators.
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Question-Answer Pair

What is compared with 'self.mode' to find a 
match in the 'MODES' dictionary?

The 'id' from each item is compared with 
'self mode'

Node Annotation

A B C

Selected Nodes

A  B  C

Instructions:

1. Select node types from the dropdown (you can select
multiple)

2. Selected nodes will appear as pills. You can change
your selection.

3. Refer to the annotator guidelines to attribute and
score samples.

Flowchart Visualization

Question

Answer

Select nodes

Figure 24: Human annotation platform for attribution annotation.
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Figure 25: FlowPathAgent attributed D and F correctly.
The blocks and labels represent FlowMask2Former an-
notations.

Figure 26: FlowPathAgent attributed E correctly. The
blocks and labels represent FlowMask2Former annota-
tions.

Figure 27: FlowPathAgent attributed D correctly. The
blocks and labels represent FlowMask2Former annota-
tions.

Figure 28: FlowPathAgent attributed B, and E correctly.
The blocks and labels represent FlowMask2Former an-
notations.
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Figure 29: FlowPathAgent attributed A, B, C, E. The
blocks and labels represent FlowMask2Former annota-
tions.
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