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Abstract

We present a hyperspectral compute-in-memory architecture that utilizes both1

frequency and spatial dimensions for single-shot matrix-matrix multiplication.2

This approach offers exceptional parallelism, scalability, programmability, and3

efficient chip area utilization, potentially enabling a compute density exceed-4

ing PetaOPS/mm2. The architecture demonstrates potential for energy-efficient,5

three-dimensional opto-electronic computing in future data center applications.6

Recent advancements in artificial intelligence (AI) have revolutionized various industries(1). As AI7

models grow exponentially in size, traditional electronic systems are struggling to keep up due to8

inherent scaling limitations. This has necessitated the deployment of extensive networks of disag-9

gregated electronic chips dedicated to individual computational tasks, as seen with modern GPT10

models that require thousands of GPUs. As a result, optical technologies have become increasingly11

significant in data centers, enhancing data transfer alongside electrical systems and catalyzing the12

evolution of data centers into hybrid optical/electrical computing environments. Optical interconnect13

technologies are advancing to more closely integrate with electronic chips, driven by the demand14

for higher bandwidth capacities. Challenges in increasing serializer/deserializer (SerDes) speeds15

have spurred strategies like space and frequency multiplexing to expand bandwidth. Moreover,16

researchers are exploring methods to reduce power consumption within single electronic chips, es-17

pecially in traditional von Neumann architectures, leading to the exploration of compute-in-memory18

(or in-memory computing) architectures(2). By integrating non-volatile memory components within19

processors, these systems avoid data transfer bottlenecks between memory and processing units,20

thereby enhancing data efficiency, reducing power usage, and enabling highly parallel computa-21

tions.22

As data centers transition to hybrid opto-electronic platforms, it becomes pertinent to consider if op-23

tics could handle computational tasks typically assigned to electronics. Since linear operations are24

particularly suited for optical computing among various computational tasks, there is renewed inter-25

est in utilizing optics for energy-efficient matrix-vector multiplication (MVM)(3; 4). This has led to26

the proposal and demonstration of numerous optical MVM systems in recent years(5; 6; 7; 8; 9). In27

this context, three-dimensional (3D) optical systems employing scalable free-space optics are par-28

ticularly promising(6; 7; 8; 9; 10; 11). Yet, most systems to date primarily utilize space multiplex-29

ing, with the frequency dimension remaining underexplored. Our work introduces a hyperspectral30

compute-in-memory architecture that merges space and frequency multiplexing, boosting compu-31

tational efficiency and throughput(12) (See Figure 1a). This architecture optimizes energy use and32

reduces data movement via in-memory computing. Our system processes optical signals through33

a two-dimensional (2D) spatial light modulator (SLM)(13; 14; 15), functioning as programmable34

optical memory, enabling parallel operations across spatial dimensions. This setup utilizes optics to35

efficiently handle parallel data processing, while electronics enhance programmability. Considering36
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Figure 1: (a) Hyperspectral Compute-In-Memory (CIM) architecture enhances computational
throughput by integrating space and frequency multiplexing at each computational clock cycle. (b)
Unlike its electronic counterparts, the Opto-Electronic Hyperspectral CIM architecture eliminates
the need for physical wiring in MAC operations, enabling a 3D architectural design. By dividing
the ”multiply” and ”accumulate” operations across two distinct chips (a synapse chip and a neuron
chip), the architecture optimizes chip area utilization and is capable of achieving a compute density
exceeding PetaOPS/mm2.

the lower density limitations of space multiplexing compared to electronic systems, our architecture37

additionally integrates frequency multiplexing with optical frequency combs (OFCs)(16; 17), draw-38

ing inspiration from hyperspectral imaging(18) and advanced optical fiber communications(19).39

In our proof-of-concept experiments, we manipulate 2D optical input data for single-shot matrix-40

matrix multiplication (MMM), where each SLM pixel encodes a matrix weight across multi-41

ple wavelengths. This method allows batch processing of matrix-vector multiplication using42

wavelength-division multiplexing. We conducted numerous MMM tests, and the results confirmed43

theoretical predictions, including the multiplication of the NTT logo with the identity matrix, as44

shown in Figure 2d. Although hyperspectral imaging usually involves 3D data both in input and45

output, our computing system maintains 2D inputs and outputs, utilizing the third dimension inter-46

nally. This strategy transforms the ”curse of dimensionality” into a computational asset.47

Figure 2a illustrates the experimental setup for demonstrating the hyperspectral compute-in-memory48

architecture. The input source is a fiber optical frequency comb (OFC) in the C-band, featuring a49

250 MHz pulse repetition rate and is coarsely filtered using line-by-line waveshaping(14) as shown50

in Figure 2b. The optical source, with an average power of around 1 mW, is then introduced into the51

system. The coarsely filtered comb lines are spatially dispersed using a grating, expanded vertically52

by a cylindrical lens, and then focused onto SLM 1, where the first matrix is encoded. The comb lines53

are then recombined and expanded horizontally by another cylindrical lens before being focused54

onto SLM 2 to encode the second matrix. After another vertical fanning-in by a cylindrical lens,55

the comb lines are sorted vertically by color via a grating to complete the hyperspectral multiply-56

accumulate operation. A linear polarizer enables the phase-only SLM to modulate intensity, and57

system non-uniformity is calibrated by adjusting the SLM pixel phases.58

To demonstrate the hyperspectral operation, we conducted MMM tests with a hyperspectral factor59

of 5, encoding each SLM pixel with a matrix weight across five comb lines (see Figure 3a). Minor60
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Figure 2: (a) Experimental setup for the open-loop hyperspectral multiply-accumulate (MAC) oper-
ation, enabling single-shot matrix-matrix multiplication (MMM). Matrices are projected onto SLM
1 and SLM 2, with the resulting matrix captured by a 2D camera. (b) Displays typical optical spectra
of the input OFC source, shown before and after spectral filtering and flattening. (c) Illustrates the
time evolution of line-scan camera images at a frame rate of 250 kHz, which depicts the intensity
modulation of the input OFC source with 10 frequency components spaced by 36 GHz. The modula-
tion rate of the intensity is 125 kHz. (d) Displays the encoding of the NTT logo and an identity-like
matrix (I and II), each approximately 300 by 300 in size, resulting in an output matrix that displays
the NTT logo (III).

adjustments to our system allowed for a potential increase in the hyperspectral factor to 10 or higher.61

We evaluated the computational accuracy by analyzing the error distribution for each possible MAC62

value. The matrices were encoded using non-negative weights with 4 bits. We performed 40063

measurements for each MAC value, ranging from 0 to 150 (see Figure 3b). As the target MAC values64

increased, the standard deviation of the error grew until reaching a saturation point. The relative65

error, defined as the absolute difference between the measured and target MAC values divided by66

the target MAC value, showed a standard deviation decreasing to below 5 percent as the target MAC67

value increased. These errors likely arose from intensity fluctuations in the OFC source, crosstalk68

between adjacent pixels, and optical alignment errors. We anticipate that the standard deviation69

of the relative error will stabilize at a similar level even when the system scales up in matrix size.70

Notably, noise up to a certain threshold may not significantly affect computational outcomes in many71

AI tasks, as confirmed by analyzing MNIST data classification under various noise conditions.72

The system currently operates in an open-loop configuration, encoding the input matrix and inde-73

pendently reading out MAC results using standard digital electronics. Fast external modulation and74

readout are vital for high-throughput computation in such setups. Conversely, in a closed-loop con-75

figuration with nonlinear operations, the system efficiently solves optimization problems without76

the need for rapid external modulation and readout. Most computations here are analog, with only77

the initial input and final output digitally managed. To enable rapid, pixel-by-pixel parallel modu-78

lation in the closed-loop system, a novel 2D opto-electronic ”neuron” array is essential. This array79

connects each photodetector pixel directly to its corresponding modulator (or light emitter) pixel via80

through-silicon-via (TSV), reducing delays and energy consumption by avoiding the inefficiencies81

of connecting a camera to an SLM via a serial bus. Such an array would enable seamless parallel82

processing.83

In the near term, we aim to operate our MMM system in closed-loop mode (refer to Figure 4b),84

primarily for its simplicity. This configuration requires just one hyperspectral MAC module, and it85
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Figure 3: (a) Illustrations of Matrix-Matrix Multiplication (MMM) through hyperspectral opera-
tion are presented alongside images from two test experiments. The theoretical diagrams closely
match the experimental results. Test I features the multiplication of an all-ones matrix with a lower
triangular matrix, while Test II illustrates the multiplication of two triangular matrices. To simplify
the demonstration, examples with a hyperspectral factor of 5 are used. (b) The error distribution for
each possible MAC value is displayed. For each MAC value, 400 MAC operations are conducted
for analysis. The data originates from a 10 x 10 matrix with a hyperspectral factor of 10. The abso-
lute error, the standard deviation (SD) of the error distribution, and the error percentage are further
detailed in the lower panels.

removes the need for parallel modulation and readout through an external electronic interface. In86

this setup, only one external intensity modulation at the computational clock frequency is necessary87

to generate the input optical pulse stream. To determine the total power consumption of this system,88

we calculated the power required for each pixel during Nb-bit precision MAC operations, using89

actual parameters and factoring in the significant fixed energy costs from our current experimental90

setup. Given the hyperspectral factor H for multiplying matrices of sizes (H ×K) and (K ×K),91

the system executes approximately (H ×K ×K) MAC operations per single clock cycle, and the92

formula for total power consumption is as follows:93

P
(closed-loop MMM)
H×K×K ≈ Pmod +

{
PSLM + (H ×K)×

[
2NbIth

ηLη
′
oηPD

+ PTIA

]}
. (1)

Here, Nb represents the effective bit precision, Ith is the threshold current for detection in the pho-94

todetector, ηPD denotes the photodetector responsivity, ηL refers to the laser wall-plug efficiency, η
′

o95

is the efficiency of optical power utilization, and Pmod, PSLM , and PTIA are the respective power96

consumptions for the optical modulator, the spatial light modulator (SLM), and the transimpedance97

amplifier.98

With improved alignment and wider spectral bandwidth, the closed-loop system is expected to reach99

100 peta operations per second (PetaOPS), with H = 100, K = 1000, and a 1 GHz clock frequency,100

and an anticipated efficiency close to 2 W/PetaOPS (as shown in Figure 4b and Scenario 2 of Table101

I). The ’hyperspectral factor’ mitigates the need for extensive physical scaling. For instance, with a102

hyperspectral factor of 400 and maintaining the same clock speed, only a 500-by-500 matrix (i.e., K103

= 500) is required to achieve 100 PetaOPS. Further scaling in the space and frequency dimensions104

could push the system beyond ExaOPS while keeping the power efficiency around 2 W/PetaOPS.105

A multi-layered (L-layer) open-loop hyperspectral system (outlined in Figure 4a and Scenario 3106

of Table I) is expected to demonstrate comparable power efficiency, provided that the number of107

layers is sufficient to effectively offset the energy overhead from input electro-optic (EO) and output108

opto-electronic (OE) conversions. While direct comparisons of power consumption between mature109

digital electronic computing technologies and nascent optical computing lab demonstrations are110

challenging, our projections indicate a considerable boost in efficiency compared to state-of-the-art111

electronic GPUs.112
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Figure 4: (a) An open-loop system featuring L cascaded layers of hyperspectral Multiply-
Accumulate modules positioned between the input and output digital electronic interfaces. (b) A
closed-loop system functions as a physical solver for optimization problems, where optical or elec-
trical analog signals circulate within the loop and stabilize at a steady-state solution. Note: Various
optical frequencies are represented by different colors. While the analog signal pathways, marked
by red arrows, support parallel data transmission, a single line is depicted for clarity.

Table 1: Estimated System Performance
Current Scenario 1 Scenario 2 Scenario 3

(open-loop) (closed-loop) (closed-loop) (open-loop)
Number of Layers (L) 1 1 1 50

Hyperspectral Factor (H) 1 (10) 30 100 100
Input Matrix Size (H ×K1) 1 × 64 30 × 300 100 × 1000 100 × 1000

Weight Matrix Size (K1 × K2) 64 × 128 300 × 300 1000 × 1000 1000 × 1000
Clock Frequency 250 MHz† 1 GHz 1 GHz 1 GHz

Computational Throughput 2.048 TOPS (20.48 TOPS) 2.7 PetaOPS 100 PetaOPS 5 ExaOPS
Total Power Consumption†† 11.9 W (32.2 W) 27.7 W 206 W 12.6 kW

Power Efficiency 5.8 W/TOPS (1.57 W/TOPS) 10.26 W/PetaOPS 2.06 W/PetaOPS 2.52 W/PetaOPS
† We assume an external modulation and readout speed of 250 MHz.
†† Details of the power consumption estimation are discussed in Reference 12.

Our hyperspectral compute-in-memory architecture operates as a 3D opto-electronic computing sys-113

tem, processing 2D optical input data through a 2D optical memory ”synapse” that conducts an114

O(N3) hyperspectral ”multiply” operation. Concurrently, the 2D opto-electronic ”neuron” performs115

O(N2) ”accumulate” and nonlinear activation functions in parallel at every clock cycle, ensuring116

minimal latency. This architecture optimally uses chip area by directly linking the ”synapse” and117

”neuron” chips optically, removing the need for physical wires and potentially achieving a compute118

density that exceeds PetaOPS/mm2 (See Figure 1b). Significantly, by localizing electronic oper-119

ations within each pixel during computation, this setup minimizes electronic data movement, with120

most data communication handled optically. This efficiency substantially offsets the costs associated121

with electrical-to-optical (EO) and optical-to-electrical (OE) conversions.122

Our proposed hyperspectral in-memory computing system fully utilizes the dimensions of fre-123

quency, space, and time to enhance computational throughput and energy efficiency. It integrates124

space and frequency multiplexing using scalable SLM and OFC technologies, which are seeing125

rapid advancements through both industry and academic contributions. The modular nature of this126

design not only enables manufacturing by leveraging existing technologies and ecosystems but also127

encourages enhancements in individual component technologies, thereby driving overall system per-128

formance improvements. As scalability extends, incorporating optical element arrays and polariza-129

tion multiplexing is envisaged, though large computational tasks are likely to be distributed across130

multiple small-scale optical computing modules, similar to traditional electronic systems. Integrat-131

ing advanced optical components like metalenses(20), chip-integrated OFCs(21), and amplifiers(22)132

into a single or fewer optical elements as part of a modular assembly, suggests a trajectory towards133

significant system miniaturization. This advancement enables the integration of these systems into134

data centers as rack-mounted solutions. With ongoing improvements in component technology and135

the increasing importance of optics in data centers, this 3D opto-electronic computing architecture136

has the potential to revolutionize high-performance accelerated computing hardware in future data137

center applications.138

- Note: Most of the experimental data and figures are from our recent paper published in Optica(12).139
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