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ABSTRACT

Modern machine translation (MT) systems exhibit non-deterministic be-
havior, producing variant outputs across runs in both neural MT and LLM-
based MT. This variability poses significant challenges for automatic eval-
uation methods (AEMs), leading to unreliable quality assessments. To
address this limitation, we propose a two-stage ”Understanding Before
Evaluation” framework. In the understanding stage, we formalize and
measure the degree of non-determinism from both lexical and semantic
perspectives using a simple sample-based strategy. Comprehensive exper-
iments on public datasets reveal high variance in lexical-based methods
while demonstrating stable behavior in semantic-based approaches across
MT systems. In the evaluation stage, we propose a reliable FzpectoSam-
ple method that explicitly incorporates non-deterministic characteristics to
mitigate variance effects. Our two-stage framework delivers more reliable
quality assessments for modern MT systems. Furthermore, our methods
provide a potential way for measuring MT metrics without human involve-
ment and highlight the superiority of semantic-based metrics for evaluating
modern non-deterministic MT systems.

1 INTRODUCTION

i I tig i in . i

'%lin et aﬂ EOla; Lewis et g ]: Enég], §gé§ ]:;i 2 ],, 2020; Costa-ju . \
odels (LLMs) (Chowdhery et all, 2023: %jﬁ,ﬁ&lﬂbuﬂﬁn ;

j%m&&m all, 2025; [Yang et al., 202 ilar et al), 2023; [Bawden &: Yvonl

2023; Moslem et al!, 2023) However the reliable evaluation of MT systems remains chal-
lengmg (Kocmi_et. all, 2024). Current evaluation typically applies test sets and antomati
ics (Kocmi et all, 2025), testing the correlation with human judgments (
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non-determinism (Reimers & Gurevyc anchez Carmona et all, 202

Moder U relies on probability-based generation with an attention mechanism M
ot al 01 , where outputs are sampled from a softmax distribution. This introduces

a natur nence-level candidates. Prior
studies ( eblond et al E l e& Lab til et al 502 4) show that non-determinism
is intrms1c to MT systems Evaluatmg only a single sampled candidate, as in the com-

mon generate-once scheme, will risk biased assessment by ignoring equally generated non-
deterministic candidates and lead to unreliable evaluation results.

Measuring non-determinism directly is difficult. Token-level alignments are unobservable
because many seganhic alignme lﬁ beyond Lje n-level. Moreover, multiple valid
references exist (Papineni et al., EOO;; eitag et alJ, Et(%&a), making the counting of correct
references impossible. Additionally, the unpredictable sequence lengﬁ.hJ 1 EE_b.a.d_eAL&T

i is. -b approaches (Guerreiro et all, 2023; Yeom et all,
EJOIIS F;arlini et alj E l éhi et al] 024; [Zhang et al., 2024) try to understand the non-
deterministic behavior of LLMs but assume strong memorization ( , ) without
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Figure 1: Illustration of non-deterministic MT systems. For one source, multiple candi-
dates can be generated. Grey blocks indicate low-quality outputs; lighter blocks indicate
high-quality ones. Generate-once evaluation may misrepresent system quality if only some
candidates are sampled.

considering semantic alignment, that is crucial for MT systems. Semantic uncertainty (Kuhn
et all, 2023b; Qiu & Miikkulainen, 2024; Jia et all, 2025) uncovers the semantic similarity
within candidates while ignoring the alignment with the input. To overcome the gap in the
understanding and measuring non-determinism of MT systems, we propose non-determinism
degree measurements from lexical and semantic perspectives with a simple sampling strategy.
This approach yields interpretable linguistic insights and quantitative scores with either
candidates themselves or existing metrics.

Building on this, we introduce the Understanding Before Evaluation (UBE) frame-
work, which incorporates non-determinism into MT evaluation. Our systematic experiments
on SOTA MT systems show the effectiveness of our designed understanding measurements.
We further design a method named EzpectoSample through utilizing a sampling-based ex-
pectation strategy that keeps the evaluation reliability across multiple metrics and sampling
sizes. Our findings highlight non-determinism as inherent and unavoidable, and call for de-
veloping semantic-oriented metrics beyond costly human evaluation (Graham et all, 2013;
Lommel et all, 2014). Crucially, our strategy is lightweight and compatible with current
APIs and open-source MT systems. Our contributions are:

e We demonstrate that non-determinism is intrinsic to modern MT systems and un-
dermines existing evaluation practices.

e We propose measurements of non-determinism on both lexical and semantic per-
spectives through an efficient sampling strategy.

o We introduce the Understanding Before Evaluation (UBE) frame to bridge the
ignorance of the deterministic nature of MT systems and propose the ExpectoSample
strategy for reliable MT system evaluation.

e Our frame and strategy are valuable for validating the reliability of MT metrics. Be-
sides, our findings unveil the trend and value of developing semantic-based metrics
for MT.

In summary, we unveil the truth that non-deterministic MT systems have the ability
to generate candidates with flexible lexical and well-studied semantic alignment behavior
=. (Chu & Wang, 2018§), which risks the reliable evaluation of MT systems, and we can
solve it through the measurement of non-deterministic degree. We call for considering non-
deterministic degree measurement for all current developed MT systems and re-evaluate
the ranking of MT systems beyond the alignment design with human assessment (Graham
et al), 2013; Lommel et all, 2014).
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2 THE FORMALIZATION OF THE NON-DETERMINISTIC DEGREE OF MT
SYSTEMS

2.1 CHALLENGES OF IGNORING NON-DETERMINISM IN EVALUATION

As shown in Figure 1, overlooking the non-deterministic nature of MT systems leads to
unreliable evaluations across systems. At the instance level, it may also mislead users to
underestimate the ability of an MT system to produce lexically rich candidates. In this
section, we first explain why non-determinism cannot be directly captured from token-
level probabilities, and then introduce measurements of non-deterministic degree on both
lexical and semantic aspects that enable both qualitative interpretation and quantitative
assessment.

2.2 CHALLENGES IN UNDERSTANDING AND MEASURING NON-DETERMINISM

One i or quantifying non-determinism involves leveraging token probabll—
1t1es (Kuhn et al 023h). Nevertheless, this methodology proves nnpractlcal 0 U nece
is a sequentlal generatlon task characterized by variable output lengths (
). Furthermore, establishing semantic coiﬁlespgndencﬁ bel;wflﬂ ]ncélrwdual tokens and
source content presents significant challenges (Kudo & Richardson, 201
10&5.&1%&% ) has investigated question-answering tasks (,
Eﬁ; endrycks et al), 2021)), where exact answer matching provides a viable evaluation
framework, but such approaches cannot be readily adapted to machine translation scenar-

ios wi we ive_m d i i t S d -
D (Guerreiro et all, 023 eom et all, arlini et alJ, hi et al 202;! han

, 2024), operatlng under the assumptlon that entropy can express the falthfulness of

LLMS but without con81der1ng semantic alignments between (ﬁindldates Tr %_t_ex.ts.ﬁ

gates semantic uncertainty (Kuhn et al), 2023b; Qiu & Mi.

1neﬁ E El] Jia et al] 5023) employing established similarity models (K}onneau et al),

20184) to quantify internal semantic coherence. However, these approaches fail to account

for source target alignment and present substantial challenges when extended to sequential
MT lacking explicit lexical correspondences.

2.3 NON-DETERMINISTIC DEGREE OF MT SYSTEMS FROM LEXICAL AND SEMANTIC
PERSPECTIVES

i i f such a non-deterministic degree ( IRmmﬂ:s_& Gurevycﬂ lZOlé
éanchez Carmona et alj, 025) and the interpretation (Kocmi et all, 2024) of the final score
are both signiﬁcant for MT systems. We consider two main aspects: lexical and seman
. n_the lexi Ne can check with humans and encompass the linguistic knowledge (
) On the semantic level, we follow the requirement of semantic align

xte n ] g ee_on_the semantic vi
t_al), 2020; ; |, @O ong et al onneau et all, 202d, ale &

Costa- Jussa, 202 : Duquenne et al

We now introduce the basic formalism for measuring non-determinism. For an MT task
T, let the test set be S of size k, where each source text is s € §. A non-deterministic
MT system my € Mg with parameters 6 can generate, for a source s;, a candidate set
Cs, = {c1,¢a,...,¢en}. Ideally, there exists a set of gold references Rs, = {ry,ra,...,7n}-
We denote the non-determinism degree for a single source as d(s;), and for the entire test

set:
=3 d(s). W

s; €S

In practice, neither the full set of candidates nor exhaustive gold references are,
Kuhn et al

even_with human annotation. Following previous wor egies ( _
) and empirical observations of MT generation (Kocmi et all, 2024), we approximate
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Cs, by sampling n candidates under a decoding configuration 6,, and assume one reference
r; per source s;. We then evaluate d(s;) from both lexical and semantic perspectives.

Lexical Non-determinism Degree of MT Systems Previous approaches (Papineni
et all, 2002) typically employ an anchor, such as a reference translation, to evaluate the lex-
ical quality of generated candidates. However, this method can be problematic for measuring
non-determinism when the reference contains highly idiosyncratic lexical choices, leading to
little or no lexical overlap. To mitigate this limitation and reduce potential reference bias,
we propose an intrinsic method, denoted as INNER, which evaluates the degree of lexi-
cal non-determinism solely based on the generated candidates themselves. The procedure
consists of four steps:

Stepl: tokenizing each candidate ¢; into a list of words W; = {wy,ws, ..., w;}
Step 2: Construct the frequency vocabulary V; from the set of candidates.
Step 3: Compute the inner-overlap score L(¢;) for each candidate ¢; based on V;:
Lic)= > fu(w), (2)
wewl

where WY denotes the set of unique words in ¢;, and fy, (w) is the frequency of word w in
the overall vocabulary V;.

Step 4: Aggregate the scores across sampled candidates {L(c1), L(ca), ..., L(c,)} to esti-
mate the degree of lexical non-determinism:

d(si,me,) = meanistd({L(cl), L(ca),. .., L(cn)}),

where mean_ std computes both the mean and standard deviation of the score distribution.
The resulting pair (mean, std) reflects the degree of non-determinism for a given source. For
the full test set, we define:

D(S) = % S d(si, mo,). (3)

s;€S

However, in most cases, the reference tends to show at least some of the overlap since some
unique lexical items can determine the meaning in languages. Following this convention,
we consider an external measure of the lexical degree in a relative way with current lexical
similarity metrics Simjey(-)

d(si,me,, T, Simyex (+)) = mean_ std(Simyex(ci, 71), . . ., Simex (¢, 7)) 4)

Semantic non-determinism degree of MT systems we follow the fundamental re-
quirement of MT on the semantic alignment. We utilize the external tools (Rei et all, 2020;
2022; Heffernan et _al), 2022; Song et al|, 2020; Conneau et al), 2020; Dale & Costa-jussa,
2024; Duquenne et all, 2023) to measure the semantic alignment on the candidate list C;
since the semantics cannot be directly understood with a pure lexical expression. Here we
consider both reference-based:

d(si,myg,,, T, Simgen (-) = mean_std(Simgsem (54, ¢i,71), - - . , Sigem (55, €3, 7)) (5)
and reference free format:

d(si,mg,,, T, Simgem (85, ¢;) = mean_std(Simsem (54, c1), - - ., SiMgem (54, ¢n)) (6)

For the measyrement of the non-determinism degree of the MT system, we compute with
the equation E

3 UNDERSTANDING BEFORE EVALUATION

Ignoring the non-deterministic nature of MT systems poses the risk of unreliable evaluation.
To address this challenge, we propose the Understanding Before Evaluation (UBE)
framework, which separates MT evaluation into two stages:
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Understanding Stage In this stage, we employ the formal definitions introduced in Sec-
tion P to calculate the non-deterministic degree of an MT system from both lexical and
semantic perspectives. We further analyze these degrees for each system and treat the
resulting scores as intrinsic attributes of the systems under investigation.

Evaluation Stage To mitigate the unreliability caused by ignoring non-determinism, we
introduce the ExpectoSample strategy. This method can be directly applied to existing
MT metrics, enabling more reliable evaluations of non-deterministic systems.

3.1 EXPERIMENTAL SETUP

Data: We adopt the WMT23 (IKocmi et all, l2023|) and WMT24 (lWang et alJ, l2024a|)
datasetstd] focusing on the Chinese-FEnglish language pair, which comprises 5,048 sentence
pairs.

Models and Prompting: For a i ation, we include representative

state-of-the-art transformer-based (Wﬁ -d inisti y S.

These cover (i) conventi tems (. eﬂls_et_alL_;mQ]a Costa-jussa et al], 022),

(ii) pre (%% 023; [Yang et al,, 2024), (iii) instruction-tuned

LLMs (m Yang et al] 024; Hu et all, 2024), and (iv) reasoning-focused
DeepSeek-Al et al

LLMs ( , 2025; [Yang et all, 2025). We detail the information of all model
in AppendiX Al

For prom -Shot prompting to reduce potential mismatches and repetitive
patterns ( ang et all,

024 ) Instruction-tuned LLMs are evaluated with direct pro ‘
tn erle void artlﬁmal biases while leveraging their intrinsic translation capability (@
t al), 2023). Similarly, reasoning LLMs are prompted directly, ensuring their reasoning
is focused solely on the task. Detailed model configurations and prompt designs are
provided in the Appendi)lz/’é

Sampli egy: Motivated by prior findings on temperature’ s effect on genera-
tion (Kuhn et all, 2023a), we set the temperature to 0.5 and sample 10 candidates per

source. Importantly, our method is not constrained to this specific setting and can be
flexibly adapted to other generation configurations.

Non-determinism Degree Measurement: To compute the non-deterministic degree
especially from the semantic perspective, we rely on exte evaluation too]

m ements, we B (Papinepi 2( METEOR (Ba
iia\ne E%%g), chrFo+ (E’Zo,)oi;'a, 2017), TER (Snover_et all, 2006) GE (
BERTScore (Zhang et all, 2019), and BLEURT (Sellam et al]
tics, we consider M metrlcs such as COMET20DA IRel et all

; 020) &
[ TWI (R entence—snmlarlty models like LaBSE (] M
t all, ) and XNLI well as embedding-based i

me ods including LASER. ( ernan et all, 2022), S S ng et all,
, SONAR lDuquenne et all, 2023), and BLASER (i;ale & Costa—Jussil 024).

MT Metrics: For final MT evaluation, we directly employ the metrics computed during
non-determinism measurement, excludi ilarity m (¢ 1~
pervised with MT data (i.e., LaBSE (Eeng et alj EOQ:i) XNLI (E onneau_et all EOl8b),
and the embed 4 ervised methods LASER. (Heffernan et all, 2022), Sentence
%La.nsf.o.tmjrs (golng et alj, 2020), SONAR (tDuquenne et al , 2023), and BLASER (

osta-jussa

, 2024)).
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Table 1: The results of non-determinism degrees show high lexical variance and stable
semantic alignment.

‘ Degree of Non-determinism
INNER | COMET20DA | COMET22KIWI

Model Name ‘

| mean std | mean std | mean std
LlaMA-2-7b-Instruct | 58.35 5.19 66.61 7.89 58.51 10.00
LlaMA-2-7b-Pre 46.23 13.39 | 70.67 8.00 63.80 8.31
Qwen2.5-7b-Instruct | 85.65 10.00 | 85.15 2.06 79.01 2.10
Qwen2.5-7b-Pre 56.89 19.64 | 77.45 7.60 75.09 5.85
Qwen3-8b-NT 90.66 8.05 86.24 1.20 80.68 0.99

3.2 UNDERSTANDING STAGE

3.2.1 CASE STUDY: ANALYSIS OF LEXICAL AND SEMANTIC DEGREES OF
NON-DETERMINISM

In the understanding stage, we aim to characterize the non-deterministic behavior of MT
systems in_a measurable way. For this case study, we consider three representative systems:
LlaMA?2 (Touyron et all, 2023), Qwen2.5 ([Yang et al), 2024), and Qwen3 (Yang et all,
2025). Tableum reports their_non-determinism measured from both the lexical perspective
(INNER, defined in Section E; and the semantic perspective, using two external MT metrics
(COMET20DA and COMET22KIWTI). Each system is evaluated by the mean and standard
deviation across sampled candidates.

From the lexical perspective, the mean of INNER reflects the degree of lexical flexibility,
while the standard deviation (STD) captures variability or extreme cases. For example,
Qwen2.5-7b-Pre shows a relatively low mean (56.89) but the largest STD (19.64), indicating
that while it sometimes generates diverse lexical alternatives, its outputs are highly unsta-
ble. Similarly, LlaMA-2-7b-Pre reaches an even lower mean (46.23) yet still a very high
STD (13.39), pointing to unstable lexical diversity and occasional extreme outputs such
as malformed translations. Such behavior warrants careful attention in applications where
stability of surface forms is critical.

From the semantic perspective, the distributions are more robust, especially with respect
to STD values. Here, the mean serves as an indicator of semantic adequacy, where higher
values imply stronger alignment between source and candidate. Ideally, candidates should
reach both high means and low STDs, reflecting semantically faithful and consistent out-
puts. Qwen3-8B-NT exemplifies this behavior: it achieves the highest COMET20DA score
(86.24, STD 1.20) and the highest COMET22KIWT score (80.68, STD 0.99), demonstrating
strong and stable semantic alignment. Nevertheless, it should be noted that these semantic
scores are derived from external neural metrics, which may introduce their own biases, as
highlighted in recent work (Zouhar et all, 2024).

Overall, this case study illustrates system-level trade-offs. For applications prioritizing se-
mantic quality and stability, Qwen3-8B-NT ([Yang et al), 2025) is the preferred choice, given
its consistently high adequacy and low variance. When applications benefit from both high
quality and greater lexical flexibility, Qwen2.5-7b-Pre (Yang et all, 2024) offers a more bal-
anced option, albeit with higher variability. By contrast, the LlaMA-2-7b systems show
weaker overall performance, with comparatively lower means and higher variability in both
lexical and semantic dimensions.

3.3 THE UNRELIABILITY OF GENERATE-ONCE EVALUATION WITH NON-DETERMINISTIC
MT SYSTEMS

An important implication of measuring non-determinism is that it highlights the inher-
ent unreliability of current generate-once evaluation, even when advanced metrics are ap-

"https://github.com/wmt-conference/wmt23-news-systems
https://github.com /wmt-conference/wmt23-news-systems
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plied (Freitag et al), 2024). As shown in Table 57 relying on a single sampled output can
shift system rankings. Furthermore, the divergence between rankings based on mean scores
and those from arbitrary random samples indicates that repeated generation alone does not
guarantee robust comparisons across non-deterministic MT systems.

Table 2: The systematic results of the degree of non-determinism show the risk of unreliable
ranking.

| | MT Metrics
| | BLEU | TER | COMET20DA | COMET22KIWI
Model Name | Size | max mean min rand | max mean min rand | max mean min rand | max mean min rand
NMT
MBART 610M 13 12 13 14 13 15 13 14 13 11 10 11 14 13 11 13
NLLB-200 600M | 20 19 16 19 16 16 7 15 18 18 15 18 17 16 16 16
NLLB-200 3.3B 17 16 17 17 14 10 5 10 15 14 13 14 15 15 15 15
NLLB-moe 54.5B | 19 18 18 18 15 14 6 12 16 15 16 15 16 18 18 18
LLM (pre-trained only)
Llama-2 B 8 13 12 13 10 13 16 13 11 13 14 13 13 14 13 14
Qwen2.5 B 16 20 20 20 1 1 4 1 5 9 11 10 3 7 8 7
Llama-3.1 8B 12 15 19 16 3 7 17 7 10 10 12 9 12 11 12 11
Llama-2 70B 11 14 14 12 7 6 15 6 17 16 17 16 19 17 17 17
Llama-3.1 70B 9 5 6 6 4 3 1 3 14 12 9 12 10 8 7 8
Qwen2.5 72B 18 17 15 15 2 2 14 2 12 17 19 17 11 12 14 12
LLM (instruction-tuned)
Llama-2 B 14 10 8 10 6 5 2 5 19 20 20 20 18 19 20 19
Qwen2.5 B 6 4 3 3 17 17 9 16 3 1 1 1 4 1 1 1
Llama-2 70B 10 11 10 11 5 4 3 4 20 19 18 19 20 20 19 20
Qwen2.5 2B 4 1 1 1 20 20 11 18 6 4 4 4 6 4 4 4
MiniCPM-MoE | 8x2B 15 9 5 9 18 18 12 19 8 6 5 6 7 6 5 5
LLM (reasoning)

Qwen3(NT) 8B 7 2 2 2 19 19 8 20 4 2 2 2 5 2 2 2
Qwen3 8B 2 3 4 4 11 12 18 17 2 3 3 3 1 3 3 3
DeepSeek-R1 B 1 7 9 8 8 8 10 8 9 8 8 8 9 10 10 10
DeepSeek-R1 8B 3 8 11 5 9 9 19 9 7 7 7 7 8 9 9 9
DeepSeek-R1 6718 5 6 7 7 12 11 20 11 1 5 6 5 2 5 6 6

3.4 EVALUATION STAGE

The degree of non-determinism observed in the Understanding Stage makes it impractical
to rely on a generate-once for system evaluation. The MT system can output multiple
candidates due to its non-deterministic nature. To solve the unreliable situation, we propose
an Expectation to the Samples (EzpectoSample) strategy that can incorporate any MT
metrics to consider the non-determinism and provide a reliable evaluation.

Formally, for an MT metric M(-) applied to translated outputs, given a set of n sampled

candidates {y1,y2, - ..,Yn}, the evaluation score for a source text s; is estimated as:
1 n
Eval(s;) = E[Met (s;,yj,7:)] = - Z Met (s;,y;,73) - (7)
j=1

For the whole evaluation set S with size k, the final score for the MT system my, is:

k
Eval(S) = E[Eval(s;)] = %Z Eval(s;) (8)
i=1

This expectation over samples directly reduces estimator bias, a standard technique to
mitigate randomness for non-deterministic systems. Intuitively, the ExpectoSample allows
the flexibility of lexical and measures the semantic alignment on both the instance-level
(with E.q. % and system-level (with E.q. §). Besides, the sampling strategy is easy to
implement for any non-deterministic MT system without much additional cost for a small
sampling size.

3.5 THE RELIABILITY OF EXPECTOSAMPLE STRATEGY

One key factor for our method is the choice of sampling size n. Larger values of n will
affect the non-determinism degree and may lead to a change in the ranking. We select three
sample sizes (n = {10, 20,50} to validate the reliability of our proposed method.
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We keep the rest setting used in the measurement of the non-determinism degree and choose
LlaMA2-7b ([Touvron et al|, 2023), Qwen2.5-7b (Yang et all, 2024) and Qwen3-8b (Yang
et all, 2025) models under EN-ZH settings on WMT23 data tg test the change. From
the above case study and the ranking results in Table E, and P, we already observe the
huge difference for these five systems, so we select them as the standard models to do such
exploration.

Table E shows that our proposed method yields consistent performance rankings across
multiple MT metrics. In particular, we observe that both lexical and semantic metrics
produce identical ranking results under different sample sizes. These findings suggest that
ExpectoSample is reliable for evaluating diverse machine translation systems. At the same
time, Table W reveals some irregular patterns in metrics such as TER and ROUGE, indi-
cating that our ExpectoSample strategy can also serve to assess the reliability of existing
machine translation metrics. ExpectoSample is computationally inexpensive in additional
sampling and can seamlessly integrate with any MT metrics. Furthermore, our method is
unsupervised without the need for human assessment to evaluate MT systems.

Table 3: Evaluation on the effect of sample size with consistent rankings.
‘ BLEU ‘ BERTScore | chrF+4+ ‘ COMET20DA | COMET22KIWI | BLEURT

Model Name

Llama-2-7b-Instruct
Llama-2-7b-Pre
Sampling Size=10 | Qwen2.5-7b-Instruct
Qwen2.5-7b-Pre
Qwen3-8b-NT

Llama-2-7b-Instructt
Llama-2-7b-Pre
Sampling Size=20 | Qwen2.5-7b-Instruct
Qwen2.5-7b-Pre
Qwen3-8b-NT
Llama-2-7b-Instruct
Llama-2-7b

Sampling Size=50 | Qwen2.5-7B-Instruct
Qwen2.5-7h
Qwen3-8B(No Thinking)

I N R e ol L SR Nyt
L S Ut ORI U CRTSH
N Sl RN S S U RS
L N Sl RN RN U R
L N S N RN RN U RS
L N Sl TN RS U RN

Table 4: Evaluation on the effect of sample size with inconsistent rankings.
‘ METEOR ‘ ROUGE-1 ‘ ROUGE-L ‘ TER

Model Name

Llama-2-7b-Instruct
Llama-2-7b

Sampling Size=10 | Qwen2.5-7B-Instruct
Qwen2.5-7h
Qwen3-8B(No Thinking)

Llama-2-7b-Instruct
Llama-2-7b

Sampling Size=20 | Qwen2.5-7B-Instruct
Qwen2.5-7Th
Qwen3-8B(No Thinking)

Llama-2-7b-Instruct
Llama-2-7b

Sampling Size=50 | Qwen2.5-7B-Instruct
Qwen2.5-7b
Qwen3-8B(No Thinking)

R OCl VIS I CRUC S | IS UU RS
ol S Sl CROU S S U RS R
=0 DO T N T | 0o N O
e N U I O O IS ISt )

4 RELATED WORKS

Non-deterministic MT systems Non-deterministic MT systems may produce different
outputs for the same input when sampling-based decoding is used. Most modern systems
fall into this category, as their predictions are probability-based over a fixed vocabulary
with attention mechanisms (Vaswani et _all, 2017). Current MT systems can_be broadly
divided into neural MT (NMT) (Dabre et ali, 2020) and LLM-based MT (Vilar et all,
2023). NMT typically employs encoder—decoder architectures (Raffel et all, 2020) to learn
semantic alignment from training data. For example, NLLB-200 (Costa-jussa et al), 2022)
supports over 200 languages using large-scale bitext resources and back-translation.
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In contrast, LLM-based MT has recently emerged as a promisin i -trai
s strong translators with few-shot prompting (Vilar et al|, 2023; Baw
en & Yvon, 2023), and thelr translatmn capablhty further improves with 1nstruct10n tun-

ing or rei consider mainpstream families s S
LLaMA (Touvron et al., 02’3 ubey et al), 2024) and Qwen (Yang et al., 024|, 025),

covering pre-trained, 1nstruct10n tuned, and reasomng—enhanced variants. All these exhibit
non-deterministic behavior and thus are suitable for our study.

Measuring non-determinism E)n MT Non-determini s been observed even under
nominally deterministic settings (Sanchez Carmona.et. al and recent work attributes
this to underlying ker Y tabilized (He & Lab, 2025). i ith ynique
outputs, such as QA ([;oshi et all 017) or reasoning benchmarks (éendrycks et al), EOQ%),
MT permits multiple semantically valid translations. Hence, strict matching criteria used

in earlier stuE;'ii i.re 11nsnj1;g1b!;3 f%lx E?] . One ]nE of re%aargh measpr t tainty
i eiro et al), 2023; Yeom et al}, 2018; Carlini et all, EOQi; ghi et alh]7 024;
hang et all, 2024), assuming entropy faithfully reflects generation confidence. However,
this assumption is hard to validate for MT, and entropy-based results ;;:e often Qﬁ)
E;]man jn:terpl:eha1;]:'?115 An es on semantic uncertainty (Kuhn et all, 5023&
iu & Miikkulainen, 2024; ﬁla et al] §02a measuring similarity among generated samples.
Yet two limitations r%a.m__u_)ﬁ ferences are difficult to establish, as reference-based
evaluation is biased (Kocmi et all, 2024); and (2) such methods neglect the source sentence,
thus overlooking semantic alignment. To address these gaps, we propose measuring non-
determinism from both lexical and semantic perspectives.

Automatic MT evaluation methods Automatic evaluation is essential for assessing
translation quality and guiding MT development Existing meth into lexical-

and sem. Lexical metri EU (Pa i 2002), ME-
TEOR gan_eme_e_&,Lavé IES%E‘ chrF++ (Popovid, 2017), TER (Snover et al t2006), and
ROUGE (Lin, 2004) quagzt]f;z n- grau_] %r ojaracter—level over!;ap. E}mbed.df -hased met-
rics such as BERTScore (Zhang et al), 2019) and BLEURT (Sellam ef 02 ) co mpu ,e
similarity using contextual representations from pre-trained models (Devlin e

For semantic alignmen ised approaches like COMET20DA M@W
idely used, while XCOMET (Guerreiro et al), 202

COMET22KIWT (Rei et. al.
integrates the MQM (| ommel et al , 2014) scheme for fine-grained evaluation. The above

methods are typically single-generation-based methods and ignore the non-determinism of
MT systems.

5 CONCLUSION

In this work, we demonstrate that the non-deterministic nature of MT systems leads to
unreliable evaluation across different MT systems under the generate-once strategy. To
address this risk, we first define the degree of determinism from both lexical and semantic
perspectives for quality analysis and quantitative usage, such as system ranking. Subse-
quently, we propose an easy-to-implement strategy named ExpectoSample that computes
the expectation of candidates sampled according to source texts to mitigate the effects of
the non-determinism degree. Our experiments demonstrate that this strategy proves reliable
across different sample size settings and can serve as an unsupervised method to assess the
reliability of MT metrics without human involvement. Furthermore, our experiments also
reveal the robustness of semantic-based MT metrics and highlight the strong capability of
non-deterministic MT systems in semantic alignment.
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6 STATEMENT

6.1 ETHICS STATEMENT

Our work focuses on improving the reliability of machine translation (MT) evaluation by
explicitly incorporating the non-deterministic nature of modern MT systems. While our
framework and ExpectoSample strategy aim to provide trustworthy assessments, we ac-
knowledge that any evaluation framework may still introduce biases depending on the choice
of datasets, metrics, or sampling configurations. In particular, incorrect interpretation of
non-determinism measurements could mislead practitioners about the actual reliability of
MT systems. We emphasize that our contributions are intended for research and evaluation
purposes, not as a replacement for human judgment in high-stakes or sensitive domains.
We encourage practitioners to apply our methods responsibly, and to combine automated
evaluation with careful human assessment when system outputs may have ethical or societal
implications.

6.2 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we design our framework to be lightweight and compatible with
open-source MT systems and APIs. Our experiments are conducted on widely used, publicly
available datasets and standard evaluation benchmarks. The ExpectoSample strategy is
sampling-based and requires no fine-tuning or additional model training, lowering the barrier
for replication. We hope that this can facilitate more research on these important topics in
the academic community, as well as make our methods easier to replicate. We make all of
our code and dataset available under an MIT license.
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7 APPENDIX

.1 Use or LLMs

We use Claude—Sonnet—4E and GPT—5—Cha‘5E to provide lexical and writing suggestions on
the language part of this work; there is no direct usage with the output of LLMs in this
paper without any modification.

A MobDEL UsING

Table 5: Model Architecture and Size Overview

Model Name | Size | Architecture
610M Dense
600M Distill
3.3B Dense
54.5B MoE

Llama-2 ( 3) B Dense

Qwen2.5 (Yang 2, 7B Dense

Llama-3.1 (Dubey et a ) 8B Dense

Llama-2 (ITouvron et_all, ) 70B Dense

Llama-3.1 (Dubey ef, al ) 70B Dense

Qwen2.5 (Yang et all, ) 72B Dense

LLM (instruction-tuned)

Llama-2 ( )} 7B Dense

Qwen2.5 7B Dense

Llama-2 ( 708 Dense

Qwen2.5 (Yang 72B Dense

MiniCPM-MoE 2024) 8x2B MoE

LLM (reasoning)

Qwen3-N et a M 8B Dense

Qwen3-NT Yang et all () 3B Dense

DeepSeek-R1-Distill-Qwen-7B .lm (R025 7B Dense

DeepSeek-R1-Distill-Llama-8B_DeepS: () 8B Dense

DeepSeek-R1-0628 DeepSeek-Al et al! (2025) 671B MoE

As shown in Table ﬂ, we systematically consider current SOTA MT systems encompassing
NMT, LLM-based MT (pre-trained only, instruction-tuned, and reasoning) across different
model size.

B ProwmPTS

B.1 FOR INSTRUCTION-TUNED LLM

User:
Translate the following <source language> text to <target language>.
Only provide the translation, no explanations:

<source sentence>

B.2 PROMPT ON PRE-TRAINED LLM

User:
Translate the following <source language> sentences to <target language>:

| <source language>: SRKSIRF,

Shttps://www.anthropic.com/claude/sonnet
“https://chatgpt.com/
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<target language>: The weather is beautiful today.

<source language>: fREFIZ?
<target language>: How are you doing?

<source language>: KEFERINBRNEN.

<target language>: I'm looking forward to our meeting tomorrow.

<source language>: RAMIREXZREZNE T HNKBELER,
<target language>: The rapid development of technology has changed our daily lives
significantly.

<source language>: fREEFSIKARRIXAR)ENG?
<target language>: Could you please help me with this problem?

<source language>: <source sentence>
<target language>:

C DEGREE OF NON-DETERMINISM OF ALL DATA

Table 6: Degree of Non-determinism Analysis with Percentage Values

\ \ Degree of Non-determinism
INNER ‘ COMET20DA ‘ COMET22KIWI

Model Name ‘ Size ‘

| mean std | mean std | mean std
NMT
MBART 610M | 67.33 11.64 | 79.25 4.76 73.81 4.68
NLLB-200 600M | 63.94 13.87 | 73.14 7.43 65.05 8.42
NLLB-200 3.3B 57.86 14.92 | 73.04 8.81 63.62 10.25
NLLB-moe 54.5B | 53.54 17.76 | 71.68 9.16 60.75 10.51
LLM (pre-trained only)
Llama-2 B 46.23 13.39 | 70.67 8 63.8 8.31
Qwen2.5 7B 56.89 19.64 | 77.45 7.6 75.09 5.85
Llama-3.1 8B 61.43 16.13 | 80.36 5.82 74.68 5.4
Llama-2 70B 52.24 13.65 | 70.73 8.61 67.98 7.03
Llama-3.1 70B 80.95 13.38 | 75.12 6.17 T7.27 3.77
Qwen2.5 72B 61.22 16.47 | 76.37 11.43 78.11 3.56
LLM (instruction-tuned)
Llama-2 B 58.35 5.19 66.61 7.89 58.51 10
Qwen2.5 7B 85.65 10.00 | 85.15 2.06 79.01 2.1
Llama-2 70B 83.31 16.57 | 51.22 12.39 48.49 12.28
Qwen2.5 72B 90.35 7.78 86.85 1.34 80.59 1.09
MiniCPM-MoE | 8x2B 84.85 8.99 84.54 2.76 78.49 2.43
LLM (reasoning)

Qwen3(NT) 8B 90.66 8.05 86.24 1.2 80.68 0.99
Qwen3 8B 81.39 10.13 | 86.06 2.32 80.44 1.8
DeepSeek-R1 7B 63.51 12.36 | 80.27 5.53 73.77 6.31
DeepSeek-R1 8B 66.99 13.18 | 81.54 4.88 75.49 4.96
DeepSeek-R1 671B 70.56 11.84 | 84.86 3.02 80.33 2.42

20




	Introduction
	The Formalization of the Non-deterministic Degree of MT Systems
	Challenges of Ignoring Non-determinism in Evaluation
	Challenges in Understanding and Measuring Non-determinism
	Non-deterministic Degree of MT Systems from Lexical and Semantic Perspectives

	Understanding Before Evaluation
	Experimental Setup
	Understanding Stage
	Case Study: Analysis of Lexical and Semantic Degrees of Non-determinism

	The Unreliability of Generate-once Evaluation with Non-deterministic MT Systems
	Evaluation Stage
	The reliability of ExpectoSample Strategy

	Related Works
	Conclusion
	STATEMENT
	ETHICS STATEMENT
	REPRODUCIBILITY STATEMENT

	Appendix
	Use of LLMs

	Model Using
	Prompts
	For instruction-tuned LLM
	Prompt on pre-trained LLM

	Degree of Non-determinism of all data

