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Abstract

Modern machine translation (MT) systems exhibit non-deterministic be-
havior, producing variant outputs across runs in both neural MT and LLM-
based MT. This variability poses significant challenges for automatic eval-
uation methods (AEMs), leading to unreliable quality assessments. To
address this limitation, we propose a two-stage ”Understanding Before
Evaluation” framework. In the understanding stage, we formalize and
measure the degree of non-determinism from both lexical and semantic
perspectives using a simple sample-based strategy. Comprehensive exper-
iments on public datasets reveal high variance in lexical-based methods
while demonstrating stable behavior in semantic-based approaches across
MT systems. In the evaluation stage, we propose a reliable ExpectoSam-
ple method that explicitly incorporates non-deterministic characteristics to
mitigate variance effects. Our two-stage framework delivers more reliable
quality assessments for modern MT systems. Furthermore, our methods
provide a potential way for measuring MT metrics without human involve-
ment and highlight the superiority of semantic-based metrics for evaluating
modern non-deterministic MT systems.

1 Introduction

Machine translation (MT) has advanced rapidly in recent decades, driven by neural MT (De-
vlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020; Costa-jussà et al., 2022) and large
language models (LLMs) (Chowdhery et al., 2023; OpenAI, 2023; Touvron et al., 2023; Yang
et al., 2024; DeepSeek-AI et al., 2025; Yang et al., 2025; Vilar et al., 2023; Bawden & Yvon,
2023; Moslem et al., 2023). However, the reliable evaluation of MT systems remains chal-
lenging (Kocmi et al., 2024). Current evaluation typically applies test sets and automatic
metrics (Kocmi et al., 2025), testing the correlation with human judgments (Kocmi et al.,
2024). Unfortunately, such a human-involved scheme still fails for MT systems when facing
non-determinism (Reimers & Gurevych, 2018; Sanchez Carmona et al., 2025).
Modern MT relies on probability-based generation with an attention mechanism Vaswani
et al. (2017), where outputs are sampled from a softmax distribution. This introduces
a natural non-determinism that will finally propagate to sequence-level candidates. Prior
studies (Leblond et al., 2021; He & Lab, 2025; Atil et al., 2024) show that non-determinism
is intrinsic to MT systems. Evaluating only a single sampled candidate, as in the com-
mon generate-once scheme, will risk biased assessment by ignoring equally generated non-
deterministic candidates and lead to unreliable evaluation results.
Measuring non-determinism directly is difficult. Token-level alignments are unobservable
because many semantic alignments exist beyond the token-level. Moreover, multiple valid
references exist (Papineni et al., 2002; Freitag et al., 2020), making the counting of correct
references impossible. Additionally, the unpredictable sequence length makes it hard even
for a theoretical analysis. Entropy-based approaches (Guerreiro et al., 2023; Yeom et al.,
2018; Carlini et al., 2021; Shi et al., 2024; Zhang et al., 2024) try to understand the non-
deterministic behavior of LLMs but assume strong memorization (Shi et al., 2024) without
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Figure 1: Illustration of non-deterministic MT systems. For one source, multiple candi-
dates can be generated. Grey blocks indicate low-quality outputs; lighter blocks indicate
high-quality ones. Generate-once evaluation may misrepresent system quality if only some
candidates are sampled.

considering semantic alignment that is crucial for MT systems. Semantic uncertainty (Kuhn
et al., 2023b; Qiu & Miikkulainen, 2024; Jia et al., 2025) uncovers the semantic similarity
within candidates while ignoring the alignment with the input. To overcome the gap in the
understanding and measuring non-determinism of MT systems, we propose non-determinism
degree measurements from lexical and semantic perspectives with a simple sampling strategy.
This approach yields interpretable linguistic insights and quantitative scores with either
candidates themselves or existing metrics.
Building on this, we introduce the Understanding Before Evaluation (UBE) frame-
work, which incorporates non-determinism into MT evaluation. Our systematic experiments
on SOTA MT systems show the effectiveness of our designed understanding measurements.
We further design a method named ExpectoSample through utilizing a sampling-based ex-
pectation strategy that keeps the evaluation reliability across multiple metrics and sampling
sizes. Our findings highlight non-determinism as inherent and unavoidable, and call for de-
veloping semantic-oriented metrics beyond costly human evaluation (Graham et al., 2013;
Lommel et al., 2014). Crucially, our strategy is lightweight and compatible with current
APIs and open-source MT systems. Our contributions are:

• We demonstrate that non-determinism is intrinsic to modern MT systems and un-
dermines existing evaluation practices.

• We propose measurements of non-determinism on both lexical and semantic per-
spectives through an efficient sampling strategy.

• We introduce the Understanding Before Evaluation (UBE) frame to bridge the
ignorance of the deterministic nature of MT systems and propose the ExpectoSample
strategy for reliable MT system evaluation.

• Our frame and strategy are valuable for validating the reliability of MT metrics. Be-
sides, our findings unveil the trend and value of developing semantic-based metrics
for MT.

In summary, we unveil the truth that non-deterministic MT systems have the ability
to generate candidates with flexible lexical and well-studied semantic alignment behavior
=. (Chu & Wang, 2018), which risks the reliable evaluation of MT systems, and we can
solve it through the measurement of non-deterministic degree. We call for considering non-
deterministic degree measurement for all current developed MT systems and re-evaluate
the ranking of MT systems beyond the alignment design with human assessment (Graham
et al., 2013; Lommel et al., 2014).
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2 The Formalization of the Non-deterministic Degree of MT
Systems

2.1 Challenges of Ignoring Non-determinism in Evaluation

As shown in Figure 1, overlooking the non-deterministic nature of MT systems leads to
unreliable evaluations across systems. At the instance level, it may also mislead users to
underestimate the ability of an MT system to produce lexically rich candidates. In this
section, we first explain why non-determinism cannot be directly captured from token-
level probabilities, and then introduce measurements of non-deterministic degree on both
lexical and semantic aspects that enable both qualitative interpretation and quantitative
assessment.

2.2 Challenges in Understanding and Measuring Non-determinism

One intuitive approach for quantifying non-determinism involves leveraging token probabil-
ities (Kuhn et al., 2023b). Nevertheless, this methodology proves impractical for MT since
MT is a sequential generation task characterized by variable output lengths (Freitag et al.,
2020). Furthermore, establishing semantic correspondence between individual tokens and
source content presents significant challenges (Kudo & Richardson, 2018).
Previous research (Atil et al., 2024) has investigated question-answering tasks (Joshi et al.,
2017; Hendrycks et al., 2021), where exact answer matching provides a viable evaluation
framework, but such approaches cannot be readily adapted to machine translation scenar-
ios with no clear answers. Alternative methodologies estimate entropy across model out-
puts (Guerreiro et al., 2023; Yeom et al., 2018; Carlini et al., 2021; Shi et al., 2024; Zhang
et al., 2024), operating under the assumption that entropy can express the faithfulness of
LLMs but without considering semantic alignments between candidates and source texts. A
parallel research direction investigates semantic uncertainty (Kuhn et al., 2023b; Qiu & Mi-
ikkulainen, 2024; Jia et al., 2025), employing established similarity models (Conneau et al.,
2018a) to quantify internal semantic coherence. However, these approaches fail to account
for source-target alignment and present substantial challenges when extended to sequential
MT lacking explicit lexical correspondences.

2.3 Non-deterministic Degree of MT Systems from Lexical and Semantic
Perspectives

Understanding the meaning of such a non-deterministic degree (Reimers & Gurevych, 2018;
Sanchez Carmona et al., 2025) and the interpretation (Kocmi et al., 2024) of the final score
are both significant for MT systems. We consider two main aspects: lexical and semantic.
On the lexical, we can check with humans and encompass the linguistic knowledge (Nguyen
& Chiang, 2018). On the semantic level, we follow the requirement of semantic alignment
of MT with external tools, testing the non-deterministic degree on the semantic view (Rei
et al., 2020; 2022; Heffernan et al., 2022; Song et al., 2020; Conneau et al., 2020; Dale &
Costa-jussà, 2024; Duquenne et al., 2023).
We now introduce the basic formalism for measuring non-determinism. For an MT task
T , let the test set be S of size k, where each source text is s ∈ S. A non-deterministic
MT system mθ ∈ MΘ with parameters θ can generate, for a source si, a candidate set
Csi = {c1, c2, . . . , cN}. Ideally, there exists a set of gold references Rsi = {r1, r2, . . . , rM}.
We denote the non-determinism degree for a single source as d(si), and for the entire test
set:

D(S) = 1

k

∑
si∈S

d(si). (1)

In practice, neither the full set of candidates nor exhaustive gold references are obtainable,
even with human annotation. Following previous work on sampling strategies (Kuhn et al.,
2023b) and empirical observations of MT generation (Kocmi et al., 2024), we approximate
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Csi by sampling n candidates under a decoding configuration θp, and assume one reference
ri per source si. We then evaluate d(si) from both lexical and semantic perspectives.

Lexical Non-determinism Degree of MT Systems Previous approaches (Papineni
et al., 2002) typically employ an anchor, such as a reference translation, to evaluate the lex-
ical quality of generated candidates. However, this method can be problematic for measuring
non-determinism when the reference contains highly idiosyncratic lexical choices, leading to
little or no lexical overlap. To mitigate this limitation and reduce potential reference bias,
we propose an intrinsic method, denoted as INNER, which evaluates the degree of lexi-
cal non-determinism solely based on the generated candidates themselves. The procedure
consists of four steps:
Step1: tokenizing each candidate ci into a list of words Wi = {w1, w2, . . . , wl}
Step 2: Construct the frequency vocabulary Vi from the set of candidates.
Step 3: Compute the inner-overlap score L(ci) for each candidate ci based on Vi:

L(ci) =
∑

w∈WU
i

fVi(w), (2)

where WU
i denotes the set of unique words in ci, and fVi(w) is the frequency of word w in

the overall vocabulary Vi.
Step 4: Aggregate the scores across sampled candidates {L(c1), L(c2), . . . , L(cn)} to esti-
mate the degree of lexical non-determinism:

d(si,mθp) = mean_std
(
{L(c1), L(c2), . . . , L(cn)}

)
,

where mean_std computes both the mean and standard deviation of the score distribution.
The resulting pair (mean, std) reflects the degree of non-determinism for a given source. For
the full test set, we define:

D(S) = 1

k

∑
si∈S

d(si,mθp). (3)

However, in most cases, the reference tends to show at least some of the overlap since some
unique lexical items can determine the meaning in languages. Following this convention,
we consider an external measure of the lexical degree in a relative way with current lexical
similarity metrics Simlex(·)

d(si,mθp , ri, Simlex(·)) = mean_std(Simlex(ci, r1), . . . , Simlex(ci, rn)) (4)

Semantic non-determinism degree of MT systems we follow the fundamental re-
quirement of MT on the semantic alignment. We utilize the external tools (Rei et al., 2020;
2022; Heffernan et al., 2022; Song et al., 2020; Conneau et al., 2020; Dale & Costa-jussà,
2024; Duquenne et al., 2023) to measure the semantic alignment on the candidate list Ci

since the semantics cannot be directly understood with a pure lexical expression. Here we
consider both reference-based:

d(si,mθp , ri, Simsem(·) = mean_std(Simsem(si, ci, r1), . . . , Simsem(si, ci, rn)) (5)
and reference free format:

d(si,mθp , ri, Simsem(si, ci) = mean_std(Simsem(si, c1), . . . , Simsem(si, cn)) (6)

For the measurement of the non-determinism degree of the MT system, we compute with
the equation 3.

3 Understanding Before Evaluation

Ignoring the non-deterministic nature of MT systems poses the risk of unreliable evaluation.
To address this challenge, we propose the Understanding Before Evaluation (UBE)
framework, which separates MT evaluation into two stages:
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Understanding Stage In this stage, we employ the formal definitions introduced in Sec-
tion 2 to calculate the non-deterministic degree of an MT system from both lexical and
semantic perspectives. We further analyze these degrees for each system and treat the
resulting scores as intrinsic attributes of the systems under investigation.
Evaluation Stage To mitigate the unreliability caused by ignoring non-determinism, we
introduce the ExpectoSample strategy. This method can be directly applied to existing
MT metrics, enabling more reliable evaluations of non-deterministic systems.

3.1 Experimental Setup

Data: We adopt the WMT23 (Kocmi et al., 2023) and WMT24 (Wang et al., 2024a)
datasets12, focusing on the Chinese–English language pair, which comprises 5,048 sentence
pairs.
Models and Prompting: For a comprehensive evaluation, we include representative
state-of-the-art transformer-based (Vaswani et al., 2017) non-deterministic MT systems.
These cover (i) conventional NMT systems (Lewis et al., 2020; Costa-jussà et al., 2022),
(ii) pre-trained LLMs (Touvron et al., 2023; Yang et al., 2024), (iii) instruction-tuned
LLMs (Touvron et al., 2023; Yang et al., 2024; Hu et al., 2024), and (iv) reasoning-focused
LLMs (DeepSeek-AI et al., 2025; Yang et al., 2025). We detail the information of all model
in Appendix A
For prompting, we adopt Five-Shot prompting to reduce potential mismatches and repetitive
patterns (Wang et al., 2024b). Instruction-tuned LLMs are evaluated with direct prompts
in order to avoid artificial biases while leveraging their intrinsic translation capability (Vilar
et al., 2023). Similarly, reasoning LLMs are prompted directly, ensuring their reasoning
is focused solely on the MT task. Detailed model configurations and prompt designs are
provided in the Appendix B.
Sampling Strategy: Motivated by prior findings on temperature’s effect on genera-
tion (Kuhn et al., 2023a), we set the temperature to 0.5 and sample 10 candidates per
source. Importantly, our method is not constrained to this specific setting and can be
flexibly adapted to other generation configurations.
Non-determinism Degree Measurement: To compute the non-deterministic degree,
especially from the semantic perspective, we rely on external evaluation tools. For lex-
ical measurements, we adopt BLEU (Papineni et al., 2002), METEOR (Banerjee &
Lavie, 2005), chrF++ (Popović, 2017), TER (Snover et al., 2006), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2019), and BLEURT (Sellam et al., 2020). For seman-
tics, we consider supervised MT metrics such as COMET20DA (Rei et al., 2020) and
COMET22KIWI (Rei et al., 2022); supervised sentence-similarity models like LaBSE (Feng
et al., 2020) and XNLI (Conneau et al., 2018b); as well as embedding-based unsupervised
methods including LASER (Heffernan et al., 2022), Sentence Transformers (Song et al.,
2020), SONAR (Duquenne et al., 2023), and BLASER (Dale & Costa-jussà, 2024).
MT Metrics: For final MT evaluation, we directly employ the metrics computed during
non-determinism measurement, excluding those pure similarity measures that are not su-
pervised with MT data (i.e., LaBSE (Feng et al., 2020), XNLI (Conneau et al., 2018b),
and the embedding-based unsupervised methods LASER (Heffernan et al., 2022), Sentence
Transformers (Song et al., 2020), SONAR (Duquenne et al., 2023), and BLASER (Dale &
Costa-jussà, 2024)).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: The results of non-determinism degrees show high lexical variance and stable
semantic alignment.

Degree of Non-determinism

Model Name INNER COMET20DA COMET22KIWI
mean std mean std mean std

LlaMA-2-7b-Instruct 58.35 5.19 66.61 7.89 58.51 10.00
LlaMA-2-7b-Pre 46.23 13.39 70.67 8.00 63.80 8.31
Qwen2.5-7b-Instruct 85.65 10.00 85.15 2.06 79.01 2.10
Qwen2.5-7b-Pre 56.89 19.64 77.45 7.60 75.09 5.85
Qwen3-8b-NT 90.66 8.05 86.24 1.20 80.68 0.99

3.2 Understanding Stage

3.2.1 Case Study: Analysis of Lexical and Semantic Degrees of
Non-determinism

In the understanding stage, we aim to characterize the non-deterministic behavior of MT
systems in a measurable way. For this case study, we consider three representative systems:
LlaMA2 (Touvron et al., 2023), Qwen2.5 (Yang et al., 2024), and Qwen3 (Yang et al.,
2025). Table 1 reports their non-determinism measured from both the lexical perspective
(INNER, defined in Section 2) and the semantic perspective, using two external MT metrics
(COMET20DA and COMET22KIWI). Each system is evaluated by the mean and standard
deviation across sampled candidates.
From the lexical perspective, the mean of INNER reflects the degree of lexical flexibility,
while the standard deviation (STD) captures variability or extreme cases. For example,
Qwen2.5-7b-Pre shows a relatively low mean (56.89) but the largest STD (19.64), indicating
that while it sometimes generates diverse lexical alternatives, its outputs are highly unsta-
ble. Similarly, LlaMA-2-7b-Pre reaches an even lower mean (46.23) yet still a very high
STD (13.39), pointing to unstable lexical diversity and occasional extreme outputs such
as malformed translations. Such behavior warrants careful attention in applications where
stability of surface forms is critical.
From the semantic perspective, the distributions are more robust, especially with respect
to STD values. Here, the mean serves as an indicator of semantic adequacy, where higher
values imply stronger alignment between source and candidate. Ideally, candidates should
reach both high means and low STDs, reflecting semantically faithful and consistent out-
puts. Qwen3-8B-NT exemplifies this behavior: it achieves the highest COMET20DA score
(86.24, STD 1.20) and the highest COMET22KIWI score (80.68, STD 0.99), demonstrating
strong and stable semantic alignment. Nevertheless, it should be noted that these semantic
scores are derived from external neural metrics, which may introduce their own biases, as
highlighted in recent work (Zouhar et al., 2024).
Overall, this case study illustrates system-level trade-offs. For applications prioritizing se-
mantic quality and stability, Qwen3-8B-NT (Yang et al., 2025) is the preferred choice, given
its consistently high adequacy and low variance. When applications benefit from both high
quality and greater lexical flexibility, Qwen2.5-7b-Pre (Yang et al., 2024) offers a more bal-
anced option, albeit with higher variability. By contrast, the LlaMA-2-7b systems show
weaker overall performance, with comparatively lower means and higher variability in both
lexical and semantic dimensions.

3.3 The Unreliability of Generate-once Evaluation with Non-deterministic
MT Systems

An important implication of measuring non-determinism is that it highlights the inher-
ent unreliability of current generate-once evaluation, even when advanced metrics are ap-

1https://github.com/wmt-conference/wmt23-news-systems
2https://github.com/wmt-conference/wmt23-news-systems
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plied (Freitag et al., 2024). As shown in Table 2, relying on a single sampled output can
shift system rankings. Furthermore, the divergence between rankings based on mean scores
and those from arbitrary random samples indicates that repeated generation alone does not
guarantee robust comparisons across non-deterministic MT systems.

Table 2: The systematic results of the degree of non-determinism show the risk of unreliable
ranking.

MT Metrics

Model Name Size
BLEU TER COMET20DA COMET22KIWI

max mean min rand max mean min rand max mean min rand max mean min rand
NMT

MBART 610M 13 12 13 14 13 15 13 14 13 11 10 11 14 13 11 13
NLLB-200 600M 20 19 16 19 16 16 7 15 18 18 15 18 17 16 16 16
NLLB-200 3.3B 17 16 17 17 14 10 5 10 15 14 13 14 15 15 15 15
NLLB-moe 54.5B 19 18 18 18 15 14 6 12 16 15 16 15 16 18 18 18

LLM (pre-trained only)
Llama-2 7B 8 13 12 13 10 13 16 13 11 13 14 13 13 14 13 14
Qwen2.5 7B 16 20 20 20 1 1 4 1 5 9 11 10 3 7 8 7
Llama-3.1 8B 12 15 19 16 3 7 17 7 10 10 12 9 12 11 12 11
Llama-2 70B 11 14 14 12 7 6 15 6 17 16 17 16 19 17 17 17
Llama-3.1 70B 9 5 6 6 4 3 1 3 14 12 9 12 10 8 7 8
Qwen2.5 72B 18 17 15 15 2 2 14 2 12 17 19 17 11 12 14 12

LLM (instruction-tuned)
Llama-2 7B 14 10 8 10 6 5 2 5 19 20 20 20 18 19 20 19
Qwen2.5 7B 6 4 3 3 17 17 9 16 3 1 1 1 4 1 1 1
Llama-2 70B 10 11 10 11 5 4 3 4 20 19 18 19 20 20 19 20
Qwen2.5 72B 4 1 1 1 20 20 11 18 6 4 4 4 6 4 4 4
MiniCPM-MoE 8x2B 15 9 5 9 18 18 12 19 8 6 5 6 7 6 5 5

LLM (reasoning)
Qwen3(NT) 8B 7 2 2 2 19 19 8 20 4 2 2 2 5 2 2 2
Qwen3 8B 2 3 4 4 11 12 18 17 2 3 3 3 1 3 3 3
DeepSeek-R1 7B 1 7 9 8 8 8 10 8 9 8 8 8 9 10 10 10
DeepSeek-R1 8B 3 8 11 5 9 9 19 9 7 7 7 7 8 9 9 9
DeepSeek-R1 671B 5 6 7 7 12 11 20 11 1 5 6 5 2 5 6 6

3.4 Evaluation Stage

The degree of non-determinism observed in the Understanding Stage makes it impractical
to rely on a generate-once for system evaluation. The MT system can output multiple
candidates due to its non-deterministic nature. To solve the unreliable situation, we propose
an Expectation to the Samples (ExpectoSample) strategy that can incorporate any MT
metrics to consider the non-determinism and provide a reliable evaluation.
Formally, for an MT metric M(·) applied to translated outputs, given a set of n sampled
candidates {y1, y2, . . . , yn}, the evaluation score for a source text si is estimated as:

Eval(si) = E[Met (si, yj , ri)] =
1

n

n∑
j=1

Met (si, yj , ri) . (7)

For the whole evaluation set S with size k, the final score for the MT system mθp is:

Eval(S) = E[Eval(si)] =
1

k

k∑
i=1

Eval(si) (8)

This expectation over samples directly reduces estimator bias, a standard technique to
mitigate randomness for non-deterministic systems. Intuitively, the ExpectoSample allows
the flexibility of lexical and measures the semantic alignment on both the instance-level
(with E.q. 7) and system-level (with E.q. 8). Besides, the sampling strategy is easy to
implement for any non-deterministic MT system without much additional cost for a small
sampling size.

3.5 The reliability of ExpectoSample Strategy

One key factor for our method is the choice of sampling size n. Larger values of n will
affect the non-determinism degree and may lead to a change in the ranking. We select three
sample sizes (n = {10, 20, 50} to validate the reliability of our proposed method.

7
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We keep the rest setting used in the measurement of the non-determinism degree and choose
LlaMA2-7b (Touvron et al., 2023), Qwen2.5-7b (Yang et al., 2024) and Qwen3-8b (Yang
et al., 2025) models under EN-ZH settings on WMT23 data to test the change. From
the above case study and the ranking results in Table 1, and 2, we already observe the
huge difference for these five systems, so we select them as the standard models to do such
exploration.
Table 3 shows that our proposed method yields consistent performance rankings across
multiple MT metrics. In particular, we observe that both lexical and semantic metrics
produce identical ranking results under different sample sizes. These findings suggest that
ExpectoSample is reliable for evaluating diverse machine translation systems. At the same
time, Table 4 reveals some irregular patterns in metrics such as TER and ROUGE, indi-
cating that our ExpectoSample strategy can also serve to assess the reliability of existing
machine translation metrics. ExpectoSample is computationally inexpensive in additional
sampling and can seamlessly integrate with any MT metrics. Furthermore, our method is
unsupervised without the need for human assessment to evaluate MT systems.

Table 3: Evaluation on the effect of sample size with consistent rankings.
BLEU BERTScore chrF++ COMET20DA COMET22KIWI BLEURT

Model Name

Sampling Size=10

Llama-2-7b-Instruct 3 5 5 5 5 5
Llama-2-7b-Pre 4 4 4 4 4 4
Qwen2.5-7b-Instruct 1 2 2 2 2 2
Qwen2.5-7b-Pre 5 3 3 3 3 3
Qwen3-8b-NT 2 1 1 1 1 1

Sampling Size=20

Llama-2-7b-Instructt 3 5 5 5 5 5
Llama-2-7b-Pre 4 4 4 4 4 4
Qwen2.5-7b-Instruct 1 2 2 2 2 2
Qwen2.5-7b-Pre 5 3 3 3 3 3
Qwen3-8b-NT 2 1 1 1 1 1

Sampling Size=50

Llama-2-7b-Instruct 3 5 5 5 5 5
Llama-2-7b 4 4 4 4 4 4
Qwen2.5-7B-Instruct 1 2 2 2 2 2
Qwen2.5-7b 5 3 3 3 3 3
Qwen3-8B(No Thinking) 2 1 1 1 1 1

Table 4: Evaluation on the effect of sample size with inconsistent rankings.
METEOR ROUGE-1 ROUGE-L TER

Model Name

Sampling Size=10

Llama-2-7b-Instruct 5 4 4 2
Llama-2-7b 4 5 5 3
Qwen2.5-7B-Instruct 2 2 2 4
Qwen2.5-7b 3 3 3 1
Qwen3-8B(No Thinking) 1 1 1 5

Sampling Size=20

Llama-2-7b-Instruct 5 4 4 1
Llama-2-7b 4 5 5 2
Qwen2.5-7B-Instruct 1 1 1 2
Qwen2.5-7b 3 3 3 1
Qwen3-8B(No Thinking) 2 2 2 1

Sampling Size=50

Llama-2-7b-Instruct 5 5 5 1
Llama-2-7b 4 4 4 2
Qwen2.5-7B-Instruct 2 2 2 2
Qwen2.5-7b 3 3 3 1
Qwen3-8B(No Thinking) 1 1 1 1

4 Related Works

Non-deterministic MT systems Non-deterministic MT systems may produce different
outputs for the same input when sampling-based decoding is used. Most modern systems
fall into this category, as their predictions are probability-based over a fixed vocabulary
with attention mechanisms (Vaswani et al., 2017). Current MT systems can be broadly
divided into neural MT (NMT) (Dabre et al., 2020) and LLM-based MT (Vilar et al.,
2023). NMT typically employs encoder–decoder architectures (Raffel et al., 2020) to learn
semantic alignment from training data. For example, NLLB-200 (Costa-jussà et al., 2022)
supports over 200 languages using large-scale bitext resources and back-translation.
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In contrast, LLM-based MT has recently emerged as a promising paradigm. Pre-trained
LLMs often act as strong translators with few-shot prompting (Vilar et al., 2023; Baw-
den & Yvon, 2023), and their translation capability further improves with instruction tun-
ing or reinforcement learning. In this paper, we consider mainstream families such as
LLaMA (Touvron et al., 2023; Dubey et al., 2024) and Qwen (Yang et al., 2024; 2025),
covering pre-trained, instruction-tuned, and reasoning-enhanced variants. All these exhibit
non-deterministic behavior and thus are suitable for our study.

Measuring non-determinism in MT Non-determinism has been observed even under
nominally deterministic settings (Sanchez Carmona et al., 2025), and recent work attributes
this to underlying kernels that may be stabilized (He & Lab, 2025). Unlike tasks with unique
outputs, such as QA (Joshi et al., 2017) or reasoning benchmarks (Hendrycks et al., 2021),
MT permits multiple semantically valid translations. Hence, strict matching criteria used
in earlier studies are unsuitable for MT. One line of research measures output uncertainty
via entropy (Guerreiro et al., 2023; Yeom et al., 2018; Carlini et al., 2021; Shi et al., 2024;
Zhang et al., 2024), assuming entropy faithfully reflects generation confidence. However,
this assumption is hard to validate for MT, and entropy-based results are often opaque to
human interpretation. Another line focuses on semantic uncertainty (Kuhn et al., 2023b;
Qiu & Miikkulainen, 2024; Jia et al., 2025), measuring similarity among generated samples.
Yet two limitations remain: (1) gold references are difficult to establish, as reference-based
evaluation is biased (Kocmi et al., 2024); and (2) such methods neglect the source sentence,
thus overlooking semantic alignment. To address these gaps, we propose measuring non-
determinism from both lexical and semantic perspectives.

Automatic MT evaluation methods Automatic evaluation is essential for assessing
translation quality and guiding MT development. Existing methods largely fall into lexical-
and semantic-based categories. Lexical metrics such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee & Lavie, 2005), chrF++ (Popović, 2017), TER (Snover et al., 2006), and
ROUGE (Lin, 2004) quantify n-gram or character-level overlap. Embedding-based met-
rics such as BERTScore (Zhang et al., 2019) and BLEURT (Sellam et al., 2020) compute
similarity using contextual representations from pre-trained models (Devlin et al., 2019).
For semantic alignment, supervised approaches like COMET20DA (Rei et al., 2020) and
COMET22KIWI (Rei et al., 2022) are widely used, while XCOMET (Guerreiro et al., 2024)
integrates the MQM (Lommel et al., 2014) scheme for fine-grained evaluation. The above
methods are typically single-generation-based methods and ignore the non-determinism of
MT systems.

5 Conclusion

In this work, we demonstrate that the non-deterministic nature of MT systems leads to
unreliable evaluation across different MT systems under the generate-once strategy. To
address this risk, we first define the degree of determinism from both lexical and semantic
perspectives for quality analysis and quantitative usage, such as system ranking. Subse-
quently, we propose an easy-to-implement strategy named ExpectoSample that computes
the expectation of candidates sampled according to source texts to mitigate the effects of
the non-determinism degree. Our experiments demonstrate that this strategy proves reliable
across different sample size settings and can serve as an unsupervised method to assess the
reliability of MT metrics without human involvement. Furthermore, our experiments also
reveal the robustness of semantic-based MT metrics and highlight the strong capability of
non-deterministic MT systems in semantic alignment.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 STATEMENT

6.1 ETHICS STATEMENT

Our work focuses on improving the reliability of machine translation (MT) evaluation by
explicitly incorporating the non-deterministic nature of modern MT systems. While our
framework and ExpectoSample strategy aim to provide trustworthy assessments, we ac-
knowledge that any evaluation framework may still introduce biases depending on the choice
of datasets, metrics, or sampling configurations. In particular, incorrect interpretation of
non-determinism measurements could mislead practitioners about the actual reliability of
MT systems. We emphasize that our contributions are intended for research and evaluation
purposes, not as a replacement for human judgment in high-stakes or sensitive domains.
We encourage practitioners to apply our methods responsibly, and to combine automated
evaluation with careful human assessment when system outputs may have ethical or societal
implications.

6.2 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we design our framework to be lightweight and compatible with
open-source MT systems and APIs. Our experiments are conducted on widely used, publicly
available datasets and standard evaluation benchmarks. The ExpectoSample strategy is
sampling-based and requires no fine-tuning or additional model training, lowering the barrier
for replication. We hope that this can facilitate more research on these important topics in
the academic community, as well as make our methods easier to replicate. We make all of
our code and dataset available under an MIT license.

References
Berk Atil, Sarp Aykent, Alexa Chittams, Lisheng Fu, Rebecca J Passonneau, Evan Radcliffe,

Guru Rajan Rajagopal, Adam Sloan, Tomasz Tudrej, Ferhan Ture, et al. Non-determinism
of” deterministic” llm settings. arXiv preprint arXiv:2408.04667, 2024.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with
improved correlation with human judgments. In Proceedings of the acl workshop on in-
trinsic and extrinsic evaluation measures for machine translation and/or summarization,
pp. 65–72, 2005.

Rachel Bawden and François Yvon. Investigating the translation performance of a large
multilingual language model: the case of BLOOM. In Mary Nurminen, Judith Bren-
ner, Maarit Koponen, Sirkku Latomaa, Mikhail Mikhailov, Frederike Schierl, Tharindu
Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal, Nora Aranberri, Mara Nunziatini,
Carla Parra Escartín, Mikel Forcada, Maja Popovic, Carolina Scarton, and Helena Moniz
(eds.), Proceedings of the 24th Annual Conference of the European Association for Ma-
chine Translation, pp. 157–170, Tampere, Finland, June 2023. European Association for
Machine Translation. URL https://aclanthology.org/2023.eamt-1.16/.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large language models. In Michael D. Bai-
ley and Rachel Greenstadt (eds.), 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, pp. 2633–2650. USENIX Association, 2021. URL https://www.
usenix.org/conference/usenixsecurity21/presentation/carlini-extracting.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny

10

https://aclanthology.org/2023.eamt-1.16/
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Mor-
eira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling lan-
guage modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023. URL
https://jmlr.org/papers/v24/22-1144.html.

Chenhui Chu and Rui Wang. A survey of domain adaptation for neural machine translation.
In Emily M. Bender, Leon Derczynski, and Pierre Isabelle (eds.), Proceedings of the 27th
International Conference on Computational Linguistics, pp. 1304–1319, Santa Fe, New
Mexico, USA, August 2018. Association for Computational Linguistics. URL https:
//aclanthology.org/C18-1111/.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2475–2485, Brussels, Belgium, October-November 2018a. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1269. URL https://aclanthology.org/D18-1269/.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2475–2485, Brussels, Belgium, October-November 2018b. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1269. URL https://aclanthology.org/D18-1269/.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoy-
anov. Unsupervised cross-lingual representation learning at scale. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 8440–8451, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL
https://aclanthology.org/2020.acl-main.747/.

Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin
Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Y. Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loïc Barrault, Gabriel Mejia Gon-
zalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan,
Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhos-
ale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán,
Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger
Schwenk, and Jeff Wang. No language left behind: Scaling human-centered machine
translation. CoRR, abs/2207.04672, 2022. doi: 10.48550/ARXIV.2207.04672. URL
https://doi.org/10.48550/arXiv.2207.04672.

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan. A comprehensive survey of multilin-
gual neural machine translation. CoRR, abs/2001.01115, 2020. URL http://arxiv.org/
abs/2001.01115.

David Dale and Marta R. Costa-jussà. BLASER 2.0: a metric for evaluation and quality
estimation of massively multilingual speech and text translation. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 16075–16085, Miami, Florida, USA, November 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.943. URL
https://aclanthology.org/2024.findings-emnlp.943/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,

11

https://jmlr.org/papers/v24/22-1144.html
https://aclanthology.org/C18-1111/
https://aclanthology.org/C18-1111/
https://aclanthology.org/D18-1269/
https://aclanthology.org/D18-1269/
https://aclanthology.org/2020.acl-main.747/
https://doi.org/10.48550/arXiv.2207.04672
http://arxiv.org/abs/2001.01115
http://arxiv.org/abs/2001.01115
https://aclanthology.org/2024.findings-emnlp.943/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han
Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu,
Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Jun-
jie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang
Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL
https://doi.org/10.48550/arXiv.2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, 2019.
doi: 10.18653/V1/N19-1423. URL https://doi.org/10.18653/v1/n19-1423.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Niko-
laidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu,
Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-
abel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Gef-
fert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jen-
nifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen
Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca,
Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Up-
asani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3
herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

Paul-Ambroise Duquenne, Holger Schwenk, and Benoît Sagot. SONAR: sentence-level
multimodal and language-agnostic representations. CoRR, abs/2308.11466, 2023. doi:
10.48550/ARXIV.2308.11466. URL https://doi.org/10.48550/arXiv.2308.11466.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-
agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852, 2020.

Markus Freitag, David Grangier, and Isaac Caswell. BLEU might be guilty but references are
not innocent. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 61–71, Online, November 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.emnlp-main.5. URL https://aclanthology.org/2020.emnlp-main.5/.

12

https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2308.11466
https://aclanthology.org/2020.emnlp-main.5/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-Kiu Lo, Eleftherios Avramidis, Ri-
cardo Rei, Brian Thompson, Frederic Blain, Tom Kocmi, Jiayi Wang, David Ifeoluwa
Adelani, Marianna Buchicchio, Chrysoula Zerva, and Alon Lavie. Are LLMs break-
ing MT metrics? results of the WMT24 metrics shared task. In Barry Haddow, Tom
Kocmi, Philipp Koehn, and Christof Monz (eds.), Proceedings of the Ninth Confer-
ence on Machine Translation, pp. 47–81, Miami, Florida, USA, November 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.wmt-1.2. URL https:
//aclanthology.org/2024.wmt-1.2/.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and Justin Zobel. Continuous measure-
ment scales in human evaluation of machine translation. In Antonio Pareja-Lora, Maria
Liakata, and Stefanie Dipper (eds.), Proceedings of the 7th Linguistic Annotation Work-
shop and Interoperability with Discourse, pp. 33–41, Sofia, Bulgaria, August 2013. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/W13-2305/.

Nuno M. Guerreiro, Elena Voita, and André Martins. Looking for a needle in a haystack: A
comprehensive study of hallucinations in neural machine translation. In Andreas Vlachos
and Isabelle Augenstein (eds.), Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, pp. 1059–1075, Dubrovnik, Croatia, May
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.75.
URL https://aclanthology.org/2023.eacl-main.75/.

Nuno M. Guerreiro, Ricardo Rei, Daan van Stigt, Luisa Coheur, Pierre Colombo, and
André F. T. Martins. xcomet: Transparent machine translation evaluation through fine-
grained error detection. Transactions of the Association for Computational Linguistics,
12:979–995, 2024. doi: 10.1162/tacl_a_00683. URL https://aclanthology.org/2024.
tacl-1.54/.

Horace He and Thinking Machines Lab. Defeating nondeterminism in llm inference. Think-
ing Machines Lab: Connectionism, 2025. https://thinkingmachines.ai/blog/defeating-
nondeterminism-in-llm-inference/.

Kevin Heffernan, Onur Çelebi, and Holger Schwenk. Bitext mining using distilled sentence
representations for low-resource languages. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Findings of the Association for Computational Linguistics: EMNLP
2022, pp. 2101–2112, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.154. URL https:
//aclanthology.org/2022.findings-emnlp.154/.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng,
Yewei Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang,
Chongyi Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding,
Chao Jia, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Un-
veiling the potential of small language models with scalable training strategies. CoRR,
abs/2404.06395, 2024. doi: 10.48550/ARXIV.2404.06395. URL https://doi.org/10.
48550/arXiv.2404.06395.

Yepai Jia, Yatu Ji, Xiang Xue, Lei Shi, Qing-Dao-Er-Ji Ren, Nier Wu, Na Liu, Chen
Zhao, and Fu Liu. A semantic uncertainty sampling strategy for back-translation in
low-resources neural machine translation. In Jin Zhao, Mingyang Wang, and Zhu Liu
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 4: Student Research Workshop), pp. 528–538, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-254-1. doi: 10.18653/
v1/2025.acl-srw.35. URL https://aclanthology.org/2025.acl-srw.35/.

13

https://aclanthology.org/2024.wmt-1.2/
https://aclanthology.org/2024.wmt-1.2/
https://aclanthology.org/W13-2305/
https://aclanthology.org/2023.eacl-main.75/
https://aclanthology.org/2024.tacl-1.54/
https://aclanthology.org/2024.tacl-1.54/
https://aclanthology.org/2022.findings-emnlp.154/
https://aclanthology.org/2022.findings-emnlp.154/
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/arXiv.2404.06395
https://doi.org/10.48550/arXiv.2404.06395
https://aclanthology.org/2025.acl-srw.35/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay
and Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL
https://aclanthology.org/P17-1147/.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondřej Bojar, Anton Dvorkovich, Chris-
tian Federmann, Mark Fishel, Markus Freitag, Thamme Gowda, Roman Grundkiewicz,
Barry Haddow, Philipp Koehn, Benjamin Marie, Christof Monz, Makoto Morishita, Ken-
ton Murray, Masaaki Nagata, Toshiaki Nakazawa, Martin Popel, Maja Popović, Mariya
Shmatova, and Jun Suzuki. Findings of the 2023 conference on machine translation
(WMT23): LLMs are here but not quite there yet. In Philipp Koehn, Barry Haddow, Tom
Kocmi, and Christof Monz (eds.), Proceedings of the Eighth Conference on Machine Trans-
lation, pp. 1–42, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.wmt-1.1. URL https://aclanthology.org/2023.wmt-1.1/.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondřej Bojar, Anton Dvorkovich,
Christian Federmann, Mark Fishel, Markus Freitag, Thamme Gowda, Roman Grund-
kiewicz, Barry Haddow, Marzena Karpinska, Philipp Koehn, Benjamin Marie, Christof
Monz, Kenton Murray, Masaaki Nagata, Martin Popel, Maja Popović, Mariya Shma-
tova, Steinthór Steingrímsson, and Vilém Zouhar. Findings of the WMT24 general
machine translation shared task: The LLM era is here but MT is not solved yet. In
Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz (eds.), Proceedings of the
Ninth Conference on Machine Translation, pp. 1–46, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.wmt-1.1. URL
https://aclanthology.org/2024.wmt-1.1/.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondrej Bojar, Konstantin Dranch,
Anton Dvorkovich, Sergey Dukanov, Natalia Fedorova, Mark Fishel, Markus Freitag,
Thamme Gowda, Roman Grundkiewicz, Barry Haddow, Marzena Karpinska, Philipp
Koehn, Howard Lakougna, Jessica Lundin, Kenton Murray, Masaaki Nagata, Stefano
Perrella, Lorenzo Proietti, Martin Popel, Maja Popovic, Parker Riley, Mariya Shmatova,
Steinþór Steingrímsson, Lisa Yankovskaya, and Vilém Zouhar. Preliminary ranking of
WMT25 general machine translation systems. CoRR, abs/2508.14909, 2025. doi: 10.
48550/ARXIV.2508.14909. URL https://doi.org/10.48550/arXiv.2508.14909.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In Eduardo Blanco and
Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 66–71, Brussels, Belgium, Novem-
ber 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012/.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic in-
variances for uncertainty estimation in natural language generation. arXiv preprint
arXiv:2302.09664, 2023a.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invari-
ances for uncertainty estimation in natural language generation. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023b. URL https://openreview.net/forum?id=VD-AYtP0dve.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-Baptiste,
Ioannis Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding
beyond beam search. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 8410–8434, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.662. URL https://aclanthology.org/2021.emnlp-main.662/.

14

https://aclanthology.org/P17-1147/
https://aclanthology.org/2023.wmt-1.1/
https://aclanthology.org/2024.wmt-1.1/
https://doi.org/10.48550/arXiv.2508.14909
https://aclanthology.org/D18-2012/
https://openreview.net/forum?id=VD-AYtP0dve
https://aclanthology.org/2021.emnlp-main.662/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehension.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–
7880, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.703. URL https://aclanthology.org/2020.acl-main.703/.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summa-
rization branches out, pp. 74–81, 2004.

Arle Lommel, Aljoscha Burchardt, Maja Popović, Kim Harris, Eleftherios Avramidis, and
Hans Uszkoreit. Using a new analytic measure for the annotation and analysis of MT
errors on real data. In Mauro Cettolo, Marcello Federico, Lucia Specia, and Andy Way
(eds.), Proceedings of the 17th Annual Conference of the European Association for Machine
Translation, pp. 165–172, Dubrovnik, Croatia, June 16-18 2014. European Association for
Machine Translation. URL https://aclanthology.org/2014.eamt-1.38/.

Yasmin Moslem, Rejwanul Haque, John D. Kelleher, and Andy Way. Adaptive machine
translation with large language models. In Mary Nurminen, Judith Brenner, Maarit
Koponen, Sirkku Latomaa, Mikhail Mikhailov, Frederike Schierl, Tharindu Ranasinghe,
Eva Vanmassenhove, Sergi Alvarez Vidal, Nora Aranberri, Mara Nunziatini, Carla Parra
Escartín, Mikel Forcada, Maja Popovic, Carolina Scarton, and Helena Moniz (eds.), Pro-
ceedings of the 24th Annual Conference of the European Association for Machine Trans-
lation, pp. 227–237, Tampere, Finland, June 2023. European Association for Machine
Translation. URL https://aclanthology.org/2023.eamt-1.22/.

Toan Nguyen and David Chiang. Improving lexical choice in neural machine translation. In
Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 334–343, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1031. URL
https://aclanthology.org/N18-1031/.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.
2303.08774. URL https://doi.org/10.48550/arXiv.2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and
Dekang Lin (eds.), Proceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002. As-
sociation for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040/.

Maja Popović. chrf++: words helping character n-grams. In Proceedings of the second
conference on machine translation, pp. 612–618, 2017.

Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large lan-
guage models through confidence measurement in semantic space. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Con-
ference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/
paper/2024/hash/f26d4fbaf7dfa115f1d4b3f104e26bce-Abstract-Conference.html.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL
https://jmlr.org/papers/v21/20-074.html.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. COMET: A neural framework
for MT evaluation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),

15

https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2014.eamt-1.38/
https://aclanthology.org/2023.eamt-1.22/
https://aclanthology.org/N18-1031/
https://doi.org/10.48550/arXiv.2303.08774
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
http://papers.nips.cc/paper_files/paper/2024/hash/f26d4fbaf7dfa115f1d4b3f104e26bce-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/f26d4fbaf7dfa115f1d4b3f104e26bce-Abstract-Conference.html
https://jmlr.org/papers/v21/20-074.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 2685–2702, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.213. URL https://aclanthology.org/
2020.emnlp-main.213/.

Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro, Chrysoula Zerva, Ana C Farinha, Chris-
tine Maroti, José G. C. de Souza, Taisiya Glushkova, Duarte Alves, Luisa Coheur, Alon
Lavie, and André F. T. Martins. CometKiwi: IST-unbabel 2022 submission for the quality
estimation shared task. In Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares,
Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander
Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Marco Turchi, and Marcos Zampieri (eds.), Pro-
ceedings of the Seventh Conference on Machine Translation (WMT), pp. 634–645, Abu
Dhabi, United Arab Emirates (Hybrid), December 2022. Association for Computational
Linguistics. URL https://aclanthology.org/2022.wmt-1.60/.

Nils Reimers and Iryna Gurevych. Why comparing single performance scores does not allow
to draw conclusions about machine learning approaches. CoRR, abs/1803.09578, 2018.
URL http://arxiv.org/abs/1803.09578.

Vicente Ivan Sanchez Carmona, Shanshan Jiang, and Bin Dong. Towards robust com-
parisons of NLP models: A case study. In Owen Rambow, Leo Wanner, Marianna
Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Pro-
ceedings of the 31st International Conference on Computational Linguistics, pp. 4973–
4979, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL
https://aclanthology.org/2025.coling-main.332/.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for
text generation. arXiv preprint arXiv:2004.04696, 2020.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins,
Danqi Chen, and Luke Zettlemoyer. Detecting pretraining data from large language mod-
els. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=zWqr3MQuNs.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul.
A study of translation edit rate with targeted human annotation. In Proceedings of the
7th Conference of the Association for Machine Translation in the Americas: Technical
Papers, pp. 223–231, 2006.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked
and permuted pre-training for language understanding. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fer-
nandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, An-
drew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross

16

https://aclanthology.org/2020.emnlp-main.213/
https://aclanthology.org/2020.emnlp-main.213/
https://aclanthology.org/2022.wmt-1.60/
http://arxiv.org/abs/1803.09578
https://aclanthology.org/2025.coling-main.332/
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo, Viresh Ratnakar, and George
Foster. Prompting PaLM for translation: Assessing strategies and performance. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15406–15427, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.859. URL https://aclanthology.org/2023.acl-long.
859/.

Longyue Wang, Siyou Liu, Chenyang Lyu, Wenxiang Jiao, Xing Wang, Jiahao Xu, Zhaopeng
Tu, Yan Gu, Weiyu Chen, Minghao Wu, Liting Zhou, Philipp Koehn, Andy Way, and
Yulin Yuan. Findings of the WMT 2024 shared task on discourse-level literary translation.
In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz (eds.), Proceedings
of the Ninth Conference on Machine Translation, pp. 699–700, Miami, Florida, USA,
November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
wmt-1.58. URL https://aclanthology.org/2024.wmt-1.58/.

Weichuan Wang, Zhaoyi Li, Defu Lian, Chen Ma, Linqi Song, and Ying Wei. Mitigating
the language mismatch and repetition issues in llm-based machine translation via model
editing. arXiv preprint arXiv:2410.07054, 2024b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report. CoRR, abs/2412.15115, 2024. doi: 10.48550/ARXIV.2412.15115. URL
https://doi.org/10.48550/arXiv.2412.15115.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei
Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong
Tu, Jianwei Zhang, Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin
Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi
Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu
Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. CoRR,
abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.09388. URL https://doi.org/10.
48550/arXiv.2505.09388.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in ma-
chine learning: Analyzing the connection to overfitting. In 31st IEEE Computer Se-
curity Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018,
pp. 268–282. IEEE Computer Society, 2018. doi: 10.1109/CSF.2018.00027. URL
https://doi.org/10.1109/CSF.2018.00027.

17

https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2023.acl-long.859/
https://aclanthology.org/2023.acl-long.859/
https://aclanthology.org/2024.wmt-1.58/
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.1109/CSF.2018.00027


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang,
Hao Frank Yang, and Hai Li. Min-k%++: Improved baseline for detecting pre-training
data from large language models. arXiv preprint arXiv:2404.02936, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Vilém Zouhar, Pinzhen Chen, Tsz Kin Lam, Nikita Moghe, and Barry Haddow. Pitfalls and
outlooks in using COMET. In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof
Monz (eds.), Proceedings of the Ninth Conference on Machine Translation, pp. 1272–1288,
Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.wmt-1.121. URL https://aclanthology.org/2024.wmt-1.121/.

18

https://aclanthology.org/2024.wmt-1.121/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

7 Appendix

.1 Use of LLMs

We use Claude-Sonnet-43 and GPT-5-Chat4 to provide lexical and writing suggestions on
the language part of this work; there is no direct usage with the output of LLMs in this
paper without any modification.

A Model Using

Table 5: Model Architecture and Size Overview
Model Name Size Architecture

NMT
mbart (Lewis et al., 2020) 610M Dense
nllb-200-distilled (Costa-jussà et al., 2022) 600M Distill
nllb-200 (Costa-jussà et al., 2022) 3.3B Dense
nllb-moe (Costa-jussà et al., 2022) 54.5B MoE

LLM (pre-trained only)
Llama-2 (Touvron et al., 2023) 7B Dense
Qwen2.5 (Yang et al., 2024) 7B Dense
Llama-3.1 (Dubey et al., 2024) 8B Dense
Llama-2 (Touvron et al., 2023) 70B Dense
Llama-3.1 (Dubey et al., 2024) 70B Dense
Qwen2.5 (Yang et al., 2024) 72B Dense

LLM (instruction-tuned)
Llama-2 (Touvron et al., 2023) 7B Dense
Qwen2.5 (Dubey et al., 2024) 7B Dense
Llama-2 (Yang et al., 2024) 70B Dense
Qwen2.5 (Yang et al., 2024) 72B Dense
MiniCPM-MoE (Hu et al., 2024) 8x2B MoE

LLM (reasoning)
Qwen3-N Yang et al. (2025) 8B Dense
Qwen3-NT Yang et al. (2025) 8B Dense
DeepSeek-R1-Distill-Qwen-7B DeepSeek-AI et al. (2025) 7B Dense
DeepSeek-R1-Distill-Llama-8B DeepSeek-AI et al. (2025) 8B Dense
DeepSeek-R1-0628 DeepSeek-AI et al. (2025) 671B MoE

As shown in Table 5, we systematically consider current SOTA MT systems encompassing
NMT, LLM-based MT (pre-trained only, instruction-tuned, and reasoning) across different
model size.

B Prompts

B.1 For instruction-tuned LLM

User:
Translate the following <source language > text to <target language >.
Only provide the translation , no explanations:

<source sentence >

B.2 Prompt on pre-trained LLM

User:
Translate the following <source language> sentences to <target language>:

<source language>: 今天天气很好。
3https://www.anthropic.com/claude/sonnet
4https://chatgpt.com/
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<target language>: The weather is beautiful today.

<source language>: 你好吗？
<target language>: How are you doing?

<source language>: 我期待着我们明天的会议。
<target language>: I'm looking forward to our meeting tomorrow.

<source language>: 技术的快速发展显著改变了我们的日常生活。
<target language>: The rapid development of technology has changed our daily lives

significantly.

<source language>: 你能帮我解决这个问题吗？
<target language>: Could you please help me with this problem?

<source language>: <source sentence>
<target language>:

C Degree of Non-determinism of all data

Table 6: Degree of Non-determinism Analysis with Percentage Values
Degree of Non-determinism

Model Name Size INNER COMET20DA COMET22KIWI
mean std mean std mean std

NMT
MBART 610M 67.33 11.64 79.25 4.76 73.81 4.68
NLLB-200 600M 63.94 13.87 73.14 7.43 65.05 8.42
NLLB-200 3.3B 57.86 14.92 73.04 8.81 63.62 10.25
NLLB-moe 54.5B 53.54 17.76 71.68 9.16 60.75 10.51

LLM (pre-trained only)
Llama-2 7B 46.23 13.39 70.67 8 63.8 8.31
Qwen2.5 7B 56.89 19.64 77.45 7.6 75.09 5.85
Llama-3.1 8B 61.43 16.13 80.36 5.82 74.68 5.4
Llama-2 70B 52.24 13.65 70.73 8.61 67.98 7.03
Llama-3.1 70B 80.95 13.38 75.12 6.17 77.27 3.77
Qwen2.5 72B 61.22 16.47 76.37 11.43 78.11 3.56

LLM (instruction-tuned)
Llama-2 7B 58.35 5.19 66.61 7.89 58.51 10
Qwen2.5 7B 85.65 10.00 85.15 2.06 79.01 2.1
Llama-2 70B 83.31 16.57 51.22 12.39 48.49 12.28
Qwen2.5 72B 90.35 7.78 86.85 1.34 80.59 1.09
MiniCPM-MoE 8x2B 84.85 8.99 84.54 2.76 78.49 2.43

LLM (reasoning)
Qwen3(NT) 8B 90.66 8.05 86.24 1.2 80.68 0.99
Qwen3 8B 81.39 10.13 86.06 2.32 80.44 1.8
DeepSeek-R1 7B 63.51 12.36 80.27 5.53 73.77 6.31
DeepSeek-R1 8B 66.99 13.18 81.54 4.88 75.49 4.96
DeepSeek-R1 671B 70.56 11.84 84.86 3.02 80.33 2.42
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