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ABSTRACT

The Moore-Penrose pseudo-inverse X T, defined for rectangular matrices, naturally emerges in many
areas of mathematics and science. For a pair of rectangular matrices X, Y where the corresponding
entries are jointly Gaussian and i.i.d., we analyse the support of the eigenvalue spectrum of XY
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1 Introduction

We are interested in pairs of rectangular random matrices of equal size where their corresponding elements are
independent, identically distributed (i.i.d.) from a 2-D joint distribution.

Definition 1 (Real Paired Gaussian Matrices). For N, P € N and covariance matrix ¥ € R?*2, Real Paired Gaussian

Matrices are a pair of real rectangular matrices of X,Y € RN* where corresponding entries © = Xiw,y =Y, for
anyi=1...N, u=1...P, are jointly i.i.d. Gaussian (z,y) ~ N (0,2/N).

Definition 2 (Complex Paired Gaussian Matrices with independent components). For N, P € N, ¥ as above, Complex
Paired Gaussian Matrices with independent components are complex rectangular matrices X,Y € CN*F such that
Re (X),Re (Y) are real paired Gaussian matrices with covariance X e, Im (X) ,Im (Y') are real paired Gaussian
matrices with covariance X, and satisfy X re + X1 = X (i.e., the real and imaginary components are independent).

Definition 3 (Complex Paired Gaussian Matrices). For N, P € N, covariance matrix I' € R**4 Complex Paired
Gaussian Matrices are a pair of complex rectangular matrices of X,Y € CN*F ywhere corresponding entries
x = X,y =Y, are jointly i.i.d. Gaussian (Rex,Im, Rey, Imy) ~ N (0,T'/N).

Note that [Definition 2| generalises as it correspond to the case of X1, = 0. Without loss of generality,
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for 0,0, € RT and |7| < 1, where 7 € R for the first two definitions and 7 € C for the third definition.

Denoting the dimensions ratio a = P/N, we consider a matrix M € CV*¥ defined from paired Gaussian matrices
X, Y using either a conjugate transpose M = XY™ (a scenario previously discussed under the name “non-Hermitian
Wishart ensemble” [1]]) or a pseudo-inverse [2] M/ = XY T and wish to calculate the support of the limiting spectral
density of M in terms of 0., oy, T, @, namely the set with positive density for N — oo.
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2 Results

We denote the empirical spectral density of a matrix My € CV*N as pf) (w) = + Z 0(w—A; (My)). If a
series of such measures converges weakly to a limiting spectral density, we denote it 157 (w), and denote its support
Sy = {w: puy (w) > 0}, with a slight abuse of notation, as both py, and Sy are not defined for a specific matrix M.

Theorem 1. For complex paired Gaussian matrices with independent components X,Y, the support of the limiting
spectral density of M = XY™ is:
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The support is an ellipsoid if & > 1, or a union thereof with 0 if a < 1. For the case discussed here, 7 € R so that
Im (7) = 0, but this equation is valid in a more general case: for a complex 7 the support is rotated by arg (7).

Theorem 2. For complex paired Gaussian matrices X,Y, the support of the limiting spectral density of M = XY™ is
et 81§y v = {/\ cemiae(T) ) € Sy }

Theorem 3. For paired Gaussian matrices X, Y with a # 1, denoting 8 = max {1/«, a}, the support of the limiting
spectral density of M = XY is:
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The support is a circle if a > 1, or a union thereof with 0 if o < 1, and the case @ = 1 is not covered.

Conjecture 1. For paired Gaussian matrices, the support of u-. converges to the support of the limiting ixy .

This corresponds to the lack of isolated outliers for XY *. For example, this property has been proven for the Ginibre
ensemble, where it was further demonstrated that outliers can be created using bounded rank perturbations [3]]. This
might be proven by showing that the Brown measure is continuous with respect to the topology of convergence [4].

3 Proofs

Proof o, eorem [Theorem I|for o > 1. This case is the main result of [[1], where it is derived (using a different notation) for
« > 1 that . converges weakly to a limiting spectral density zxy~ with the specified support, with the additional
assumptions that o, = o, = 1, and X g, = X,,. Because the resulting eigenvalues scale multiplicatively with o0,
is obtained from Eq. 1.7 in [I]] by scaling A into A/o,0,. Furthermore, their result depends only on 7, the
off diagonal term of X = X p. + X1,,,, and thus generalises to any choice of X ., X 1., as in our definitions. O]

Proof of [Theorem 1| for « < 1. We note the characteristic polynomial of XY * can be related to that of Y*X by the
Weinstein-Aronszajn identity pxy- (z) = det (v — XY*) = 2V "Pdet (2 — Y*X) = 2V Ppy.x (z) so the
elgenvalues of XY*are N — P zeros and the P eigenvalues of Y*X. This relation holds exactly for a finite NV,
Ny (A) = (1 —a)§(\) + apky. (N), and thus also for the limiting spectral den51ty The measure pxy~ is
supported, according to the first half of the proof, at the following ellipsoid from [Eq. 1| with dimensions ratio 1/c > 1,
and additional scaling of 0,0, to £ 0,0, due to correcting the scaling from /N in Definition 1finto ¥/ P. Those
terms cancel, and the ellipsoid support from [Eq. 1]is the same in both cases. O

This also provides the exact limiting spectral density of XY™ for o < 1, in terms of the known result for o > 1 [1].

Proof of[Theorem 2] We note it is possible to diagonalise I, a 4 x 4 positive-definite matrix, using three rotation
operations, one applied to components of x, one applied to the components of y, and one applied at the 2 x 2 block
structure. The latter is equivalent to multiplication by a complex scalar c. The former are equivalent to multiplying the
complex x (respectively ) by a constant ¢, (respectively c,) such that ¢,z (respectively c,y) are complex Gaussian
variables with independent real and imaginary components. As all the components of X, Y are identically distributed,
ccyCy XY™ satisfy Definition 2]and hence their support is given by [Eq. T} Furthermore, this constant can be calculated as
arg (7); the norms of the constants would not affect this normalised quantity. Finally, the effect of this multiplication is
a rotation of the support around 0, so that the centre of the ellipsoid moves from 0,0, (1 — a) 7+ 40 in the independent

case to 0,0, (1 — ) (Re (1) + iIm (7)) in the general case, as well as rotation of each X into ¢’ *8(7) ). O
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The following corollary can be drawn from[Eq. I} which we will use below. It was already noted in [1] for 7 € R.

Corollary 1. For paired Gaussian matrices, 0 € Sxy- iff |7|° < 1/a.

Proof. The rotation in is around 0, so the condition is the same for complex paired Gaussian matrices with
or without independent components. For o < 1, the statement is trivial as both terms are true by definition. For o« > 1,

the left term becomes |7| (1 + o) < o (1 + \T|2) and denoting g (z) = 1757 yields g (|7]) < g(1/y/a). Thus,
|7] < 1/4/a from monotonicity of g (z) for z € [0, 1]. O

We prove [Theorem 3|by showing how the condition A € Sxy-+ can be reduced to the condition 0 € Y*Z,, , for some
matrix Zy, which we already understand from [Corollary 1] The proof requires the yet unproven

Proof of Theorem 3|for o < 1, assuming[Conjecture 1) In this case YT = (Y*Y)~'Y*, and from the gen-

eralised matrix determinant lemma [3], the characteristic polynomial of XYT would be pyy+ (z) =
det (2 = X (YY) 7' Y7) = det (VY = LY X) gty
for a < 1 from Marchenko-Pastur [6]. We note that when « — 0 the determinant is dominated by 2~ F and the
characteristic polynomial would have V=" Thus, at least N — P of the eigenvalues of XYt are 0, and this value is
included in the support. For 0 # A € E.V. (XY'T) we have that it satisfies 0 = det (Y*Z) for Z =Y — X/A. Now
note that for a fixed A # 0, we can consider a series of P x P matrices Mp = Y*Z where Y, Z are paired Gaussian
matrices, with dimensions ratio 1/«. Assuming [Conjecture 1} the support of the eigenvalue spectrum of Mp converges
for P — oo to the support of the limiting density[Eq. 1] so except for a set whose measure vanishes, by it is

strictly positive for |7',\|2 < a, and 0 otherwise, where 7, = corrcoef (y,y — x/\). Using the joint distribution of x, y:

where det (Y*Y) is a finite, strictly positive value

P = (096 (y — /) <6y5y - x/A> 02— 20,0,Re (1/X) + |77 02/ |\ 3
T yon) (5ty—2/Ndy—a/x)  0F—20s0,Re(r/A) + 02/ A

and substituting Re (7/A) = (RerReX + Im7Im)\) / |A]” the condition on X becomes:
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which can be rewritten as a circular law |\ — ¢|” < 72 with a centre ¢ = 7 7= and square radius r? =
Y

so[Eq. 2] follows for 3 = 1/cv. ' O

Proof of [Theorem 3|for o > 1, assuming[Conjecture 1} In this case YT = Y* (YY*) ™", and from the generalised
matrix determinant lemma [3] the characteristic polynomial is pxyi () = det (x[ - XY™ (YY*)A) =

det (YY* — %X Y*) WNY*) It is not expected to have zeros at x = 0, as the determinant would contribute
=N forz — 0. For 0 # A € E.V. (XY), we have that it satisfies 0 = det (ZY*) for Z = Y — X/, and the
argument continues as in o < 1. Here, for a fixed A # 0, we can consider a series of N x N matrices My = ZY*
where Y, Z are paired Gaussian matrices, with dimensions ratio « (instead of 1/« in the @ < 1 case). Assuming
IConjecture 1} the support of the eigenvalue spectrum of My converges for N — oo to the support of the limiting
density [Eq. 1} so except for a set whose measure vanishes, by it is strictly positive for | \2 < a, and 0

otherwise, so that[Eq. 3]is unmodified and has 1/« terms instead of o terms. [Eq. 2|follows with 8 = cv. O

We note that the above approach for does not apply to v = 1, as YT = Y1 in this case.
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