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ABSTRACT

The Moore-Penrose pseudo-inverse X†, defined for rectangular matrices, naturally emerges in many
areas of mathematics and science. For a pair of rectangular matrices X,Y where the corresponding
entries are jointly Gaussian and i.i.d., we analyse the support of the eigenvalue spectrum of XY †.
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1 Introduction

We are interested in pairs of rectangular random matrices of equal size where their corresponding elements are
independent, identically distributed (i.i.d.) from a 2-D joint distribution.

Definition 1 (Real Paired Gaussian Matrices). For N,P ∈ N and covariance matrix Σ ∈ R2×2, Real Paired Gaussian
Matrices are a pair of real rectangular matrices of X,Y ∈ RN×P where corresponding entries x = Xiµ, y = Yiµ for
any i = 1 . . . N , µ = 1 . . . P , are jointly i.i.d. Gaussian (x, y) ∼ N (0,Σ/N).

Definition 2 (Complex Paired Gaussian Matrices with independent components). For N,P ∈ N, Σ as above, Complex
Paired Gaussian Matrices with independent components are complex rectangular matrices X,Y ∈ CN×P such that
Re (X) ,Re (Y ) are real paired Gaussian matrices with covariance ΣRe, Im (X) , Im (Y ) are real paired Gaussian
matrices with covariance ΣIm, and satisfy ΣRe +ΣIm = Σ (i.e., the real and imaginary components are independent).

Definition 3 (Complex Paired Gaussian Matrices). For N,P ∈ N, covariance matrix Γ ∈ R4×4, Complex Paired
Gaussian Matrices are a pair of complex rectangular matrices of X,Y ∈ CN×P where corresponding entries
x = Xiµ, y = Yiµ are jointly i.i.d. Gaussian (Rex, Im,Rey, Imy) ∼ N (0,Γ/N).

Note that Definition 2 generalises Definition 1 as it correspond to the case of ΣIm = 0. Without loss of generality,

Σ = Var (x, y) =

(
σ2
x τσxσy

τ̄σxσy σ2
y

)
for σx, σy ∈ R+ and |τ | ≤ 1, where τ ∈ R for the first two definitions and τ ∈ C for the third definition.

Denoting the dimensions ratio α = P/N , we consider a matrix M ∈ CN×N defined from paired Gaussian matrices
X,Y using either a conjugate transpose M = XY ∗ (a scenario previously discussed under the name “non-Hermitian
Wishart ensemble” [1]) or a pseudo-inverse [2] M = XY † and wish to calculate the support of the limiting spectral
density of M in terms of σx, σy, τ, α, namely the set with positive density for N → ∞.
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2 Results
We denote the empirical spectral density of a matrix MN ∈ CN×N as µN

M (ω) = 1
N

∑N
i δ (ω − λi (MN )). If a

series of such measures converges weakly to a limiting spectral density, we denote it µM (ω), and denote its support
SM = {ω : µM (ω) > 0}, with a slight abuse of notation, as both µM and SM are not defined for a specific matrix M .

Theorem 1. For complex paired Gaussian matrices with independent components X,Y , the support of the limiting
spectral density of M = XY ∗ is:

SXY ∗ = {0}α<1 ∪

λ :

Reλ− σxσy (1 + α)Re (τ)

σxσy
√
α
(
1 + |τ |2

)
2

+

 Imλ− σxσy (1 + α) Im (τ)

σxσy
√
α
(
1− |τ |2

)
2

≤ 1

 (1)

The support is an ellipsoid if α ≥ 1, or a union thereof with 0 if α < 1. For the case discussed here, τ ∈ R so that
Im (τ) = 0, but this equation is valid in a more general case: for a complex τ the support is rotated by arg (τ).

Theorem 2. For complex paired Gaussian matrices X,Y , the support of the limiting spectral density of M = XY ∗ is
ei arg(τ)SXY ∗ =

{
λ : e−i arg(τ)λ ∈ SXY ∗

}
.

Theorem 3. For paired Gaussian matrices X,Y with α ̸= 1, denoting β = max {1/α, α}, the support of the limiting
spectral density of M = XY † is:

SXY † = {0}α<1 ∪

{
λ :

∣∣∣∣λ− σx

σy
τ

∣∣∣∣2 ≤ σ2
x

σ2
y

1− |τ |2

β − 1

}
(2)

The support is a circle if α > 1, or a union thereof with 0 if α < 1, and the case α = 1 is not covered.

Conjecture 1. For paired Gaussian matrices, the support of µN
XY ∗ converges to the support of the limiting µXY ∗ .

This corresponds to the lack of isolated outliers for XY ∗. For example, this property has been proven for the Ginibre
ensemble, where it was further demonstrated that outliers can be created using bounded rank perturbations [3]. This
might be proven by showing that the Brown measure is continuous with respect to the topology of convergence [4].

3 Proofs
Proof of Theorem 1 for α ≥ 1. This case is the main result of [1], where it is derived (using a different notation) for
α ≥ 1 that µN

XY ∗ converges weakly to a limiting spectral density µXY ∗ with the specified support, with the additional
assumptions that σx = σy = 1, and ΣRe = ΣIm. Because the resulting eigenvalues scale multiplicatively with σxσy,
Eq. 1 is obtained from Eq. 1.7 in [1] by scaling λ into λ/σxσy. Furthermore, their result depends only on τ , the
off-diagonal term of Σ = ΣRe +ΣIm, and thus generalises to any choice of ΣRe,ΣIm, as in our definitions.

Proof of Theorem 1 for α < 1. We note the characteristic polynomial of XY ∗ can be related to that of Y ∗X by the
Weinstein-Aronszajn identity pXY ∗ (x) = det (xI −XY ∗) = xN−P det (xI − Y ∗X) = xN−P pY ∗X (x) so the
eigenvalues of XY ∗ are N − P zeros, and the P eigenvalues of Y ∗X . This relation holds exactly for a finite N ,
µN
XY ∗ (λ) = (1− α) δ (λ) + αµP

XY ∗ (λ), and thus also for the limiting spectral density. The measure µXY ∗ is
supported, according to the first half of the proof, at the following ellipsoid from Eq. 1 with dimensions ratio 1/α > 1,
and additional scaling of σxσy to P

N σxσy due to correcting the scaling from Σ/N in Definition 1 into Σ/P . Those
terms cancel, and the ellipsoid support from Eq. 1 is the same in both cases.

This also provides the exact limiting spectral density of XY ∗ for α < 1, in terms of the known result for α > 1 [1].

Proof of Theorem 2. We note it is possible to diagonalise Γ, a 4 × 4 positive-definite matrix, using three rotation
operations, one applied to components of x, one applied to the components of y, and one applied at the 2× 2 block
structure. The latter is equivalent to multiplication by a complex scalar c. The former are equivalent to multiplying the
complex x (respectively y) by a constant cx (respectively cy) such that cxx (respectively cyy) are complex Gaussian
variables with independent real and imaginary components. As all the components of X,Y are identically distributed,
ccxc̄yXY ∗ satisfy Definition 2 and hence their support is given by Eq. 1. Furthermore, this constant can be calculated as
arg (τ); the norms of the constants would not affect this normalised quantity. Finally, the effect of this multiplication is
a rotation of the support around 0, so that the centre of the ellipsoid moves from σxσy (1− α) τ + i0 in the independent
case to σxσy (1− α) (Re (τ) + iIm (τ)) in the general case, as well as rotation of each λ into ei arg(τ)λ.
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The following corollary can be drawn from Eq. 1, which we will use below. It was already noted in [1] for τ ∈ R.

Corollary 1. For paired Gaussian matrices, 0 ∈ SXY ∗ iff |τ |2 ≤ 1/α.

Proof. The rotation in Theorem 2 is around 0, so the condition is the same for complex paired Gaussian matrices with
or without independent components. For α < 1, the statement is trivial as both terms are true by definition. For α ≥ 1,
the left term becomes |τ | (1 + α) ≤

√
α
(
1 + |τ |2

)
and denoting g (x) = x

1+x2 yields g (|τ |) ≤ g (1/
√
α). Thus,

|τ | ≤ 1/
√
α from monotonicity of g (x) for x ∈ [0, 1].

We prove Theorem 3 by showing how the condition λ ∈ SXY † can be reduced to the condition 0 ∈ Y ∗Zλ, , for some
matrix Zλ, which we already understand from Corollary 1. The proof requires the yet unproven Conjecture 1.

Proof of Theorem 3 for α < 1, assuming Conjecture 1. In this case Y † = (Y ∗Y )
−1

Y ∗, and from the gen-
eralised matrix determinant lemma [5], the characteristic polynomial of XY † would be pXY † (x) =

det
(
xI −X (Y ∗Y )

−1
Y ∗

)
= det

(
Y ∗Y − 1

xY
∗X

)
xN

det(Y ∗Y ) where det (Y ∗Y ) is a finite, strictly positive value

for α < 1 from Marchenko-Pastur [6]. We note that when x → 0 the determinant is dominated by x−P and the
characteristic polynomial would have xN−P . Thus, at least N − P of the eigenvalues of XY † are 0, and this value is
included in the support. For 0 ̸= λ ∈ E.V.

(
XY †) we have that it satisfies 0 = det (Y ∗Z) for Z = Y −X/λ. Now

note that for a fixed λ ̸= 0, we can consider a series of P × P matrices MP = Y ∗Z where Y,Z are paired Gaussian
matrices, with dimensions ratio 1/α. Assuming Conjecture 1, the support of the eigenvalue spectrum of MP converges
for P → ∞ to the support of the limiting density Eq. 1, so except for a set whose measure vanishes, by Corollary 1 it is
strictly positive for |τλ|2 < α, and 0 otherwise, where τλ = corrcoef (y, y − x/λ). Using the joint distribution of x, y:

|τλ|2 =
⟨δȳδ (y − x/λ)⟩

〈
δyδy − x/λ

〉
⟨δyδȳ⟩

〈
δ (y − x/λ) δy − x/λ

〉 =
σ2
y − 2σxσyRe (τ/λ) + |τ |2 σ2

x/ |λ|
2

σ2
y − 2σxσyRe (τ/λ) + σ2

x/ |λ|
2 (3)

and substituting Re (τ/λ) = (ReτReλ+ Imτ Imλ) / |λ|2 the condition on λ becomes:

(1− α) |λ|2 σ2
y − 2 (1− α)σxσy (ReτReλ+ Imτ Imλ) +

(
|τ |2 − α

)
σ2
x ≤ 0 (4)

which can be rewritten as a circular law |λ− c|2 ≤ r2 with a centre c = τ σx

σy
and square radius r2 =

σ2
x

σ2
y

(
1− τ2

)
α

1−α ,
so Eq. 2 follows for β = 1/α.

Proof of Theorem 3 for α > 1, assuming Conjecture 1. In this case Y † = Y ∗ (Y Y ∗)
−1, and from the generalised

matrix determinant lemma [5] the characteristic polynomial is pXY † (x) = det
(
xI −XY ∗ (Y Y ∗)

−1
)

=

det
(
Y Y ∗ − 1

xXY ∗) xN

det(Y Y ∗) . It is not expected to have zeros at x = 0, as the determinant would contribute
x−N for x → 0. For 0 ̸= λ ∈ E.V.

(
XY †), we have that it satisfies 0 = det (ZY ∗) for Z = Y − X/λ, and the

argument continues as in α < 1. Here, for a fixed λ ̸= 0, we can consider a series of N ×N matrices MN = ZY ∗

where Y,Z are paired Gaussian matrices, with dimensions ratio α (instead of 1/α in the α < 1 case). Assuming
Conjecture 1, the support of the eigenvalue spectrum of MN converges for N → ∞ to the support of the limiting
density Eq. 1, so except for a set whose measure vanishes, by Corollary 1 it is strictly positive for |τλ|2 < α, and 0
otherwise, so that Eq. 3 is unmodified and Eq. 4 has 1/α terms instead of α terms. Eq. 2 follows with β = α.

We note that the above approach for Theorem 3 does not apply to α = 1, as Y † = Y −1 in this case.
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[4] Serban T Belinschi, Piotr Śniady, and Roland Speicher. Eigenvalues of non-hermitian random matrices and
brown measure of non-normal operators: Hermitian reduction and linearization method. Linear Algebra and its
Applications, 537:48–83, 2018.

[5] Mike Brookes. The matrix reference manual. Imperial College London, 3:16, 2005.
[6] VA Marchenko and Leonid A Pastur. Distribution of eigenvalues for some sets of random matrices. Mat. Sb.(NS),

72(114):4, 1967.

4


	Introduction
	Results
	Proofs

